xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c (revision bdaedca74d6293b6ac643a8ebe8231b52bf1171b)
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 
29 #include "amdgpu.h"
30 #include "amdgpu_gmc.h"
31 #include "amdgpu_ras.h"
32 #include "amdgpu_xgmi.h"
33 
34 /**
35  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
36  *
37  * @adev: amdgpu_device pointer
38  *
39  * Allocate video memory for pdb0 and map it for CPU access
40  * Returns 0 for success, error for failure.
41  */
42 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
43 {
44 	int r;
45 	struct amdgpu_bo_param bp;
46 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
47 	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
48 	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift;
49 
50 	memset(&bp, 0, sizeof(bp));
51 	bp.size = PAGE_ALIGN((npdes + 1) * 8);
52 	bp.byte_align = PAGE_SIZE;
53 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
54 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
55 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
56 	bp.type = ttm_bo_type_kernel;
57 	bp.resv = NULL;
58 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
59 
60 	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
61 	if (r)
62 		return r;
63 
64 	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
65 	if (unlikely(r != 0))
66 		goto bo_reserve_failure;
67 
68 	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
69 	if (r)
70 		goto bo_pin_failure;
71 	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
72 	if (r)
73 		goto bo_kmap_failure;
74 
75 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
76 	return 0;
77 
78 bo_kmap_failure:
79 	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
80 bo_pin_failure:
81 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
82 bo_reserve_failure:
83 	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
84 	return r;
85 }
86 
87 /**
88  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
89  *
90  * @bo: the BO to get the PDE for
91  * @level: the level in the PD hirarchy
92  * @addr: resulting addr
93  * @flags: resulting flags
94  *
95  * Get the address and flags to be used for a PDE (Page Directory Entry).
96  */
97 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
98 			       uint64_t *addr, uint64_t *flags)
99 {
100 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
101 
102 	switch (bo->tbo.mem.mem_type) {
103 	case TTM_PL_TT:
104 		*addr = bo->tbo.ttm->dma_address[0];
105 		break;
106 	case TTM_PL_VRAM:
107 		*addr = amdgpu_bo_gpu_offset(bo);
108 		break;
109 	default:
110 		*addr = 0;
111 		break;
112 	}
113 	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, &bo->tbo.mem);
114 	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
115 }
116 
117 /*
118  * amdgpu_gmc_pd_addr - return the address of the root directory
119  */
120 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
121 {
122 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
123 	uint64_t pd_addr;
124 
125 	/* TODO: move that into ASIC specific code */
126 	if (adev->asic_type >= CHIP_VEGA10) {
127 		uint64_t flags = AMDGPU_PTE_VALID;
128 
129 		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
130 		pd_addr |= flags;
131 	} else {
132 		pd_addr = amdgpu_bo_gpu_offset(bo);
133 	}
134 	return pd_addr;
135 }
136 
137 /**
138  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
139  *
140  * @adev: amdgpu_device pointer
141  * @cpu_pt_addr: cpu address of the page table
142  * @gpu_page_idx: entry in the page table to update
143  * @addr: dst addr to write into pte/pde
144  * @flags: access flags
145  *
146  * Update the page tables using CPU.
147  */
148 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
149 				uint32_t gpu_page_idx, uint64_t addr,
150 				uint64_t flags)
151 {
152 	void __iomem *ptr = (void *)cpu_pt_addr;
153 	uint64_t value;
154 
155 	/*
156 	 * The following is for PTE only. GART does not have PDEs.
157 	*/
158 	value = addr & 0x0000FFFFFFFFF000ULL;
159 	value |= flags;
160 	writeq(value, ptr + (gpu_page_idx * 8));
161 	return 0;
162 }
163 
164 /**
165  * amdgpu_gmc_agp_addr - return the address in the AGP address space
166  *
167  * @bo: TTM BO which needs the address, must be in GTT domain
168  *
169  * Tries to figure out how to access the BO through the AGP aperture. Returns
170  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
171  */
172 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
173 {
174 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
175 
176 	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
177 		return AMDGPU_BO_INVALID_OFFSET;
178 
179 	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
180 		return AMDGPU_BO_INVALID_OFFSET;
181 
182 	return adev->gmc.agp_start + bo->ttm->dma_address[0];
183 }
184 
185 /**
186  * amdgpu_gmc_vram_location - try to find VRAM location
187  *
188  * @adev: amdgpu device structure holding all necessary information
189  * @mc: memory controller structure holding memory information
190  * @base: base address at which to put VRAM
191  *
192  * Function will try to place VRAM at base address provided
193  * as parameter.
194  */
195 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
196 			      u64 base)
197 {
198 	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
199 
200 	mc->vram_start = base;
201 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
202 	if (limit && limit < mc->real_vram_size)
203 		mc->real_vram_size = limit;
204 
205 	if (mc->xgmi.num_physical_nodes == 0) {
206 		mc->fb_start = mc->vram_start;
207 		mc->fb_end = mc->vram_end;
208 	}
209 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
210 			mc->mc_vram_size >> 20, mc->vram_start,
211 			mc->vram_end, mc->real_vram_size >> 20);
212 }
213 
214 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
215  *
216  * @adev: amdgpu device structure holding all necessary information
217  * @mc: memory controller structure holding memory information
218  *
219  * This function is only used if use GART for FB translation. In such
220  * case, we use sysvm aperture (vmid0 page tables) for both vram
221  * and gart (aka system memory) access.
222  *
223  * GPUVM (and our organization of vmid0 page tables) require sysvm
224  * aperture to be placed at a location aligned with 8 times of native
225  * page size. For example, if vm_context0_cntl.page_table_block_size
226  * is 12, then native page size is 8G (2M*2^12), sysvm should start
227  * with a 64G aligned address. For simplicity, we just put sysvm at
228  * address 0. So vram start at address 0 and gart is right after vram.
229  */
230 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
231 {
232 	u64 hive_vram_start = 0;
233 	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
234 	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
235 	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
236 	mc->gart_start = hive_vram_end + 1;
237 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
238 	mc->fb_start = hive_vram_start;
239 	mc->fb_end = hive_vram_end;
240 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
241 			mc->mc_vram_size >> 20, mc->vram_start,
242 			mc->vram_end, mc->real_vram_size >> 20);
243 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
244 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
245 }
246 
247 /**
248  * amdgpu_gmc_gart_location - try to find GART location
249  *
250  * @adev: amdgpu device structure holding all necessary information
251  * @mc: memory controller structure holding memory information
252  *
253  * Function will place try to place GART before or after VRAM.
254  * If GART size is bigger than space left then we ajust GART size.
255  * Thus function will never fails.
256  */
257 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
258 {
259 	const uint64_t four_gb = 0x100000000ULL;
260 	u64 size_af, size_bf;
261 	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
262 	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
263 
264 	/* VCE doesn't like it when BOs cross a 4GB segment, so align
265 	 * the GART base on a 4GB boundary as well.
266 	 */
267 	size_bf = mc->fb_start;
268 	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
269 
270 	if (mc->gart_size > max(size_bf, size_af)) {
271 		dev_warn(adev->dev, "limiting GART\n");
272 		mc->gart_size = max(size_bf, size_af);
273 	}
274 
275 	if ((size_bf >= mc->gart_size && size_bf < size_af) ||
276 	    (size_af < mc->gart_size))
277 		mc->gart_start = 0;
278 	else
279 		mc->gart_start = max_mc_address - mc->gart_size + 1;
280 
281 	mc->gart_start &= ~(four_gb - 1);
282 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
283 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
284 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
285 }
286 
287 /**
288  * amdgpu_gmc_agp_location - try to find AGP location
289  * @adev: amdgpu device structure holding all necessary information
290  * @mc: memory controller structure holding memory information
291  *
292  * Function will place try to find a place for the AGP BAR in the MC address
293  * space.
294  *
295  * AGP BAR will be assigned the largest available hole in the address space.
296  * Should be called after VRAM and GART locations are setup.
297  */
298 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
299 {
300 	const uint64_t sixteen_gb = 1ULL << 34;
301 	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
302 	u64 size_af, size_bf;
303 
304 	if (amdgpu_sriov_vf(adev)) {
305 		mc->agp_start = 0xffffffffffff;
306 		mc->agp_end = 0x0;
307 		mc->agp_size = 0;
308 
309 		return;
310 	}
311 
312 	if (mc->fb_start > mc->gart_start) {
313 		size_bf = (mc->fb_start & sixteen_gb_mask) -
314 			ALIGN(mc->gart_end + 1, sixteen_gb);
315 		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
316 	} else {
317 		size_bf = mc->fb_start & sixteen_gb_mask;
318 		size_af = (mc->gart_start & sixteen_gb_mask) -
319 			ALIGN(mc->fb_end + 1, sixteen_gb);
320 	}
321 
322 	if (size_bf > size_af) {
323 		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
324 		mc->agp_size = size_bf;
325 	} else {
326 		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
327 		mc->agp_size = size_af;
328 	}
329 
330 	mc->agp_end = mc->agp_start + mc->agp_size - 1;
331 	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
332 			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
333 }
334 
335 /**
336  * amdgpu_gmc_filter_faults - filter VM faults
337  *
338  * @adev: amdgpu device structure
339  * @addr: address of the VM fault
340  * @pasid: PASID of the process causing the fault
341  * @timestamp: timestamp of the fault
342  *
343  * Returns:
344  * True if the fault was filtered and should not be processed further.
345  * False if the fault is a new one and needs to be handled.
346  */
347 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, uint64_t addr,
348 			      uint16_t pasid, uint64_t timestamp)
349 {
350 	struct amdgpu_gmc *gmc = &adev->gmc;
351 
352 	uint64_t stamp, key = addr << 4 | pasid;
353 	struct amdgpu_gmc_fault *fault;
354 	uint32_t hash;
355 
356 	/* If we don't have space left in the ring buffer return immediately */
357 	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
358 		AMDGPU_GMC_FAULT_TIMEOUT;
359 	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
360 		return true;
361 
362 	/* Try to find the fault in the hash */
363 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
364 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
365 	while (fault->timestamp >= stamp) {
366 		uint64_t tmp;
367 
368 		if (fault->key == key)
369 			return true;
370 
371 		tmp = fault->timestamp;
372 		fault = &gmc->fault_ring[fault->next];
373 
374 		/* Check if the entry was reused */
375 		if (fault->timestamp >= tmp)
376 			break;
377 	}
378 
379 	/* Add the fault to the ring */
380 	fault = &gmc->fault_ring[gmc->last_fault];
381 	fault->key = key;
382 	fault->timestamp = timestamp;
383 
384 	/* And update the hash */
385 	fault->next = gmc->fault_hash[hash].idx;
386 	gmc->fault_hash[hash].idx = gmc->last_fault++;
387 	return false;
388 }
389 
390 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
391 {
392 	int r;
393 
394 	if (adev->umc.ras_funcs &&
395 	    adev->umc.ras_funcs->ras_late_init) {
396 		r = adev->umc.ras_funcs->ras_late_init(adev);
397 		if (r)
398 			return r;
399 	}
400 
401 	if (adev->mmhub.ras_funcs &&
402 	    adev->mmhub.ras_funcs->ras_late_init) {
403 		r = adev->mmhub.ras_funcs->ras_late_init(adev);
404 		if (r)
405 			return r;
406 	}
407 
408 	if (!adev->gmc.xgmi.connected_to_cpu)
409 		adev->gmc.xgmi.ras_funcs = &xgmi_ras_funcs;
410 
411 	if (adev->gmc.xgmi.ras_funcs &&
412 	    adev->gmc.xgmi.ras_funcs->ras_late_init) {
413 		r = adev->gmc.xgmi.ras_funcs->ras_late_init(adev);
414 		if (r)
415 			return r;
416 	}
417 
418 	return 0;
419 }
420 
421 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
422 {
423 	if (adev->umc.ras_funcs &&
424 	    adev->umc.ras_funcs->ras_fini)
425 		adev->umc.ras_funcs->ras_fini(adev);
426 
427 	if (adev->mmhub.ras_funcs &&
428 	    adev->mmhub.ras_funcs->ras_fini)
429 		amdgpu_mmhub_ras_fini(adev);
430 
431 	if (adev->gmc.xgmi.ras_funcs &&
432 	    adev->gmc.xgmi.ras_funcs->ras_fini)
433 		adev->gmc.xgmi.ras_funcs->ras_fini(adev);
434 }
435 
436 	/*
437 	 * The latest engine allocation on gfx9/10 is:
438 	 * Engine 2, 3: firmware
439 	 * Engine 0, 1, 4~16: amdgpu ring,
440 	 *                    subject to change when ring number changes
441 	 * Engine 17: Gart flushes
442 	 */
443 #define GFXHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3
444 #define MMHUB_FREE_VM_INV_ENGS_BITMAP		0x1FFF3
445 
446 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
447 {
448 	struct amdgpu_ring *ring;
449 	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] =
450 		{GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP,
451 		GFXHUB_FREE_VM_INV_ENGS_BITMAP};
452 	unsigned i;
453 	unsigned vmhub, inv_eng;
454 
455 	for (i = 0; i < adev->num_rings; ++i) {
456 		ring = adev->rings[i];
457 		vmhub = ring->funcs->vmhub;
458 
459 		if (ring == &adev->mes.ring)
460 			continue;
461 
462 		inv_eng = ffs(vm_inv_engs[vmhub]);
463 		if (!inv_eng) {
464 			dev_err(adev->dev, "no VM inv eng for ring %s\n",
465 				ring->name);
466 			return -EINVAL;
467 		}
468 
469 		ring->vm_inv_eng = inv_eng - 1;
470 		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
471 
472 		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
473 			 ring->name, ring->vm_inv_eng, ring->funcs->vmhub);
474 	}
475 
476 	return 0;
477 }
478 
479 /**
480  * amdgpu_tmz_set -- check and set if a device supports TMZ
481  * @adev: amdgpu_device pointer
482  *
483  * Check and set if an the device @adev supports Trusted Memory
484  * Zones (TMZ).
485  */
486 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
487 {
488 	switch (adev->asic_type) {
489 	case CHIP_RAVEN:
490 	case CHIP_RENOIR:
491 		if (amdgpu_tmz == 0) {
492 			adev->gmc.tmz_enabled = false;
493 			dev_info(adev->dev,
494 				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
495 		} else {
496 			adev->gmc.tmz_enabled = true;
497 			dev_info(adev->dev,
498 				 "Trusted Memory Zone (TMZ) feature enabled\n");
499 		}
500 		break;
501 	case CHIP_NAVI10:
502 	case CHIP_NAVI14:
503 	case CHIP_NAVI12:
504 	case CHIP_VANGOGH:
505 		/* Don't enable it by default yet.
506 		 */
507 		if (amdgpu_tmz < 1) {
508 			adev->gmc.tmz_enabled = false;
509 			dev_info(adev->dev,
510 				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
511 		} else {
512 			adev->gmc.tmz_enabled = true;
513 			dev_info(adev->dev,
514 				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
515 		}
516 		break;
517 	default:
518 		adev->gmc.tmz_enabled = false;
519 		dev_warn(adev->dev,
520 			 "Trusted Memory Zone (TMZ) feature not supported\n");
521 		break;
522 	}
523 }
524 
525 /**
526  * amdgpu_noretry_set -- set per asic noretry defaults
527  * @adev: amdgpu_device pointer
528  *
529  * Set a per asic default for the no-retry parameter.
530  *
531  */
532 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
533 {
534 	struct amdgpu_gmc *gmc = &adev->gmc;
535 
536 	switch (adev->asic_type) {
537 	case CHIP_VEGA10:
538 	case CHIP_VEGA20:
539 	case CHIP_ARCTURUS:
540 	case CHIP_ALDEBARAN:
541 		/*
542 		 * noretry = 0 will cause kfd page fault tests fail
543 		 * for some ASICs, so set default to 1 for these ASICs.
544 		 */
545 		if (amdgpu_noretry == -1)
546 			gmc->noretry = 1;
547 		else
548 			gmc->noretry = amdgpu_noretry;
549 		break;
550 	case CHIP_RAVEN:
551 	default:
552 		/* Raven currently has issues with noretry
553 		 * regardless of what we decide for other
554 		 * asics, we should leave raven with
555 		 * noretry = 0 until we root cause the
556 		 * issues.
557 		 *
558 		 * default this to 0 for now, but we may want
559 		 * to change this in the future for certain
560 		 * GPUs as it can increase performance in
561 		 * certain cases.
562 		 */
563 		if (amdgpu_noretry == -1)
564 			gmc->noretry = 0;
565 		else
566 			gmc->noretry = amdgpu_noretry;
567 		break;
568 	}
569 }
570 
571 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
572 				   bool enable)
573 {
574 	struct amdgpu_vmhub *hub;
575 	u32 tmp, reg, i;
576 
577 	hub = &adev->vmhub[hub_type];
578 	for (i = 0; i < 16; i++) {
579 		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
580 
581 		tmp = RREG32(reg);
582 		if (enable)
583 			tmp |= hub->vm_cntx_cntl_vm_fault;
584 		else
585 			tmp &= ~hub->vm_cntx_cntl_vm_fault;
586 
587 		WREG32(reg, tmp);
588 	}
589 }
590 
591 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
592 {
593 	unsigned size;
594 
595 	/*
596 	 * TODO:
597 	 * Currently there is a bug where some memory client outside
598 	 * of the driver writes to first 8M of VRAM on S3 resume,
599 	 * this overrides GART which by default gets placed in first 8M and
600 	 * causes VM_FAULTS once GTT is accessed.
601 	 * Keep the stolen memory reservation until the while this is not solved.
602 	 */
603 	switch (adev->asic_type) {
604 	case CHIP_VEGA10:
605 	case CHIP_RAVEN:
606 	case CHIP_RENOIR:
607 		adev->mman.keep_stolen_vga_memory = true;
608 		break;
609 	default:
610 		adev->mman.keep_stolen_vga_memory = false;
611 		break;
612 	}
613 
614 	if (amdgpu_sriov_vf(adev) ||
615 	    !amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_DCE)) {
616 		size = 0;
617 	} else {
618 		size = amdgpu_gmc_get_vbios_fb_size(adev);
619 
620 		if (adev->mman.keep_stolen_vga_memory)
621 			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
622 	}
623 
624 	/* set to 0 if the pre-OS buffer uses up most of vram */
625 	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
626 		size = 0;
627 
628 	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
629 		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
630 		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
631 	} else {
632 		adev->mman.stolen_vga_size = size;
633 		adev->mman.stolen_extended_size = 0;
634 	}
635 }
636 
637 /**
638  * amdgpu_gmc_init_pdb0 - initialize PDB0
639  *
640  * @adev: amdgpu_device pointer
641  *
642  * This function is only used when GART page table is used
643  * for FB address translatioin. In such a case, we construct
644  * a 2-level system VM page table: PDB0->PTB, to cover both
645  * VRAM of the hive and system memory.
646  *
647  * PDB0 is static, initialized once on driver initialization.
648  * The first n entries of PDB0 are used as PTE by setting
649  * P bit to 1, pointing to VRAM. The n+1'th entry points
650  * to a big PTB covering system memory.
651  *
652  */
653 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
654 {
655 	int i;
656 	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
657 	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
658 	 */
659 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
660 	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
661 	u64 vram_addr = adev->vm_manager.vram_base_offset -
662 		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
663 	u64 vram_end = vram_addr + vram_size;
664 	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
665 
666 	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
667 	flags |= AMDGPU_PTE_WRITEABLE;
668 	flags |= AMDGPU_PTE_SNOOPED;
669 	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
670 	flags |= AMDGPU_PDE_PTE;
671 
672 	/* The first n PDE0 entries are used as PTE,
673 	 * pointing to vram
674 	 */
675 	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
676 		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
677 
678 	/* The n+1'th PDE0 entry points to a huge
679 	 * PTB who has more than 512 entries each
680 	 * pointing to a 4K system page
681 	 */
682 	flags = AMDGPU_PTE_VALID;
683 	flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
684 	/* Requires gart_ptb_gpu_pa to be 4K aligned */
685 	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
686 }
687 
688 /**
689  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
690  * address
691  *
692  * @adev: amdgpu_device pointer
693  * @mc_addr: MC address of buffer
694  */
695 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
696 {
697 	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
698 }
699 
700 /**
701  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
702  * GPU's view
703  *
704  * @adev: amdgpu_device pointer
705  * @bo: amdgpu buffer object
706  */
707 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
708 {
709 	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
710 }
711 
712 /**
713  * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
714  * from CPU's view
715  *
716  * @adev: amdgpu_device pointer
717  * @bo: amdgpu buffer object
718  */
719 uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
720 {
721 	return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
722 }
723