xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_chardev.c (revision 6614a3c3164a5df2b54abb0b3559f51041cf705b)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/device.h>
25 #include <linux/export.h>
26 #include <linux/err.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/ptrace.h>
38 #include <linux/dma-buf.h>
39 #include <linux/fdtable.h>
40 #include <linux/processor.h>
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "amdgpu_amdkfd.h"
45 #include "kfd_smi_events.h"
46 #include "amdgpu_dma_buf.h"
47 
48 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
49 static int kfd_open(struct inode *, struct file *);
50 static int kfd_release(struct inode *, struct file *);
51 static int kfd_mmap(struct file *, struct vm_area_struct *);
52 
53 static const char kfd_dev_name[] = "kfd";
54 
55 static const struct file_operations kfd_fops = {
56 	.owner = THIS_MODULE,
57 	.unlocked_ioctl = kfd_ioctl,
58 	.compat_ioctl = compat_ptr_ioctl,
59 	.open = kfd_open,
60 	.release = kfd_release,
61 	.mmap = kfd_mmap,
62 };
63 
64 static int kfd_char_dev_major = -1;
65 static struct class *kfd_class;
66 struct device *kfd_device;
67 
68 static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
69 {
70 	struct kfd_process_device *pdd;
71 
72 	mutex_lock(&p->mutex);
73 	pdd = kfd_process_device_data_by_id(p, gpu_id);
74 
75 	if (pdd)
76 		return pdd;
77 
78 	mutex_unlock(&p->mutex);
79 	return NULL;
80 }
81 
82 static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
83 {
84 	mutex_unlock(&pdd->process->mutex);
85 }
86 
87 int kfd_chardev_init(void)
88 {
89 	int err = 0;
90 
91 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
92 	err = kfd_char_dev_major;
93 	if (err < 0)
94 		goto err_register_chrdev;
95 
96 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
97 	err = PTR_ERR(kfd_class);
98 	if (IS_ERR(kfd_class))
99 		goto err_class_create;
100 
101 	kfd_device = device_create(kfd_class, NULL,
102 					MKDEV(kfd_char_dev_major, 0),
103 					NULL, kfd_dev_name);
104 	err = PTR_ERR(kfd_device);
105 	if (IS_ERR(kfd_device))
106 		goto err_device_create;
107 
108 	return 0;
109 
110 err_device_create:
111 	class_destroy(kfd_class);
112 err_class_create:
113 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
114 err_register_chrdev:
115 	return err;
116 }
117 
118 void kfd_chardev_exit(void)
119 {
120 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
121 	class_destroy(kfd_class);
122 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
123 	kfd_device = NULL;
124 }
125 
126 
127 static int kfd_open(struct inode *inode, struct file *filep)
128 {
129 	struct kfd_process *process;
130 	bool is_32bit_user_mode;
131 
132 	if (iminor(inode) != 0)
133 		return -ENODEV;
134 
135 	is_32bit_user_mode = in_compat_syscall();
136 
137 	if (is_32bit_user_mode) {
138 		dev_warn(kfd_device,
139 			"Process %d (32-bit) failed to open /dev/kfd\n"
140 			"32-bit processes are not supported by amdkfd\n",
141 			current->pid);
142 		return -EPERM;
143 	}
144 
145 	process = kfd_create_process(filep);
146 	if (IS_ERR(process))
147 		return PTR_ERR(process);
148 
149 	if (kfd_is_locked()) {
150 		dev_dbg(kfd_device, "kfd is locked!\n"
151 				"process %d unreferenced", process->pasid);
152 		kfd_unref_process(process);
153 		return -EAGAIN;
154 	}
155 
156 	/* filep now owns the reference returned by kfd_create_process */
157 	filep->private_data = process;
158 
159 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
160 		process->pasid, process->is_32bit_user_mode);
161 
162 	return 0;
163 }
164 
165 static int kfd_release(struct inode *inode, struct file *filep)
166 {
167 	struct kfd_process *process = filep->private_data;
168 
169 	if (process)
170 		kfd_unref_process(process);
171 
172 	return 0;
173 }
174 
175 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
176 					void *data)
177 {
178 	struct kfd_ioctl_get_version_args *args = data;
179 
180 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
181 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
182 
183 	return 0;
184 }
185 
186 static int set_queue_properties_from_user(struct queue_properties *q_properties,
187 				struct kfd_ioctl_create_queue_args *args)
188 {
189 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
190 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
191 		return -EINVAL;
192 	}
193 
194 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
195 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
196 		return -EINVAL;
197 	}
198 
199 	if ((args->ring_base_address) &&
200 		(!access_ok((const void __user *) args->ring_base_address,
201 			sizeof(uint64_t)))) {
202 		pr_err("Can't access ring base address\n");
203 		return -EFAULT;
204 	}
205 
206 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
207 		pr_err("Ring size must be a power of 2 or 0\n");
208 		return -EINVAL;
209 	}
210 
211 	if (!access_ok((const void __user *) args->read_pointer_address,
212 			sizeof(uint32_t))) {
213 		pr_err("Can't access read pointer\n");
214 		return -EFAULT;
215 	}
216 
217 	if (!access_ok((const void __user *) args->write_pointer_address,
218 			sizeof(uint32_t))) {
219 		pr_err("Can't access write pointer\n");
220 		return -EFAULT;
221 	}
222 
223 	if (args->eop_buffer_address &&
224 		!access_ok((const void __user *) args->eop_buffer_address,
225 			sizeof(uint32_t))) {
226 		pr_debug("Can't access eop buffer");
227 		return -EFAULT;
228 	}
229 
230 	if (args->ctx_save_restore_address &&
231 		!access_ok((const void __user *) args->ctx_save_restore_address,
232 			sizeof(uint32_t))) {
233 		pr_debug("Can't access ctx save restore buffer");
234 		return -EFAULT;
235 	}
236 
237 	q_properties->is_interop = false;
238 	q_properties->is_gws = false;
239 	q_properties->queue_percent = args->queue_percentage;
240 	q_properties->priority = args->queue_priority;
241 	q_properties->queue_address = args->ring_base_address;
242 	q_properties->queue_size = args->ring_size;
243 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
244 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
245 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
246 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
247 	q_properties->ctx_save_restore_area_address =
248 			args->ctx_save_restore_address;
249 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
250 	q_properties->ctl_stack_size = args->ctl_stack_size;
251 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
252 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
253 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
254 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
255 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
256 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
257 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
258 	else
259 		return -ENOTSUPP;
260 
261 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
262 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
263 	else
264 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
265 
266 	pr_debug("Queue Percentage: %d, %d\n",
267 			q_properties->queue_percent, args->queue_percentage);
268 
269 	pr_debug("Queue Priority: %d, %d\n",
270 			q_properties->priority, args->queue_priority);
271 
272 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
273 			q_properties->queue_address, args->ring_base_address);
274 
275 	pr_debug("Queue Size: 0x%llX, %u\n",
276 			q_properties->queue_size, args->ring_size);
277 
278 	pr_debug("Queue r/w Pointers: %px, %px\n",
279 			q_properties->read_ptr,
280 			q_properties->write_ptr);
281 
282 	pr_debug("Queue Format: %d\n", q_properties->format);
283 
284 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
285 
286 	pr_debug("Queue CTX save area: 0x%llX\n",
287 			q_properties->ctx_save_restore_area_address);
288 
289 	return 0;
290 }
291 
292 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
293 					void *data)
294 {
295 	struct kfd_ioctl_create_queue_args *args = data;
296 	struct kfd_dev *dev;
297 	int err = 0;
298 	unsigned int queue_id;
299 	struct kfd_process_device *pdd;
300 	struct queue_properties q_properties;
301 	uint32_t doorbell_offset_in_process = 0;
302 	struct amdgpu_bo *wptr_bo = NULL;
303 
304 	memset(&q_properties, 0, sizeof(struct queue_properties));
305 
306 	pr_debug("Creating queue ioctl\n");
307 
308 	err = set_queue_properties_from_user(&q_properties, args);
309 	if (err)
310 		return err;
311 
312 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
313 
314 	mutex_lock(&p->mutex);
315 
316 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
317 	if (!pdd) {
318 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
319 		err = -EINVAL;
320 		goto err_pdd;
321 	}
322 	dev = pdd->dev;
323 
324 	pdd = kfd_bind_process_to_device(dev, p);
325 	if (IS_ERR(pdd)) {
326 		err = -ESRCH;
327 		goto err_bind_process;
328 	}
329 
330 	/* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
331 	 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
332 	 */
333 	if (dev->shared_resources.enable_mes &&
334 			((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
335 			>> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
336 		struct amdgpu_bo_va_mapping *wptr_mapping;
337 		struct amdgpu_vm *wptr_vm;
338 
339 		wptr_vm = drm_priv_to_vm(pdd->drm_priv);
340 		err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
341 		if (err)
342 			goto err_wptr_map_gart;
343 
344 		wptr_mapping = amdgpu_vm_bo_lookup_mapping(
345 				wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
346 		amdgpu_bo_unreserve(wptr_vm->root.bo);
347 		if (!wptr_mapping) {
348 			pr_err("Failed to lookup wptr bo\n");
349 			err = -EINVAL;
350 			goto err_wptr_map_gart;
351 		}
352 
353 		wptr_bo = wptr_mapping->bo_va->base.bo;
354 		if (wptr_bo->tbo.base.size > PAGE_SIZE) {
355 			pr_err("Requested GART mapping for wptr bo larger than one page\n");
356 			err = -EINVAL;
357 			goto err_wptr_map_gart;
358 		}
359 
360 		err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
361 		if (err) {
362 			pr_err("Failed to map wptr bo to GART\n");
363 			goto err_wptr_map_gart;
364 		}
365 	}
366 
367 	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
368 			p->pasid,
369 			dev->id);
370 
371 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
372 			NULL, NULL, NULL, &doorbell_offset_in_process);
373 	if (err != 0)
374 		goto err_create_queue;
375 
376 	args->queue_id = queue_id;
377 
378 
379 	/* Return gpu_id as doorbell offset for mmap usage */
380 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
381 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
382 	if (KFD_IS_SOC15(dev))
383 		/* On SOC15 ASICs, include the doorbell offset within the
384 		 * process doorbell frame, which is 2 pages.
385 		 */
386 		args->doorbell_offset |= doorbell_offset_in_process;
387 
388 	mutex_unlock(&p->mutex);
389 
390 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
391 
392 	pr_debug("Ring buffer address == 0x%016llX\n",
393 			args->ring_base_address);
394 
395 	pr_debug("Read ptr address    == 0x%016llX\n",
396 			args->read_pointer_address);
397 
398 	pr_debug("Write ptr address   == 0x%016llX\n",
399 			args->write_pointer_address);
400 
401 	return 0;
402 
403 err_create_queue:
404 	if (wptr_bo)
405 		amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
406 err_wptr_map_gart:
407 err_bind_process:
408 err_pdd:
409 	mutex_unlock(&p->mutex);
410 	return err;
411 }
412 
413 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
414 					void *data)
415 {
416 	int retval;
417 	struct kfd_ioctl_destroy_queue_args *args = data;
418 
419 	pr_debug("Destroying queue id %d for pasid 0x%x\n",
420 				args->queue_id,
421 				p->pasid);
422 
423 	mutex_lock(&p->mutex);
424 
425 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
426 
427 	mutex_unlock(&p->mutex);
428 	return retval;
429 }
430 
431 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
432 					void *data)
433 {
434 	int retval;
435 	struct kfd_ioctl_update_queue_args *args = data;
436 	struct queue_properties properties;
437 
438 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
439 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
440 		return -EINVAL;
441 	}
442 
443 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
444 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
445 		return -EINVAL;
446 	}
447 
448 	if ((args->ring_base_address) &&
449 		(!access_ok((const void __user *) args->ring_base_address,
450 			sizeof(uint64_t)))) {
451 		pr_err("Can't access ring base address\n");
452 		return -EFAULT;
453 	}
454 
455 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
456 		pr_err("Ring size must be a power of 2 or 0\n");
457 		return -EINVAL;
458 	}
459 
460 	properties.queue_address = args->ring_base_address;
461 	properties.queue_size = args->ring_size;
462 	properties.queue_percent = args->queue_percentage;
463 	properties.priority = args->queue_priority;
464 
465 	pr_debug("Updating queue id %d for pasid 0x%x\n",
466 			args->queue_id, p->pasid);
467 
468 	mutex_lock(&p->mutex);
469 
470 	retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
471 
472 	mutex_unlock(&p->mutex);
473 
474 	return retval;
475 }
476 
477 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
478 					void *data)
479 {
480 	int retval;
481 	const int max_num_cus = 1024;
482 	struct kfd_ioctl_set_cu_mask_args *args = data;
483 	struct mqd_update_info minfo = {0};
484 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
485 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
486 
487 	if ((args->num_cu_mask % 32) != 0) {
488 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
489 				args->num_cu_mask);
490 		return -EINVAL;
491 	}
492 
493 	minfo.cu_mask.count = args->num_cu_mask;
494 	if (minfo.cu_mask.count == 0) {
495 		pr_debug("CU mask cannot be 0");
496 		return -EINVAL;
497 	}
498 
499 	/* To prevent an unreasonably large CU mask size, set an arbitrary
500 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
501 	 * past max_num_cus bits and just use the first max_num_cus bits.
502 	 */
503 	if (minfo.cu_mask.count > max_num_cus) {
504 		pr_debug("CU mask cannot be greater than 1024 bits");
505 		minfo.cu_mask.count = max_num_cus;
506 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
507 	}
508 
509 	minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
510 	if (!minfo.cu_mask.ptr)
511 		return -ENOMEM;
512 
513 	retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
514 	if (retval) {
515 		pr_debug("Could not copy CU mask from userspace");
516 		retval = -EFAULT;
517 		goto out;
518 	}
519 
520 	minfo.update_flag = UPDATE_FLAG_CU_MASK;
521 
522 	mutex_lock(&p->mutex);
523 
524 	retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
525 
526 	mutex_unlock(&p->mutex);
527 
528 out:
529 	kfree(minfo.cu_mask.ptr);
530 	return retval;
531 }
532 
533 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
534 					  struct kfd_process *p, void *data)
535 {
536 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
537 	int r;
538 
539 	mutex_lock(&p->mutex);
540 
541 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
542 			       (void __user *)args->ctl_stack_address,
543 			       &args->ctl_stack_used_size,
544 			       &args->save_area_used_size);
545 
546 	mutex_unlock(&p->mutex);
547 
548 	return r;
549 }
550 
551 static int kfd_ioctl_set_memory_policy(struct file *filep,
552 					struct kfd_process *p, void *data)
553 {
554 	struct kfd_ioctl_set_memory_policy_args *args = data;
555 	int err = 0;
556 	struct kfd_process_device *pdd;
557 	enum cache_policy default_policy, alternate_policy;
558 
559 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
560 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
561 		return -EINVAL;
562 	}
563 
564 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
565 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
566 		return -EINVAL;
567 	}
568 
569 	mutex_lock(&p->mutex);
570 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
571 	if (!pdd) {
572 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
573 		err = -EINVAL;
574 		goto err_pdd;
575 	}
576 
577 	pdd = kfd_bind_process_to_device(pdd->dev, p);
578 	if (IS_ERR(pdd)) {
579 		err = -ESRCH;
580 		goto out;
581 	}
582 
583 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
584 			 ? cache_policy_coherent : cache_policy_noncoherent;
585 
586 	alternate_policy =
587 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
588 		   ? cache_policy_coherent : cache_policy_noncoherent;
589 
590 	if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
591 				&pdd->qpd,
592 				default_policy,
593 				alternate_policy,
594 				(void __user *)args->alternate_aperture_base,
595 				args->alternate_aperture_size))
596 		err = -EINVAL;
597 
598 out:
599 err_pdd:
600 	mutex_unlock(&p->mutex);
601 
602 	return err;
603 }
604 
605 static int kfd_ioctl_set_trap_handler(struct file *filep,
606 					struct kfd_process *p, void *data)
607 {
608 	struct kfd_ioctl_set_trap_handler_args *args = data;
609 	int err = 0;
610 	struct kfd_process_device *pdd;
611 
612 	mutex_lock(&p->mutex);
613 
614 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
615 	if (!pdd) {
616 		err = -EINVAL;
617 		goto err_pdd;
618 	}
619 
620 	pdd = kfd_bind_process_to_device(pdd->dev, p);
621 	if (IS_ERR(pdd)) {
622 		err = -ESRCH;
623 		goto out;
624 	}
625 
626 	kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
627 
628 out:
629 err_pdd:
630 	mutex_unlock(&p->mutex);
631 
632 	return err;
633 }
634 
635 static int kfd_ioctl_dbg_register(struct file *filep,
636 				struct kfd_process *p, void *data)
637 {
638 	return -EPERM;
639 }
640 
641 static int kfd_ioctl_dbg_unregister(struct file *filep,
642 				struct kfd_process *p, void *data)
643 {
644 	return -EPERM;
645 }
646 
647 static int kfd_ioctl_dbg_address_watch(struct file *filep,
648 					struct kfd_process *p, void *data)
649 {
650 	return -EPERM;
651 }
652 
653 /* Parse and generate fixed size data structure for wave control */
654 static int kfd_ioctl_dbg_wave_control(struct file *filep,
655 					struct kfd_process *p, void *data)
656 {
657 	return -EPERM;
658 }
659 
660 static int kfd_ioctl_get_clock_counters(struct file *filep,
661 				struct kfd_process *p, void *data)
662 {
663 	struct kfd_ioctl_get_clock_counters_args *args = data;
664 	struct kfd_process_device *pdd;
665 
666 	mutex_lock(&p->mutex);
667 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
668 	mutex_unlock(&p->mutex);
669 	if (pdd)
670 		/* Reading GPU clock counter from KGD */
671 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
672 	else
673 		/* Node without GPU resource */
674 		args->gpu_clock_counter = 0;
675 
676 	/* No access to rdtsc. Using raw monotonic time */
677 	args->cpu_clock_counter = ktime_get_raw_ns();
678 	args->system_clock_counter = ktime_get_boottime_ns();
679 
680 	/* Since the counter is in nano-seconds we use 1GHz frequency */
681 	args->system_clock_freq = 1000000000;
682 
683 	return 0;
684 }
685 
686 
687 static int kfd_ioctl_get_process_apertures(struct file *filp,
688 				struct kfd_process *p, void *data)
689 {
690 	struct kfd_ioctl_get_process_apertures_args *args = data;
691 	struct kfd_process_device_apertures *pAperture;
692 	int i;
693 
694 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
695 
696 	args->num_of_nodes = 0;
697 
698 	mutex_lock(&p->mutex);
699 	/* Run over all pdd of the process */
700 	for (i = 0; i < p->n_pdds; i++) {
701 		struct kfd_process_device *pdd = p->pdds[i];
702 
703 		pAperture =
704 			&args->process_apertures[args->num_of_nodes];
705 		pAperture->gpu_id = pdd->dev->id;
706 		pAperture->lds_base = pdd->lds_base;
707 		pAperture->lds_limit = pdd->lds_limit;
708 		pAperture->gpuvm_base = pdd->gpuvm_base;
709 		pAperture->gpuvm_limit = pdd->gpuvm_limit;
710 		pAperture->scratch_base = pdd->scratch_base;
711 		pAperture->scratch_limit = pdd->scratch_limit;
712 
713 		dev_dbg(kfd_device,
714 			"node id %u\n", args->num_of_nodes);
715 		dev_dbg(kfd_device,
716 			"gpu id %u\n", pdd->dev->id);
717 		dev_dbg(kfd_device,
718 			"lds_base %llX\n", pdd->lds_base);
719 		dev_dbg(kfd_device,
720 			"lds_limit %llX\n", pdd->lds_limit);
721 		dev_dbg(kfd_device,
722 			"gpuvm_base %llX\n", pdd->gpuvm_base);
723 		dev_dbg(kfd_device,
724 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
725 		dev_dbg(kfd_device,
726 			"scratch_base %llX\n", pdd->scratch_base);
727 		dev_dbg(kfd_device,
728 			"scratch_limit %llX\n", pdd->scratch_limit);
729 
730 		if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
731 			break;
732 	}
733 	mutex_unlock(&p->mutex);
734 
735 	return 0;
736 }
737 
738 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
739 				struct kfd_process *p, void *data)
740 {
741 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
742 	struct kfd_process_device_apertures *pa;
743 	int ret;
744 	int i;
745 
746 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
747 
748 	if (args->num_of_nodes == 0) {
749 		/* Return number of nodes, so that user space can alloacate
750 		 * sufficient memory
751 		 */
752 		mutex_lock(&p->mutex);
753 		args->num_of_nodes = p->n_pdds;
754 		goto out_unlock;
755 	}
756 
757 	/* Fill in process-aperture information for all available
758 	 * nodes, but not more than args->num_of_nodes as that is
759 	 * the amount of memory allocated by user
760 	 */
761 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
762 				args->num_of_nodes), GFP_KERNEL);
763 	if (!pa)
764 		return -ENOMEM;
765 
766 	mutex_lock(&p->mutex);
767 
768 	if (!p->n_pdds) {
769 		args->num_of_nodes = 0;
770 		kfree(pa);
771 		goto out_unlock;
772 	}
773 
774 	/* Run over all pdd of the process */
775 	for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
776 		struct kfd_process_device *pdd = p->pdds[i];
777 
778 		pa[i].gpu_id = pdd->dev->id;
779 		pa[i].lds_base = pdd->lds_base;
780 		pa[i].lds_limit = pdd->lds_limit;
781 		pa[i].gpuvm_base = pdd->gpuvm_base;
782 		pa[i].gpuvm_limit = pdd->gpuvm_limit;
783 		pa[i].scratch_base = pdd->scratch_base;
784 		pa[i].scratch_limit = pdd->scratch_limit;
785 
786 		dev_dbg(kfd_device,
787 			"gpu id %u\n", pdd->dev->id);
788 		dev_dbg(kfd_device,
789 			"lds_base %llX\n", pdd->lds_base);
790 		dev_dbg(kfd_device,
791 			"lds_limit %llX\n", pdd->lds_limit);
792 		dev_dbg(kfd_device,
793 			"gpuvm_base %llX\n", pdd->gpuvm_base);
794 		dev_dbg(kfd_device,
795 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
796 		dev_dbg(kfd_device,
797 			"scratch_base %llX\n", pdd->scratch_base);
798 		dev_dbg(kfd_device,
799 			"scratch_limit %llX\n", pdd->scratch_limit);
800 	}
801 	mutex_unlock(&p->mutex);
802 
803 	args->num_of_nodes = i;
804 	ret = copy_to_user(
805 			(void __user *)args->kfd_process_device_apertures_ptr,
806 			pa,
807 			(i * sizeof(struct kfd_process_device_apertures)));
808 	kfree(pa);
809 	return ret ? -EFAULT : 0;
810 
811 out_unlock:
812 	mutex_unlock(&p->mutex);
813 	return 0;
814 }
815 
816 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
817 					void *data)
818 {
819 	struct kfd_ioctl_create_event_args *args = data;
820 	int err;
821 
822 	/* For dGPUs the event page is allocated in user mode. The
823 	 * handle is passed to KFD with the first call to this IOCTL
824 	 * through the event_page_offset field.
825 	 */
826 	if (args->event_page_offset) {
827 		mutex_lock(&p->mutex);
828 		err = kfd_kmap_event_page(p, args->event_page_offset);
829 		mutex_unlock(&p->mutex);
830 		if (err)
831 			return err;
832 	}
833 
834 	err = kfd_event_create(filp, p, args->event_type,
835 				args->auto_reset != 0, args->node_id,
836 				&args->event_id, &args->event_trigger_data,
837 				&args->event_page_offset,
838 				&args->event_slot_index);
839 
840 	pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
841 	return err;
842 }
843 
844 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
845 					void *data)
846 {
847 	struct kfd_ioctl_destroy_event_args *args = data;
848 
849 	return kfd_event_destroy(p, args->event_id);
850 }
851 
852 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
853 				void *data)
854 {
855 	struct kfd_ioctl_set_event_args *args = data;
856 
857 	return kfd_set_event(p, args->event_id);
858 }
859 
860 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
861 				void *data)
862 {
863 	struct kfd_ioctl_reset_event_args *args = data;
864 
865 	return kfd_reset_event(p, args->event_id);
866 }
867 
868 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
869 				void *data)
870 {
871 	struct kfd_ioctl_wait_events_args *args = data;
872 	int err;
873 
874 	err = kfd_wait_on_events(p, args->num_events,
875 			(void __user *)args->events_ptr,
876 			(args->wait_for_all != 0),
877 			args->timeout, &args->wait_result);
878 
879 	return err;
880 }
881 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
882 					struct kfd_process *p, void *data)
883 {
884 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
885 	struct kfd_process_device *pdd;
886 	struct kfd_dev *dev;
887 	long err;
888 
889 	mutex_lock(&p->mutex);
890 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
891 	if (!pdd) {
892 		err = -EINVAL;
893 		goto err_pdd;
894 	}
895 	dev = pdd->dev;
896 
897 	pdd = kfd_bind_process_to_device(dev, p);
898 	if (IS_ERR(pdd)) {
899 		err = PTR_ERR(pdd);
900 		goto bind_process_to_device_fail;
901 	}
902 
903 	pdd->qpd.sh_hidden_private_base = args->va_addr;
904 
905 	mutex_unlock(&p->mutex);
906 
907 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
908 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
909 		dev->kfd2kgd->set_scratch_backing_va(
910 			dev->adev, args->va_addr, pdd->qpd.vmid);
911 
912 	return 0;
913 
914 bind_process_to_device_fail:
915 err_pdd:
916 	mutex_unlock(&p->mutex);
917 	return err;
918 }
919 
920 static int kfd_ioctl_get_tile_config(struct file *filep,
921 		struct kfd_process *p, void *data)
922 {
923 	struct kfd_ioctl_get_tile_config_args *args = data;
924 	struct kfd_process_device *pdd;
925 	struct tile_config config;
926 	int err = 0;
927 
928 	mutex_lock(&p->mutex);
929 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
930 	mutex_unlock(&p->mutex);
931 	if (!pdd)
932 		return -EINVAL;
933 
934 	amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
935 
936 	args->gb_addr_config = config.gb_addr_config;
937 	args->num_banks = config.num_banks;
938 	args->num_ranks = config.num_ranks;
939 
940 	if (args->num_tile_configs > config.num_tile_configs)
941 		args->num_tile_configs = config.num_tile_configs;
942 	err = copy_to_user((void __user *)args->tile_config_ptr,
943 			config.tile_config_ptr,
944 			args->num_tile_configs * sizeof(uint32_t));
945 	if (err) {
946 		args->num_tile_configs = 0;
947 		return -EFAULT;
948 	}
949 
950 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
951 		args->num_macro_tile_configs =
952 				config.num_macro_tile_configs;
953 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
954 			config.macro_tile_config_ptr,
955 			args->num_macro_tile_configs * sizeof(uint32_t));
956 	if (err) {
957 		args->num_macro_tile_configs = 0;
958 		return -EFAULT;
959 	}
960 
961 	return 0;
962 }
963 
964 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
965 				void *data)
966 {
967 	struct kfd_ioctl_acquire_vm_args *args = data;
968 	struct kfd_process_device *pdd;
969 	struct file *drm_file;
970 	int ret;
971 
972 	drm_file = fget(args->drm_fd);
973 	if (!drm_file)
974 		return -EINVAL;
975 
976 	mutex_lock(&p->mutex);
977 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
978 	if (!pdd) {
979 		ret = -EINVAL;
980 		goto err_pdd;
981 	}
982 
983 	if (pdd->drm_file) {
984 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
985 		goto err_drm_file;
986 	}
987 
988 	ret = kfd_process_device_init_vm(pdd, drm_file);
989 	if (ret)
990 		goto err_unlock;
991 
992 	/* On success, the PDD keeps the drm_file reference */
993 	mutex_unlock(&p->mutex);
994 
995 	return 0;
996 
997 err_unlock:
998 err_pdd:
999 err_drm_file:
1000 	mutex_unlock(&p->mutex);
1001 	fput(drm_file);
1002 	return ret;
1003 }
1004 
1005 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1006 {
1007 	if (debug_largebar) {
1008 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1009 		return true;
1010 	}
1011 
1012 	if (dev->use_iommu_v2)
1013 		return false;
1014 
1015 	if (dev->local_mem_info.local_mem_size_private == 0 &&
1016 			dev->local_mem_info.local_mem_size_public > 0)
1017 		return true;
1018 	return false;
1019 }
1020 
1021 static int kfd_ioctl_get_available_memory(struct file *filep,
1022 					  struct kfd_process *p, void *data)
1023 {
1024 	struct kfd_ioctl_get_available_memory_args *args = data;
1025 	struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1026 
1027 	if (!pdd)
1028 		return -EINVAL;
1029 	args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev);
1030 	kfd_unlock_pdd(pdd);
1031 	return 0;
1032 }
1033 
1034 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1035 					struct kfd_process *p, void *data)
1036 {
1037 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1038 	struct kfd_process_device *pdd;
1039 	void *mem;
1040 	struct kfd_dev *dev;
1041 	int idr_handle;
1042 	long err;
1043 	uint64_t offset = args->mmap_offset;
1044 	uint32_t flags = args->flags;
1045 
1046 	if (args->size == 0)
1047 		return -EINVAL;
1048 
1049 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1050 	/* Flush pending deferred work to avoid racing with deferred actions
1051 	 * from previous memory map changes (e.g. munmap).
1052 	 */
1053 	svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1054 	mutex_lock(&p->svms.lock);
1055 	mmap_write_unlock(current->mm);
1056 	if (interval_tree_iter_first(&p->svms.objects,
1057 				     args->va_addr >> PAGE_SHIFT,
1058 				     (args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1059 		pr_err("Address: 0x%llx already allocated by SVM\n",
1060 			args->va_addr);
1061 		mutex_unlock(&p->svms.lock);
1062 		return -EADDRINUSE;
1063 	}
1064 	mutex_unlock(&p->svms.lock);
1065 #endif
1066 	mutex_lock(&p->mutex);
1067 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1068 	if (!pdd) {
1069 		err = -EINVAL;
1070 		goto err_pdd;
1071 	}
1072 
1073 	dev = pdd->dev;
1074 
1075 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1076 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1077 		!kfd_dev_is_large_bar(dev)) {
1078 		pr_err("Alloc host visible vram on small bar is not allowed\n");
1079 		err = -EINVAL;
1080 		goto err_large_bar;
1081 	}
1082 
1083 	pdd = kfd_bind_process_to_device(dev, p);
1084 	if (IS_ERR(pdd)) {
1085 		err = PTR_ERR(pdd);
1086 		goto err_unlock;
1087 	}
1088 
1089 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1090 		if (args->size != kfd_doorbell_process_slice(dev)) {
1091 			err = -EINVAL;
1092 			goto err_unlock;
1093 		}
1094 		offset = kfd_get_process_doorbells(pdd);
1095 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1096 		if (args->size != PAGE_SIZE) {
1097 			err = -EINVAL;
1098 			goto err_unlock;
1099 		}
1100 		offset = dev->adev->rmmio_remap.bus_addr;
1101 		if (!offset) {
1102 			err = -ENOMEM;
1103 			goto err_unlock;
1104 		}
1105 	}
1106 
1107 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1108 		dev->adev, args->va_addr, args->size,
1109 		pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1110 		flags, false);
1111 
1112 	if (err)
1113 		goto err_unlock;
1114 
1115 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1116 	if (idr_handle < 0) {
1117 		err = -EFAULT;
1118 		goto err_free;
1119 	}
1120 
1121 	/* Update the VRAM usage count */
1122 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)
1123 		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + args->size);
1124 
1125 	mutex_unlock(&p->mutex);
1126 
1127 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1128 	args->mmap_offset = offset;
1129 
1130 	/* MMIO is mapped through kfd device
1131 	 * Generate a kfd mmap offset
1132 	 */
1133 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1134 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
1135 					| KFD_MMAP_GPU_ID(args->gpu_id);
1136 
1137 	return 0;
1138 
1139 err_free:
1140 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1141 					       pdd->drm_priv, NULL);
1142 err_unlock:
1143 err_pdd:
1144 err_large_bar:
1145 	mutex_unlock(&p->mutex);
1146 	return err;
1147 }
1148 
1149 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1150 					struct kfd_process *p, void *data)
1151 {
1152 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1153 	struct kfd_process_device *pdd;
1154 	void *mem;
1155 	int ret;
1156 	uint64_t size = 0;
1157 
1158 	mutex_lock(&p->mutex);
1159 	/*
1160 	 * Safeguard to prevent user space from freeing signal BO.
1161 	 * It will be freed at process termination.
1162 	 */
1163 	if (p->signal_handle && (p->signal_handle == args->handle)) {
1164 		pr_err("Free signal BO is not allowed\n");
1165 		ret = -EPERM;
1166 		goto err_unlock;
1167 	}
1168 
1169 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1170 	if (!pdd) {
1171 		pr_err("Process device data doesn't exist\n");
1172 		ret = -EINVAL;
1173 		goto err_pdd;
1174 	}
1175 
1176 	mem = kfd_process_device_translate_handle(
1177 		pdd, GET_IDR_HANDLE(args->handle));
1178 	if (!mem) {
1179 		ret = -EINVAL;
1180 		goto err_unlock;
1181 	}
1182 
1183 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1184 				(struct kgd_mem *)mem, pdd->drm_priv, &size);
1185 
1186 	/* If freeing the buffer failed, leave the handle in place for
1187 	 * clean-up during process tear-down.
1188 	 */
1189 	if (!ret)
1190 		kfd_process_device_remove_obj_handle(
1191 			pdd, GET_IDR_HANDLE(args->handle));
1192 
1193 	WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1194 
1195 err_unlock:
1196 err_pdd:
1197 	mutex_unlock(&p->mutex);
1198 	return ret;
1199 }
1200 
1201 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1202 					struct kfd_process *p, void *data)
1203 {
1204 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1205 	struct kfd_process_device *pdd, *peer_pdd;
1206 	void *mem;
1207 	struct kfd_dev *dev;
1208 	long err = 0;
1209 	int i;
1210 	uint32_t *devices_arr = NULL;
1211 
1212 	if (!args->n_devices) {
1213 		pr_debug("Device IDs array empty\n");
1214 		return -EINVAL;
1215 	}
1216 	if (args->n_success > args->n_devices) {
1217 		pr_debug("n_success exceeds n_devices\n");
1218 		return -EINVAL;
1219 	}
1220 
1221 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1222 				    GFP_KERNEL);
1223 	if (!devices_arr)
1224 		return -ENOMEM;
1225 
1226 	err = copy_from_user(devices_arr,
1227 			     (void __user *)args->device_ids_array_ptr,
1228 			     args->n_devices * sizeof(*devices_arr));
1229 	if (err != 0) {
1230 		err = -EFAULT;
1231 		goto copy_from_user_failed;
1232 	}
1233 
1234 	mutex_lock(&p->mutex);
1235 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1236 	if (!pdd) {
1237 		err = -EINVAL;
1238 		goto get_process_device_data_failed;
1239 	}
1240 	dev = pdd->dev;
1241 
1242 	pdd = kfd_bind_process_to_device(dev, p);
1243 	if (IS_ERR(pdd)) {
1244 		err = PTR_ERR(pdd);
1245 		goto bind_process_to_device_failed;
1246 	}
1247 
1248 	mem = kfd_process_device_translate_handle(pdd,
1249 						GET_IDR_HANDLE(args->handle));
1250 	if (!mem) {
1251 		err = -ENOMEM;
1252 		goto get_mem_obj_from_handle_failed;
1253 	}
1254 
1255 	for (i = args->n_success; i < args->n_devices; i++) {
1256 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1257 		if (!peer_pdd) {
1258 			pr_debug("Getting device by id failed for 0x%x\n",
1259 				 devices_arr[i]);
1260 			err = -EINVAL;
1261 			goto get_mem_obj_from_handle_failed;
1262 		}
1263 
1264 		peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1265 		if (IS_ERR(peer_pdd)) {
1266 			err = PTR_ERR(peer_pdd);
1267 			goto get_mem_obj_from_handle_failed;
1268 		}
1269 
1270 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1271 			peer_pdd->dev->adev, (struct kgd_mem *)mem,
1272 			peer_pdd->drm_priv);
1273 		if (err) {
1274 			struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1275 
1276 			dev_err(dev->adev->dev,
1277 			       "Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1278 			       pci_domain_nr(pdev->bus),
1279 			       pdev->bus->number,
1280 			       PCI_SLOT(pdev->devfn),
1281 			       PCI_FUNC(pdev->devfn),
1282 			       ((struct kgd_mem *)mem)->domain);
1283 			goto map_memory_to_gpu_failed;
1284 		}
1285 		args->n_success = i+1;
1286 	}
1287 
1288 	mutex_unlock(&p->mutex);
1289 
1290 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1291 	if (err) {
1292 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
1293 		goto sync_memory_failed;
1294 	}
1295 
1296 	/* Flush TLBs after waiting for the page table updates to complete */
1297 	for (i = 0; i < args->n_devices; i++) {
1298 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1299 		if (WARN_ON_ONCE(!peer_pdd))
1300 			continue;
1301 		kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1302 	}
1303 	kfree(devices_arr);
1304 
1305 	return err;
1306 
1307 get_process_device_data_failed:
1308 bind_process_to_device_failed:
1309 get_mem_obj_from_handle_failed:
1310 map_memory_to_gpu_failed:
1311 	mutex_unlock(&p->mutex);
1312 copy_from_user_failed:
1313 sync_memory_failed:
1314 	kfree(devices_arr);
1315 
1316 	return err;
1317 }
1318 
1319 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1320 					struct kfd_process *p, void *data)
1321 {
1322 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1323 	struct kfd_process_device *pdd, *peer_pdd;
1324 	void *mem;
1325 	long err = 0;
1326 	uint32_t *devices_arr = NULL, i;
1327 
1328 	if (!args->n_devices) {
1329 		pr_debug("Device IDs array empty\n");
1330 		return -EINVAL;
1331 	}
1332 	if (args->n_success > args->n_devices) {
1333 		pr_debug("n_success exceeds n_devices\n");
1334 		return -EINVAL;
1335 	}
1336 
1337 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1338 				    GFP_KERNEL);
1339 	if (!devices_arr)
1340 		return -ENOMEM;
1341 
1342 	err = copy_from_user(devices_arr,
1343 			     (void __user *)args->device_ids_array_ptr,
1344 			     args->n_devices * sizeof(*devices_arr));
1345 	if (err != 0) {
1346 		err = -EFAULT;
1347 		goto copy_from_user_failed;
1348 	}
1349 
1350 	mutex_lock(&p->mutex);
1351 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1352 	if (!pdd) {
1353 		err = -EINVAL;
1354 		goto bind_process_to_device_failed;
1355 	}
1356 
1357 	mem = kfd_process_device_translate_handle(pdd,
1358 						GET_IDR_HANDLE(args->handle));
1359 	if (!mem) {
1360 		err = -ENOMEM;
1361 		goto get_mem_obj_from_handle_failed;
1362 	}
1363 
1364 	for (i = args->n_success; i < args->n_devices; i++) {
1365 		peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1366 		if (!peer_pdd) {
1367 			err = -EINVAL;
1368 			goto get_mem_obj_from_handle_failed;
1369 		}
1370 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1371 			peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1372 		if (err) {
1373 			pr_err("Failed to unmap from gpu %d/%d\n",
1374 			       i, args->n_devices);
1375 			goto unmap_memory_from_gpu_failed;
1376 		}
1377 		args->n_success = i+1;
1378 	}
1379 	mutex_unlock(&p->mutex);
1380 
1381 	if (kfd_flush_tlb_after_unmap(pdd->dev)) {
1382 		err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1383 				(struct kgd_mem *) mem, true);
1384 		if (err) {
1385 			pr_debug("Sync memory failed, wait interrupted by user signal\n");
1386 			goto sync_memory_failed;
1387 		}
1388 
1389 		/* Flush TLBs after waiting for the page table updates to complete */
1390 		for (i = 0; i < args->n_devices; i++) {
1391 			peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1392 			if (WARN_ON_ONCE(!peer_pdd))
1393 				continue;
1394 			kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1395 		}
1396 	}
1397 	kfree(devices_arr);
1398 
1399 	return 0;
1400 
1401 bind_process_to_device_failed:
1402 get_mem_obj_from_handle_failed:
1403 unmap_memory_from_gpu_failed:
1404 	mutex_unlock(&p->mutex);
1405 copy_from_user_failed:
1406 sync_memory_failed:
1407 	kfree(devices_arr);
1408 	return err;
1409 }
1410 
1411 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1412 		struct kfd_process *p, void *data)
1413 {
1414 	int retval;
1415 	struct kfd_ioctl_alloc_queue_gws_args *args = data;
1416 	struct queue *q;
1417 	struct kfd_dev *dev;
1418 
1419 	mutex_lock(&p->mutex);
1420 	q = pqm_get_user_queue(&p->pqm, args->queue_id);
1421 
1422 	if (q) {
1423 		dev = q->device;
1424 	} else {
1425 		retval = -EINVAL;
1426 		goto out_unlock;
1427 	}
1428 
1429 	if (!dev->gws) {
1430 		retval = -ENODEV;
1431 		goto out_unlock;
1432 	}
1433 
1434 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1435 		retval = -ENODEV;
1436 		goto out_unlock;
1437 	}
1438 
1439 	retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1440 	mutex_unlock(&p->mutex);
1441 
1442 	args->first_gws = 0;
1443 	return retval;
1444 
1445 out_unlock:
1446 	mutex_unlock(&p->mutex);
1447 	return retval;
1448 }
1449 
1450 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1451 		struct kfd_process *p, void *data)
1452 {
1453 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
1454 	struct kfd_dev *dev = NULL;
1455 	struct amdgpu_device *dmabuf_adev;
1456 	void *metadata_buffer = NULL;
1457 	uint32_t flags;
1458 	unsigned int i;
1459 	int r;
1460 
1461 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
1462 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1463 		if (dev)
1464 			break;
1465 	if (!dev)
1466 		return -EINVAL;
1467 
1468 	if (args->metadata_ptr) {
1469 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1470 		if (!metadata_buffer)
1471 			return -ENOMEM;
1472 	}
1473 
1474 	/* Get dmabuf info from KGD */
1475 	r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1476 					  &dmabuf_adev, &args->size,
1477 					  metadata_buffer, args->metadata_size,
1478 					  &args->metadata_size, &flags);
1479 	if (r)
1480 		goto exit;
1481 
1482 	/* Reverse-lookup gpu_id from kgd pointer */
1483 	dev = kfd_device_by_adev(dmabuf_adev);
1484 	if (!dev) {
1485 		r = -EINVAL;
1486 		goto exit;
1487 	}
1488 	args->gpu_id = dev->id;
1489 	args->flags = flags;
1490 
1491 	/* Copy metadata buffer to user mode */
1492 	if (metadata_buffer) {
1493 		r = copy_to_user((void __user *)args->metadata_ptr,
1494 				 metadata_buffer, args->metadata_size);
1495 		if (r != 0)
1496 			r = -EFAULT;
1497 	}
1498 
1499 exit:
1500 	kfree(metadata_buffer);
1501 
1502 	return r;
1503 }
1504 
1505 static int kfd_ioctl_import_dmabuf(struct file *filep,
1506 				   struct kfd_process *p, void *data)
1507 {
1508 	struct kfd_ioctl_import_dmabuf_args *args = data;
1509 	struct kfd_process_device *pdd;
1510 	struct dma_buf *dmabuf;
1511 	int idr_handle;
1512 	uint64_t size;
1513 	void *mem;
1514 	int r;
1515 
1516 	dmabuf = dma_buf_get(args->dmabuf_fd);
1517 	if (IS_ERR(dmabuf))
1518 		return PTR_ERR(dmabuf);
1519 
1520 	mutex_lock(&p->mutex);
1521 	pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1522 	if (!pdd) {
1523 		r = -EINVAL;
1524 		goto err_unlock;
1525 	}
1526 
1527 	pdd = kfd_bind_process_to_device(pdd->dev, p);
1528 	if (IS_ERR(pdd)) {
1529 		r = PTR_ERR(pdd);
1530 		goto err_unlock;
1531 	}
1532 
1533 	r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf,
1534 					      args->va_addr, pdd->drm_priv,
1535 					      (struct kgd_mem **)&mem, &size,
1536 					      NULL);
1537 	if (r)
1538 		goto err_unlock;
1539 
1540 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1541 	if (idr_handle < 0) {
1542 		r = -EFAULT;
1543 		goto err_free;
1544 	}
1545 
1546 	mutex_unlock(&p->mutex);
1547 	dma_buf_put(dmabuf);
1548 
1549 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1550 
1551 	return 0;
1552 
1553 err_free:
1554 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1555 					       pdd->drm_priv, NULL);
1556 err_unlock:
1557 	mutex_unlock(&p->mutex);
1558 	dma_buf_put(dmabuf);
1559 	return r;
1560 }
1561 
1562 /* Handle requests for watching SMI events */
1563 static int kfd_ioctl_smi_events(struct file *filep,
1564 				struct kfd_process *p, void *data)
1565 {
1566 	struct kfd_ioctl_smi_events_args *args = data;
1567 	struct kfd_process_device *pdd;
1568 
1569 	mutex_lock(&p->mutex);
1570 
1571 	pdd = kfd_process_device_data_by_id(p, args->gpuid);
1572 	mutex_unlock(&p->mutex);
1573 	if (!pdd)
1574 		return -EINVAL;
1575 
1576 	return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1577 }
1578 
1579 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1580 				    struct kfd_process *p, void *data)
1581 {
1582 	struct kfd_ioctl_set_xnack_mode_args *args = data;
1583 	int r = 0;
1584 
1585 	mutex_lock(&p->mutex);
1586 	if (args->xnack_enabled >= 0) {
1587 		if (!list_empty(&p->pqm.queues)) {
1588 			pr_debug("Process has user queues running\n");
1589 			mutex_unlock(&p->mutex);
1590 			return -EBUSY;
1591 		}
1592 		if (args->xnack_enabled && !kfd_process_xnack_mode(p, true))
1593 			r = -EPERM;
1594 		else
1595 			p->xnack_enabled = args->xnack_enabled;
1596 	} else {
1597 		args->xnack_enabled = p->xnack_enabled;
1598 	}
1599 	mutex_unlock(&p->mutex);
1600 
1601 	return r;
1602 }
1603 
1604 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1605 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1606 {
1607 	struct kfd_ioctl_svm_args *args = data;
1608 	int r = 0;
1609 
1610 	pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1611 		 args->start_addr, args->size, args->op, args->nattr);
1612 
1613 	if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1614 		return -EINVAL;
1615 	if (!args->start_addr || !args->size)
1616 		return -EINVAL;
1617 
1618 	r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1619 		      args->attrs);
1620 
1621 	return r;
1622 }
1623 #else
1624 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1625 {
1626 	return -EPERM;
1627 }
1628 #endif
1629 
1630 static int criu_checkpoint_process(struct kfd_process *p,
1631 			     uint8_t __user *user_priv_data,
1632 			     uint64_t *priv_offset)
1633 {
1634 	struct kfd_criu_process_priv_data process_priv;
1635 	int ret;
1636 
1637 	memset(&process_priv, 0, sizeof(process_priv));
1638 
1639 	process_priv.version = KFD_CRIU_PRIV_VERSION;
1640 	/* For CR, we don't consider negative xnack mode which is used for
1641 	 * querying without changing it, here 0 simply means disabled and 1
1642 	 * means enabled so retry for finding a valid PTE.
1643 	 */
1644 	process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1645 
1646 	ret = copy_to_user(user_priv_data + *priv_offset,
1647 				&process_priv, sizeof(process_priv));
1648 
1649 	if (ret) {
1650 		pr_err("Failed to copy process information to user\n");
1651 		ret = -EFAULT;
1652 	}
1653 
1654 	*priv_offset += sizeof(process_priv);
1655 	return ret;
1656 }
1657 
1658 static int criu_checkpoint_devices(struct kfd_process *p,
1659 			     uint32_t num_devices,
1660 			     uint8_t __user *user_addr,
1661 			     uint8_t __user *user_priv_data,
1662 			     uint64_t *priv_offset)
1663 {
1664 	struct kfd_criu_device_priv_data *device_priv = NULL;
1665 	struct kfd_criu_device_bucket *device_buckets = NULL;
1666 	int ret = 0, i;
1667 
1668 	device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1669 	if (!device_buckets) {
1670 		ret = -ENOMEM;
1671 		goto exit;
1672 	}
1673 
1674 	device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1675 	if (!device_priv) {
1676 		ret = -ENOMEM;
1677 		goto exit;
1678 	}
1679 
1680 	for (i = 0; i < num_devices; i++) {
1681 		struct kfd_process_device *pdd = p->pdds[i];
1682 
1683 		device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1684 		device_buckets[i].actual_gpu_id = pdd->dev->id;
1685 
1686 		/*
1687 		 * priv_data does not contain useful information for now and is reserved for
1688 		 * future use, so we do not set its contents.
1689 		 */
1690 	}
1691 
1692 	ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1693 	if (ret) {
1694 		pr_err("Failed to copy device information to user\n");
1695 		ret = -EFAULT;
1696 		goto exit;
1697 	}
1698 
1699 	ret = copy_to_user(user_priv_data + *priv_offset,
1700 			   device_priv,
1701 			   num_devices * sizeof(*device_priv));
1702 	if (ret) {
1703 		pr_err("Failed to copy device information to user\n");
1704 		ret = -EFAULT;
1705 	}
1706 	*priv_offset += num_devices * sizeof(*device_priv);
1707 
1708 exit:
1709 	kvfree(device_buckets);
1710 	kvfree(device_priv);
1711 	return ret;
1712 }
1713 
1714 static uint32_t get_process_num_bos(struct kfd_process *p)
1715 {
1716 	uint32_t num_of_bos = 0;
1717 	int i;
1718 
1719 	/* Run over all PDDs of the process */
1720 	for (i = 0; i < p->n_pdds; i++) {
1721 		struct kfd_process_device *pdd = p->pdds[i];
1722 		void *mem;
1723 		int id;
1724 
1725 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1726 			struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1727 
1728 			if ((uint64_t)kgd_mem->va > pdd->gpuvm_base)
1729 				num_of_bos++;
1730 		}
1731 	}
1732 	return num_of_bos;
1733 }
1734 
1735 static int criu_get_prime_handle(struct drm_gem_object *gobj, int flags,
1736 				      u32 *shared_fd)
1737 {
1738 	struct dma_buf *dmabuf;
1739 	int ret;
1740 
1741 	dmabuf = amdgpu_gem_prime_export(gobj, flags);
1742 	if (IS_ERR(dmabuf)) {
1743 		ret = PTR_ERR(dmabuf);
1744 		pr_err("dmabuf export failed for the BO\n");
1745 		return ret;
1746 	}
1747 
1748 	ret = dma_buf_fd(dmabuf, flags);
1749 	if (ret < 0) {
1750 		pr_err("dmabuf create fd failed, ret:%d\n", ret);
1751 		goto out_free_dmabuf;
1752 	}
1753 
1754 	*shared_fd = ret;
1755 	return 0;
1756 
1757 out_free_dmabuf:
1758 	dma_buf_put(dmabuf);
1759 	return ret;
1760 }
1761 
1762 static int criu_checkpoint_bos(struct kfd_process *p,
1763 			       uint32_t num_bos,
1764 			       uint8_t __user *user_bos,
1765 			       uint8_t __user *user_priv_data,
1766 			       uint64_t *priv_offset)
1767 {
1768 	struct kfd_criu_bo_bucket *bo_buckets;
1769 	struct kfd_criu_bo_priv_data *bo_privs;
1770 	int ret = 0, pdd_index, bo_index = 0, id;
1771 	void *mem;
1772 
1773 	bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1774 	if (!bo_buckets)
1775 		return -ENOMEM;
1776 
1777 	bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1778 	if (!bo_privs) {
1779 		ret = -ENOMEM;
1780 		goto exit;
1781 	}
1782 
1783 	for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1784 		struct kfd_process_device *pdd = p->pdds[pdd_index];
1785 		struct amdgpu_bo *dumper_bo;
1786 		struct kgd_mem *kgd_mem;
1787 
1788 		idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1789 			struct kfd_criu_bo_bucket *bo_bucket;
1790 			struct kfd_criu_bo_priv_data *bo_priv;
1791 			int i, dev_idx = 0;
1792 
1793 			if (!mem) {
1794 				ret = -ENOMEM;
1795 				goto exit;
1796 			}
1797 
1798 			kgd_mem = (struct kgd_mem *)mem;
1799 			dumper_bo = kgd_mem->bo;
1800 
1801 			if ((uint64_t)kgd_mem->va <= pdd->gpuvm_base)
1802 				continue;
1803 
1804 			bo_bucket = &bo_buckets[bo_index];
1805 			bo_priv = &bo_privs[bo_index];
1806 
1807 			bo_bucket->gpu_id = pdd->user_gpu_id;
1808 			bo_bucket->addr = (uint64_t)kgd_mem->va;
1809 			bo_bucket->size = amdgpu_bo_size(dumper_bo);
1810 			bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1811 			bo_priv->idr_handle = id;
1812 
1813 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1814 				ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1815 								&bo_priv->user_addr);
1816 				if (ret) {
1817 					pr_err("Failed to obtain user address for user-pointer bo\n");
1818 					goto exit;
1819 				}
1820 			}
1821 			if (bo_bucket->alloc_flags
1822 			    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1823 				ret = criu_get_prime_handle(&dumper_bo->tbo.base,
1824 						bo_bucket->alloc_flags &
1825 						KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1826 						&bo_bucket->dmabuf_fd);
1827 				if (ret)
1828 					goto exit;
1829 			} else {
1830 				bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1831 			}
1832 
1833 			if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1834 				bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1835 					KFD_MMAP_GPU_ID(pdd->dev->id);
1836 			else if (bo_bucket->alloc_flags &
1837 				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1838 				bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1839 					KFD_MMAP_GPU_ID(pdd->dev->id);
1840 			else
1841 				bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1842 
1843 			for (i = 0; i < p->n_pdds; i++) {
1844 				if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
1845 					bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1846 			}
1847 
1848 			pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1849 					"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1850 					bo_bucket->size,
1851 					bo_bucket->addr,
1852 					bo_bucket->offset,
1853 					bo_bucket->gpu_id,
1854 					bo_bucket->alloc_flags,
1855 					bo_priv->idr_handle);
1856 			bo_index++;
1857 		}
1858 	}
1859 
1860 	ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1861 	if (ret) {
1862 		pr_err("Failed to copy BO information to user\n");
1863 		ret = -EFAULT;
1864 		goto exit;
1865 	}
1866 
1867 	ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
1868 	if (ret) {
1869 		pr_err("Failed to copy BO priv information to user\n");
1870 		ret = -EFAULT;
1871 		goto exit;
1872 	}
1873 
1874 	*priv_offset += num_bos * sizeof(*bo_privs);
1875 
1876 exit:
1877 	while (ret && bo_index--) {
1878 		if (bo_buckets[bo_index].alloc_flags
1879 		    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
1880 			close_fd(bo_buckets[bo_index].dmabuf_fd);
1881 	}
1882 
1883 	kvfree(bo_buckets);
1884 	kvfree(bo_privs);
1885 	return ret;
1886 }
1887 
1888 static int criu_get_process_object_info(struct kfd_process *p,
1889 					uint32_t *num_devices,
1890 					uint32_t *num_bos,
1891 					uint32_t *num_objects,
1892 					uint64_t *objs_priv_size)
1893 {
1894 	uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
1895 	uint32_t num_queues, num_events, num_svm_ranges;
1896 	int ret;
1897 
1898 	*num_devices = p->n_pdds;
1899 	*num_bos = get_process_num_bos(p);
1900 
1901 	ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
1902 	if (ret)
1903 		return ret;
1904 
1905 	num_events = kfd_get_num_events(p);
1906 
1907 	ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
1908 	if (ret)
1909 		return ret;
1910 
1911 	*num_objects = num_queues + num_events + num_svm_ranges;
1912 
1913 	if (objs_priv_size) {
1914 		priv_size = sizeof(struct kfd_criu_process_priv_data);
1915 		priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
1916 		priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
1917 		priv_size += queues_priv_data_size;
1918 		priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
1919 		priv_size += svm_priv_data_size;
1920 		*objs_priv_size = priv_size;
1921 	}
1922 	return 0;
1923 }
1924 
1925 static int criu_checkpoint(struct file *filep,
1926 			   struct kfd_process *p,
1927 			   struct kfd_ioctl_criu_args *args)
1928 {
1929 	int ret;
1930 	uint32_t num_devices, num_bos, num_objects;
1931 	uint64_t priv_size, priv_offset = 0;
1932 
1933 	if (!args->devices || !args->bos || !args->priv_data)
1934 		return -EINVAL;
1935 
1936 	mutex_lock(&p->mutex);
1937 
1938 	if (!p->n_pdds) {
1939 		pr_err("No pdd for given process\n");
1940 		ret = -ENODEV;
1941 		goto exit_unlock;
1942 	}
1943 
1944 	/* Confirm all process queues are evicted */
1945 	if (!p->queues_paused) {
1946 		pr_err("Cannot dump process when queues are not in evicted state\n");
1947 		/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
1948 		ret = -EINVAL;
1949 		goto exit_unlock;
1950 	}
1951 
1952 	ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
1953 	if (ret)
1954 		goto exit_unlock;
1955 
1956 	if (num_devices != args->num_devices ||
1957 	    num_bos != args->num_bos ||
1958 	    num_objects != args->num_objects ||
1959 	    priv_size != args->priv_data_size) {
1960 
1961 		ret = -EINVAL;
1962 		goto exit_unlock;
1963 	}
1964 
1965 	/* each function will store private data inside priv_data and adjust priv_offset */
1966 	ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
1967 	if (ret)
1968 		goto exit_unlock;
1969 
1970 	ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
1971 				(uint8_t __user *)args->priv_data, &priv_offset);
1972 	if (ret)
1973 		goto exit_unlock;
1974 
1975 	ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
1976 			    (uint8_t __user *)args->priv_data, &priv_offset);
1977 	if (ret)
1978 		goto exit_unlock;
1979 
1980 	if (num_objects) {
1981 		ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
1982 						 &priv_offset);
1983 		if (ret)
1984 			goto close_bo_fds;
1985 
1986 		ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
1987 						 &priv_offset);
1988 		if (ret)
1989 			goto close_bo_fds;
1990 
1991 		ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
1992 		if (ret)
1993 			goto close_bo_fds;
1994 	}
1995 
1996 close_bo_fds:
1997 	if (ret) {
1998 		/* If IOCTL returns err, user assumes all FDs opened in criu_dump_bos are closed */
1999 		uint32_t i;
2000 		struct kfd_criu_bo_bucket *bo_buckets = (struct kfd_criu_bo_bucket *) args->bos;
2001 
2002 		for (i = 0; i < num_bos; i++) {
2003 			if (bo_buckets[i].alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)
2004 				close_fd(bo_buckets[i].dmabuf_fd);
2005 		}
2006 	}
2007 
2008 exit_unlock:
2009 	mutex_unlock(&p->mutex);
2010 	if (ret)
2011 		pr_err("Failed to dump CRIU ret:%d\n", ret);
2012 	else
2013 		pr_debug("CRIU dump ret:%d\n", ret);
2014 
2015 	return ret;
2016 }
2017 
2018 static int criu_restore_process(struct kfd_process *p,
2019 				struct kfd_ioctl_criu_args *args,
2020 				uint64_t *priv_offset,
2021 				uint64_t max_priv_data_size)
2022 {
2023 	int ret = 0;
2024 	struct kfd_criu_process_priv_data process_priv;
2025 
2026 	if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2027 		return -EINVAL;
2028 
2029 	ret = copy_from_user(&process_priv,
2030 				(void __user *)(args->priv_data + *priv_offset),
2031 				sizeof(process_priv));
2032 	if (ret) {
2033 		pr_err("Failed to copy process private information from user\n");
2034 		ret = -EFAULT;
2035 		goto exit;
2036 	}
2037 	*priv_offset += sizeof(process_priv);
2038 
2039 	if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2040 		pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2041 			process_priv.version, KFD_CRIU_PRIV_VERSION);
2042 		return -EINVAL;
2043 	}
2044 
2045 	pr_debug("Setting XNACK mode\n");
2046 	if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2047 		pr_err("xnack mode cannot be set\n");
2048 		ret = -EPERM;
2049 		goto exit;
2050 	} else {
2051 		pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2052 		p->xnack_enabled = process_priv.xnack_mode;
2053 	}
2054 
2055 exit:
2056 	return ret;
2057 }
2058 
2059 static int criu_restore_devices(struct kfd_process *p,
2060 				struct kfd_ioctl_criu_args *args,
2061 				uint64_t *priv_offset,
2062 				uint64_t max_priv_data_size)
2063 {
2064 	struct kfd_criu_device_bucket *device_buckets;
2065 	struct kfd_criu_device_priv_data *device_privs;
2066 	int ret = 0;
2067 	uint32_t i;
2068 
2069 	if (args->num_devices != p->n_pdds)
2070 		return -EINVAL;
2071 
2072 	if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2073 		return -EINVAL;
2074 
2075 	device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2076 	if (!device_buckets)
2077 		return -ENOMEM;
2078 
2079 	ret = copy_from_user(device_buckets, (void __user *)args->devices,
2080 				args->num_devices * sizeof(*device_buckets));
2081 	if (ret) {
2082 		pr_err("Failed to copy devices buckets from user\n");
2083 		ret = -EFAULT;
2084 		goto exit;
2085 	}
2086 
2087 	for (i = 0; i < args->num_devices; i++) {
2088 		struct kfd_dev *dev;
2089 		struct kfd_process_device *pdd;
2090 		struct file *drm_file;
2091 
2092 		/* device private data is not currently used */
2093 
2094 		if (!device_buckets[i].user_gpu_id) {
2095 			pr_err("Invalid user gpu_id\n");
2096 			ret = -EINVAL;
2097 			goto exit;
2098 		}
2099 
2100 		dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2101 		if (!dev) {
2102 			pr_err("Failed to find device with gpu_id = %x\n",
2103 				device_buckets[i].actual_gpu_id);
2104 			ret = -EINVAL;
2105 			goto exit;
2106 		}
2107 
2108 		pdd = kfd_get_process_device_data(dev, p);
2109 		if (!pdd) {
2110 			pr_err("Failed to get pdd for gpu_id = %x\n",
2111 					device_buckets[i].actual_gpu_id);
2112 			ret = -EINVAL;
2113 			goto exit;
2114 		}
2115 		pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2116 
2117 		drm_file = fget(device_buckets[i].drm_fd);
2118 		if (!drm_file) {
2119 			pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2120 				device_buckets[i].drm_fd);
2121 			ret = -EINVAL;
2122 			goto exit;
2123 		}
2124 
2125 		if (pdd->drm_file) {
2126 			ret = -EINVAL;
2127 			goto exit;
2128 		}
2129 
2130 		/* create the vm using render nodes for kfd pdd */
2131 		if (kfd_process_device_init_vm(pdd, drm_file)) {
2132 			pr_err("could not init vm for given pdd\n");
2133 			/* On success, the PDD keeps the drm_file reference */
2134 			fput(drm_file);
2135 			ret = -EINVAL;
2136 			goto exit;
2137 		}
2138 		/*
2139 		 * pdd now already has the vm bound to render node so below api won't create a new
2140 		 * exclusive kfd mapping but use existing one with renderDXXX but is still needed
2141 		 * for iommu v2 binding  and runtime pm.
2142 		 */
2143 		pdd = kfd_bind_process_to_device(dev, p);
2144 		if (IS_ERR(pdd)) {
2145 			ret = PTR_ERR(pdd);
2146 			goto exit;
2147 		}
2148 	}
2149 
2150 	/*
2151 	 * We are not copying device private data from user as we are not using the data for now,
2152 	 * but we still adjust for its private data.
2153 	 */
2154 	*priv_offset += args->num_devices * sizeof(*device_privs);
2155 
2156 exit:
2157 	kfree(device_buckets);
2158 	return ret;
2159 }
2160 
2161 static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2162 				      struct kfd_criu_bo_bucket *bo_bucket,
2163 				      struct kfd_criu_bo_priv_data *bo_priv,
2164 				      struct kgd_mem **kgd_mem)
2165 {
2166 	int idr_handle;
2167 	int ret;
2168 	const bool criu_resume = true;
2169 	u64 offset;
2170 
2171 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2172 		if (bo_bucket->size != kfd_doorbell_process_slice(pdd->dev))
2173 			return -EINVAL;
2174 
2175 		offset = kfd_get_process_doorbells(pdd);
2176 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2177 		/* MMIO BOs need remapped bus address */
2178 		if (bo_bucket->size != PAGE_SIZE) {
2179 			pr_err("Invalid page size\n");
2180 			return -EINVAL;
2181 		}
2182 		offset = pdd->dev->adev->rmmio_remap.bus_addr;
2183 		if (!offset) {
2184 			pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2185 			return -ENOMEM;
2186 		}
2187 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2188 		offset = bo_priv->user_addr;
2189 	}
2190 	/* Create the BO */
2191 	ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2192 						      bo_bucket->size, pdd->drm_priv, kgd_mem,
2193 						      &offset, bo_bucket->alloc_flags, criu_resume);
2194 	if (ret) {
2195 		pr_err("Could not create the BO\n");
2196 		return ret;
2197 	}
2198 	pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2199 		 bo_bucket->size, bo_bucket->addr, offset);
2200 
2201 	/* Restore previous IDR handle */
2202 	pr_debug("Restoring old IDR handle for the BO");
2203 	idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2204 			       bo_priv->idr_handle + 1, GFP_KERNEL);
2205 
2206 	if (idr_handle < 0) {
2207 		pr_err("Could not allocate idr\n");
2208 		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2209 						       NULL);
2210 		return -ENOMEM;
2211 	}
2212 
2213 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2214 		bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2215 	if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2216 		bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2217 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2218 		bo_bucket->restored_offset = offset;
2219 	} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2220 		bo_bucket->restored_offset = offset;
2221 		/* Update the VRAM usage count */
2222 		WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
2223 	}
2224 	return 0;
2225 }
2226 
2227 static int criu_restore_bo(struct kfd_process *p,
2228 			   struct kfd_criu_bo_bucket *bo_bucket,
2229 			   struct kfd_criu_bo_priv_data *bo_priv)
2230 {
2231 	struct kfd_process_device *pdd;
2232 	struct kgd_mem *kgd_mem;
2233 	int ret;
2234 	int j;
2235 
2236 	pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2237 		 bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2238 		 bo_priv->idr_handle);
2239 
2240 	pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2241 	if (!pdd) {
2242 		pr_err("Failed to get pdd\n");
2243 		return -ENODEV;
2244 	}
2245 
2246 	ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2247 	if (ret)
2248 		return ret;
2249 
2250 	/* now map these BOs to GPU/s */
2251 	for (j = 0; j < p->n_pdds; j++) {
2252 		struct kfd_dev *peer;
2253 		struct kfd_process_device *peer_pdd;
2254 
2255 		if (!bo_priv->mapped_gpuids[j])
2256 			break;
2257 
2258 		peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2259 		if (!peer_pdd)
2260 			return -EINVAL;
2261 
2262 		peer = peer_pdd->dev;
2263 
2264 		peer_pdd = kfd_bind_process_to_device(peer, p);
2265 		if (IS_ERR(peer_pdd))
2266 			return PTR_ERR(peer_pdd);
2267 
2268 		ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2269 							    peer_pdd->drm_priv);
2270 		if (ret) {
2271 			pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2272 			return ret;
2273 		}
2274 	}
2275 
2276 	pr_debug("map memory was successful for the BO\n");
2277 	/* create the dmabuf object and export the bo */
2278 	if (bo_bucket->alloc_flags
2279 	    & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2280 		ret = criu_get_prime_handle(&kgd_mem->bo->tbo.base, DRM_RDWR,
2281 					    &bo_bucket->dmabuf_fd);
2282 		if (ret)
2283 			return ret;
2284 	} else {
2285 		bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2286 	}
2287 
2288 	return 0;
2289 }
2290 
2291 static int criu_restore_bos(struct kfd_process *p,
2292 			    struct kfd_ioctl_criu_args *args,
2293 			    uint64_t *priv_offset,
2294 			    uint64_t max_priv_data_size)
2295 {
2296 	struct kfd_criu_bo_bucket *bo_buckets = NULL;
2297 	struct kfd_criu_bo_priv_data *bo_privs = NULL;
2298 	int ret = 0;
2299 	uint32_t i = 0;
2300 
2301 	if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2302 		return -EINVAL;
2303 
2304 	/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2305 	amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2306 
2307 	bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2308 	if (!bo_buckets)
2309 		return -ENOMEM;
2310 
2311 	ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2312 			     args->num_bos * sizeof(*bo_buckets));
2313 	if (ret) {
2314 		pr_err("Failed to copy BOs information from user\n");
2315 		ret = -EFAULT;
2316 		goto exit;
2317 	}
2318 
2319 	bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2320 	if (!bo_privs) {
2321 		ret = -ENOMEM;
2322 		goto exit;
2323 	}
2324 
2325 	ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2326 			     args->num_bos * sizeof(*bo_privs));
2327 	if (ret) {
2328 		pr_err("Failed to copy BOs information from user\n");
2329 		ret = -EFAULT;
2330 		goto exit;
2331 	}
2332 	*priv_offset += args->num_bos * sizeof(*bo_privs);
2333 
2334 	/* Create and map new BOs */
2335 	for (; i < args->num_bos; i++) {
2336 		ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
2337 		if (ret) {
2338 			pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2339 			goto exit;
2340 		}
2341 	} /* done */
2342 
2343 	/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2344 	ret = copy_to_user((void __user *)args->bos,
2345 				bo_buckets,
2346 				(args->num_bos * sizeof(*bo_buckets)));
2347 	if (ret)
2348 		ret = -EFAULT;
2349 
2350 exit:
2351 	while (ret && i--) {
2352 		if (bo_buckets[i].alloc_flags
2353 		   & (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
2354 			close_fd(bo_buckets[i].dmabuf_fd);
2355 	}
2356 	kvfree(bo_buckets);
2357 	kvfree(bo_privs);
2358 	return ret;
2359 }
2360 
2361 static int criu_restore_objects(struct file *filep,
2362 				struct kfd_process *p,
2363 				struct kfd_ioctl_criu_args *args,
2364 				uint64_t *priv_offset,
2365 				uint64_t max_priv_data_size)
2366 {
2367 	int ret = 0;
2368 	uint32_t i;
2369 
2370 	BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2371 	BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2372 	BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2373 
2374 	for (i = 0; i < args->num_objects; i++) {
2375 		uint32_t object_type;
2376 
2377 		if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2378 			pr_err("Invalid private data size\n");
2379 			return -EINVAL;
2380 		}
2381 
2382 		ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2383 		if (ret) {
2384 			pr_err("Failed to copy private information from user\n");
2385 			goto exit;
2386 		}
2387 
2388 		switch (object_type) {
2389 		case KFD_CRIU_OBJECT_TYPE_QUEUE:
2390 			ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2391 						     priv_offset, max_priv_data_size);
2392 			if (ret)
2393 				goto exit;
2394 			break;
2395 		case KFD_CRIU_OBJECT_TYPE_EVENT:
2396 			ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2397 						     priv_offset, max_priv_data_size);
2398 			if (ret)
2399 				goto exit;
2400 			break;
2401 		case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2402 			ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2403 						     priv_offset, max_priv_data_size);
2404 			if (ret)
2405 				goto exit;
2406 			break;
2407 		default:
2408 			pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2409 			ret = -EINVAL;
2410 			goto exit;
2411 		}
2412 	}
2413 exit:
2414 	return ret;
2415 }
2416 
2417 static int criu_restore(struct file *filep,
2418 			struct kfd_process *p,
2419 			struct kfd_ioctl_criu_args *args)
2420 {
2421 	uint64_t priv_offset = 0;
2422 	int ret = 0;
2423 
2424 	pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2425 		 args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2426 
2427 	if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2428 	    !args->num_devices || !args->num_bos)
2429 		return -EINVAL;
2430 
2431 	mutex_lock(&p->mutex);
2432 
2433 	/*
2434 	 * Set the process to evicted state to avoid running any new queues before all the memory
2435 	 * mappings are ready.
2436 	 */
2437 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2438 	if (ret)
2439 		goto exit_unlock;
2440 
2441 	/* Each function will adjust priv_offset based on how many bytes they consumed */
2442 	ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2443 	if (ret)
2444 		goto exit_unlock;
2445 
2446 	ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2447 	if (ret)
2448 		goto exit_unlock;
2449 
2450 	ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2451 	if (ret)
2452 		goto exit_unlock;
2453 
2454 	ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2455 	if (ret)
2456 		goto exit_unlock;
2457 
2458 	if (priv_offset != args->priv_data_size) {
2459 		pr_err("Invalid private data size\n");
2460 		ret = -EINVAL;
2461 	}
2462 
2463 exit_unlock:
2464 	mutex_unlock(&p->mutex);
2465 	if (ret)
2466 		pr_err("Failed to restore CRIU ret:%d\n", ret);
2467 	else
2468 		pr_debug("CRIU restore successful\n");
2469 
2470 	return ret;
2471 }
2472 
2473 static int criu_unpause(struct file *filep,
2474 			struct kfd_process *p,
2475 			struct kfd_ioctl_criu_args *args)
2476 {
2477 	int ret;
2478 
2479 	mutex_lock(&p->mutex);
2480 
2481 	if (!p->queues_paused) {
2482 		mutex_unlock(&p->mutex);
2483 		return -EINVAL;
2484 	}
2485 
2486 	ret = kfd_process_restore_queues(p);
2487 	if (ret)
2488 		pr_err("Failed to unpause queues ret:%d\n", ret);
2489 	else
2490 		p->queues_paused = false;
2491 
2492 	mutex_unlock(&p->mutex);
2493 
2494 	return ret;
2495 }
2496 
2497 static int criu_resume(struct file *filep,
2498 			struct kfd_process *p,
2499 			struct kfd_ioctl_criu_args *args)
2500 {
2501 	struct kfd_process *target = NULL;
2502 	struct pid *pid = NULL;
2503 	int ret = 0;
2504 
2505 	pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2506 		 args->pid);
2507 
2508 	pid = find_get_pid(args->pid);
2509 	if (!pid) {
2510 		pr_err("Cannot find pid info for %i\n", args->pid);
2511 		return -ESRCH;
2512 	}
2513 
2514 	pr_debug("calling kfd_lookup_process_by_pid\n");
2515 	target = kfd_lookup_process_by_pid(pid);
2516 
2517 	put_pid(pid);
2518 
2519 	if (!target) {
2520 		pr_debug("Cannot find process info for %i\n", args->pid);
2521 		return -ESRCH;
2522 	}
2523 
2524 	mutex_lock(&target->mutex);
2525 	ret = kfd_criu_resume_svm(target);
2526 	if (ret) {
2527 		pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2528 		goto exit;
2529 	}
2530 
2531 	ret =  amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2532 	if (ret)
2533 		pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2534 
2535 exit:
2536 	mutex_unlock(&target->mutex);
2537 
2538 	kfd_unref_process(target);
2539 	return ret;
2540 }
2541 
2542 static int criu_process_info(struct file *filep,
2543 				struct kfd_process *p,
2544 				struct kfd_ioctl_criu_args *args)
2545 {
2546 	int ret = 0;
2547 
2548 	mutex_lock(&p->mutex);
2549 
2550 	if (!p->n_pdds) {
2551 		pr_err("No pdd for given process\n");
2552 		ret = -ENODEV;
2553 		goto err_unlock;
2554 	}
2555 
2556 	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2557 	if (ret)
2558 		goto err_unlock;
2559 
2560 	p->queues_paused = true;
2561 
2562 	args->pid = task_pid_nr_ns(p->lead_thread,
2563 					task_active_pid_ns(p->lead_thread));
2564 
2565 	ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2566 					   &args->num_objects, &args->priv_data_size);
2567 	if (ret)
2568 		goto err_unlock;
2569 
2570 	dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2571 				args->num_devices, args->num_bos, args->num_objects,
2572 				args->priv_data_size);
2573 
2574 err_unlock:
2575 	if (ret) {
2576 		kfd_process_restore_queues(p);
2577 		p->queues_paused = false;
2578 	}
2579 	mutex_unlock(&p->mutex);
2580 	return ret;
2581 }
2582 
2583 static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2584 {
2585 	struct kfd_ioctl_criu_args *args = data;
2586 	int ret;
2587 
2588 	dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2589 	switch (args->op) {
2590 	case KFD_CRIU_OP_PROCESS_INFO:
2591 		ret = criu_process_info(filep, p, args);
2592 		break;
2593 	case KFD_CRIU_OP_CHECKPOINT:
2594 		ret = criu_checkpoint(filep, p, args);
2595 		break;
2596 	case KFD_CRIU_OP_UNPAUSE:
2597 		ret = criu_unpause(filep, p, args);
2598 		break;
2599 	case KFD_CRIU_OP_RESTORE:
2600 		ret = criu_restore(filep, p, args);
2601 		break;
2602 	case KFD_CRIU_OP_RESUME:
2603 		ret = criu_resume(filep, p, args);
2604 		break;
2605 	default:
2606 		dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2607 		ret = -EINVAL;
2608 		break;
2609 	}
2610 
2611 	if (ret)
2612 		dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2613 
2614 	return ret;
2615 }
2616 
2617 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
2618 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
2619 			    .cmd_drv = 0, .name = #ioctl}
2620 
2621 /** Ioctl table */
2622 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
2623 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
2624 			kfd_ioctl_get_version, 0),
2625 
2626 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
2627 			kfd_ioctl_create_queue, 0),
2628 
2629 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
2630 			kfd_ioctl_destroy_queue, 0),
2631 
2632 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
2633 			kfd_ioctl_set_memory_policy, 0),
2634 
2635 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
2636 			kfd_ioctl_get_clock_counters, 0),
2637 
2638 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
2639 			kfd_ioctl_get_process_apertures, 0),
2640 
2641 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
2642 			kfd_ioctl_update_queue, 0),
2643 
2644 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
2645 			kfd_ioctl_create_event, 0),
2646 
2647 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
2648 			kfd_ioctl_destroy_event, 0),
2649 
2650 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
2651 			kfd_ioctl_set_event, 0),
2652 
2653 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
2654 			kfd_ioctl_reset_event, 0),
2655 
2656 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
2657 			kfd_ioctl_wait_events, 0),
2658 
2659 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
2660 			kfd_ioctl_dbg_register, 0),
2661 
2662 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
2663 			kfd_ioctl_dbg_unregister, 0),
2664 
2665 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
2666 			kfd_ioctl_dbg_address_watch, 0),
2667 
2668 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
2669 			kfd_ioctl_dbg_wave_control, 0),
2670 
2671 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
2672 			kfd_ioctl_set_scratch_backing_va, 0),
2673 
2674 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
2675 			kfd_ioctl_get_tile_config, 0),
2676 
2677 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
2678 			kfd_ioctl_set_trap_handler, 0),
2679 
2680 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
2681 			kfd_ioctl_get_process_apertures_new, 0),
2682 
2683 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
2684 			kfd_ioctl_acquire_vm, 0),
2685 
2686 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
2687 			kfd_ioctl_alloc_memory_of_gpu, 0),
2688 
2689 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
2690 			kfd_ioctl_free_memory_of_gpu, 0),
2691 
2692 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
2693 			kfd_ioctl_map_memory_to_gpu, 0),
2694 
2695 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
2696 			kfd_ioctl_unmap_memory_from_gpu, 0),
2697 
2698 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
2699 			kfd_ioctl_set_cu_mask, 0),
2700 
2701 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
2702 			kfd_ioctl_get_queue_wave_state, 0),
2703 
2704 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
2705 				kfd_ioctl_get_dmabuf_info, 0),
2706 
2707 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
2708 				kfd_ioctl_import_dmabuf, 0),
2709 
2710 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
2711 			kfd_ioctl_alloc_queue_gws, 0),
2712 
2713 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
2714 			kfd_ioctl_smi_events, 0),
2715 
2716 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
2717 
2718 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
2719 			kfd_ioctl_set_xnack_mode, 0),
2720 
2721 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
2722 			kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
2723 
2724 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
2725 			kfd_ioctl_get_available_memory, 0),
2726 };
2727 
2728 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
2729 
2730 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
2731 {
2732 	struct kfd_process *process;
2733 	amdkfd_ioctl_t *func;
2734 	const struct amdkfd_ioctl_desc *ioctl = NULL;
2735 	unsigned int nr = _IOC_NR(cmd);
2736 	char stack_kdata[128];
2737 	char *kdata = NULL;
2738 	unsigned int usize, asize;
2739 	int retcode = -EINVAL;
2740 	bool ptrace_attached = false;
2741 
2742 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
2743 		goto err_i1;
2744 
2745 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
2746 		u32 amdkfd_size;
2747 
2748 		ioctl = &amdkfd_ioctls[nr];
2749 
2750 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
2751 		usize = asize = _IOC_SIZE(cmd);
2752 		if (amdkfd_size > asize)
2753 			asize = amdkfd_size;
2754 
2755 		cmd = ioctl->cmd;
2756 	} else
2757 		goto err_i1;
2758 
2759 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
2760 
2761 	/* Get the process struct from the filep. Only the process
2762 	 * that opened /dev/kfd can use the file descriptor. Child
2763 	 * processes need to create their own KFD device context.
2764 	 */
2765 	process = filep->private_data;
2766 
2767 	rcu_read_lock();
2768 	if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
2769 	    ptrace_parent(process->lead_thread) == current)
2770 		ptrace_attached = true;
2771 	rcu_read_unlock();
2772 
2773 	if (process->lead_thread != current->group_leader
2774 	    && !ptrace_attached) {
2775 		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
2776 		retcode = -EBADF;
2777 		goto err_i1;
2778 	}
2779 
2780 	/* Do not trust userspace, use our own definition */
2781 	func = ioctl->func;
2782 
2783 	if (unlikely(!func)) {
2784 		dev_dbg(kfd_device, "no function\n");
2785 		retcode = -EINVAL;
2786 		goto err_i1;
2787 	}
2788 
2789 	/*
2790 	 * Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
2791 	 * CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
2792 	 * more priviledged access.
2793 	 */
2794 	if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
2795 		if (!capable(CAP_CHECKPOINT_RESTORE) &&
2796 						!capable(CAP_SYS_ADMIN)) {
2797 			retcode = -EACCES;
2798 			goto err_i1;
2799 		}
2800 	}
2801 
2802 	if (cmd & (IOC_IN | IOC_OUT)) {
2803 		if (asize <= sizeof(stack_kdata)) {
2804 			kdata = stack_kdata;
2805 		} else {
2806 			kdata = kmalloc(asize, GFP_KERNEL);
2807 			if (!kdata) {
2808 				retcode = -ENOMEM;
2809 				goto err_i1;
2810 			}
2811 		}
2812 		if (asize > usize)
2813 			memset(kdata + usize, 0, asize - usize);
2814 	}
2815 
2816 	if (cmd & IOC_IN) {
2817 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
2818 			retcode = -EFAULT;
2819 			goto err_i1;
2820 		}
2821 	} else if (cmd & IOC_OUT) {
2822 		memset(kdata, 0, usize);
2823 	}
2824 
2825 	retcode = func(filep, process, kdata);
2826 
2827 	if (cmd & IOC_OUT)
2828 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
2829 			retcode = -EFAULT;
2830 
2831 err_i1:
2832 	if (!ioctl)
2833 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
2834 			  task_pid_nr(current), cmd, nr);
2835 
2836 	if (kdata != stack_kdata)
2837 		kfree(kdata);
2838 
2839 	if (retcode)
2840 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
2841 				nr, arg, retcode);
2842 
2843 	return retcode;
2844 }
2845 
2846 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
2847 		      struct vm_area_struct *vma)
2848 {
2849 	phys_addr_t address;
2850 	int ret;
2851 
2852 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
2853 		return -EINVAL;
2854 
2855 	address = dev->adev->rmmio_remap.bus_addr;
2856 
2857 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
2858 				VM_DONTDUMP | VM_PFNMAP;
2859 
2860 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
2861 
2862 	pr_debug("pasid 0x%x mapping mmio page\n"
2863 		 "     target user address == 0x%08llX\n"
2864 		 "     physical address    == 0x%08llX\n"
2865 		 "     vm_flags            == 0x%04lX\n"
2866 		 "     size                == 0x%04lX\n",
2867 		 process->pasid, (unsigned long long) vma->vm_start,
2868 		 address, vma->vm_flags, PAGE_SIZE);
2869 
2870 	ret = io_remap_pfn_range(vma,
2871 				vma->vm_start,
2872 				address >> PAGE_SHIFT,
2873 				PAGE_SIZE,
2874 				vma->vm_page_prot);
2875 	return ret;
2876 }
2877 
2878 
2879 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
2880 {
2881 	struct kfd_process *process;
2882 	struct kfd_dev *dev = NULL;
2883 	unsigned long mmap_offset;
2884 	unsigned int gpu_id;
2885 
2886 	process = kfd_get_process(current);
2887 	if (IS_ERR(process))
2888 		return PTR_ERR(process);
2889 
2890 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
2891 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
2892 	if (gpu_id)
2893 		dev = kfd_device_by_id(gpu_id);
2894 
2895 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
2896 	case KFD_MMAP_TYPE_DOORBELL:
2897 		if (!dev)
2898 			return -ENODEV;
2899 		return kfd_doorbell_mmap(dev, process, vma);
2900 
2901 	case KFD_MMAP_TYPE_EVENTS:
2902 		return kfd_event_mmap(process, vma);
2903 
2904 	case KFD_MMAP_TYPE_RESERVED_MEM:
2905 		if (!dev)
2906 			return -ENODEV;
2907 		return kfd_reserved_mem_mmap(dev, process, vma);
2908 	case KFD_MMAP_TYPE_MMIO:
2909 		if (!dev)
2910 			return -ENODEV;
2911 		return kfd_mmio_mmap(dev, process, vma);
2912 	}
2913 
2914 	return -EFAULT;
2915 }
2916