xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 67bb66d32905627e29400e2cb7f87a7c4c8cf667)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 
50 #include <drm/amdgpu_drm.h>
51 
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "amdgpu_ras.h"
58 #include "amdgpu_atomfirmware.h"
59 #include "amdgpu_res_cursor.h"
60 #include "bif/bif_4_1_d.h"
61 
62 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
63 
64 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
65 				   struct ttm_tt *ttm,
66 				   struct ttm_resource *bo_mem);
67 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
68 				      struct ttm_tt *ttm);
69 
70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
71 				    unsigned int type,
72 				    uint64_t size_in_page)
73 {
74 	return ttm_range_man_init(&adev->mman.bdev, type,
75 				  false, size_in_page);
76 }
77 
78 /**
79  * amdgpu_evict_flags - Compute placement flags
80  *
81  * @bo: The buffer object to evict
82  * @placement: Possible destination(s) for evicted BO
83  *
84  * Fill in placement data when ttm_bo_evict() is called
85  */
86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
87 				struct ttm_placement *placement)
88 {
89 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
90 	struct amdgpu_bo *abo;
91 	static const struct ttm_place placements = {
92 		.fpfn = 0,
93 		.lpfn = 0,
94 		.mem_type = TTM_PL_SYSTEM,
95 		.flags = 0
96 	};
97 
98 	/* Don't handle scatter gather BOs */
99 	if (bo->type == ttm_bo_type_sg) {
100 		placement->num_placement = 0;
101 		placement->num_busy_placement = 0;
102 		return;
103 	}
104 
105 	/* Object isn't an AMDGPU object so ignore */
106 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
107 		placement->placement = &placements;
108 		placement->busy_placement = &placements;
109 		placement->num_placement = 1;
110 		placement->num_busy_placement = 1;
111 		return;
112 	}
113 
114 	abo = ttm_to_amdgpu_bo(bo);
115 	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
116 		struct dma_fence *fence;
117 		struct dma_resv *resv = &bo->base._resv;
118 
119 		rcu_read_lock();
120 		fence = rcu_dereference(resv->fence_excl);
121 		if (fence && !fence->ops->signaled)
122 			dma_fence_enable_sw_signaling(fence);
123 
124 		placement->num_placement = 0;
125 		placement->num_busy_placement = 0;
126 		rcu_read_unlock();
127 		return;
128 	}
129 
130 	switch (bo->resource->mem_type) {
131 	case AMDGPU_PL_GDS:
132 	case AMDGPU_PL_GWS:
133 	case AMDGPU_PL_OA:
134 		placement->num_placement = 0;
135 		placement->num_busy_placement = 0;
136 		return;
137 
138 	case TTM_PL_VRAM:
139 		if (!adev->mman.buffer_funcs_enabled) {
140 			/* Move to system memory */
141 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
142 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
143 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
144 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
145 
146 			/* Try evicting to the CPU inaccessible part of VRAM
147 			 * first, but only set GTT as busy placement, so this
148 			 * BO will be evicted to GTT rather than causing other
149 			 * BOs to be evicted from VRAM
150 			 */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
152 							 AMDGPU_GEM_DOMAIN_GTT);
153 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
154 			abo->placements[0].lpfn = 0;
155 			abo->placement.busy_placement = &abo->placements[1];
156 			abo->placement.num_busy_placement = 1;
157 		} else {
158 			/* Move to GTT memory */
159 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
160 		}
161 		break;
162 	case TTM_PL_TT:
163 	case AMDGPU_PL_PREEMPT:
164 	default:
165 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
166 		break;
167 	}
168 	*placement = abo->placement;
169 }
170 
171 /**
172  * amdgpu_ttm_map_buffer - Map memory into the GART windows
173  * @bo: buffer object to map
174  * @mem: memory object to map
175  * @mm_cur: range to map
176  * @num_pages: number of pages to map
177  * @window: which GART window to use
178  * @ring: DMA ring to use for the copy
179  * @tmz: if we should setup a TMZ enabled mapping
180  * @addr: resulting address inside the MC address space
181  *
182  * Setup one of the GART windows to access a specific piece of memory or return
183  * the physical address for local memory.
184  */
185 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
186 				 struct ttm_resource *mem,
187 				 struct amdgpu_res_cursor *mm_cur,
188 				 unsigned num_pages, unsigned window,
189 				 struct amdgpu_ring *ring, bool tmz,
190 				 uint64_t *addr)
191 {
192 	struct amdgpu_device *adev = ring->adev;
193 	struct amdgpu_job *job;
194 	unsigned num_dw, num_bytes;
195 	struct dma_fence *fence;
196 	uint64_t src_addr, dst_addr;
197 	void *cpu_addr;
198 	uint64_t flags;
199 	unsigned int i;
200 	int r;
201 
202 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
203 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
204 	BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
205 
206 	/* Map only what can't be accessed directly */
207 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
208 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
209 			mm_cur->start;
210 		return 0;
211 	}
212 
213 	*addr = adev->gmc.gart_start;
214 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
215 		AMDGPU_GPU_PAGE_SIZE;
216 	*addr += mm_cur->start & ~PAGE_MASK;
217 
218 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
219 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
220 
221 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
222 				     AMDGPU_IB_POOL_DELAYED, &job);
223 	if (r)
224 		return r;
225 
226 	src_addr = num_dw * 4;
227 	src_addr += job->ibs[0].gpu_addr;
228 
229 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
230 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
231 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
232 				dst_addr, num_bytes, false);
233 
234 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
235 	WARN_ON(job->ibs[0].length_dw > num_dw);
236 
237 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
238 	if (tmz)
239 		flags |= AMDGPU_PTE_TMZ;
240 
241 	cpu_addr = &job->ibs[0].ptr[num_dw];
242 
243 	if (mem->mem_type == TTM_PL_TT) {
244 		dma_addr_t *dma_addr;
245 
246 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
247 		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
248 				    cpu_addr);
249 		if (r)
250 			goto error_free;
251 	} else {
252 		dma_addr_t dma_address;
253 
254 		dma_address = mm_cur->start;
255 		dma_address += adev->vm_manager.vram_base_offset;
256 
257 		for (i = 0; i < num_pages; ++i) {
258 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
259 					    &dma_address, flags, cpu_addr);
260 			if (r)
261 				goto error_free;
262 
263 			dma_address += PAGE_SIZE;
264 		}
265 	}
266 
267 	r = amdgpu_job_submit(job, &adev->mman.entity,
268 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
269 	if (r)
270 		goto error_free;
271 
272 	dma_fence_put(fence);
273 
274 	return r;
275 
276 error_free:
277 	amdgpu_job_free(job);
278 	return r;
279 }
280 
281 /**
282  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
283  * @adev: amdgpu device
284  * @src: buffer/address where to read from
285  * @dst: buffer/address where to write to
286  * @size: number of bytes to copy
287  * @tmz: if a secure copy should be used
288  * @resv: resv object to sync to
289  * @f: Returns the last fence if multiple jobs are submitted.
290  *
291  * The function copies @size bytes from {src->mem + src->offset} to
292  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
293  * move and different for a BO to BO copy.
294  *
295  */
296 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
297 			       const struct amdgpu_copy_mem *src,
298 			       const struct amdgpu_copy_mem *dst,
299 			       uint64_t size, bool tmz,
300 			       struct dma_resv *resv,
301 			       struct dma_fence **f)
302 {
303 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
304 					AMDGPU_GPU_PAGE_SIZE);
305 
306 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
307 	struct amdgpu_res_cursor src_mm, dst_mm;
308 	struct dma_fence *fence = NULL;
309 	int r = 0;
310 
311 	if (!adev->mman.buffer_funcs_enabled) {
312 		DRM_ERROR("Trying to move memory with ring turned off.\n");
313 		return -EINVAL;
314 	}
315 
316 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
317 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
318 
319 	mutex_lock(&adev->mman.gtt_window_lock);
320 	while (src_mm.remaining) {
321 		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
322 		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
323 		struct dma_fence *next;
324 		uint32_t cur_size;
325 		uint64_t from, to;
326 
327 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
328 		 * begins at an offset, then adjust the size accordingly
329 		 */
330 		cur_size = max(src_page_offset, dst_page_offset);
331 		cur_size = min(min3(src_mm.size, dst_mm.size, size),
332 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
333 
334 		/* Map src to window 0 and dst to window 1. */
335 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
336 					  PFN_UP(cur_size + src_page_offset),
337 					  0, ring, tmz, &from);
338 		if (r)
339 			goto error;
340 
341 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
342 					  PFN_UP(cur_size + dst_page_offset),
343 					  1, ring, tmz, &to);
344 		if (r)
345 			goto error;
346 
347 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
348 				       resv, &next, false, true, tmz);
349 		if (r)
350 			goto error;
351 
352 		dma_fence_put(fence);
353 		fence = next;
354 
355 		amdgpu_res_next(&src_mm, cur_size);
356 		amdgpu_res_next(&dst_mm, cur_size);
357 	}
358 error:
359 	mutex_unlock(&adev->mman.gtt_window_lock);
360 	if (f)
361 		*f = dma_fence_get(fence);
362 	dma_fence_put(fence);
363 	return r;
364 }
365 
366 /*
367  * amdgpu_move_blit - Copy an entire buffer to another buffer
368  *
369  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
370  * help move buffers to and from VRAM.
371  */
372 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
373 			    bool evict,
374 			    struct ttm_resource *new_mem,
375 			    struct ttm_resource *old_mem)
376 {
377 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
378 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
379 	struct amdgpu_copy_mem src, dst;
380 	struct dma_fence *fence = NULL;
381 	int r;
382 
383 	src.bo = bo;
384 	dst.bo = bo;
385 	src.mem = old_mem;
386 	dst.mem = new_mem;
387 	src.offset = 0;
388 	dst.offset = 0;
389 
390 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
391 				       new_mem->num_pages << PAGE_SHIFT,
392 				       amdgpu_bo_encrypted(abo),
393 				       bo->base.resv, &fence);
394 	if (r)
395 		goto error;
396 
397 	/* clear the space being freed */
398 	if (old_mem->mem_type == TTM_PL_VRAM &&
399 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
400 		struct dma_fence *wipe_fence = NULL;
401 
402 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
403 				       NULL, &wipe_fence);
404 		if (r) {
405 			goto error;
406 		} else if (wipe_fence) {
407 			dma_fence_put(fence);
408 			fence = wipe_fence;
409 		}
410 	}
411 
412 	/* Always block for VM page tables before committing the new location */
413 	if (bo->type == ttm_bo_type_kernel)
414 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
415 	else
416 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
417 	dma_fence_put(fence);
418 	return r;
419 
420 error:
421 	if (fence)
422 		dma_fence_wait(fence, false);
423 	dma_fence_put(fence);
424 	return r;
425 }
426 
427 /*
428  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
429  *
430  * Called by amdgpu_bo_move()
431  */
432 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
433 			       struct ttm_resource *mem)
434 {
435 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
436 	struct amdgpu_res_cursor cursor;
437 
438 	if (mem->mem_type == TTM_PL_SYSTEM ||
439 	    mem->mem_type == TTM_PL_TT)
440 		return true;
441 	if (mem->mem_type != TTM_PL_VRAM)
442 		return false;
443 
444 	amdgpu_res_first(mem, 0, mem_size, &cursor);
445 
446 	/* ttm_resource_ioremap only supports contiguous memory */
447 	if (cursor.size != mem_size)
448 		return false;
449 
450 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
451 }
452 
453 /*
454  * amdgpu_bo_move - Move a buffer object to a new memory location
455  *
456  * Called by ttm_bo_handle_move_mem()
457  */
458 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
459 			  struct ttm_operation_ctx *ctx,
460 			  struct ttm_resource *new_mem,
461 			  struct ttm_place *hop)
462 {
463 	struct amdgpu_device *adev;
464 	struct amdgpu_bo *abo;
465 	struct ttm_resource *old_mem = bo->resource;
466 	int r;
467 
468 	if (new_mem->mem_type == TTM_PL_TT ||
469 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
470 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
471 		if (r)
472 			return r;
473 	}
474 
475 	/* Can't move a pinned BO */
476 	abo = ttm_to_amdgpu_bo(bo);
477 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
478 		return -EINVAL;
479 
480 	adev = amdgpu_ttm_adev(bo->bdev);
481 
482 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
483 		ttm_bo_move_null(bo, new_mem);
484 		goto out;
485 	}
486 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
487 	    (new_mem->mem_type == TTM_PL_TT ||
488 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
489 		ttm_bo_move_null(bo, new_mem);
490 		goto out;
491 	}
492 	if ((old_mem->mem_type == TTM_PL_TT ||
493 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
494 	    new_mem->mem_type == TTM_PL_SYSTEM) {
495 		r = ttm_bo_wait_ctx(bo, ctx);
496 		if (r)
497 			return r;
498 
499 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
500 		ttm_resource_free(bo, &bo->resource);
501 		ttm_bo_assign_mem(bo, new_mem);
502 		goto out;
503 	}
504 
505 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
506 	    old_mem->mem_type == AMDGPU_PL_GWS ||
507 	    old_mem->mem_type == AMDGPU_PL_OA ||
508 	    new_mem->mem_type == AMDGPU_PL_GDS ||
509 	    new_mem->mem_type == AMDGPU_PL_GWS ||
510 	    new_mem->mem_type == AMDGPU_PL_OA) {
511 		/* Nothing to save here */
512 		ttm_bo_move_null(bo, new_mem);
513 		goto out;
514 	}
515 
516 	if (adev->mman.buffer_funcs_enabled) {
517 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
518 		      new_mem->mem_type == TTM_PL_VRAM) ||
519 		     (old_mem->mem_type == TTM_PL_VRAM &&
520 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
521 			hop->fpfn = 0;
522 			hop->lpfn = 0;
523 			hop->mem_type = TTM_PL_TT;
524 			hop->flags = 0;
525 			return -EMULTIHOP;
526 		}
527 
528 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
529 	} else {
530 		r = -ENODEV;
531 	}
532 
533 	if (r) {
534 		/* Check that all memory is CPU accessible */
535 		if (!amdgpu_mem_visible(adev, old_mem) ||
536 		    !amdgpu_mem_visible(adev, new_mem)) {
537 			pr_err("Move buffer fallback to memcpy unavailable\n");
538 			return r;
539 		}
540 
541 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
542 		if (r)
543 			return r;
544 	}
545 
546 	if (bo->type == ttm_bo_type_device &&
547 	    new_mem->mem_type == TTM_PL_VRAM &&
548 	    old_mem->mem_type != TTM_PL_VRAM) {
549 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
550 		 * accesses the BO after it's moved.
551 		 */
552 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
553 	}
554 
555 out:
556 	/* update statistics */
557 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
558 	amdgpu_bo_move_notify(bo, evict, new_mem);
559 	return 0;
560 }
561 
562 /*
563  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
564  *
565  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
566  */
567 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
568 				     struct ttm_resource *mem)
569 {
570 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
571 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
572 
573 	switch (mem->mem_type) {
574 	case TTM_PL_SYSTEM:
575 		/* system memory */
576 		return 0;
577 	case TTM_PL_TT:
578 	case AMDGPU_PL_PREEMPT:
579 		break;
580 	case TTM_PL_VRAM:
581 		mem->bus.offset = mem->start << PAGE_SHIFT;
582 		/* check if it's visible */
583 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
584 			return -EINVAL;
585 
586 		if (adev->mman.aper_base_kaddr &&
587 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
588 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
589 					mem->bus.offset;
590 
591 		mem->bus.offset += adev->gmc.aper_base;
592 		mem->bus.is_iomem = true;
593 		break;
594 	default:
595 		return -EINVAL;
596 	}
597 	return 0;
598 }
599 
600 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
601 					   unsigned long page_offset)
602 {
603 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
604 	struct amdgpu_res_cursor cursor;
605 
606 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
607 			 &cursor);
608 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
609 }
610 
611 /**
612  * amdgpu_ttm_domain_start - Returns GPU start address
613  * @adev: amdgpu device object
614  * @type: type of the memory
615  *
616  * Returns:
617  * GPU start address of a memory domain
618  */
619 
620 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
621 {
622 	switch (type) {
623 	case TTM_PL_TT:
624 		return adev->gmc.gart_start;
625 	case TTM_PL_VRAM:
626 		return adev->gmc.vram_start;
627 	}
628 
629 	return 0;
630 }
631 
632 /*
633  * TTM backend functions.
634  */
635 struct amdgpu_ttm_tt {
636 	struct ttm_tt	ttm;
637 	struct drm_gem_object	*gobj;
638 	u64			offset;
639 	uint64_t		userptr;
640 	struct task_struct	*usertask;
641 	uint32_t		userflags;
642 	bool			bound;
643 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
644 	struct hmm_range	*range;
645 #endif
646 };
647 
648 #ifdef CONFIG_DRM_AMDGPU_USERPTR
649 /*
650  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
651  * memory and start HMM tracking CPU page table update
652  *
653  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
654  * once afterwards to stop HMM tracking
655  */
656 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
657 {
658 	struct ttm_tt *ttm = bo->tbo.ttm;
659 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
660 	unsigned long start = gtt->userptr;
661 	struct vm_area_struct *vma;
662 	struct mm_struct *mm;
663 	bool readonly;
664 	int r = 0;
665 
666 	mm = bo->notifier.mm;
667 	if (unlikely(!mm)) {
668 		DRM_DEBUG_DRIVER("BO is not registered?\n");
669 		return -EFAULT;
670 	}
671 
672 	/* Another get_user_pages is running at the same time?? */
673 	if (WARN_ON(gtt->range))
674 		return -EFAULT;
675 
676 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
677 		return -ESRCH;
678 
679 	mmap_read_lock(mm);
680 	vma = vma_lookup(mm, start);
681 	if (unlikely(!vma)) {
682 		r = -EFAULT;
683 		goto out_unlock;
684 	}
685 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
686 		vma->vm_file)) {
687 		r = -EPERM;
688 		goto out_unlock;
689 	}
690 
691 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
692 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
693 				       ttm->num_pages, &gtt->range, readonly,
694 				       true, NULL);
695 out_unlock:
696 	mmap_read_unlock(mm);
697 	mmput(mm);
698 
699 	return r;
700 }
701 
702 /*
703  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
704  * Check if the pages backing this ttm range have been invalidated
705  *
706  * Returns: true if pages are still valid
707  */
708 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
709 {
710 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
711 	bool r = false;
712 
713 	if (!gtt || !gtt->userptr)
714 		return false;
715 
716 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
717 		gtt->userptr, ttm->num_pages);
718 
719 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
720 		"No user pages to check\n");
721 
722 	if (gtt->range) {
723 		/*
724 		 * FIXME: Must always hold notifier_lock for this, and must
725 		 * not ignore the return code.
726 		 */
727 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
728 		gtt->range = NULL;
729 	}
730 
731 	return !r;
732 }
733 #endif
734 
735 /*
736  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
737  *
738  * Called by amdgpu_cs_list_validate(). This creates the page list
739  * that backs user memory and will ultimately be mapped into the device
740  * address space.
741  */
742 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
743 {
744 	unsigned long i;
745 
746 	for (i = 0; i < ttm->num_pages; ++i)
747 		ttm->pages[i] = pages ? pages[i] : NULL;
748 }
749 
750 /*
751  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
752  *
753  * Called by amdgpu_ttm_backend_bind()
754  **/
755 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
756 				     struct ttm_tt *ttm)
757 {
758 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
759 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
760 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
761 	enum dma_data_direction direction = write ?
762 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
763 	int r;
764 
765 	/* Allocate an SG array and squash pages into it */
766 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
767 				      (u64)ttm->num_pages << PAGE_SHIFT,
768 				      GFP_KERNEL);
769 	if (r)
770 		goto release_sg;
771 
772 	/* Map SG to device */
773 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
774 	if (r)
775 		goto release_sg;
776 
777 	/* convert SG to linear array of pages and dma addresses */
778 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
779 				       ttm->num_pages);
780 
781 	return 0;
782 
783 release_sg:
784 	kfree(ttm->sg);
785 	ttm->sg = NULL;
786 	return r;
787 }
788 
789 /*
790  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
791  */
792 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
793 					struct ttm_tt *ttm)
794 {
795 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
796 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
797 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
798 	enum dma_data_direction direction = write ?
799 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
800 
801 	/* double check that we don't free the table twice */
802 	if (!ttm->sg || !ttm->sg->sgl)
803 		return;
804 
805 	/* unmap the pages mapped to the device */
806 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
807 	sg_free_table(ttm->sg);
808 
809 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
810 	if (gtt->range) {
811 		unsigned long i;
812 
813 		for (i = 0; i < ttm->num_pages; i++) {
814 			if (ttm->pages[i] !=
815 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
816 				break;
817 		}
818 
819 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
820 	}
821 #endif
822 }
823 
824 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
825 				struct ttm_buffer_object *tbo,
826 				uint64_t flags)
827 {
828 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
829 	struct ttm_tt *ttm = tbo->ttm;
830 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
831 	int r;
832 
833 	if (amdgpu_bo_encrypted(abo))
834 		flags |= AMDGPU_PTE_TMZ;
835 
836 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
837 		uint64_t page_idx = 1;
838 
839 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
840 				gtt->ttm.dma_address, flags);
841 		if (r)
842 			goto gart_bind_fail;
843 
844 		/* The memory type of the first page defaults to UC. Now
845 		 * modify the memory type to NC from the second page of
846 		 * the BO onward.
847 		 */
848 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
849 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
850 
851 		r = amdgpu_gart_bind(adev,
852 				gtt->offset + (page_idx << PAGE_SHIFT),
853 				ttm->num_pages - page_idx,
854 				&(gtt->ttm.dma_address[page_idx]), flags);
855 	} else {
856 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
857 				     gtt->ttm.dma_address, flags);
858 	}
859 
860 gart_bind_fail:
861 	if (r)
862 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
863 			  ttm->num_pages, gtt->offset);
864 
865 	return r;
866 }
867 
868 /*
869  * amdgpu_ttm_backend_bind - Bind GTT memory
870  *
871  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
872  * This handles binding GTT memory to the device address space.
873  */
874 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
875 				   struct ttm_tt *ttm,
876 				   struct ttm_resource *bo_mem)
877 {
878 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
879 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
880 	uint64_t flags;
881 	int r = 0;
882 
883 	if (!bo_mem)
884 		return -EINVAL;
885 
886 	if (gtt->bound)
887 		return 0;
888 
889 	if (gtt->userptr) {
890 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
891 		if (r) {
892 			DRM_ERROR("failed to pin userptr\n");
893 			return r;
894 		}
895 	} else if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
896 		if (!ttm->sg) {
897 			struct dma_buf_attachment *attach;
898 			struct sg_table *sgt;
899 
900 			attach = gtt->gobj->import_attach;
901 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
902 			if (IS_ERR(sgt))
903 				return PTR_ERR(sgt);
904 
905 			ttm->sg = sgt;
906 		}
907 
908 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
909 					       ttm->num_pages);
910 	}
911 
912 	if (!ttm->num_pages) {
913 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
914 		     ttm->num_pages, bo_mem, ttm);
915 	}
916 
917 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
918 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
919 	    bo_mem->mem_type == AMDGPU_PL_OA)
920 		return -EINVAL;
921 
922 	if (bo_mem->mem_type != TTM_PL_TT ||
923 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
924 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
925 		return 0;
926 	}
927 
928 	/* compute PTE flags relevant to this BO memory */
929 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
930 
931 	/* bind pages into GART page tables */
932 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
933 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
934 		gtt->ttm.dma_address, flags);
935 
936 	if (r)
937 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
938 			  ttm->num_pages, gtt->offset);
939 	gtt->bound = true;
940 	return r;
941 }
942 
943 /*
944  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
945  * through AGP or GART aperture.
946  *
947  * If bo is accessible through AGP aperture, then use AGP aperture
948  * to access bo; otherwise allocate logical space in GART aperture
949  * and map bo to GART aperture.
950  */
951 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
952 {
953 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
954 	struct ttm_operation_ctx ctx = { false, false };
955 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
956 	struct ttm_placement placement;
957 	struct ttm_place placements;
958 	struct ttm_resource *tmp;
959 	uint64_t addr, flags;
960 	int r;
961 
962 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
963 		return 0;
964 
965 	addr = amdgpu_gmc_agp_addr(bo);
966 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
967 		bo->resource->start = addr >> PAGE_SHIFT;
968 		return 0;
969 	}
970 
971 	/* allocate GART space */
972 	placement.num_placement = 1;
973 	placement.placement = &placements;
974 	placement.num_busy_placement = 1;
975 	placement.busy_placement = &placements;
976 	placements.fpfn = 0;
977 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
978 	placements.mem_type = TTM_PL_TT;
979 	placements.flags = bo->resource->placement;
980 
981 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
982 	if (unlikely(r))
983 		return r;
984 
985 	/* compute PTE flags for this buffer object */
986 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
987 
988 	/* Bind pages */
989 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
990 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
991 	if (unlikely(r)) {
992 		ttm_resource_free(bo, &tmp);
993 		return r;
994 	}
995 
996 	amdgpu_gart_invalidate_tlb(adev);
997 	ttm_resource_free(bo, &bo->resource);
998 	ttm_bo_assign_mem(bo, tmp);
999 
1000 	return 0;
1001 }
1002 
1003 /*
1004  * amdgpu_ttm_recover_gart - Rebind GTT pages
1005  *
1006  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1007  * rebind GTT pages during a GPU reset.
1008  */
1009 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1010 {
1011 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1012 	uint64_t flags;
1013 	int r;
1014 
1015 	if (!tbo->ttm)
1016 		return 0;
1017 
1018 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1019 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1020 
1021 	return r;
1022 }
1023 
1024 /*
1025  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1026  *
1027  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1028  * ttm_tt_destroy().
1029  */
1030 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1031 				      struct ttm_tt *ttm)
1032 {
1033 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1034 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1035 	int r;
1036 
1037 	/* if the pages have userptr pinning then clear that first */
1038 	if (gtt->userptr) {
1039 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1040 	} else if (ttm->sg && gtt->gobj->import_attach) {
1041 		struct dma_buf_attachment *attach;
1042 
1043 		attach = gtt->gobj->import_attach;
1044 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1045 		ttm->sg = NULL;
1046 	}
1047 
1048 	if (!gtt->bound)
1049 		return;
1050 
1051 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1052 		return;
1053 
1054 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1055 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1056 	if (r)
1057 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1058 			  gtt->ttm.num_pages, gtt->offset);
1059 	gtt->bound = false;
1060 }
1061 
1062 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1063 				       struct ttm_tt *ttm)
1064 {
1065 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1066 
1067 	amdgpu_ttm_backend_unbind(bdev, ttm);
1068 	ttm_tt_destroy_common(bdev, ttm);
1069 	if (gtt->usertask)
1070 		put_task_struct(gtt->usertask);
1071 
1072 	ttm_tt_fini(&gtt->ttm);
1073 	kfree(gtt);
1074 }
1075 
1076 /**
1077  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1078  *
1079  * @bo: The buffer object to create a GTT ttm_tt object around
1080  * @page_flags: Page flags to be added to the ttm_tt object
1081  *
1082  * Called by ttm_tt_create().
1083  */
1084 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1085 					   uint32_t page_flags)
1086 {
1087 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1088 	struct amdgpu_ttm_tt *gtt;
1089 	enum ttm_caching caching;
1090 
1091 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1092 	if (gtt == NULL) {
1093 		return NULL;
1094 	}
1095 	gtt->gobj = &bo->base;
1096 
1097 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1098 		caching = ttm_write_combined;
1099 	else
1100 		caching = ttm_cached;
1101 
1102 	/* allocate space for the uninitialized page entries */
1103 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1104 		kfree(gtt);
1105 		return NULL;
1106 	}
1107 	return &gtt->ttm;
1108 }
1109 
1110 /*
1111  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1112  *
1113  * Map the pages of a ttm_tt object to an address space visible
1114  * to the underlying device.
1115  */
1116 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1117 				  struct ttm_tt *ttm,
1118 				  struct ttm_operation_ctx *ctx)
1119 {
1120 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1121 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1122 
1123 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1124 	if (gtt && gtt->userptr) {
1125 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1126 		if (!ttm->sg)
1127 			return -ENOMEM;
1128 		return 0;
1129 	}
1130 
1131 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1132 		return 0;
1133 
1134 	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1135 }
1136 
1137 /*
1138  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1139  *
1140  * Unmaps pages of a ttm_tt object from the device address space and
1141  * unpopulates the page array backing it.
1142  */
1143 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1144 				     struct ttm_tt *ttm)
1145 {
1146 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1147 	struct amdgpu_device *adev;
1148 
1149 	if (gtt && gtt->userptr) {
1150 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1151 		kfree(ttm->sg);
1152 		ttm->sg = NULL;
1153 		return;
1154 	}
1155 
1156 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1157 		return;
1158 
1159 	adev = amdgpu_ttm_adev(bdev);
1160 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1161 }
1162 
1163 /**
1164  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1165  * task
1166  *
1167  * @bo: The ttm_buffer_object to bind this userptr to
1168  * @addr:  The address in the current tasks VM space to use
1169  * @flags: Requirements of userptr object.
1170  *
1171  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1172  * to current task
1173  */
1174 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1175 			      uint64_t addr, uint32_t flags)
1176 {
1177 	struct amdgpu_ttm_tt *gtt;
1178 
1179 	if (!bo->ttm) {
1180 		/* TODO: We want a separate TTM object type for userptrs */
1181 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1182 		if (bo->ttm == NULL)
1183 			return -ENOMEM;
1184 	}
1185 
1186 	/* Set TTM_PAGE_FLAG_SG before populate but after create. */
1187 	bo->ttm->page_flags |= TTM_PAGE_FLAG_SG;
1188 
1189 	gtt = (void *)bo->ttm;
1190 	gtt->userptr = addr;
1191 	gtt->userflags = flags;
1192 
1193 	if (gtt->usertask)
1194 		put_task_struct(gtt->usertask);
1195 	gtt->usertask = current->group_leader;
1196 	get_task_struct(gtt->usertask);
1197 
1198 	return 0;
1199 }
1200 
1201 /*
1202  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1203  */
1204 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1205 {
1206 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1207 
1208 	if (gtt == NULL)
1209 		return NULL;
1210 
1211 	if (gtt->usertask == NULL)
1212 		return NULL;
1213 
1214 	return gtt->usertask->mm;
1215 }
1216 
1217 /*
1218  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1219  * address range for the current task.
1220  *
1221  */
1222 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1223 				  unsigned long end)
1224 {
1225 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1226 	unsigned long size;
1227 
1228 	if (gtt == NULL || !gtt->userptr)
1229 		return false;
1230 
1231 	/* Return false if no part of the ttm_tt object lies within
1232 	 * the range
1233 	 */
1234 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1235 	if (gtt->userptr > end || gtt->userptr + size <= start)
1236 		return false;
1237 
1238 	return true;
1239 }
1240 
1241 /*
1242  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1243  */
1244 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1245 {
1246 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1247 
1248 	if (gtt == NULL || !gtt->userptr)
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 /*
1255  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1256  */
1257 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1258 {
1259 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1260 
1261 	if (gtt == NULL)
1262 		return false;
1263 
1264 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1265 }
1266 
1267 /**
1268  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1269  *
1270  * @ttm: The ttm_tt object to compute the flags for
1271  * @mem: The memory registry backing this ttm_tt object
1272  *
1273  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1274  */
1275 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1276 {
1277 	uint64_t flags = 0;
1278 
1279 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1280 		flags |= AMDGPU_PTE_VALID;
1281 
1282 	if (mem && (mem->mem_type == TTM_PL_TT ||
1283 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1284 		flags |= AMDGPU_PTE_SYSTEM;
1285 
1286 		if (ttm->caching == ttm_cached)
1287 			flags |= AMDGPU_PTE_SNOOPED;
1288 	}
1289 
1290 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1291 			mem->bus.caching == ttm_cached)
1292 		flags |= AMDGPU_PTE_SNOOPED;
1293 
1294 	return flags;
1295 }
1296 
1297 /**
1298  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1299  *
1300  * @adev: amdgpu_device pointer
1301  * @ttm: The ttm_tt object to compute the flags for
1302  * @mem: The memory registry backing this ttm_tt object
1303  *
1304  * Figure out the flags to use for a VM PTE (Page Table Entry).
1305  */
1306 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1307 				 struct ttm_resource *mem)
1308 {
1309 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1310 
1311 	flags |= adev->gart.gart_pte_flags;
1312 	flags |= AMDGPU_PTE_READABLE;
1313 
1314 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1315 		flags |= AMDGPU_PTE_WRITEABLE;
1316 
1317 	return flags;
1318 }
1319 
1320 /*
1321  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1322  * object.
1323  *
1324  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1325  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1326  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1327  * used to clean out a memory space.
1328  */
1329 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1330 					    const struct ttm_place *place)
1331 {
1332 	unsigned long num_pages = bo->resource->num_pages;
1333 	struct amdgpu_res_cursor cursor;
1334 	struct dma_resv_list *flist;
1335 	struct dma_fence *f;
1336 	int i;
1337 
1338 	/* Swapout? */
1339 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1340 		return true;
1341 
1342 	if (bo->type == ttm_bo_type_kernel &&
1343 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1344 		return false;
1345 
1346 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1347 	 * If true, then return false as any KFD process needs all its BOs to
1348 	 * be resident to run successfully
1349 	 */
1350 	flist = dma_resv_shared_list(bo->base.resv);
1351 	if (flist) {
1352 		for (i = 0; i < flist->shared_count; ++i) {
1353 			f = rcu_dereference_protected(flist->shared[i],
1354 				dma_resv_held(bo->base.resv));
1355 			if (amdkfd_fence_check_mm(f, current->mm))
1356 				return false;
1357 		}
1358 	}
1359 
1360 	switch (bo->resource->mem_type) {
1361 	case AMDGPU_PL_PREEMPT:
1362 		/* Preemptible BOs don't own system resources managed by the
1363 		 * driver (pages, VRAM, GART space). They point to resources
1364 		 * owned by someone else (e.g. pageable memory in user mode
1365 		 * or a DMABuf). They are used in a preemptible context so we
1366 		 * can guarantee no deadlocks and good QoS in case of MMU
1367 		 * notifiers or DMABuf move notifiers from the resource owner.
1368 		 */
1369 		return false;
1370 	case TTM_PL_TT:
1371 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1372 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1373 			return false;
1374 		return true;
1375 
1376 	case TTM_PL_VRAM:
1377 		/* Check each drm MM node individually */
1378 		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1379 				 &cursor);
1380 		while (cursor.remaining) {
1381 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1382 			    && !(place->lpfn &&
1383 				 place->lpfn <= PFN_DOWN(cursor.start)))
1384 				return true;
1385 
1386 			amdgpu_res_next(&cursor, cursor.size);
1387 		}
1388 		return false;
1389 
1390 	default:
1391 		break;
1392 	}
1393 
1394 	return ttm_bo_eviction_valuable(bo, place);
1395 }
1396 
1397 /**
1398  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1399  *
1400  * @bo:  The buffer object to read/write
1401  * @offset:  Offset into buffer object
1402  * @buf:  Secondary buffer to write/read from
1403  * @len: Length in bytes of access
1404  * @write:  true if writing
1405  *
1406  * This is used to access VRAM that backs a buffer object via MMIO
1407  * access for debugging purposes.
1408  */
1409 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1410 				    unsigned long offset, void *buf, int len,
1411 				    int write)
1412 {
1413 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1414 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1415 	struct amdgpu_res_cursor cursor;
1416 	unsigned long flags;
1417 	uint32_t value = 0;
1418 	int ret = 0;
1419 
1420 	if (bo->resource->mem_type != TTM_PL_VRAM)
1421 		return -EIO;
1422 
1423 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1424 	while (cursor.remaining) {
1425 		uint64_t aligned_pos = cursor.start & ~(uint64_t)3;
1426 		uint64_t bytes = 4 - (cursor.start & 3);
1427 		uint32_t shift = (cursor.start & 3) * 8;
1428 		uint32_t mask = 0xffffffff << shift;
1429 
1430 		if (cursor.size < bytes) {
1431 			mask &= 0xffffffff >> (bytes - cursor.size) * 8;
1432 			bytes = cursor.size;
1433 		}
1434 
1435 		if (mask != 0xffffffff) {
1436 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1437 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1438 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1439 			value = RREG32_NO_KIQ(mmMM_DATA);
1440 			if (write) {
1441 				value &= ~mask;
1442 				value |= (*(uint32_t *)buf << shift) & mask;
1443 				WREG32_NO_KIQ(mmMM_DATA, value);
1444 			}
1445 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1446 			if (!write) {
1447 				value = (value & mask) >> shift;
1448 				memcpy(buf, &value, bytes);
1449 			}
1450 		} else {
1451 			bytes = cursor.size & ~0x3ULL;
1452 			amdgpu_device_vram_access(adev, cursor.start,
1453 						  (uint32_t *)buf, bytes,
1454 						  write);
1455 		}
1456 
1457 		ret += bytes;
1458 		buf = (uint8_t *)buf + bytes;
1459 		amdgpu_res_next(&cursor, bytes);
1460 	}
1461 
1462 	return ret;
1463 }
1464 
1465 static void
1466 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1467 {
1468 	amdgpu_bo_move_notify(bo, false, NULL);
1469 }
1470 
1471 static struct ttm_device_funcs amdgpu_bo_driver = {
1472 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1473 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1474 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1475 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1476 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1477 	.evict_flags = &amdgpu_evict_flags,
1478 	.move = &amdgpu_bo_move,
1479 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1480 	.release_notify = &amdgpu_bo_release_notify,
1481 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1482 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1483 	.access_memory = &amdgpu_ttm_access_memory,
1484 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1485 };
1486 
1487 /*
1488  * Firmware Reservation functions
1489  */
1490 /**
1491  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1492  *
1493  * @adev: amdgpu_device pointer
1494  *
1495  * free fw reserved vram if it has been reserved.
1496  */
1497 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1498 {
1499 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1500 		NULL, &adev->mman.fw_vram_usage_va);
1501 }
1502 
1503 /**
1504  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1505  *
1506  * @adev: amdgpu_device pointer
1507  *
1508  * create bo vram reservation from fw.
1509  */
1510 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1511 {
1512 	uint64_t vram_size = adev->gmc.visible_vram_size;
1513 
1514 	adev->mman.fw_vram_usage_va = NULL;
1515 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1516 
1517 	if (adev->mman.fw_vram_usage_size == 0 ||
1518 	    adev->mman.fw_vram_usage_size > vram_size)
1519 		return 0;
1520 
1521 	return amdgpu_bo_create_kernel_at(adev,
1522 					  adev->mman.fw_vram_usage_start_offset,
1523 					  adev->mman.fw_vram_usage_size,
1524 					  AMDGPU_GEM_DOMAIN_VRAM,
1525 					  &adev->mman.fw_vram_usage_reserved_bo,
1526 					  &adev->mman.fw_vram_usage_va);
1527 }
1528 
1529 /*
1530  * Memoy training reservation functions
1531  */
1532 
1533 /**
1534  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1535  *
1536  * @adev: amdgpu_device pointer
1537  *
1538  * free memory training reserved vram if it has been reserved.
1539  */
1540 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1541 {
1542 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1543 
1544 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1545 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1546 	ctx->c2p_bo = NULL;
1547 
1548 	return 0;
1549 }
1550 
1551 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1552 {
1553 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1554 
1555 	memset(ctx, 0, sizeof(*ctx));
1556 
1557 	ctx->c2p_train_data_offset =
1558 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1559 	ctx->p2c_train_data_offset =
1560 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1561 	ctx->train_data_size =
1562 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1563 
1564 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1565 			ctx->train_data_size,
1566 			ctx->p2c_train_data_offset,
1567 			ctx->c2p_train_data_offset);
1568 }
1569 
1570 /*
1571  * reserve TMR memory at the top of VRAM which holds
1572  * IP Discovery data and is protected by PSP.
1573  */
1574 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1575 {
1576 	int ret;
1577 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1578 	bool mem_train_support = false;
1579 
1580 	if (!amdgpu_sriov_vf(adev)) {
1581 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1582 			mem_train_support = true;
1583 		else
1584 			DRM_DEBUG("memory training does not support!\n");
1585 	}
1586 
1587 	/*
1588 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1589 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1590 	 *
1591 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1592 	 * discovery data and G6 memory training data respectively
1593 	 */
1594 	adev->mman.discovery_tmr_size =
1595 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1596 	if (!adev->mman.discovery_tmr_size)
1597 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1598 
1599 	if (mem_train_support) {
1600 		/* reserve vram for mem train according to TMR location */
1601 		amdgpu_ttm_training_data_block_init(adev);
1602 		ret = amdgpu_bo_create_kernel_at(adev,
1603 					 ctx->c2p_train_data_offset,
1604 					 ctx->train_data_size,
1605 					 AMDGPU_GEM_DOMAIN_VRAM,
1606 					 &ctx->c2p_bo,
1607 					 NULL);
1608 		if (ret) {
1609 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1610 			amdgpu_ttm_training_reserve_vram_fini(adev);
1611 			return ret;
1612 		}
1613 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1614 	}
1615 
1616 	ret = amdgpu_bo_create_kernel_at(adev,
1617 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1618 				adev->mman.discovery_tmr_size,
1619 				AMDGPU_GEM_DOMAIN_VRAM,
1620 				&adev->mman.discovery_memory,
1621 				NULL);
1622 	if (ret) {
1623 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1624 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1625 		return ret;
1626 	}
1627 
1628 	return 0;
1629 }
1630 
1631 /*
1632  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1633  * gtt/vram related fields.
1634  *
1635  * This initializes all of the memory space pools that the TTM layer
1636  * will need such as the GTT space (system memory mapped to the device),
1637  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1638  * can be mapped per VMID.
1639  */
1640 int amdgpu_ttm_init(struct amdgpu_device *adev)
1641 {
1642 	uint64_t gtt_size;
1643 	int r;
1644 	u64 vis_vram_limit;
1645 
1646 	mutex_init(&adev->mman.gtt_window_lock);
1647 
1648 	/* No others user of address space so set it to 0 */
1649 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1650 			       adev_to_drm(adev)->anon_inode->i_mapping,
1651 			       adev_to_drm(adev)->vma_offset_manager,
1652 			       adev->need_swiotlb,
1653 			       dma_addressing_limited(adev->dev));
1654 	if (r) {
1655 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1656 		return r;
1657 	}
1658 	adev->mman.initialized = true;
1659 
1660 	/* Initialize VRAM pool with all of VRAM divided into pages */
1661 	r = amdgpu_vram_mgr_init(adev);
1662 	if (r) {
1663 		DRM_ERROR("Failed initializing VRAM heap.\n");
1664 		return r;
1665 	}
1666 
1667 	/* Reduce size of CPU-visible VRAM if requested */
1668 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1669 	if (amdgpu_vis_vram_limit > 0 &&
1670 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1671 		adev->gmc.visible_vram_size = vis_vram_limit;
1672 
1673 	/* Change the size here instead of the init above so only lpfn is affected */
1674 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1675 #ifdef CONFIG_64BIT
1676 #ifdef CONFIG_X86
1677 	if (adev->gmc.xgmi.connected_to_cpu)
1678 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1679 				adev->gmc.visible_vram_size);
1680 
1681 	else
1682 #endif
1683 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1684 				adev->gmc.visible_vram_size);
1685 #endif
1686 
1687 	/*
1688 	 *The reserved vram for firmware must be pinned to the specified
1689 	 *place on the VRAM, so reserve it early.
1690 	 */
1691 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1692 	if (r) {
1693 		return r;
1694 	}
1695 
1696 	/*
1697 	 * only NAVI10 and onwards ASIC support for IP discovery.
1698 	 * If IP discovery enabled, a block of memory should be
1699 	 * reserved for IP discovey.
1700 	 */
1701 	if (adev->mman.discovery_bin) {
1702 		r = amdgpu_ttm_reserve_tmr(adev);
1703 		if (r)
1704 			return r;
1705 	}
1706 
1707 	/* allocate memory as required for VGA
1708 	 * This is used for VGA emulation and pre-OS scanout buffers to
1709 	 * avoid display artifacts while transitioning between pre-OS
1710 	 * and driver.  */
1711 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1712 				       AMDGPU_GEM_DOMAIN_VRAM,
1713 				       &adev->mman.stolen_vga_memory,
1714 				       NULL);
1715 	if (r)
1716 		return r;
1717 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1718 				       adev->mman.stolen_extended_size,
1719 				       AMDGPU_GEM_DOMAIN_VRAM,
1720 				       &adev->mman.stolen_extended_memory,
1721 				       NULL);
1722 	if (r)
1723 		return r;
1724 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1725 				       adev->mman.stolen_reserved_size,
1726 				       AMDGPU_GEM_DOMAIN_VRAM,
1727 				       &adev->mman.stolen_reserved_memory,
1728 				       NULL);
1729 	if (r)
1730 		return r;
1731 
1732 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1733 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1734 
1735 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1736 	 * or whatever the user passed on module init */
1737 	if (amdgpu_gtt_size == -1) {
1738 		struct sysinfo si;
1739 
1740 		si_meminfo(&si);
1741 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1742 			       adev->gmc.mc_vram_size),
1743 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1744 	}
1745 	else
1746 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1747 
1748 	/* Initialize GTT memory pool */
1749 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1750 	if (r) {
1751 		DRM_ERROR("Failed initializing GTT heap.\n");
1752 		return r;
1753 	}
1754 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1755 		 (unsigned)(gtt_size / (1024 * 1024)));
1756 
1757 	/* Initialize preemptible memory pool */
1758 	r = amdgpu_preempt_mgr_init(adev);
1759 	if (r) {
1760 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1761 		return r;
1762 	}
1763 
1764 	/* Initialize various on-chip memory pools */
1765 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1766 	if (r) {
1767 		DRM_ERROR("Failed initializing GDS heap.\n");
1768 		return r;
1769 	}
1770 
1771 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1772 	if (r) {
1773 		DRM_ERROR("Failed initializing gws heap.\n");
1774 		return r;
1775 	}
1776 
1777 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1778 	if (r) {
1779 		DRM_ERROR("Failed initializing oa heap.\n");
1780 		return r;
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 /*
1787  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1788  */
1789 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1790 {
1791 	if (!adev->mman.initialized)
1792 		return;
1793 
1794 	amdgpu_ttm_training_reserve_vram_fini(adev);
1795 	/* return the stolen vga memory back to VRAM */
1796 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1797 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1798 	/* return the IP Discovery TMR memory back to VRAM */
1799 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1800 	if (adev->mman.stolen_reserved_size)
1801 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1802 				      NULL, NULL);
1803 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1804 
1805 	amdgpu_vram_mgr_fini(adev);
1806 	amdgpu_gtt_mgr_fini(adev);
1807 	amdgpu_preempt_mgr_fini(adev);
1808 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1809 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1810 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1811 	ttm_device_fini(&adev->mman.bdev);
1812 	adev->mman.initialized = false;
1813 	DRM_INFO("amdgpu: ttm finalized\n");
1814 }
1815 
1816 /**
1817  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1818  *
1819  * @adev: amdgpu_device pointer
1820  * @enable: true when we can use buffer functions.
1821  *
1822  * Enable/disable use of buffer functions during suspend/resume. This should
1823  * only be called at bootup or when userspace isn't running.
1824  */
1825 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1826 {
1827 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1828 	uint64_t size;
1829 	int r;
1830 
1831 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1832 	    adev->mman.buffer_funcs_enabled == enable)
1833 		return;
1834 
1835 	if (enable) {
1836 		struct amdgpu_ring *ring;
1837 		struct drm_gpu_scheduler *sched;
1838 
1839 		ring = adev->mman.buffer_funcs_ring;
1840 		sched = &ring->sched;
1841 		r = drm_sched_entity_init(&adev->mman.entity,
1842 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1843 					  1, NULL);
1844 		if (r) {
1845 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1846 				  r);
1847 			return;
1848 		}
1849 	} else {
1850 		drm_sched_entity_destroy(&adev->mman.entity);
1851 		dma_fence_put(man->move);
1852 		man->move = NULL;
1853 	}
1854 
1855 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1856 	if (enable)
1857 		size = adev->gmc.real_vram_size;
1858 	else
1859 		size = adev->gmc.visible_vram_size;
1860 	man->size = size >> PAGE_SHIFT;
1861 	adev->mman.buffer_funcs_enabled = enable;
1862 }
1863 
1864 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1865 		       uint64_t dst_offset, uint32_t byte_count,
1866 		       struct dma_resv *resv,
1867 		       struct dma_fence **fence, bool direct_submit,
1868 		       bool vm_needs_flush, bool tmz)
1869 {
1870 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1871 		AMDGPU_IB_POOL_DELAYED;
1872 	struct amdgpu_device *adev = ring->adev;
1873 	struct amdgpu_job *job;
1874 
1875 	uint32_t max_bytes;
1876 	unsigned num_loops, num_dw;
1877 	unsigned i;
1878 	int r;
1879 
1880 	if (direct_submit && !ring->sched.ready) {
1881 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1882 		return -EINVAL;
1883 	}
1884 
1885 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1886 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1887 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1888 
1889 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1890 	if (r)
1891 		return r;
1892 
1893 	if (vm_needs_flush) {
1894 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1895 					adev->gmc.pdb0_bo : adev->gart.bo);
1896 		job->vm_needs_flush = true;
1897 	}
1898 	if (resv) {
1899 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1900 				     AMDGPU_SYNC_ALWAYS,
1901 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1902 		if (r) {
1903 			DRM_ERROR("sync failed (%d).\n", r);
1904 			goto error_free;
1905 		}
1906 	}
1907 
1908 	for (i = 0; i < num_loops; i++) {
1909 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1910 
1911 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1912 					dst_offset, cur_size_in_bytes, tmz);
1913 
1914 		src_offset += cur_size_in_bytes;
1915 		dst_offset += cur_size_in_bytes;
1916 		byte_count -= cur_size_in_bytes;
1917 	}
1918 
1919 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1920 	WARN_ON(job->ibs[0].length_dw > num_dw);
1921 	if (direct_submit)
1922 		r = amdgpu_job_submit_direct(job, ring, fence);
1923 	else
1924 		r = amdgpu_job_submit(job, &adev->mman.entity,
1925 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1926 	if (r)
1927 		goto error_free;
1928 
1929 	return r;
1930 
1931 error_free:
1932 	amdgpu_job_free(job);
1933 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
1934 	return r;
1935 }
1936 
1937 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1938 		       uint32_t src_data,
1939 		       struct dma_resv *resv,
1940 		       struct dma_fence **fence)
1941 {
1942 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1943 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1944 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1945 
1946 	struct amdgpu_res_cursor cursor;
1947 	unsigned int num_loops, num_dw;
1948 	uint64_t num_bytes;
1949 
1950 	struct amdgpu_job *job;
1951 	int r;
1952 
1953 	if (!adev->mman.buffer_funcs_enabled) {
1954 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
1955 		return -EINVAL;
1956 	}
1957 
1958 	if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1959 		DRM_ERROR("Trying to clear preemptible memory.\n");
1960 		return -EINVAL;
1961 	}
1962 
1963 	if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1964 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
1965 		if (r)
1966 			return r;
1967 	}
1968 
1969 	num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
1970 	num_loops = 0;
1971 
1972 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1973 	while (cursor.remaining) {
1974 		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
1975 		amdgpu_res_next(&cursor, cursor.size);
1976 	}
1977 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
1978 
1979 	/* for IB padding */
1980 	num_dw += 64;
1981 
1982 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1983 				     &job);
1984 	if (r)
1985 		return r;
1986 
1987 	if (resv) {
1988 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1989 				     AMDGPU_SYNC_ALWAYS,
1990 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1991 		if (r) {
1992 			DRM_ERROR("sync failed (%d).\n", r);
1993 			goto error_free;
1994 		}
1995 	}
1996 
1997 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1998 	while (cursor.remaining) {
1999 		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2000 		uint64_t dst_addr = cursor.start;
2001 
2002 		dst_addr += amdgpu_ttm_domain_start(adev,
2003 						    bo->tbo.resource->mem_type);
2004 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2005 					cur_size);
2006 
2007 		amdgpu_res_next(&cursor, cur_size);
2008 	}
2009 
2010 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2011 	WARN_ON(job->ibs[0].length_dw > num_dw);
2012 	r = amdgpu_job_submit(job, &adev->mman.entity,
2013 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2014 	if (r)
2015 		goto error_free;
2016 
2017 	return 0;
2018 
2019 error_free:
2020 	amdgpu_job_free(job);
2021 	return r;
2022 }
2023 
2024 #if defined(CONFIG_DEBUG_FS)
2025 
2026 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2027 {
2028 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2029 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2030 							    TTM_PL_VRAM);
2031 	struct drm_printer p = drm_seq_file_printer(m);
2032 
2033 	man->func->debug(man, &p);
2034 	return 0;
2035 }
2036 
2037 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2038 {
2039 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2040 
2041 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2042 }
2043 
2044 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2045 {
2046 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2047 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2048 							    TTM_PL_TT);
2049 	struct drm_printer p = drm_seq_file_printer(m);
2050 
2051 	man->func->debug(man, &p);
2052 	return 0;
2053 }
2054 
2055 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2056 {
2057 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2058 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2059 							    AMDGPU_PL_GDS);
2060 	struct drm_printer p = drm_seq_file_printer(m);
2061 
2062 	man->func->debug(man, &p);
2063 	return 0;
2064 }
2065 
2066 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2067 {
2068 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2069 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2070 							    AMDGPU_PL_GWS);
2071 	struct drm_printer p = drm_seq_file_printer(m);
2072 
2073 	man->func->debug(man, &p);
2074 	return 0;
2075 }
2076 
2077 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2078 {
2079 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2080 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2081 							    AMDGPU_PL_OA);
2082 	struct drm_printer p = drm_seq_file_printer(m);
2083 
2084 	man->func->debug(man, &p);
2085 	return 0;
2086 }
2087 
2088 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2089 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2090 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2091 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2092 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2093 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2094 
2095 /*
2096  * amdgpu_ttm_vram_read - Linear read access to VRAM
2097  *
2098  * Accesses VRAM via MMIO for debugging purposes.
2099  */
2100 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2101 				    size_t size, loff_t *pos)
2102 {
2103 	struct amdgpu_device *adev = file_inode(f)->i_private;
2104 	ssize_t result = 0;
2105 
2106 	if (size & 0x3 || *pos & 0x3)
2107 		return -EINVAL;
2108 
2109 	if (*pos >= adev->gmc.mc_vram_size)
2110 		return -ENXIO;
2111 
2112 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2113 	while (size) {
2114 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2115 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2116 
2117 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2118 		if (copy_to_user(buf, value, bytes))
2119 			return -EFAULT;
2120 
2121 		result += bytes;
2122 		buf += bytes;
2123 		*pos += bytes;
2124 		size -= bytes;
2125 	}
2126 
2127 	return result;
2128 }
2129 
2130 /*
2131  * amdgpu_ttm_vram_write - Linear write access to VRAM
2132  *
2133  * Accesses VRAM via MMIO for debugging purposes.
2134  */
2135 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2136 				    size_t size, loff_t *pos)
2137 {
2138 	struct amdgpu_device *adev = file_inode(f)->i_private;
2139 	ssize_t result = 0;
2140 	int r;
2141 
2142 	if (size & 0x3 || *pos & 0x3)
2143 		return -EINVAL;
2144 
2145 	if (*pos >= adev->gmc.mc_vram_size)
2146 		return -ENXIO;
2147 
2148 	while (size) {
2149 		unsigned long flags;
2150 		uint32_t value;
2151 
2152 		if (*pos >= adev->gmc.mc_vram_size)
2153 			return result;
2154 
2155 		r = get_user(value, (uint32_t *)buf);
2156 		if (r)
2157 			return r;
2158 
2159 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2160 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2161 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2162 		WREG32_NO_KIQ(mmMM_DATA, value);
2163 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2164 
2165 		result += 4;
2166 		buf += 4;
2167 		*pos += 4;
2168 		size -= 4;
2169 	}
2170 
2171 	return result;
2172 }
2173 
2174 static const struct file_operations amdgpu_ttm_vram_fops = {
2175 	.owner = THIS_MODULE,
2176 	.read = amdgpu_ttm_vram_read,
2177 	.write = amdgpu_ttm_vram_write,
2178 	.llseek = default_llseek,
2179 };
2180 
2181 /*
2182  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2183  *
2184  * This function is used to read memory that has been mapped to the
2185  * GPU and the known addresses are not physical addresses but instead
2186  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2187  */
2188 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2189 				 size_t size, loff_t *pos)
2190 {
2191 	struct amdgpu_device *adev = file_inode(f)->i_private;
2192 	struct iommu_domain *dom;
2193 	ssize_t result = 0;
2194 	int r;
2195 
2196 	/* retrieve the IOMMU domain if any for this device */
2197 	dom = iommu_get_domain_for_dev(adev->dev);
2198 
2199 	while (size) {
2200 		phys_addr_t addr = *pos & PAGE_MASK;
2201 		loff_t off = *pos & ~PAGE_MASK;
2202 		size_t bytes = PAGE_SIZE - off;
2203 		unsigned long pfn;
2204 		struct page *p;
2205 		void *ptr;
2206 
2207 		bytes = bytes < size ? bytes : size;
2208 
2209 		/* Translate the bus address to a physical address.  If
2210 		 * the domain is NULL it means there is no IOMMU active
2211 		 * and the address translation is the identity
2212 		 */
2213 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2214 
2215 		pfn = addr >> PAGE_SHIFT;
2216 		if (!pfn_valid(pfn))
2217 			return -EPERM;
2218 
2219 		p = pfn_to_page(pfn);
2220 		if (p->mapping != adev->mman.bdev.dev_mapping)
2221 			return -EPERM;
2222 
2223 		ptr = kmap(p);
2224 		r = copy_to_user(buf, ptr + off, bytes);
2225 		kunmap(p);
2226 		if (r)
2227 			return -EFAULT;
2228 
2229 		size -= bytes;
2230 		*pos += bytes;
2231 		result += bytes;
2232 	}
2233 
2234 	return result;
2235 }
2236 
2237 /*
2238  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2239  *
2240  * This function is used to write memory that has been mapped to the
2241  * GPU and the known addresses are not physical addresses but instead
2242  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2243  */
2244 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2245 				 size_t size, loff_t *pos)
2246 {
2247 	struct amdgpu_device *adev = file_inode(f)->i_private;
2248 	struct iommu_domain *dom;
2249 	ssize_t result = 0;
2250 	int r;
2251 
2252 	dom = iommu_get_domain_for_dev(adev->dev);
2253 
2254 	while (size) {
2255 		phys_addr_t addr = *pos & PAGE_MASK;
2256 		loff_t off = *pos & ~PAGE_MASK;
2257 		size_t bytes = PAGE_SIZE - off;
2258 		unsigned long pfn;
2259 		struct page *p;
2260 		void *ptr;
2261 
2262 		bytes = bytes < size ? bytes : size;
2263 
2264 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2265 
2266 		pfn = addr >> PAGE_SHIFT;
2267 		if (!pfn_valid(pfn))
2268 			return -EPERM;
2269 
2270 		p = pfn_to_page(pfn);
2271 		if (p->mapping != adev->mman.bdev.dev_mapping)
2272 			return -EPERM;
2273 
2274 		ptr = kmap(p);
2275 		r = copy_from_user(ptr + off, buf, bytes);
2276 		kunmap(p);
2277 		if (r)
2278 			return -EFAULT;
2279 
2280 		size -= bytes;
2281 		*pos += bytes;
2282 		result += bytes;
2283 	}
2284 
2285 	return result;
2286 }
2287 
2288 static const struct file_operations amdgpu_ttm_iomem_fops = {
2289 	.owner = THIS_MODULE,
2290 	.read = amdgpu_iomem_read,
2291 	.write = amdgpu_iomem_write,
2292 	.llseek = default_llseek
2293 };
2294 
2295 #endif
2296 
2297 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2298 {
2299 #if defined(CONFIG_DEBUG_FS)
2300 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2301 	struct dentry *root = minor->debugfs_root;
2302 
2303 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2304 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2305 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2306 			    &amdgpu_ttm_iomem_fops);
2307 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2308 			    &amdgpu_mm_vram_table_fops);
2309 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2310 			    &amdgpu_mm_tt_table_fops);
2311 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2312 			    &amdgpu_mm_gds_table_fops);
2313 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2314 			    &amdgpu_mm_gws_table_fops);
2315 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2316 			    &amdgpu_mm_oa_table_fops);
2317 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2318 			    &amdgpu_ttm_page_pool_fops);
2319 #endif
2320 }
2321