xref: /openbmc/linux/drivers/gpu/drm/exynos/exynos_mixer.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2011 Samsung Electronics Co.Ltd
4  * Authors:
5  * Seung-Woo Kim <sw0312.kim@samsung.com>
6  *	Inki Dae <inki.dae@samsung.com>
7  *	Joonyoung Shim <jy0922.shim@samsung.com>
8  *
9  * Based on drivers/media/video/s5p-tv/mixer_reg.c
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/component.h>
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/ktime.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/spinlock.h>
26 #include <linux/wait.h>
27 
28 #include <drm/drm_fourcc.h>
29 #include <drm/drm_vblank.h>
30 #include <drm/exynos_drm.h>
31 
32 #include "exynos_drm_crtc.h"
33 #include "exynos_drm_drv.h"
34 #include "exynos_drm_fb.h"
35 #include "exynos_drm_plane.h"
36 #include "regs-mixer.h"
37 #include "regs-vp.h"
38 
39 #define MIXER_WIN_NR		3
40 #define VP_DEFAULT_WIN		2
41 
42 /*
43  * Mixer color space conversion coefficient triplet.
44  * Used for CSC from RGB to YCbCr.
45  * Each coefficient is a 10-bit fixed point number with
46  * sign and no integer part, i.e.
47  * [0:8] = fractional part (representing a value y = x / 2^9)
48  * [9] = sign
49  * Negative values are encoded with two's complement.
50  */
51 #define MXR_CSC_C(x) ((int)((x) * 512.0) & 0x3ff)
52 #define MXR_CSC_CT(a0, a1, a2) \
53   ((MXR_CSC_C(a0) << 20) | (MXR_CSC_C(a1) << 10) | (MXR_CSC_C(a2) << 0))
54 
55 /* YCbCr value, used for mixer background color configuration. */
56 #define MXR_YCBCR_VAL(y, cb, cr) (((y) << 16) | ((cb) << 8) | ((cr) << 0))
57 
58 /* The pixelformats that are natively supported by the mixer. */
59 #define MXR_FORMAT_RGB565	4
60 #define MXR_FORMAT_ARGB1555	5
61 #define MXR_FORMAT_ARGB4444	6
62 #define MXR_FORMAT_ARGB8888	7
63 
64 enum mixer_version_id {
65 	MXR_VER_0_0_0_16,
66 	MXR_VER_16_0_33_0,
67 	MXR_VER_128_0_0_184,
68 };
69 
70 enum mixer_flag_bits {
71 	MXR_BIT_POWERED,
72 	MXR_BIT_VSYNC,
73 	MXR_BIT_INTERLACE,
74 	MXR_BIT_VP_ENABLED,
75 	MXR_BIT_HAS_SCLK,
76 };
77 
78 static const uint32_t mixer_formats[] = {
79 	DRM_FORMAT_XRGB4444,
80 	DRM_FORMAT_ARGB4444,
81 	DRM_FORMAT_XRGB1555,
82 	DRM_FORMAT_ARGB1555,
83 	DRM_FORMAT_RGB565,
84 	DRM_FORMAT_XRGB8888,
85 	DRM_FORMAT_ARGB8888,
86 };
87 
88 static const uint32_t vp_formats[] = {
89 	DRM_FORMAT_NV12,
90 	DRM_FORMAT_NV21,
91 };
92 
93 struct mixer_context {
94 	struct platform_device *pdev;
95 	struct device		*dev;
96 	struct drm_device	*drm_dev;
97 	void			*dma_priv;
98 	struct exynos_drm_crtc	*crtc;
99 	struct exynos_drm_plane	planes[MIXER_WIN_NR];
100 	unsigned long		flags;
101 
102 	int			irq;
103 	void __iomem		*mixer_regs;
104 	void __iomem		*vp_regs;
105 	spinlock_t		reg_slock;
106 	struct clk		*mixer;
107 	struct clk		*vp;
108 	struct clk		*hdmi;
109 	struct clk		*sclk_mixer;
110 	struct clk		*sclk_hdmi;
111 	struct clk		*mout_mixer;
112 	enum mixer_version_id	mxr_ver;
113 	int			scan_value;
114 };
115 
116 struct mixer_drv_data {
117 	enum mixer_version_id	version;
118 	bool					is_vp_enabled;
119 	bool					has_sclk;
120 };
121 
122 static const struct exynos_drm_plane_config plane_configs[MIXER_WIN_NR] = {
123 	{
124 		.zpos = 0,
125 		.type = DRM_PLANE_TYPE_PRIMARY,
126 		.pixel_formats = mixer_formats,
127 		.num_pixel_formats = ARRAY_SIZE(mixer_formats),
128 		.capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE |
129 				EXYNOS_DRM_PLANE_CAP_ZPOS |
130 				EXYNOS_DRM_PLANE_CAP_PIX_BLEND |
131 				EXYNOS_DRM_PLANE_CAP_WIN_BLEND,
132 	}, {
133 		.zpos = 1,
134 		.type = DRM_PLANE_TYPE_CURSOR,
135 		.pixel_formats = mixer_formats,
136 		.num_pixel_formats = ARRAY_SIZE(mixer_formats),
137 		.capabilities = EXYNOS_DRM_PLANE_CAP_DOUBLE |
138 				EXYNOS_DRM_PLANE_CAP_ZPOS |
139 				EXYNOS_DRM_PLANE_CAP_PIX_BLEND |
140 				EXYNOS_DRM_PLANE_CAP_WIN_BLEND,
141 	}, {
142 		.zpos = 2,
143 		.type = DRM_PLANE_TYPE_OVERLAY,
144 		.pixel_formats = vp_formats,
145 		.num_pixel_formats = ARRAY_SIZE(vp_formats),
146 		.capabilities = EXYNOS_DRM_PLANE_CAP_SCALE |
147 				EXYNOS_DRM_PLANE_CAP_ZPOS |
148 				EXYNOS_DRM_PLANE_CAP_TILE |
149 				EXYNOS_DRM_PLANE_CAP_WIN_BLEND,
150 	},
151 };
152 
153 static const u8 filter_y_horiz_tap8[] = {
154 	0,	-1,	-1,	-1,	-1,	-1,	-1,	-1,
155 	-1,	-1,	-1,	-1,	-1,	0,	0,	0,
156 	0,	2,	4,	5,	6,	6,	6,	6,
157 	6,	5,	5,	4,	3,	2,	1,	1,
158 	0,	-6,	-12,	-16,	-18,	-20,	-21,	-20,
159 	-20,	-18,	-16,	-13,	-10,	-8,	-5,	-2,
160 	127,	126,	125,	121,	114,	107,	99,	89,
161 	79,	68,	57,	46,	35,	25,	16,	8,
162 };
163 
164 static const u8 filter_y_vert_tap4[] = {
165 	0,	-3,	-6,	-8,	-8,	-8,	-8,	-7,
166 	-6,	-5,	-4,	-3,	-2,	-1,	-1,	0,
167 	127,	126,	124,	118,	111,	102,	92,	81,
168 	70,	59,	48,	37,	27,	19,	11,	5,
169 	0,	5,	11,	19,	27,	37,	48,	59,
170 	70,	81,	92,	102,	111,	118,	124,	126,
171 	0,	0,	-1,	-1,	-2,	-3,	-4,	-5,
172 	-6,	-7,	-8,	-8,	-8,	-8,	-6,	-3,
173 };
174 
175 static const u8 filter_cr_horiz_tap4[] = {
176 	0,	-3,	-6,	-8,	-8,	-8,	-8,	-7,
177 	-6,	-5,	-4,	-3,	-2,	-1,	-1,	0,
178 	127,	126,	124,	118,	111,	102,	92,	81,
179 	70,	59,	48,	37,	27,	19,	11,	5,
180 };
181 
182 static inline u32 vp_reg_read(struct mixer_context *ctx, u32 reg_id)
183 {
184 	return readl(ctx->vp_regs + reg_id);
185 }
186 
187 static inline void vp_reg_write(struct mixer_context *ctx, u32 reg_id,
188 				 u32 val)
189 {
190 	writel(val, ctx->vp_regs + reg_id);
191 }
192 
193 static inline void vp_reg_writemask(struct mixer_context *ctx, u32 reg_id,
194 				 u32 val, u32 mask)
195 {
196 	u32 old = vp_reg_read(ctx, reg_id);
197 
198 	val = (val & mask) | (old & ~mask);
199 	writel(val, ctx->vp_regs + reg_id);
200 }
201 
202 static inline u32 mixer_reg_read(struct mixer_context *ctx, u32 reg_id)
203 {
204 	return readl(ctx->mixer_regs + reg_id);
205 }
206 
207 static inline void mixer_reg_write(struct mixer_context *ctx, u32 reg_id,
208 				 u32 val)
209 {
210 	writel(val, ctx->mixer_regs + reg_id);
211 }
212 
213 static inline void mixer_reg_writemask(struct mixer_context *ctx,
214 				 u32 reg_id, u32 val, u32 mask)
215 {
216 	u32 old = mixer_reg_read(ctx, reg_id);
217 
218 	val = (val & mask) | (old & ~mask);
219 	writel(val, ctx->mixer_regs + reg_id);
220 }
221 
222 static void mixer_regs_dump(struct mixer_context *ctx)
223 {
224 #define DUMPREG(reg_id) \
225 do { \
226 	DRM_DEV_DEBUG_KMS(ctx->dev, #reg_id " = %08x\n", \
227 			 (u32)readl(ctx->mixer_regs + reg_id)); \
228 } while (0)
229 
230 	DUMPREG(MXR_STATUS);
231 	DUMPREG(MXR_CFG);
232 	DUMPREG(MXR_INT_EN);
233 	DUMPREG(MXR_INT_STATUS);
234 
235 	DUMPREG(MXR_LAYER_CFG);
236 	DUMPREG(MXR_VIDEO_CFG);
237 
238 	DUMPREG(MXR_GRAPHIC0_CFG);
239 	DUMPREG(MXR_GRAPHIC0_BASE);
240 	DUMPREG(MXR_GRAPHIC0_SPAN);
241 	DUMPREG(MXR_GRAPHIC0_WH);
242 	DUMPREG(MXR_GRAPHIC0_SXY);
243 	DUMPREG(MXR_GRAPHIC0_DXY);
244 
245 	DUMPREG(MXR_GRAPHIC1_CFG);
246 	DUMPREG(MXR_GRAPHIC1_BASE);
247 	DUMPREG(MXR_GRAPHIC1_SPAN);
248 	DUMPREG(MXR_GRAPHIC1_WH);
249 	DUMPREG(MXR_GRAPHIC1_SXY);
250 	DUMPREG(MXR_GRAPHIC1_DXY);
251 #undef DUMPREG
252 }
253 
254 static void vp_regs_dump(struct mixer_context *ctx)
255 {
256 #define DUMPREG(reg_id) \
257 do { \
258 	DRM_DEV_DEBUG_KMS(ctx->dev, #reg_id " = %08x\n", \
259 			 (u32) readl(ctx->vp_regs + reg_id)); \
260 } while (0)
261 
262 	DUMPREG(VP_ENABLE);
263 	DUMPREG(VP_SRESET);
264 	DUMPREG(VP_SHADOW_UPDATE);
265 	DUMPREG(VP_FIELD_ID);
266 	DUMPREG(VP_MODE);
267 	DUMPREG(VP_IMG_SIZE_Y);
268 	DUMPREG(VP_IMG_SIZE_C);
269 	DUMPREG(VP_PER_RATE_CTRL);
270 	DUMPREG(VP_TOP_Y_PTR);
271 	DUMPREG(VP_BOT_Y_PTR);
272 	DUMPREG(VP_TOP_C_PTR);
273 	DUMPREG(VP_BOT_C_PTR);
274 	DUMPREG(VP_ENDIAN_MODE);
275 	DUMPREG(VP_SRC_H_POSITION);
276 	DUMPREG(VP_SRC_V_POSITION);
277 	DUMPREG(VP_SRC_WIDTH);
278 	DUMPREG(VP_SRC_HEIGHT);
279 	DUMPREG(VP_DST_H_POSITION);
280 	DUMPREG(VP_DST_V_POSITION);
281 	DUMPREG(VP_DST_WIDTH);
282 	DUMPREG(VP_DST_HEIGHT);
283 	DUMPREG(VP_H_RATIO);
284 	DUMPREG(VP_V_RATIO);
285 
286 #undef DUMPREG
287 }
288 
289 static inline void vp_filter_set(struct mixer_context *ctx,
290 		int reg_id, const u8 *data, unsigned int size)
291 {
292 	/* assure 4-byte align */
293 	BUG_ON(size & 3);
294 	for (; size; size -= 4, reg_id += 4, data += 4) {
295 		u32 val = (data[0] << 24) |  (data[1] << 16) |
296 			(data[2] << 8) | data[3];
297 		vp_reg_write(ctx, reg_id, val);
298 	}
299 }
300 
301 static void vp_default_filter(struct mixer_context *ctx)
302 {
303 	vp_filter_set(ctx, VP_POLY8_Y0_LL,
304 		filter_y_horiz_tap8, sizeof(filter_y_horiz_tap8));
305 	vp_filter_set(ctx, VP_POLY4_Y0_LL,
306 		filter_y_vert_tap4, sizeof(filter_y_vert_tap4));
307 	vp_filter_set(ctx, VP_POLY4_C0_LL,
308 		filter_cr_horiz_tap4, sizeof(filter_cr_horiz_tap4));
309 }
310 
311 static void mixer_cfg_gfx_blend(struct mixer_context *ctx, unsigned int win,
312 				unsigned int pixel_alpha, unsigned int alpha)
313 {
314 	u32 win_alpha = alpha >> 8;
315 	u32 val;
316 
317 	val  = MXR_GRP_CFG_COLOR_KEY_DISABLE; /* no blank key */
318 	switch (pixel_alpha) {
319 	case DRM_MODE_BLEND_PIXEL_NONE:
320 		break;
321 	case DRM_MODE_BLEND_COVERAGE:
322 		val |= MXR_GRP_CFG_PIXEL_BLEND_EN;
323 		break;
324 	case DRM_MODE_BLEND_PREMULTI:
325 	default:
326 		val |= MXR_GRP_CFG_BLEND_PRE_MUL;
327 		val |= MXR_GRP_CFG_PIXEL_BLEND_EN;
328 		break;
329 	}
330 
331 	if (alpha != DRM_BLEND_ALPHA_OPAQUE) {
332 		val |= MXR_GRP_CFG_WIN_BLEND_EN;
333 		val |= win_alpha;
334 	}
335 	mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win),
336 			    val, MXR_GRP_CFG_MISC_MASK);
337 }
338 
339 static void mixer_cfg_vp_blend(struct mixer_context *ctx, unsigned int alpha)
340 {
341 	u32 win_alpha = alpha >> 8;
342 	u32 val = 0;
343 
344 	if (alpha != DRM_BLEND_ALPHA_OPAQUE) {
345 		val |= MXR_VID_CFG_BLEND_EN;
346 		val |= win_alpha;
347 	}
348 	mixer_reg_write(ctx, MXR_VIDEO_CFG, val);
349 }
350 
351 static bool mixer_is_synced(struct mixer_context *ctx)
352 {
353 	u32 base, shadow;
354 
355 	if (ctx->mxr_ver == MXR_VER_16_0_33_0 ||
356 	    ctx->mxr_ver == MXR_VER_128_0_0_184)
357 		return !(mixer_reg_read(ctx, MXR_CFG) &
358 			 MXR_CFG_LAYER_UPDATE_COUNT_MASK);
359 
360 	if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags) &&
361 	    vp_reg_read(ctx, VP_SHADOW_UPDATE))
362 		return false;
363 
364 	base = mixer_reg_read(ctx, MXR_CFG);
365 	shadow = mixer_reg_read(ctx, MXR_CFG_S);
366 	if (base != shadow)
367 		return false;
368 
369 	base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(0));
370 	shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(0));
371 	if (base != shadow)
372 		return false;
373 
374 	base = mixer_reg_read(ctx, MXR_GRAPHIC_BASE(1));
375 	shadow = mixer_reg_read(ctx, MXR_GRAPHIC_BASE_S(1));
376 	if (base != shadow)
377 		return false;
378 
379 	return true;
380 }
381 
382 static int mixer_wait_for_sync(struct mixer_context *ctx)
383 {
384 	ktime_t timeout = ktime_add_us(ktime_get(), 100000);
385 
386 	while (!mixer_is_synced(ctx)) {
387 		usleep_range(1000, 2000);
388 		if (ktime_compare(ktime_get(), timeout) > 0)
389 			return -ETIMEDOUT;
390 	}
391 	return 0;
392 }
393 
394 static void mixer_disable_sync(struct mixer_context *ctx)
395 {
396 	mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_SYNC_ENABLE);
397 }
398 
399 static void mixer_enable_sync(struct mixer_context *ctx)
400 {
401 	if (ctx->mxr_ver == MXR_VER_16_0_33_0 ||
402 	    ctx->mxr_ver == MXR_VER_128_0_0_184)
403 		mixer_reg_writemask(ctx, MXR_CFG, ~0, MXR_CFG_LAYER_UPDATE);
404 	mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SYNC_ENABLE);
405 	if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags))
406 		vp_reg_write(ctx, VP_SHADOW_UPDATE, VP_SHADOW_UPDATE_ENABLE);
407 }
408 
409 static void mixer_cfg_scan(struct mixer_context *ctx, int width, int height)
410 {
411 	u32 val;
412 
413 	/* choosing between interlace and progressive mode */
414 	val = test_bit(MXR_BIT_INTERLACE, &ctx->flags) ?
415 		MXR_CFG_SCAN_INTERLACE : MXR_CFG_SCAN_PROGRESSIVE;
416 
417 	if (ctx->mxr_ver == MXR_VER_128_0_0_184)
418 		mixer_reg_write(ctx, MXR_RESOLUTION,
419 			MXR_MXR_RES_HEIGHT(height) | MXR_MXR_RES_WIDTH(width));
420 	else
421 		val |= ctx->scan_value;
422 
423 	mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_SCAN_MASK);
424 }
425 
426 static void mixer_cfg_rgb_fmt(struct mixer_context *ctx, struct drm_display_mode *mode)
427 {
428 	enum hdmi_quantization_range range = drm_default_rgb_quant_range(mode);
429 	u32 val;
430 
431 	if (mode->vdisplay < 720) {
432 		val = MXR_CFG_RGB601;
433 	} else {
434 		val = MXR_CFG_RGB709;
435 
436 		/* Configure the BT.709 CSC matrix for full range RGB. */
437 		mixer_reg_write(ctx, MXR_CM_COEFF_Y,
438 			MXR_CSC_CT( 0.184,  0.614,  0.063) |
439 			MXR_CM_COEFF_RGB_FULL);
440 		mixer_reg_write(ctx, MXR_CM_COEFF_CB,
441 			MXR_CSC_CT(-0.102, -0.338,  0.440));
442 		mixer_reg_write(ctx, MXR_CM_COEFF_CR,
443 			MXR_CSC_CT( 0.440, -0.399, -0.040));
444 	}
445 
446 	if (range == HDMI_QUANTIZATION_RANGE_FULL)
447 		val |= MXR_CFG_QUANT_RANGE_FULL;
448 	else
449 		val |= MXR_CFG_QUANT_RANGE_LIMITED;
450 
451 	mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_RGB_FMT_MASK);
452 }
453 
454 static void mixer_cfg_layer(struct mixer_context *ctx, unsigned int win,
455 			    unsigned int priority, bool enable)
456 {
457 	u32 val = enable ? ~0 : 0;
458 
459 	switch (win) {
460 	case 0:
461 		mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP0_ENABLE);
462 		mixer_reg_writemask(ctx, MXR_LAYER_CFG,
463 				    MXR_LAYER_CFG_GRP0_VAL(priority),
464 				    MXR_LAYER_CFG_GRP0_MASK);
465 		break;
466 	case 1:
467 		mixer_reg_writemask(ctx, MXR_CFG, val, MXR_CFG_GRP1_ENABLE);
468 		mixer_reg_writemask(ctx, MXR_LAYER_CFG,
469 				    MXR_LAYER_CFG_GRP1_VAL(priority),
470 				    MXR_LAYER_CFG_GRP1_MASK);
471 
472 		break;
473 	case VP_DEFAULT_WIN:
474 		if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
475 			vp_reg_writemask(ctx, VP_ENABLE, val, VP_ENABLE_ON);
476 			mixer_reg_writemask(ctx, MXR_CFG, val,
477 				MXR_CFG_VP_ENABLE);
478 			mixer_reg_writemask(ctx, MXR_LAYER_CFG,
479 					    MXR_LAYER_CFG_VP_VAL(priority),
480 					    MXR_LAYER_CFG_VP_MASK);
481 		}
482 		break;
483 	}
484 }
485 
486 static void mixer_run(struct mixer_context *ctx)
487 {
488 	mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_REG_RUN);
489 }
490 
491 static void mixer_stop(struct mixer_context *ctx)
492 {
493 	int timeout = 20;
494 
495 	mixer_reg_writemask(ctx, MXR_STATUS, 0, MXR_STATUS_REG_RUN);
496 
497 	while (!(mixer_reg_read(ctx, MXR_STATUS) & MXR_STATUS_REG_IDLE) &&
498 			--timeout)
499 		usleep_range(10000, 12000);
500 }
501 
502 static void mixer_commit(struct mixer_context *ctx)
503 {
504 	struct drm_display_mode *mode = &ctx->crtc->base.state->adjusted_mode;
505 
506 	mixer_cfg_scan(ctx, mode->hdisplay, mode->vdisplay);
507 	mixer_cfg_rgb_fmt(ctx, mode);
508 	mixer_run(ctx);
509 }
510 
511 static void vp_video_buffer(struct mixer_context *ctx,
512 			    struct exynos_drm_plane *plane)
513 {
514 	struct exynos_drm_plane_state *state =
515 				to_exynos_plane_state(plane->base.state);
516 	struct drm_framebuffer *fb = state->base.fb;
517 	unsigned int priority = state->base.normalized_zpos + 1;
518 	unsigned long flags;
519 	dma_addr_t luma_addr[2], chroma_addr[2];
520 	bool is_tiled, is_nv21;
521 	u32 val;
522 
523 	is_nv21 = (fb->format->format == DRM_FORMAT_NV21);
524 	is_tiled = (fb->modifier == DRM_FORMAT_MOD_SAMSUNG_64_32_TILE);
525 
526 	luma_addr[0] = exynos_drm_fb_dma_addr(fb, 0);
527 	chroma_addr[0] = exynos_drm_fb_dma_addr(fb, 1);
528 
529 	if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) {
530 		if (is_tiled) {
531 			luma_addr[1] = luma_addr[0] + 0x40;
532 			chroma_addr[1] = chroma_addr[0] + 0x40;
533 		} else {
534 			luma_addr[1] = luma_addr[0] + fb->pitches[0];
535 			chroma_addr[1] = chroma_addr[0] + fb->pitches[1];
536 		}
537 	} else {
538 		luma_addr[1] = 0;
539 		chroma_addr[1] = 0;
540 	}
541 
542 	spin_lock_irqsave(&ctx->reg_slock, flags);
543 
544 	/* interlace or progressive scan mode */
545 	val = (test_bit(MXR_BIT_INTERLACE, &ctx->flags) ? ~0 : 0);
546 	vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_LINE_SKIP);
547 
548 	/* setup format */
549 	val = (is_nv21 ? VP_MODE_NV21 : VP_MODE_NV12);
550 	val |= (is_tiled ? VP_MODE_MEM_TILED : VP_MODE_MEM_LINEAR);
551 	vp_reg_writemask(ctx, VP_MODE, val, VP_MODE_FMT_MASK);
552 
553 	/* setting size of input image */
554 	vp_reg_write(ctx, VP_IMG_SIZE_Y, VP_IMG_HSIZE(fb->pitches[0]) |
555 		VP_IMG_VSIZE(fb->height));
556 	/* chroma plane for NV12/NV21 is half the height of the luma plane */
557 	vp_reg_write(ctx, VP_IMG_SIZE_C, VP_IMG_HSIZE(fb->pitches[1]) |
558 		VP_IMG_VSIZE(fb->height / 2));
559 
560 	vp_reg_write(ctx, VP_SRC_WIDTH, state->src.w);
561 	vp_reg_write(ctx, VP_SRC_H_POSITION,
562 			VP_SRC_H_POSITION_VAL(state->src.x));
563 	vp_reg_write(ctx, VP_DST_WIDTH, state->crtc.w);
564 	vp_reg_write(ctx, VP_DST_H_POSITION, state->crtc.x);
565 
566 	if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)) {
567 		vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h / 2);
568 		vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y / 2);
569 		vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h / 2);
570 		vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y / 2);
571 	} else {
572 		vp_reg_write(ctx, VP_SRC_HEIGHT, state->src.h);
573 		vp_reg_write(ctx, VP_SRC_V_POSITION, state->src.y);
574 		vp_reg_write(ctx, VP_DST_HEIGHT, state->crtc.h);
575 		vp_reg_write(ctx, VP_DST_V_POSITION, state->crtc.y);
576 	}
577 
578 	vp_reg_write(ctx, VP_H_RATIO, state->h_ratio);
579 	vp_reg_write(ctx, VP_V_RATIO, state->v_ratio);
580 
581 	vp_reg_write(ctx, VP_ENDIAN_MODE, VP_ENDIAN_MODE_LITTLE);
582 
583 	/* set buffer address to vp */
584 	vp_reg_write(ctx, VP_TOP_Y_PTR, luma_addr[0]);
585 	vp_reg_write(ctx, VP_BOT_Y_PTR, luma_addr[1]);
586 	vp_reg_write(ctx, VP_TOP_C_PTR, chroma_addr[0]);
587 	vp_reg_write(ctx, VP_BOT_C_PTR, chroma_addr[1]);
588 
589 	mixer_cfg_layer(ctx, plane->index, priority, true);
590 	mixer_cfg_vp_blend(ctx, state->base.alpha);
591 
592 	spin_unlock_irqrestore(&ctx->reg_slock, flags);
593 
594 	mixer_regs_dump(ctx);
595 	vp_regs_dump(ctx);
596 }
597 
598 static void mixer_graph_buffer(struct mixer_context *ctx,
599 			       struct exynos_drm_plane *plane)
600 {
601 	struct exynos_drm_plane_state *state =
602 				to_exynos_plane_state(plane->base.state);
603 	struct drm_framebuffer *fb = state->base.fb;
604 	unsigned int priority = state->base.normalized_zpos + 1;
605 	unsigned long flags;
606 	unsigned int win = plane->index;
607 	unsigned int x_ratio = 0, y_ratio = 0;
608 	unsigned int dst_x_offset, dst_y_offset;
609 	unsigned int pixel_alpha;
610 	dma_addr_t dma_addr;
611 	unsigned int fmt;
612 	u32 val;
613 
614 	if (fb->format->has_alpha)
615 		pixel_alpha = state->base.pixel_blend_mode;
616 	else
617 		pixel_alpha = DRM_MODE_BLEND_PIXEL_NONE;
618 
619 	switch (fb->format->format) {
620 	case DRM_FORMAT_XRGB4444:
621 	case DRM_FORMAT_ARGB4444:
622 		fmt = MXR_FORMAT_ARGB4444;
623 		break;
624 
625 	case DRM_FORMAT_XRGB1555:
626 	case DRM_FORMAT_ARGB1555:
627 		fmt = MXR_FORMAT_ARGB1555;
628 		break;
629 
630 	case DRM_FORMAT_RGB565:
631 		fmt = MXR_FORMAT_RGB565;
632 		break;
633 
634 	case DRM_FORMAT_XRGB8888:
635 	case DRM_FORMAT_ARGB8888:
636 	default:
637 		fmt = MXR_FORMAT_ARGB8888;
638 		break;
639 	}
640 
641 	/* ratio is already checked by common plane code */
642 	x_ratio = state->h_ratio == (1 << 15);
643 	y_ratio = state->v_ratio == (1 << 15);
644 
645 	dst_x_offset = state->crtc.x;
646 	dst_y_offset = state->crtc.y;
647 
648 	/* translate dma address base s.t. the source image offset is zero */
649 	dma_addr = exynos_drm_fb_dma_addr(fb, 0)
650 		+ (state->src.x * fb->format->cpp[0])
651 		+ (state->src.y * fb->pitches[0]);
652 
653 	spin_lock_irqsave(&ctx->reg_slock, flags);
654 
655 	/* setup format */
656 	mixer_reg_writemask(ctx, MXR_GRAPHIC_CFG(win),
657 		MXR_GRP_CFG_FORMAT_VAL(fmt), MXR_GRP_CFG_FORMAT_MASK);
658 
659 	/* setup geometry */
660 	mixer_reg_write(ctx, MXR_GRAPHIC_SPAN(win),
661 			fb->pitches[0] / fb->format->cpp[0]);
662 
663 	val  = MXR_GRP_WH_WIDTH(state->src.w);
664 	val |= MXR_GRP_WH_HEIGHT(state->src.h);
665 	val |= MXR_GRP_WH_H_SCALE(x_ratio);
666 	val |= MXR_GRP_WH_V_SCALE(y_ratio);
667 	mixer_reg_write(ctx, MXR_GRAPHIC_WH(win), val);
668 
669 	/* setup offsets in display image */
670 	val  = MXR_GRP_DXY_DX(dst_x_offset);
671 	val |= MXR_GRP_DXY_DY(dst_y_offset);
672 	mixer_reg_write(ctx, MXR_GRAPHIC_DXY(win), val);
673 
674 	/* set buffer address to mixer */
675 	mixer_reg_write(ctx, MXR_GRAPHIC_BASE(win), dma_addr);
676 
677 	mixer_cfg_layer(ctx, win, priority, true);
678 	mixer_cfg_gfx_blend(ctx, win, pixel_alpha, state->base.alpha);
679 
680 	spin_unlock_irqrestore(&ctx->reg_slock, flags);
681 
682 	mixer_regs_dump(ctx);
683 }
684 
685 static void vp_win_reset(struct mixer_context *ctx)
686 {
687 	unsigned int tries = 100;
688 
689 	vp_reg_write(ctx, VP_SRESET, VP_SRESET_PROCESSING);
690 	while (--tries) {
691 		/* waiting until VP_SRESET_PROCESSING is 0 */
692 		if (~vp_reg_read(ctx, VP_SRESET) & VP_SRESET_PROCESSING)
693 			break;
694 		mdelay(10);
695 	}
696 	WARN(tries == 0, "failed to reset Video Processor\n");
697 }
698 
699 static void mixer_win_reset(struct mixer_context *ctx)
700 {
701 	unsigned long flags;
702 
703 	spin_lock_irqsave(&ctx->reg_slock, flags);
704 
705 	mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_DST_HDMI, MXR_CFG_DST_MASK);
706 
707 	/* set output in RGB888 mode */
708 	mixer_reg_writemask(ctx, MXR_CFG, MXR_CFG_OUT_RGB888, MXR_CFG_OUT_MASK);
709 
710 	/* 16 beat burst in DMA */
711 	mixer_reg_writemask(ctx, MXR_STATUS, MXR_STATUS_16_BURST,
712 		MXR_STATUS_BURST_MASK);
713 
714 	/* reset default layer priority */
715 	mixer_reg_write(ctx, MXR_LAYER_CFG, 0);
716 
717 	/* set all background colors to RGB (0,0,0) */
718 	mixer_reg_write(ctx, MXR_BG_COLOR0, MXR_YCBCR_VAL(0, 128, 128));
719 	mixer_reg_write(ctx, MXR_BG_COLOR1, MXR_YCBCR_VAL(0, 128, 128));
720 	mixer_reg_write(ctx, MXR_BG_COLOR2, MXR_YCBCR_VAL(0, 128, 128));
721 
722 	if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
723 		/* configuration of Video Processor Registers */
724 		vp_win_reset(ctx);
725 		vp_default_filter(ctx);
726 	}
727 
728 	/* disable all layers */
729 	mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP0_ENABLE);
730 	mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_GRP1_ENABLE);
731 	if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags))
732 		mixer_reg_writemask(ctx, MXR_CFG, 0, MXR_CFG_VP_ENABLE);
733 
734 	/* set all source image offsets to zero */
735 	mixer_reg_write(ctx, MXR_GRAPHIC_SXY(0), 0);
736 	mixer_reg_write(ctx, MXR_GRAPHIC_SXY(1), 0);
737 
738 	spin_unlock_irqrestore(&ctx->reg_slock, flags);
739 }
740 
741 static irqreturn_t mixer_irq_handler(int irq, void *arg)
742 {
743 	struct mixer_context *ctx = arg;
744 	u32 val;
745 
746 	spin_lock(&ctx->reg_slock);
747 
748 	/* read interrupt status for handling and clearing flags for VSYNC */
749 	val = mixer_reg_read(ctx, MXR_INT_STATUS);
750 
751 	/* handling VSYNC */
752 	if (val & MXR_INT_STATUS_VSYNC) {
753 		/* vsync interrupt use different bit for read and clear */
754 		val |= MXR_INT_CLEAR_VSYNC;
755 		val &= ~MXR_INT_STATUS_VSYNC;
756 
757 		/* interlace scan need to check shadow register */
758 		if (test_bit(MXR_BIT_INTERLACE, &ctx->flags)
759 		    && !mixer_is_synced(ctx))
760 			goto out;
761 
762 		drm_crtc_handle_vblank(&ctx->crtc->base);
763 	}
764 
765 out:
766 	/* clear interrupts */
767 	mixer_reg_write(ctx, MXR_INT_STATUS, val);
768 
769 	spin_unlock(&ctx->reg_slock);
770 
771 	return IRQ_HANDLED;
772 }
773 
774 static int mixer_resources_init(struct mixer_context *mixer_ctx)
775 {
776 	struct device *dev = &mixer_ctx->pdev->dev;
777 	struct resource *res;
778 	int ret;
779 
780 	spin_lock_init(&mixer_ctx->reg_slock);
781 
782 	mixer_ctx->mixer = devm_clk_get(dev, "mixer");
783 	if (IS_ERR(mixer_ctx->mixer)) {
784 		dev_err(dev, "failed to get clock 'mixer'\n");
785 		return -ENODEV;
786 	}
787 
788 	mixer_ctx->hdmi = devm_clk_get(dev, "hdmi");
789 	if (IS_ERR(mixer_ctx->hdmi)) {
790 		dev_err(dev, "failed to get clock 'hdmi'\n");
791 		return PTR_ERR(mixer_ctx->hdmi);
792 	}
793 
794 	mixer_ctx->sclk_hdmi = devm_clk_get(dev, "sclk_hdmi");
795 	if (IS_ERR(mixer_ctx->sclk_hdmi)) {
796 		dev_err(dev, "failed to get clock 'sclk_hdmi'\n");
797 		return -ENODEV;
798 	}
799 	res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 0);
800 	if (res == NULL) {
801 		dev_err(dev, "get memory resource failed.\n");
802 		return -ENXIO;
803 	}
804 
805 	mixer_ctx->mixer_regs = devm_ioremap(dev, res->start,
806 							resource_size(res));
807 	if (mixer_ctx->mixer_regs == NULL) {
808 		dev_err(dev, "register mapping failed.\n");
809 		return -ENXIO;
810 	}
811 
812 	res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_IRQ, 0);
813 	if (res == NULL) {
814 		dev_err(dev, "get interrupt resource failed.\n");
815 		return -ENXIO;
816 	}
817 
818 	ret = devm_request_irq(dev, res->start, mixer_irq_handler,
819 						0, "drm_mixer", mixer_ctx);
820 	if (ret) {
821 		dev_err(dev, "request interrupt failed.\n");
822 		return ret;
823 	}
824 	mixer_ctx->irq = res->start;
825 
826 	return 0;
827 }
828 
829 static int vp_resources_init(struct mixer_context *mixer_ctx)
830 {
831 	struct device *dev = &mixer_ctx->pdev->dev;
832 	struct resource *res;
833 
834 	mixer_ctx->vp = devm_clk_get(dev, "vp");
835 	if (IS_ERR(mixer_ctx->vp)) {
836 		dev_err(dev, "failed to get clock 'vp'\n");
837 		return -ENODEV;
838 	}
839 
840 	if (test_bit(MXR_BIT_HAS_SCLK, &mixer_ctx->flags)) {
841 		mixer_ctx->sclk_mixer = devm_clk_get(dev, "sclk_mixer");
842 		if (IS_ERR(mixer_ctx->sclk_mixer)) {
843 			dev_err(dev, "failed to get clock 'sclk_mixer'\n");
844 			return -ENODEV;
845 		}
846 		mixer_ctx->mout_mixer = devm_clk_get(dev, "mout_mixer");
847 		if (IS_ERR(mixer_ctx->mout_mixer)) {
848 			dev_err(dev, "failed to get clock 'mout_mixer'\n");
849 			return -ENODEV;
850 		}
851 
852 		if (mixer_ctx->sclk_hdmi && mixer_ctx->mout_mixer)
853 			clk_set_parent(mixer_ctx->mout_mixer,
854 				       mixer_ctx->sclk_hdmi);
855 	}
856 
857 	res = platform_get_resource(mixer_ctx->pdev, IORESOURCE_MEM, 1);
858 	if (res == NULL) {
859 		dev_err(dev, "get memory resource failed.\n");
860 		return -ENXIO;
861 	}
862 
863 	mixer_ctx->vp_regs = devm_ioremap(dev, res->start,
864 							resource_size(res));
865 	if (mixer_ctx->vp_regs == NULL) {
866 		dev_err(dev, "register mapping failed.\n");
867 		return -ENXIO;
868 	}
869 
870 	return 0;
871 }
872 
873 static int mixer_initialize(struct mixer_context *mixer_ctx,
874 			struct drm_device *drm_dev)
875 {
876 	int ret;
877 
878 	mixer_ctx->drm_dev = drm_dev;
879 
880 	/* acquire resources: regs, irqs, clocks */
881 	ret = mixer_resources_init(mixer_ctx);
882 	if (ret) {
883 		DRM_DEV_ERROR(mixer_ctx->dev,
884 			      "mixer_resources_init failed ret=%d\n", ret);
885 		return ret;
886 	}
887 
888 	if (test_bit(MXR_BIT_VP_ENABLED, &mixer_ctx->flags)) {
889 		/* acquire vp resources: regs, irqs, clocks */
890 		ret = vp_resources_init(mixer_ctx);
891 		if (ret) {
892 			DRM_DEV_ERROR(mixer_ctx->dev,
893 				      "vp_resources_init failed ret=%d\n", ret);
894 			return ret;
895 		}
896 	}
897 
898 	return exynos_drm_register_dma(drm_dev, mixer_ctx->dev,
899 				       &mixer_ctx->dma_priv);
900 }
901 
902 static void mixer_ctx_remove(struct mixer_context *mixer_ctx)
903 {
904 	exynos_drm_unregister_dma(mixer_ctx->drm_dev, mixer_ctx->dev,
905 				  &mixer_ctx->dma_priv);
906 }
907 
908 static int mixer_enable_vblank(struct exynos_drm_crtc *crtc)
909 {
910 	struct mixer_context *mixer_ctx = crtc->ctx;
911 
912 	__set_bit(MXR_BIT_VSYNC, &mixer_ctx->flags);
913 	if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
914 		return 0;
915 
916 	/* enable vsync interrupt */
917 	mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC);
918 	mixer_reg_writemask(mixer_ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC);
919 
920 	return 0;
921 }
922 
923 static void mixer_disable_vblank(struct exynos_drm_crtc *crtc)
924 {
925 	struct mixer_context *mixer_ctx = crtc->ctx;
926 
927 	__clear_bit(MXR_BIT_VSYNC, &mixer_ctx->flags);
928 
929 	if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
930 		return;
931 
932 	/* disable vsync interrupt */
933 	mixer_reg_writemask(mixer_ctx, MXR_INT_STATUS, ~0, MXR_INT_CLEAR_VSYNC);
934 	mixer_reg_writemask(mixer_ctx, MXR_INT_EN, 0, MXR_INT_EN_VSYNC);
935 }
936 
937 static void mixer_atomic_begin(struct exynos_drm_crtc *crtc)
938 {
939 	struct mixer_context *ctx = crtc->ctx;
940 
941 	if (!test_bit(MXR_BIT_POWERED, &ctx->flags))
942 		return;
943 
944 	if (mixer_wait_for_sync(ctx))
945 		dev_err(ctx->dev, "timeout waiting for VSYNC\n");
946 	mixer_disable_sync(ctx);
947 }
948 
949 static void mixer_update_plane(struct exynos_drm_crtc *crtc,
950 			       struct exynos_drm_plane *plane)
951 {
952 	struct mixer_context *mixer_ctx = crtc->ctx;
953 
954 	DRM_DEV_DEBUG_KMS(mixer_ctx->dev, "win: %d\n", plane->index);
955 
956 	if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
957 		return;
958 
959 	if (plane->index == VP_DEFAULT_WIN)
960 		vp_video_buffer(mixer_ctx, plane);
961 	else
962 		mixer_graph_buffer(mixer_ctx, plane);
963 }
964 
965 static void mixer_disable_plane(struct exynos_drm_crtc *crtc,
966 				struct exynos_drm_plane *plane)
967 {
968 	struct mixer_context *mixer_ctx = crtc->ctx;
969 	unsigned long flags;
970 
971 	DRM_DEV_DEBUG_KMS(mixer_ctx->dev, "win: %d\n", plane->index);
972 
973 	if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
974 		return;
975 
976 	spin_lock_irqsave(&mixer_ctx->reg_slock, flags);
977 	mixer_cfg_layer(mixer_ctx, plane->index, 0, false);
978 	spin_unlock_irqrestore(&mixer_ctx->reg_slock, flags);
979 }
980 
981 static void mixer_atomic_flush(struct exynos_drm_crtc *crtc)
982 {
983 	struct mixer_context *mixer_ctx = crtc->ctx;
984 
985 	if (!test_bit(MXR_BIT_POWERED, &mixer_ctx->flags))
986 		return;
987 
988 	mixer_enable_sync(mixer_ctx);
989 	exynos_crtc_handle_event(crtc);
990 }
991 
992 static void mixer_atomic_enable(struct exynos_drm_crtc *crtc)
993 {
994 	struct mixer_context *ctx = crtc->ctx;
995 
996 	if (test_bit(MXR_BIT_POWERED, &ctx->flags))
997 		return;
998 
999 	pm_runtime_get_sync(ctx->dev);
1000 
1001 	exynos_drm_pipe_clk_enable(crtc, true);
1002 
1003 	mixer_disable_sync(ctx);
1004 
1005 	mixer_reg_writemask(ctx, MXR_STATUS, ~0, MXR_STATUS_SOFT_RESET);
1006 
1007 	if (test_bit(MXR_BIT_VSYNC, &ctx->flags)) {
1008 		mixer_reg_writemask(ctx, MXR_INT_STATUS, ~0,
1009 					MXR_INT_CLEAR_VSYNC);
1010 		mixer_reg_writemask(ctx, MXR_INT_EN, ~0, MXR_INT_EN_VSYNC);
1011 	}
1012 	mixer_win_reset(ctx);
1013 
1014 	mixer_commit(ctx);
1015 
1016 	mixer_enable_sync(ctx);
1017 
1018 	set_bit(MXR_BIT_POWERED, &ctx->flags);
1019 }
1020 
1021 static void mixer_atomic_disable(struct exynos_drm_crtc *crtc)
1022 {
1023 	struct mixer_context *ctx = crtc->ctx;
1024 	int i;
1025 
1026 	if (!test_bit(MXR_BIT_POWERED, &ctx->flags))
1027 		return;
1028 
1029 	mixer_stop(ctx);
1030 	mixer_regs_dump(ctx);
1031 
1032 	for (i = 0; i < MIXER_WIN_NR; i++)
1033 		mixer_disable_plane(crtc, &ctx->planes[i]);
1034 
1035 	exynos_drm_pipe_clk_enable(crtc, false);
1036 
1037 	pm_runtime_put(ctx->dev);
1038 
1039 	clear_bit(MXR_BIT_POWERED, &ctx->flags);
1040 }
1041 
1042 static int mixer_mode_valid(struct exynos_drm_crtc *crtc,
1043 		const struct drm_display_mode *mode)
1044 {
1045 	struct mixer_context *ctx = crtc->ctx;
1046 	u32 w = mode->hdisplay, h = mode->vdisplay;
1047 
1048 	DRM_DEV_DEBUG_KMS(ctx->dev, "xres=%d, yres=%d, refresh=%d, intl=%d\n",
1049 			  w, h, drm_mode_vrefresh(mode),
1050 			  !!(mode->flags & DRM_MODE_FLAG_INTERLACE));
1051 
1052 	if (ctx->mxr_ver == MXR_VER_128_0_0_184)
1053 		return MODE_OK;
1054 
1055 	if ((w >= 464 && w <= 720 && h >= 261 && h <= 576) ||
1056 	    (w >= 1024 && w <= 1280 && h >= 576 && h <= 720) ||
1057 	    (w >= 1664 && w <= 1920 && h >= 936 && h <= 1080))
1058 		return MODE_OK;
1059 
1060 	if ((w == 1024 && h == 768) ||
1061 	    (w == 1366 && h == 768) ||
1062 	    (w == 1280 && h == 1024))
1063 		return MODE_OK;
1064 
1065 	return MODE_BAD;
1066 }
1067 
1068 static bool mixer_mode_fixup(struct exynos_drm_crtc *crtc,
1069 		   const struct drm_display_mode *mode,
1070 		   struct drm_display_mode *adjusted_mode)
1071 {
1072 	struct mixer_context *ctx = crtc->ctx;
1073 	int width = mode->hdisplay, height = mode->vdisplay, i;
1074 
1075 	static const struct {
1076 		int hdisplay, vdisplay, htotal, vtotal, scan_val;
1077 	} modes[] = {
1078 		{ 720, 480, 858, 525, MXR_CFG_SCAN_NTSC | MXR_CFG_SCAN_SD },
1079 		{ 720, 576, 864, 625, MXR_CFG_SCAN_PAL | MXR_CFG_SCAN_SD },
1080 		{ 1280, 720, 1650, 750, MXR_CFG_SCAN_HD_720 | MXR_CFG_SCAN_HD },
1081 		{ 1920, 1080, 2200, 1125, MXR_CFG_SCAN_HD_1080 |
1082 						MXR_CFG_SCAN_HD }
1083 	};
1084 
1085 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1086 		__set_bit(MXR_BIT_INTERLACE, &ctx->flags);
1087 	else
1088 		__clear_bit(MXR_BIT_INTERLACE, &ctx->flags);
1089 
1090 	if (ctx->mxr_ver == MXR_VER_128_0_0_184)
1091 		return true;
1092 
1093 	for (i = 0; i < ARRAY_SIZE(modes); ++i)
1094 		if (width <= modes[i].hdisplay && height <= modes[i].vdisplay) {
1095 			ctx->scan_value = modes[i].scan_val;
1096 			if (width < modes[i].hdisplay ||
1097 			    height < modes[i].vdisplay) {
1098 				adjusted_mode->hdisplay = modes[i].hdisplay;
1099 				adjusted_mode->hsync_start = modes[i].hdisplay;
1100 				adjusted_mode->hsync_end = modes[i].htotal;
1101 				adjusted_mode->htotal = modes[i].htotal;
1102 				adjusted_mode->vdisplay = modes[i].vdisplay;
1103 				adjusted_mode->vsync_start = modes[i].vdisplay;
1104 				adjusted_mode->vsync_end = modes[i].vtotal;
1105 				adjusted_mode->vtotal = modes[i].vtotal;
1106 			}
1107 
1108 			return true;
1109 		}
1110 
1111 	return false;
1112 }
1113 
1114 static const struct exynos_drm_crtc_ops mixer_crtc_ops = {
1115 	.atomic_enable		= mixer_atomic_enable,
1116 	.atomic_disable		= mixer_atomic_disable,
1117 	.enable_vblank		= mixer_enable_vblank,
1118 	.disable_vblank		= mixer_disable_vblank,
1119 	.atomic_begin		= mixer_atomic_begin,
1120 	.update_plane		= mixer_update_plane,
1121 	.disable_plane		= mixer_disable_plane,
1122 	.atomic_flush		= mixer_atomic_flush,
1123 	.mode_valid		= mixer_mode_valid,
1124 	.mode_fixup		= mixer_mode_fixup,
1125 };
1126 
1127 static const struct mixer_drv_data exynos5420_mxr_drv_data = {
1128 	.version = MXR_VER_128_0_0_184,
1129 	.is_vp_enabled = 0,
1130 };
1131 
1132 static const struct mixer_drv_data exynos5250_mxr_drv_data = {
1133 	.version = MXR_VER_16_0_33_0,
1134 	.is_vp_enabled = 0,
1135 };
1136 
1137 static const struct mixer_drv_data exynos4212_mxr_drv_data = {
1138 	.version = MXR_VER_0_0_0_16,
1139 	.is_vp_enabled = 1,
1140 };
1141 
1142 static const struct mixer_drv_data exynos4210_mxr_drv_data = {
1143 	.version = MXR_VER_0_0_0_16,
1144 	.is_vp_enabled = 1,
1145 	.has_sclk = 1,
1146 };
1147 
1148 static const struct of_device_id mixer_match_types[] = {
1149 	{
1150 		.compatible = "samsung,exynos4210-mixer",
1151 		.data	= &exynos4210_mxr_drv_data,
1152 	}, {
1153 		.compatible = "samsung,exynos4212-mixer",
1154 		.data	= &exynos4212_mxr_drv_data,
1155 	}, {
1156 		.compatible = "samsung,exynos5-mixer",
1157 		.data	= &exynos5250_mxr_drv_data,
1158 	}, {
1159 		.compatible = "samsung,exynos5250-mixer",
1160 		.data	= &exynos5250_mxr_drv_data,
1161 	}, {
1162 		.compatible = "samsung,exynos5420-mixer",
1163 		.data	= &exynos5420_mxr_drv_data,
1164 	}, {
1165 		/* end node */
1166 	}
1167 };
1168 MODULE_DEVICE_TABLE(of, mixer_match_types);
1169 
1170 static int mixer_bind(struct device *dev, struct device *manager, void *data)
1171 {
1172 	struct mixer_context *ctx = dev_get_drvdata(dev);
1173 	struct drm_device *drm_dev = data;
1174 	struct exynos_drm_plane *exynos_plane;
1175 	unsigned int i;
1176 	int ret;
1177 
1178 	ret = mixer_initialize(ctx, drm_dev);
1179 	if (ret)
1180 		return ret;
1181 
1182 	for (i = 0; i < MIXER_WIN_NR; i++) {
1183 		if (i == VP_DEFAULT_WIN && !test_bit(MXR_BIT_VP_ENABLED,
1184 						     &ctx->flags))
1185 			continue;
1186 
1187 		ret = exynos_plane_init(drm_dev, &ctx->planes[i], i,
1188 					&plane_configs[i]);
1189 		if (ret)
1190 			return ret;
1191 	}
1192 
1193 	exynos_plane = &ctx->planes[DEFAULT_WIN];
1194 	ctx->crtc = exynos_drm_crtc_create(drm_dev, &exynos_plane->base,
1195 			EXYNOS_DISPLAY_TYPE_HDMI, &mixer_crtc_ops, ctx);
1196 	if (IS_ERR(ctx->crtc)) {
1197 		mixer_ctx_remove(ctx);
1198 		ret = PTR_ERR(ctx->crtc);
1199 		goto free_ctx;
1200 	}
1201 
1202 	return 0;
1203 
1204 free_ctx:
1205 	devm_kfree(dev, ctx);
1206 	return ret;
1207 }
1208 
1209 static void mixer_unbind(struct device *dev, struct device *master, void *data)
1210 {
1211 	struct mixer_context *ctx = dev_get_drvdata(dev);
1212 
1213 	mixer_ctx_remove(ctx);
1214 }
1215 
1216 static const struct component_ops mixer_component_ops = {
1217 	.bind	= mixer_bind,
1218 	.unbind	= mixer_unbind,
1219 };
1220 
1221 static int mixer_probe(struct platform_device *pdev)
1222 {
1223 	struct device *dev = &pdev->dev;
1224 	const struct mixer_drv_data *drv;
1225 	struct mixer_context *ctx;
1226 	int ret;
1227 
1228 	ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1229 	if (!ctx) {
1230 		DRM_DEV_ERROR(dev, "failed to alloc mixer context.\n");
1231 		return -ENOMEM;
1232 	}
1233 
1234 	drv = of_device_get_match_data(dev);
1235 
1236 	ctx->pdev = pdev;
1237 	ctx->dev = dev;
1238 	ctx->mxr_ver = drv->version;
1239 
1240 	if (drv->is_vp_enabled)
1241 		__set_bit(MXR_BIT_VP_ENABLED, &ctx->flags);
1242 	if (drv->has_sclk)
1243 		__set_bit(MXR_BIT_HAS_SCLK, &ctx->flags);
1244 
1245 	platform_set_drvdata(pdev, ctx);
1246 
1247 	pm_runtime_enable(dev);
1248 
1249 	ret = component_add(&pdev->dev, &mixer_component_ops);
1250 	if (ret)
1251 		pm_runtime_disable(dev);
1252 
1253 	return ret;
1254 }
1255 
1256 static int mixer_remove(struct platform_device *pdev)
1257 {
1258 	pm_runtime_disable(&pdev->dev);
1259 
1260 	component_del(&pdev->dev, &mixer_component_ops);
1261 
1262 	return 0;
1263 }
1264 
1265 static int __maybe_unused exynos_mixer_suspend(struct device *dev)
1266 {
1267 	struct mixer_context *ctx = dev_get_drvdata(dev);
1268 
1269 	clk_disable_unprepare(ctx->hdmi);
1270 	clk_disable_unprepare(ctx->mixer);
1271 	if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
1272 		clk_disable_unprepare(ctx->vp);
1273 		if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags))
1274 			clk_disable_unprepare(ctx->sclk_mixer);
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 static int __maybe_unused exynos_mixer_resume(struct device *dev)
1281 {
1282 	struct mixer_context *ctx = dev_get_drvdata(dev);
1283 	int ret;
1284 
1285 	ret = clk_prepare_enable(ctx->mixer);
1286 	if (ret < 0) {
1287 		DRM_DEV_ERROR(ctx->dev,
1288 			      "Failed to prepare_enable the mixer clk [%d]\n",
1289 			      ret);
1290 		return ret;
1291 	}
1292 	ret = clk_prepare_enable(ctx->hdmi);
1293 	if (ret < 0) {
1294 		DRM_DEV_ERROR(dev,
1295 			      "Failed to prepare_enable the hdmi clk [%d]\n",
1296 			      ret);
1297 		return ret;
1298 	}
1299 	if (test_bit(MXR_BIT_VP_ENABLED, &ctx->flags)) {
1300 		ret = clk_prepare_enable(ctx->vp);
1301 		if (ret < 0) {
1302 			DRM_DEV_ERROR(dev,
1303 				      "Failed to prepare_enable the vp clk [%d]\n",
1304 				      ret);
1305 			return ret;
1306 		}
1307 		if (test_bit(MXR_BIT_HAS_SCLK, &ctx->flags)) {
1308 			ret = clk_prepare_enable(ctx->sclk_mixer);
1309 			if (ret < 0) {
1310 				DRM_DEV_ERROR(dev,
1311 					   "Failed to prepare_enable the " \
1312 					   "sclk_mixer clk [%d]\n",
1313 					   ret);
1314 				return ret;
1315 			}
1316 		}
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 static const struct dev_pm_ops exynos_mixer_pm_ops = {
1323 	SET_RUNTIME_PM_OPS(exynos_mixer_suspend, exynos_mixer_resume, NULL)
1324 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1325 				pm_runtime_force_resume)
1326 };
1327 
1328 struct platform_driver mixer_driver = {
1329 	.driver = {
1330 		.name = "exynos-mixer",
1331 		.owner = THIS_MODULE,
1332 		.pm = &exynos_mixer_pm_ops,
1333 		.of_match_table = mixer_match_types,
1334 	},
1335 	.probe = mixer_probe,
1336 	.remove = mixer_remove,
1337 };
1338