xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_cs.c (revision 7d9326f10cdd9028b4460ccc4006d4d138996b6d)
1 /*
2  * Copyright 2008 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *    Jerome Glisse <glisse@freedesktop.org>
26  */
27 
28 #include <linux/file.h>
29 #include <linux/pagemap.h>
30 #include <linux/sync_file.h>
31 #include <linux/dma-buf.h>
32 
33 #include <drm/amdgpu_drm.h>
34 #include <drm/drm_syncobj.h>
35 #include <drm/ttm/ttm_tt.h>
36 
37 #include "amdgpu_cs.h"
38 #include "amdgpu.h"
39 #include "amdgpu_trace.h"
40 #include "amdgpu_gmc.h"
41 #include "amdgpu_gem.h"
42 #include "amdgpu_ras.h"
43 
44 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p,
45 				 struct amdgpu_device *adev,
46 				 struct drm_file *filp,
47 				 union drm_amdgpu_cs *cs)
48 {
49 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
50 
51 	if (cs->in.num_chunks == 0)
52 		return -EINVAL;
53 
54 	memset(p, 0, sizeof(*p));
55 	p->adev = adev;
56 	p->filp = filp;
57 
58 	p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
59 	if (!p->ctx)
60 		return -EINVAL;
61 
62 	if (atomic_read(&p->ctx->guilty)) {
63 		amdgpu_ctx_put(p->ctx);
64 		return -ECANCELED;
65 	}
66 
67 	amdgpu_sync_create(&p->sync);
68 	return 0;
69 }
70 
71 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p,
72 			     struct drm_amdgpu_cs_chunk_ib *chunk_ib)
73 {
74 	struct drm_sched_entity *entity;
75 	unsigned int i;
76 	int r;
77 
78 	r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type,
79 				  chunk_ib->ip_instance,
80 				  chunk_ib->ring, &entity);
81 	if (r)
82 		return r;
83 
84 	/*
85 	 * Abort if there is no run queue associated with this entity.
86 	 * Possibly because of disabled HW IP.
87 	 */
88 	if (entity->rq == NULL)
89 		return -EINVAL;
90 
91 	/* Check if we can add this IB to some existing job */
92 	for (i = 0; i < p->gang_size; ++i)
93 		if (p->entities[i] == entity)
94 			return i;
95 
96 	/* If not increase the gang size if possible */
97 	if (i == AMDGPU_CS_GANG_SIZE)
98 		return -EINVAL;
99 
100 	p->entities[i] = entity;
101 	p->gang_size = i + 1;
102 	return i;
103 }
104 
105 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p,
106 			   struct drm_amdgpu_cs_chunk_ib *chunk_ib,
107 			   unsigned int *num_ibs)
108 {
109 	int r;
110 
111 	r = amdgpu_cs_job_idx(p, chunk_ib);
112 	if (r < 0)
113 		return r;
114 
115 	if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type))
116 		return -EINVAL;
117 
118 	++(num_ibs[r]);
119 	p->gang_leader_idx = r;
120 	return 0;
121 }
122 
123 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p,
124 				   struct drm_amdgpu_cs_chunk_fence *data,
125 				   uint32_t *offset)
126 {
127 	struct drm_gem_object *gobj;
128 	struct amdgpu_bo *bo;
129 	unsigned long size;
130 	int r;
131 
132 	gobj = drm_gem_object_lookup(p->filp, data->handle);
133 	if (gobj == NULL)
134 		return -EINVAL;
135 
136 	bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj));
137 	p->uf_entry.priority = 0;
138 	p->uf_entry.tv.bo = &bo->tbo;
139 	drm_gem_object_put(gobj);
140 
141 	size = amdgpu_bo_size(bo);
142 	if (size != PAGE_SIZE || (data->offset + 8) > size) {
143 		r = -EINVAL;
144 		goto error_unref;
145 	}
146 
147 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
148 		r = -EINVAL;
149 		goto error_unref;
150 	}
151 
152 	*offset = data->offset;
153 
154 	return 0;
155 
156 error_unref:
157 	amdgpu_bo_unref(&bo);
158 	return r;
159 }
160 
161 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p,
162 				   struct drm_amdgpu_bo_list_in *data)
163 {
164 	struct drm_amdgpu_bo_list_entry *info;
165 	int r;
166 
167 	r = amdgpu_bo_create_list_entry_array(data, &info);
168 	if (r)
169 		return r;
170 
171 	r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number,
172 				  &p->bo_list);
173 	if (r)
174 		goto error_free;
175 
176 	kvfree(info);
177 	return 0;
178 
179 error_free:
180 	kvfree(info);
181 
182 	return r;
183 }
184 
185 /* Copy the data from userspace and go over it the first time */
186 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p,
187 			   union drm_amdgpu_cs *cs)
188 {
189 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
190 	unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { };
191 	struct amdgpu_vm *vm = &fpriv->vm;
192 	uint64_t *chunk_array_user;
193 	uint64_t *chunk_array;
194 	uint32_t uf_offset = 0;
195 	size_t size;
196 	int ret;
197 	int i;
198 
199 	chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t),
200 				     GFP_KERNEL);
201 	if (!chunk_array)
202 		return -ENOMEM;
203 
204 	/* get chunks */
205 	chunk_array_user = u64_to_user_ptr(cs->in.chunks);
206 	if (copy_from_user(chunk_array, chunk_array_user,
207 			   sizeof(uint64_t)*cs->in.num_chunks)) {
208 		ret = -EFAULT;
209 		goto free_chunk;
210 	}
211 
212 	p->nchunks = cs->in.num_chunks;
213 	p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
214 			    GFP_KERNEL);
215 	if (!p->chunks) {
216 		ret = -ENOMEM;
217 		goto free_chunk;
218 	}
219 
220 	for (i = 0; i < p->nchunks; i++) {
221 		struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
222 		struct drm_amdgpu_cs_chunk user_chunk;
223 		uint32_t __user *cdata;
224 
225 		chunk_ptr = u64_to_user_ptr(chunk_array[i]);
226 		if (copy_from_user(&user_chunk, chunk_ptr,
227 				       sizeof(struct drm_amdgpu_cs_chunk))) {
228 			ret = -EFAULT;
229 			i--;
230 			goto free_partial_kdata;
231 		}
232 		p->chunks[i].chunk_id = user_chunk.chunk_id;
233 		p->chunks[i].length_dw = user_chunk.length_dw;
234 
235 		size = p->chunks[i].length_dw;
236 		cdata = u64_to_user_ptr(user_chunk.chunk_data);
237 
238 		p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t),
239 						    GFP_KERNEL);
240 		if (p->chunks[i].kdata == NULL) {
241 			ret = -ENOMEM;
242 			i--;
243 			goto free_partial_kdata;
244 		}
245 		size *= sizeof(uint32_t);
246 		if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
247 			ret = -EFAULT;
248 			goto free_partial_kdata;
249 		}
250 
251 		/* Assume the worst on the following checks */
252 		ret = -EINVAL;
253 		switch (p->chunks[i].chunk_id) {
254 		case AMDGPU_CHUNK_ID_IB:
255 			if (size < sizeof(struct drm_amdgpu_cs_chunk_ib))
256 				goto free_partial_kdata;
257 
258 			ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs);
259 			if (ret)
260 				goto free_partial_kdata;
261 			break;
262 
263 		case AMDGPU_CHUNK_ID_FENCE:
264 			if (size < sizeof(struct drm_amdgpu_cs_chunk_fence))
265 				goto free_partial_kdata;
266 
267 			ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata,
268 						      &uf_offset);
269 			if (ret)
270 				goto free_partial_kdata;
271 			break;
272 
273 		case AMDGPU_CHUNK_ID_BO_HANDLES:
274 			if (size < sizeof(struct drm_amdgpu_bo_list_in))
275 				goto free_partial_kdata;
276 
277 			ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata);
278 			if (ret)
279 				goto free_partial_kdata;
280 			break;
281 
282 		case AMDGPU_CHUNK_ID_DEPENDENCIES:
283 		case AMDGPU_CHUNK_ID_SYNCOBJ_IN:
284 		case AMDGPU_CHUNK_ID_SYNCOBJ_OUT:
285 		case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES:
286 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT:
287 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL:
288 		case AMDGPU_CHUNK_ID_CP_GFX_SHADOW:
289 			break;
290 
291 		default:
292 			goto free_partial_kdata;
293 		}
294 	}
295 
296 	if (!p->gang_size) {
297 		ret = -EINVAL;
298 		goto free_partial_kdata;
299 	}
300 
301 	for (i = 0; i < p->gang_size; ++i) {
302 		ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm,
303 				       num_ibs[i], &p->jobs[i]);
304 		if (ret)
305 			goto free_all_kdata;
306 	}
307 	p->gang_leader = p->jobs[p->gang_leader_idx];
308 
309 	if (p->ctx->generation != p->gang_leader->generation) {
310 		ret = -ECANCELED;
311 		goto free_all_kdata;
312 	}
313 
314 	if (p->uf_entry.tv.bo)
315 		p->gang_leader->uf_addr = uf_offset;
316 	kvfree(chunk_array);
317 
318 	/* Use this opportunity to fill in task info for the vm */
319 	amdgpu_vm_set_task_info(vm);
320 
321 	return 0;
322 
323 free_all_kdata:
324 	i = p->nchunks - 1;
325 free_partial_kdata:
326 	for (; i >= 0; i--)
327 		kvfree(p->chunks[i].kdata);
328 	kvfree(p->chunks);
329 	p->chunks = NULL;
330 	p->nchunks = 0;
331 free_chunk:
332 	kvfree(chunk_array);
333 
334 	return ret;
335 }
336 
337 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p,
338 			   struct amdgpu_cs_chunk *chunk,
339 			   unsigned int *ce_preempt,
340 			   unsigned int *de_preempt)
341 {
342 	struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata;
343 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
344 	struct amdgpu_vm *vm = &fpriv->vm;
345 	struct amdgpu_ring *ring;
346 	struct amdgpu_job *job;
347 	struct amdgpu_ib *ib;
348 	int r;
349 
350 	r = amdgpu_cs_job_idx(p, chunk_ib);
351 	if (r < 0)
352 		return r;
353 
354 	job = p->jobs[r];
355 	ring = amdgpu_job_ring(job);
356 	ib = &job->ibs[job->num_ibs++];
357 
358 	/* MM engine doesn't support user fences */
359 	if (p->uf_entry.tv.bo && ring->funcs->no_user_fence)
360 		return -EINVAL;
361 
362 	if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX &&
363 	    chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) {
364 		if (chunk_ib->flags & AMDGPU_IB_FLAG_CE)
365 			(*ce_preempt)++;
366 		else
367 			(*de_preempt)++;
368 
369 		/* Each GFX command submit allows only 1 IB max
370 		 * preemptible for CE & DE */
371 		if (*ce_preempt > 1 || *de_preempt > 1)
372 			return -EINVAL;
373 	}
374 
375 	if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE)
376 		job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT;
377 
378 	r =  amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ?
379 			   chunk_ib->ib_bytes : 0,
380 			   AMDGPU_IB_POOL_DELAYED, ib);
381 	if (r) {
382 		DRM_ERROR("Failed to get ib !\n");
383 		return r;
384 	}
385 
386 	ib->gpu_addr = chunk_ib->va_start;
387 	ib->length_dw = chunk_ib->ib_bytes / 4;
388 	ib->flags = chunk_ib->flags;
389 	return 0;
390 }
391 
392 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p,
393 				     struct amdgpu_cs_chunk *chunk)
394 {
395 	struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata;
396 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
397 	unsigned int num_deps;
398 	int i, r;
399 
400 	num_deps = chunk->length_dw * 4 /
401 		sizeof(struct drm_amdgpu_cs_chunk_dep);
402 
403 	for (i = 0; i < num_deps; ++i) {
404 		struct amdgpu_ctx *ctx;
405 		struct drm_sched_entity *entity;
406 		struct dma_fence *fence;
407 
408 		ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id);
409 		if (ctx == NULL)
410 			return -EINVAL;
411 
412 		r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type,
413 					  deps[i].ip_instance,
414 					  deps[i].ring, &entity);
415 		if (r) {
416 			amdgpu_ctx_put(ctx);
417 			return r;
418 		}
419 
420 		fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle);
421 		amdgpu_ctx_put(ctx);
422 
423 		if (IS_ERR(fence))
424 			return PTR_ERR(fence);
425 		else if (!fence)
426 			continue;
427 
428 		if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) {
429 			struct drm_sched_fence *s_fence;
430 			struct dma_fence *old = fence;
431 
432 			s_fence = to_drm_sched_fence(fence);
433 			fence = dma_fence_get(&s_fence->scheduled);
434 			dma_fence_put(old);
435 		}
436 
437 		r = amdgpu_sync_fence(&p->sync, fence);
438 		dma_fence_put(fence);
439 		if (r)
440 			return r;
441 	}
442 	return 0;
443 }
444 
445 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p,
446 					 uint32_t handle, u64 point,
447 					 u64 flags)
448 {
449 	struct dma_fence *fence;
450 	int r;
451 
452 	r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence);
453 	if (r) {
454 		DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n",
455 			  handle, point, r);
456 		return r;
457 	}
458 
459 	r = amdgpu_sync_fence(&p->sync, fence);
460 	dma_fence_put(fence);
461 	return r;
462 }
463 
464 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p,
465 				   struct amdgpu_cs_chunk *chunk)
466 {
467 	struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata;
468 	unsigned int num_deps;
469 	int i, r;
470 
471 	num_deps = chunk->length_dw * 4 /
472 		sizeof(struct drm_amdgpu_cs_chunk_sem);
473 	for (i = 0; i < num_deps; ++i) {
474 		r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0);
475 		if (r)
476 			return r;
477 	}
478 
479 	return 0;
480 }
481 
482 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p,
483 					      struct amdgpu_cs_chunk *chunk)
484 {
485 	struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata;
486 	unsigned int num_deps;
487 	int i, r;
488 
489 	num_deps = chunk->length_dw * 4 /
490 		sizeof(struct drm_amdgpu_cs_chunk_syncobj);
491 	for (i = 0; i < num_deps; ++i) {
492 		r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle,
493 						  syncobj_deps[i].point,
494 						  syncobj_deps[i].flags);
495 		if (r)
496 			return r;
497 	}
498 
499 	return 0;
500 }
501 
502 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p,
503 				    struct amdgpu_cs_chunk *chunk)
504 {
505 	struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata;
506 	unsigned int num_deps;
507 	int i;
508 
509 	num_deps = chunk->length_dw * 4 /
510 		sizeof(struct drm_amdgpu_cs_chunk_sem);
511 
512 	if (p->post_deps)
513 		return -EINVAL;
514 
515 	p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps),
516 				     GFP_KERNEL);
517 	p->num_post_deps = 0;
518 
519 	if (!p->post_deps)
520 		return -ENOMEM;
521 
522 
523 	for (i = 0; i < num_deps; ++i) {
524 		p->post_deps[i].syncobj =
525 			drm_syncobj_find(p->filp, deps[i].handle);
526 		if (!p->post_deps[i].syncobj)
527 			return -EINVAL;
528 		p->post_deps[i].chain = NULL;
529 		p->post_deps[i].point = 0;
530 		p->num_post_deps++;
531 	}
532 
533 	return 0;
534 }
535 
536 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p,
537 						struct amdgpu_cs_chunk *chunk)
538 {
539 	struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata;
540 	unsigned int num_deps;
541 	int i;
542 
543 	num_deps = chunk->length_dw * 4 /
544 		sizeof(struct drm_amdgpu_cs_chunk_syncobj);
545 
546 	if (p->post_deps)
547 		return -EINVAL;
548 
549 	p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps),
550 				     GFP_KERNEL);
551 	p->num_post_deps = 0;
552 
553 	if (!p->post_deps)
554 		return -ENOMEM;
555 
556 	for (i = 0; i < num_deps; ++i) {
557 		struct amdgpu_cs_post_dep *dep = &p->post_deps[i];
558 
559 		dep->chain = NULL;
560 		if (syncobj_deps[i].point) {
561 			dep->chain = dma_fence_chain_alloc();
562 			if (!dep->chain)
563 				return -ENOMEM;
564 		}
565 
566 		dep->syncobj = drm_syncobj_find(p->filp,
567 						syncobj_deps[i].handle);
568 		if (!dep->syncobj) {
569 			dma_fence_chain_free(dep->chain);
570 			return -EINVAL;
571 		}
572 		dep->point = syncobj_deps[i].point;
573 		p->num_post_deps++;
574 	}
575 
576 	return 0;
577 }
578 
579 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p,
580 			       struct amdgpu_cs_chunk *chunk)
581 {
582 	struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata;
583 	int i;
584 
585 	if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW)
586 		return -EINVAL;
587 
588 	for (i = 0; i < p->gang_size; ++i) {
589 		p->jobs[i]->shadow_va = shadow->shadow_va;
590 		p->jobs[i]->csa_va = shadow->csa_va;
591 		p->jobs[i]->gds_va = shadow->gds_va;
592 		p->jobs[i]->init_shadow =
593 			shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW;
594 	}
595 
596 	return 0;
597 }
598 
599 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p)
600 {
601 	unsigned int ce_preempt = 0, de_preempt = 0;
602 	int i, r;
603 
604 	for (i = 0; i < p->nchunks; ++i) {
605 		struct amdgpu_cs_chunk *chunk;
606 
607 		chunk = &p->chunks[i];
608 
609 		switch (chunk->chunk_id) {
610 		case AMDGPU_CHUNK_ID_IB:
611 			r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt);
612 			if (r)
613 				return r;
614 			break;
615 		case AMDGPU_CHUNK_ID_DEPENDENCIES:
616 		case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES:
617 			r = amdgpu_cs_p2_dependencies(p, chunk);
618 			if (r)
619 				return r;
620 			break;
621 		case AMDGPU_CHUNK_ID_SYNCOBJ_IN:
622 			r = amdgpu_cs_p2_syncobj_in(p, chunk);
623 			if (r)
624 				return r;
625 			break;
626 		case AMDGPU_CHUNK_ID_SYNCOBJ_OUT:
627 			r = amdgpu_cs_p2_syncobj_out(p, chunk);
628 			if (r)
629 				return r;
630 			break;
631 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT:
632 			r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk);
633 			if (r)
634 				return r;
635 			break;
636 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL:
637 			r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk);
638 			if (r)
639 				return r;
640 			break;
641 		case AMDGPU_CHUNK_ID_CP_GFX_SHADOW:
642 			r = amdgpu_cs_p2_shadow(p, chunk);
643 			if (r)
644 				return r;
645 			break;
646 		}
647 	}
648 
649 	return 0;
650 }
651 
652 /* Convert microseconds to bytes. */
653 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us)
654 {
655 	if (us <= 0 || !adev->mm_stats.log2_max_MBps)
656 		return 0;
657 
658 	/* Since accum_us is incremented by a million per second, just
659 	 * multiply it by the number of MB/s to get the number of bytes.
660 	 */
661 	return us << adev->mm_stats.log2_max_MBps;
662 }
663 
664 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes)
665 {
666 	if (!adev->mm_stats.log2_max_MBps)
667 		return 0;
668 
669 	return bytes >> adev->mm_stats.log2_max_MBps;
670 }
671 
672 /* Returns how many bytes TTM can move right now. If no bytes can be moved,
673  * it returns 0. If it returns non-zero, it's OK to move at least one buffer,
674  * which means it can go over the threshold once. If that happens, the driver
675  * will be in debt and no other buffer migrations can be done until that debt
676  * is repaid.
677  *
678  * This approach allows moving a buffer of any size (it's important to allow
679  * that).
680  *
681  * The currency is simply time in microseconds and it increases as the clock
682  * ticks. The accumulated microseconds (us) are converted to bytes and
683  * returned.
684  */
685 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev,
686 					      u64 *max_bytes,
687 					      u64 *max_vis_bytes)
688 {
689 	s64 time_us, increment_us;
690 	u64 free_vram, total_vram, used_vram;
691 	/* Allow a maximum of 200 accumulated ms. This is basically per-IB
692 	 * throttling.
693 	 *
694 	 * It means that in order to get full max MBps, at least 5 IBs per
695 	 * second must be submitted and not more than 200ms apart from each
696 	 * other.
697 	 */
698 	const s64 us_upper_bound = 200000;
699 
700 	if (!adev->mm_stats.log2_max_MBps) {
701 		*max_bytes = 0;
702 		*max_vis_bytes = 0;
703 		return;
704 	}
705 
706 	total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size);
707 	used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager);
708 	free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram;
709 
710 	spin_lock(&adev->mm_stats.lock);
711 
712 	/* Increase the amount of accumulated us. */
713 	time_us = ktime_to_us(ktime_get());
714 	increment_us = time_us - adev->mm_stats.last_update_us;
715 	adev->mm_stats.last_update_us = time_us;
716 	adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us,
717 				      us_upper_bound);
718 
719 	/* This prevents the short period of low performance when the VRAM
720 	 * usage is low and the driver is in debt or doesn't have enough
721 	 * accumulated us to fill VRAM quickly.
722 	 *
723 	 * The situation can occur in these cases:
724 	 * - a lot of VRAM is freed by userspace
725 	 * - the presence of a big buffer causes a lot of evictions
726 	 *   (solution: split buffers into smaller ones)
727 	 *
728 	 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting
729 	 * accum_us to a positive number.
730 	 */
731 	if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) {
732 		s64 min_us;
733 
734 		/* Be more aggressive on dGPUs. Try to fill a portion of free
735 		 * VRAM now.
736 		 */
737 		if (!(adev->flags & AMD_IS_APU))
738 			min_us = bytes_to_us(adev, free_vram / 4);
739 		else
740 			min_us = 0; /* Reset accum_us on APUs. */
741 
742 		adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us);
743 	}
744 
745 	/* This is set to 0 if the driver is in debt to disallow (optional)
746 	 * buffer moves.
747 	 */
748 	*max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us);
749 
750 	/* Do the same for visible VRAM if half of it is free */
751 	if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) {
752 		u64 total_vis_vram = adev->gmc.visible_vram_size;
753 		u64 used_vis_vram =
754 		  amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr);
755 
756 		if (used_vis_vram < total_vis_vram) {
757 			u64 free_vis_vram = total_vis_vram - used_vis_vram;
758 
759 			adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis +
760 							  increment_us, us_upper_bound);
761 
762 			if (free_vis_vram >= total_vis_vram / 2)
763 				adev->mm_stats.accum_us_vis =
764 					max(bytes_to_us(adev, free_vis_vram / 2),
765 					    adev->mm_stats.accum_us_vis);
766 		}
767 
768 		*max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis);
769 	} else {
770 		*max_vis_bytes = 0;
771 	}
772 
773 	spin_unlock(&adev->mm_stats.lock);
774 }
775 
776 /* Report how many bytes have really been moved for the last command
777  * submission. This can result in a debt that can stop buffer migrations
778  * temporarily.
779  */
780 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes,
781 				  u64 num_vis_bytes)
782 {
783 	spin_lock(&adev->mm_stats.lock);
784 	adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes);
785 	adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes);
786 	spin_unlock(&adev->mm_stats.lock);
787 }
788 
789 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo)
790 {
791 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
792 	struct amdgpu_cs_parser *p = param;
793 	struct ttm_operation_ctx ctx = {
794 		.interruptible = true,
795 		.no_wait_gpu = false,
796 		.resv = bo->tbo.base.resv
797 	};
798 	uint32_t domain;
799 	int r;
800 
801 	if (bo->tbo.pin_count)
802 		return 0;
803 
804 	/* Don't move this buffer if we have depleted our allowance
805 	 * to move it. Don't move anything if the threshold is zero.
806 	 */
807 	if (p->bytes_moved < p->bytes_moved_threshold &&
808 	    (!bo->tbo.base.dma_buf ||
809 	    list_empty(&bo->tbo.base.dma_buf->attachments))) {
810 		if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
811 		    (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) {
812 			/* And don't move a CPU_ACCESS_REQUIRED BO to limited
813 			 * visible VRAM if we've depleted our allowance to do
814 			 * that.
815 			 */
816 			if (p->bytes_moved_vis < p->bytes_moved_vis_threshold)
817 				domain = bo->preferred_domains;
818 			else
819 				domain = bo->allowed_domains;
820 		} else {
821 			domain = bo->preferred_domains;
822 		}
823 	} else {
824 		domain = bo->allowed_domains;
825 	}
826 
827 retry:
828 	amdgpu_bo_placement_from_domain(bo, domain);
829 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
830 
831 	p->bytes_moved += ctx.bytes_moved;
832 	if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
833 	    amdgpu_bo_in_cpu_visible_vram(bo))
834 		p->bytes_moved_vis += ctx.bytes_moved;
835 
836 	if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) {
837 		domain = bo->allowed_domains;
838 		goto retry;
839 	}
840 
841 	return r;
842 }
843 
844 static int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p,
845 			    struct list_head *validated)
846 {
847 	struct ttm_operation_ctx ctx = { true, false };
848 	struct amdgpu_bo_list_entry *lobj;
849 	int r;
850 
851 	list_for_each_entry(lobj, validated, tv.head) {
852 		struct amdgpu_bo *bo = ttm_to_amdgpu_bo(lobj->tv.bo);
853 		struct mm_struct *usermm;
854 
855 		usermm = amdgpu_ttm_tt_get_usermm(bo->tbo.ttm);
856 		if (usermm && usermm != current->mm)
857 			return -EPERM;
858 
859 		if (amdgpu_ttm_tt_is_userptr(bo->tbo.ttm) &&
860 		    lobj->user_invalidated && lobj->user_pages) {
861 			amdgpu_bo_placement_from_domain(bo,
862 							AMDGPU_GEM_DOMAIN_CPU);
863 			r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
864 			if (r)
865 				return r;
866 
867 			amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm,
868 						     lobj->user_pages);
869 		}
870 
871 		r = amdgpu_cs_bo_validate(p, bo);
872 		if (r)
873 			return r;
874 
875 		kvfree(lobj->user_pages);
876 		lobj->user_pages = NULL;
877 	}
878 	return 0;
879 }
880 
881 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p,
882 				union drm_amdgpu_cs *cs)
883 {
884 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
885 	struct amdgpu_vm *vm = &fpriv->vm;
886 	struct amdgpu_bo_list_entry *e;
887 	struct list_head duplicates;
888 	unsigned int i;
889 	int r;
890 
891 	INIT_LIST_HEAD(&p->validated);
892 
893 	/* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */
894 	if (cs->in.bo_list_handle) {
895 		if (p->bo_list)
896 			return -EINVAL;
897 
898 		r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle,
899 				       &p->bo_list);
900 		if (r)
901 			return r;
902 	} else if (!p->bo_list) {
903 		/* Create a empty bo_list when no handle is provided */
904 		r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0,
905 					  &p->bo_list);
906 		if (r)
907 			return r;
908 	}
909 
910 	mutex_lock(&p->bo_list->bo_list_mutex);
911 
912 	/* One for TTM and one for each CS job */
913 	amdgpu_bo_list_for_each_entry(e, p->bo_list)
914 		e->tv.num_shared = 1 + p->gang_size;
915 	p->uf_entry.tv.num_shared = 1 + p->gang_size;
916 
917 	amdgpu_bo_list_get_list(p->bo_list, &p->validated);
918 
919 	INIT_LIST_HEAD(&duplicates);
920 	amdgpu_vm_get_pd_bo(&fpriv->vm, &p->validated, &p->vm_pd);
921 
922 	/* Two for VM updates, one for TTM and one for each CS job */
923 	p->vm_pd.tv.num_shared = 3 + p->gang_size;
924 
925 	if (p->uf_entry.tv.bo && !ttm_to_amdgpu_bo(p->uf_entry.tv.bo)->parent)
926 		list_add(&p->uf_entry.tv.head, &p->validated);
927 
928 	/* Get userptr backing pages. If pages are updated after registered
929 	 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do
930 	 * amdgpu_ttm_backend_bind() to flush and invalidate new pages
931 	 */
932 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
933 		struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
934 		bool userpage_invalidated = false;
935 		int i;
936 
937 		e->user_pages = kvmalloc_array(bo->tbo.ttm->num_pages,
938 					sizeof(struct page *),
939 					GFP_KERNEL | __GFP_ZERO);
940 		if (!e->user_pages) {
941 			DRM_ERROR("kvmalloc_array failure\n");
942 			r = -ENOMEM;
943 			goto out_free_user_pages;
944 		}
945 
946 		r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range);
947 		if (r) {
948 			kvfree(e->user_pages);
949 			e->user_pages = NULL;
950 			goto out_free_user_pages;
951 		}
952 
953 		for (i = 0; i < bo->tbo.ttm->num_pages; i++) {
954 			if (bo->tbo.ttm->pages[i] != e->user_pages[i]) {
955 				userpage_invalidated = true;
956 				break;
957 			}
958 		}
959 		e->user_invalidated = userpage_invalidated;
960 	}
961 
962 	r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true,
963 				   &duplicates);
964 	if (unlikely(r != 0)) {
965 		if (r != -ERESTARTSYS)
966 			DRM_ERROR("ttm_eu_reserve_buffers failed.\n");
967 		goto out_free_user_pages;
968 	}
969 
970 	amdgpu_bo_list_for_each_entry(e, p->bo_list) {
971 		struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
972 
973 		e->bo_va = amdgpu_vm_bo_find(vm, bo);
974 	}
975 
976 	amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold,
977 					  &p->bytes_moved_vis_threshold);
978 	p->bytes_moved = 0;
979 	p->bytes_moved_vis = 0;
980 
981 	r = amdgpu_vm_validate_pt_bos(p->adev, &fpriv->vm,
982 				      amdgpu_cs_bo_validate, p);
983 	if (r) {
984 		DRM_ERROR("amdgpu_vm_validate_pt_bos() failed.\n");
985 		goto error_validate;
986 	}
987 
988 	r = amdgpu_cs_list_validate(p, &duplicates);
989 	if (r)
990 		goto error_validate;
991 
992 	r = amdgpu_cs_list_validate(p, &p->validated);
993 	if (r)
994 		goto error_validate;
995 
996 	if (p->uf_entry.tv.bo) {
997 		struct amdgpu_bo *uf = ttm_to_amdgpu_bo(p->uf_entry.tv.bo);
998 
999 		r = amdgpu_ttm_alloc_gart(&uf->tbo);
1000 		if (r)
1001 			goto error_validate;
1002 
1003 		p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(uf);
1004 	}
1005 
1006 	amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved,
1007 				     p->bytes_moved_vis);
1008 
1009 	for (i = 0; i < p->gang_size; ++i)
1010 		amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj,
1011 					 p->bo_list->gws_obj,
1012 					 p->bo_list->oa_obj);
1013 	return 0;
1014 
1015 error_validate:
1016 	ttm_eu_backoff_reservation(&p->ticket, &p->validated);
1017 
1018 out_free_user_pages:
1019 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
1020 		struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
1021 
1022 		if (!e->user_pages)
1023 			continue;
1024 		amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range);
1025 		kvfree(e->user_pages);
1026 		e->user_pages = NULL;
1027 		e->range = NULL;
1028 	}
1029 	mutex_unlock(&p->bo_list->bo_list_mutex);
1030 	return r;
1031 }
1032 
1033 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p)
1034 {
1035 	int i, j;
1036 
1037 	if (!trace_amdgpu_cs_enabled())
1038 		return;
1039 
1040 	for (i = 0; i < p->gang_size; ++i) {
1041 		struct amdgpu_job *job = p->jobs[i];
1042 
1043 		for (j = 0; j < job->num_ibs; ++j)
1044 			trace_amdgpu_cs(p, job, &job->ibs[j]);
1045 	}
1046 }
1047 
1048 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p,
1049 			       struct amdgpu_job *job)
1050 {
1051 	struct amdgpu_ring *ring = amdgpu_job_ring(job);
1052 	unsigned int i;
1053 	int r;
1054 
1055 	/* Only for UVD/VCE VM emulation */
1056 	if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place)
1057 		return 0;
1058 
1059 	for (i = 0; i < job->num_ibs; ++i) {
1060 		struct amdgpu_ib *ib = &job->ibs[i];
1061 		struct amdgpu_bo_va_mapping *m;
1062 		struct amdgpu_bo *aobj;
1063 		uint64_t va_start;
1064 		uint8_t *kptr;
1065 
1066 		va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK;
1067 		r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m);
1068 		if (r) {
1069 			DRM_ERROR("IB va_start is invalid\n");
1070 			return r;
1071 		}
1072 
1073 		if ((va_start + ib->length_dw * 4) >
1074 		    (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) {
1075 			DRM_ERROR("IB va_start+ib_bytes is invalid\n");
1076 			return -EINVAL;
1077 		}
1078 
1079 		/* the IB should be reserved at this point */
1080 		r = amdgpu_bo_kmap(aobj, (void **)&kptr);
1081 		if (r)
1082 			return r;
1083 
1084 		kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE);
1085 
1086 		if (ring->funcs->parse_cs) {
1087 			memcpy(ib->ptr, kptr, ib->length_dw * 4);
1088 			amdgpu_bo_kunmap(aobj);
1089 
1090 			r = amdgpu_ring_parse_cs(ring, p, job, ib);
1091 			if (r)
1092 				return r;
1093 		} else {
1094 			ib->ptr = (uint32_t *)kptr;
1095 			r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib);
1096 			amdgpu_bo_kunmap(aobj);
1097 			if (r)
1098 				return r;
1099 		}
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p)
1106 {
1107 	unsigned int i;
1108 	int r;
1109 
1110 	for (i = 0; i < p->gang_size; ++i) {
1111 		r = amdgpu_cs_patch_ibs(p, p->jobs[i]);
1112 		if (r)
1113 			return r;
1114 	}
1115 	return 0;
1116 }
1117 
1118 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p)
1119 {
1120 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
1121 	struct amdgpu_job *job = p->gang_leader;
1122 	struct amdgpu_device *adev = p->adev;
1123 	struct amdgpu_vm *vm = &fpriv->vm;
1124 	struct amdgpu_bo_list_entry *e;
1125 	struct amdgpu_bo_va *bo_va;
1126 	struct amdgpu_bo *bo;
1127 	unsigned int i;
1128 	int r;
1129 
1130 	r = amdgpu_vm_clear_freed(adev, vm, NULL);
1131 	if (r)
1132 		return r;
1133 
1134 	r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false);
1135 	if (r)
1136 		return r;
1137 
1138 	r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update);
1139 	if (r)
1140 		return r;
1141 
1142 	if (fpriv->csa_va) {
1143 		bo_va = fpriv->csa_va;
1144 		BUG_ON(!bo_va);
1145 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1146 		if (r)
1147 			return r;
1148 
1149 		r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update);
1150 		if (r)
1151 			return r;
1152 	}
1153 
1154 	amdgpu_bo_list_for_each_entry(e, p->bo_list) {
1155 		/* ignore duplicates */
1156 		bo = ttm_to_amdgpu_bo(e->tv.bo);
1157 		if (!bo)
1158 			continue;
1159 
1160 		bo_va = e->bo_va;
1161 		if (bo_va == NULL)
1162 			continue;
1163 
1164 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1165 		if (r)
1166 			return r;
1167 
1168 		r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update);
1169 		if (r)
1170 			return r;
1171 	}
1172 
1173 	r = amdgpu_vm_handle_moved(adev, vm);
1174 	if (r)
1175 		return r;
1176 
1177 	r = amdgpu_vm_update_pdes(adev, vm, false);
1178 	if (r)
1179 		return r;
1180 
1181 	r = amdgpu_sync_fence(&p->sync, vm->last_update);
1182 	if (r)
1183 		return r;
1184 
1185 	for (i = 0; i < p->gang_size; ++i) {
1186 		job = p->jobs[i];
1187 
1188 		if (!job->vm)
1189 			continue;
1190 
1191 		job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo);
1192 	}
1193 
1194 	if (amdgpu_vm_debug) {
1195 		/* Invalidate all BOs to test for userspace bugs */
1196 		amdgpu_bo_list_for_each_entry(e, p->bo_list) {
1197 			struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
1198 
1199 			/* ignore duplicates */
1200 			if (!bo)
1201 				continue;
1202 
1203 			amdgpu_vm_bo_invalidate(adev, bo, false);
1204 		}
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
1211 {
1212 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
1213 	struct drm_gpu_scheduler *sched;
1214 	struct amdgpu_bo_list_entry *e;
1215 	struct dma_fence *fence;
1216 	unsigned int i;
1217 	int r;
1218 
1219 	r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]);
1220 	if (r) {
1221 		if (r != -ERESTARTSYS)
1222 			DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n");
1223 		return r;
1224 	}
1225 
1226 	list_for_each_entry(e, &p->validated, tv.head) {
1227 		struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
1228 		struct dma_resv *resv = bo->tbo.base.resv;
1229 		enum amdgpu_sync_mode sync_mode;
1230 
1231 		sync_mode = amdgpu_bo_explicit_sync(bo) ?
1232 			AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER;
1233 		r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode,
1234 				     &fpriv->vm);
1235 		if (r)
1236 			return r;
1237 	}
1238 
1239 	for (i = 0; i < p->gang_size; ++i) {
1240 		r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]);
1241 		if (r)
1242 			return r;
1243 	}
1244 
1245 	sched = p->gang_leader->base.entity->rq->sched;
1246 	while ((fence = amdgpu_sync_get_fence(&p->sync))) {
1247 		struct drm_sched_fence *s_fence = to_drm_sched_fence(fence);
1248 
1249 		/*
1250 		 * When we have an dependency it might be necessary to insert a
1251 		 * pipeline sync to make sure that all caches etc are flushed and the
1252 		 * next job actually sees the results from the previous one
1253 		 * before we start executing on the same scheduler ring.
1254 		 */
1255 		if (!s_fence || s_fence->sched != sched) {
1256 			dma_fence_put(fence);
1257 			continue;
1258 		}
1259 
1260 		r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence);
1261 		dma_fence_put(fence);
1262 		if (r)
1263 			return r;
1264 	}
1265 	return 0;
1266 }
1267 
1268 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p)
1269 {
1270 	int i;
1271 
1272 	for (i = 0; i < p->num_post_deps; ++i) {
1273 		if (p->post_deps[i].chain && p->post_deps[i].point) {
1274 			drm_syncobj_add_point(p->post_deps[i].syncobj,
1275 					      p->post_deps[i].chain,
1276 					      p->fence, p->post_deps[i].point);
1277 			p->post_deps[i].chain = NULL;
1278 		} else {
1279 			drm_syncobj_replace_fence(p->post_deps[i].syncobj,
1280 						  p->fence);
1281 		}
1282 	}
1283 }
1284 
1285 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p,
1286 			    union drm_amdgpu_cs *cs)
1287 {
1288 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
1289 	struct amdgpu_job *leader = p->gang_leader;
1290 	struct amdgpu_bo_list_entry *e;
1291 	unsigned int i;
1292 	uint64_t seq;
1293 	int r;
1294 
1295 	for (i = 0; i < p->gang_size; ++i)
1296 		drm_sched_job_arm(&p->jobs[i]->base);
1297 
1298 	for (i = 0; i < p->gang_size; ++i) {
1299 		struct dma_fence *fence;
1300 
1301 		if (p->jobs[i] == leader)
1302 			continue;
1303 
1304 		fence = &p->jobs[i]->base.s_fence->scheduled;
1305 		dma_fence_get(fence);
1306 		r = drm_sched_job_add_dependency(&leader->base, fence);
1307 		if (r) {
1308 			dma_fence_put(fence);
1309 			return r;
1310 		}
1311 	}
1312 
1313 	if (p->gang_size > 1) {
1314 		for (i = 0; i < p->gang_size; ++i)
1315 			amdgpu_job_set_gang_leader(p->jobs[i], leader);
1316 	}
1317 
1318 	/* No memory allocation is allowed while holding the notifier lock.
1319 	 * The lock is held until amdgpu_cs_submit is finished and fence is
1320 	 * added to BOs.
1321 	 */
1322 	mutex_lock(&p->adev->notifier_lock);
1323 
1324 	/* If userptr are invalidated after amdgpu_cs_parser_bos(), return
1325 	 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl.
1326 	 */
1327 	r = 0;
1328 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
1329 		struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
1330 
1331 		r |= !amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range);
1332 		e->range = NULL;
1333 	}
1334 	if (r) {
1335 		r = -EAGAIN;
1336 		mutex_unlock(&p->adev->notifier_lock);
1337 		return r;
1338 	}
1339 
1340 	p->fence = dma_fence_get(&leader->base.s_fence->finished);
1341 	list_for_each_entry(e, &p->validated, tv.head) {
1342 
1343 		/* Everybody except for the gang leader uses READ */
1344 		for (i = 0; i < p->gang_size; ++i) {
1345 			if (p->jobs[i] == leader)
1346 				continue;
1347 
1348 			dma_resv_add_fence(e->tv.bo->base.resv,
1349 					   &p->jobs[i]->base.s_fence->finished,
1350 					   DMA_RESV_USAGE_READ);
1351 		}
1352 
1353 		/* The gang leader is remembered as writer */
1354 		e->tv.num_shared = 0;
1355 	}
1356 
1357 	seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx],
1358 				   p->fence);
1359 	amdgpu_cs_post_dependencies(p);
1360 
1361 	if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) &&
1362 	    !p->ctx->preamble_presented) {
1363 		leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST;
1364 		p->ctx->preamble_presented = true;
1365 	}
1366 
1367 	cs->out.handle = seq;
1368 	leader->uf_sequence = seq;
1369 
1370 	amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->ticket);
1371 	for (i = 0; i < p->gang_size; ++i) {
1372 		amdgpu_job_free_resources(p->jobs[i]);
1373 		trace_amdgpu_cs_ioctl(p->jobs[i]);
1374 		drm_sched_entity_push_job(&p->jobs[i]->base);
1375 		p->jobs[i] = NULL;
1376 	}
1377 
1378 	amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm);
1379 	ttm_eu_fence_buffer_objects(&p->ticket, &p->validated, p->fence);
1380 
1381 	mutex_unlock(&p->adev->notifier_lock);
1382 	mutex_unlock(&p->bo_list->bo_list_mutex);
1383 	return 0;
1384 }
1385 
1386 /* Cleanup the parser structure */
1387 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser)
1388 {
1389 	unsigned int i;
1390 
1391 	amdgpu_sync_free(&parser->sync);
1392 	for (i = 0; i < parser->num_post_deps; i++) {
1393 		drm_syncobj_put(parser->post_deps[i].syncobj);
1394 		kfree(parser->post_deps[i].chain);
1395 	}
1396 	kfree(parser->post_deps);
1397 
1398 	dma_fence_put(parser->fence);
1399 
1400 	if (parser->ctx)
1401 		amdgpu_ctx_put(parser->ctx);
1402 	if (parser->bo_list)
1403 		amdgpu_bo_list_put(parser->bo_list);
1404 
1405 	for (i = 0; i < parser->nchunks; i++)
1406 		kvfree(parser->chunks[i].kdata);
1407 	kvfree(parser->chunks);
1408 	for (i = 0; i < parser->gang_size; ++i) {
1409 		if (parser->jobs[i])
1410 			amdgpu_job_free(parser->jobs[i]);
1411 	}
1412 	if (parser->uf_entry.tv.bo) {
1413 		struct amdgpu_bo *uf = ttm_to_amdgpu_bo(parser->uf_entry.tv.bo);
1414 
1415 		amdgpu_bo_unref(&uf);
1416 	}
1417 }
1418 
1419 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
1420 {
1421 	struct amdgpu_device *adev = drm_to_adev(dev);
1422 	struct amdgpu_cs_parser parser;
1423 	int r;
1424 
1425 	if (amdgpu_ras_intr_triggered())
1426 		return -EHWPOISON;
1427 
1428 	if (!adev->accel_working)
1429 		return -EBUSY;
1430 
1431 	r = amdgpu_cs_parser_init(&parser, adev, filp, data);
1432 	if (r) {
1433 		if (printk_ratelimit())
1434 			DRM_ERROR("Failed to initialize parser %d!\n", r);
1435 		return r;
1436 	}
1437 
1438 	r = amdgpu_cs_pass1(&parser, data);
1439 	if (r)
1440 		goto error_fini;
1441 
1442 	r = amdgpu_cs_pass2(&parser);
1443 	if (r)
1444 		goto error_fini;
1445 
1446 	r = amdgpu_cs_parser_bos(&parser, data);
1447 	if (r) {
1448 		if (r == -ENOMEM)
1449 			DRM_ERROR("Not enough memory for command submission!\n");
1450 		else if (r != -ERESTARTSYS && r != -EAGAIN)
1451 			DRM_ERROR("Failed to process the buffer list %d!\n", r);
1452 		goto error_fini;
1453 	}
1454 
1455 	r = amdgpu_cs_patch_jobs(&parser);
1456 	if (r)
1457 		goto error_backoff;
1458 
1459 	r = amdgpu_cs_vm_handling(&parser);
1460 	if (r)
1461 		goto error_backoff;
1462 
1463 	r = amdgpu_cs_sync_rings(&parser);
1464 	if (r)
1465 		goto error_backoff;
1466 
1467 	trace_amdgpu_cs_ibs(&parser);
1468 
1469 	r = amdgpu_cs_submit(&parser, data);
1470 	if (r)
1471 		goto error_backoff;
1472 
1473 	amdgpu_cs_parser_fini(&parser);
1474 	return 0;
1475 
1476 error_backoff:
1477 	ttm_eu_backoff_reservation(&parser.ticket, &parser.validated);
1478 	mutex_unlock(&parser.bo_list->bo_list_mutex);
1479 
1480 error_fini:
1481 	amdgpu_cs_parser_fini(&parser);
1482 	return r;
1483 }
1484 
1485 /**
1486  * amdgpu_cs_wait_ioctl - wait for a command submission to finish
1487  *
1488  * @dev: drm device
1489  * @data: data from userspace
1490  * @filp: file private
1491  *
1492  * Wait for the command submission identified by handle to finish.
1493  */
1494 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
1495 			 struct drm_file *filp)
1496 {
1497 	union drm_amdgpu_wait_cs *wait = data;
1498 	unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
1499 	struct drm_sched_entity *entity;
1500 	struct amdgpu_ctx *ctx;
1501 	struct dma_fence *fence;
1502 	long r;
1503 
1504 	ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
1505 	if (ctx == NULL)
1506 		return -EINVAL;
1507 
1508 	r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance,
1509 				  wait->in.ring, &entity);
1510 	if (r) {
1511 		amdgpu_ctx_put(ctx);
1512 		return r;
1513 	}
1514 
1515 	fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle);
1516 	if (IS_ERR(fence))
1517 		r = PTR_ERR(fence);
1518 	else if (fence) {
1519 		r = dma_fence_wait_timeout(fence, true, timeout);
1520 		if (r > 0 && fence->error)
1521 			r = fence->error;
1522 		dma_fence_put(fence);
1523 	} else
1524 		r = 1;
1525 
1526 	amdgpu_ctx_put(ctx);
1527 	if (r < 0)
1528 		return r;
1529 
1530 	memset(wait, 0, sizeof(*wait));
1531 	wait->out.status = (r == 0);
1532 
1533 	return 0;
1534 }
1535 
1536 /**
1537  * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence
1538  *
1539  * @adev: amdgpu device
1540  * @filp: file private
1541  * @user: drm_amdgpu_fence copied from user space
1542  */
1543 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev,
1544 					     struct drm_file *filp,
1545 					     struct drm_amdgpu_fence *user)
1546 {
1547 	struct drm_sched_entity *entity;
1548 	struct amdgpu_ctx *ctx;
1549 	struct dma_fence *fence;
1550 	int r;
1551 
1552 	ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id);
1553 	if (ctx == NULL)
1554 		return ERR_PTR(-EINVAL);
1555 
1556 	r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance,
1557 				  user->ring, &entity);
1558 	if (r) {
1559 		amdgpu_ctx_put(ctx);
1560 		return ERR_PTR(r);
1561 	}
1562 
1563 	fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no);
1564 	amdgpu_ctx_put(ctx);
1565 
1566 	return fence;
1567 }
1568 
1569 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data,
1570 				    struct drm_file *filp)
1571 {
1572 	struct amdgpu_device *adev = drm_to_adev(dev);
1573 	union drm_amdgpu_fence_to_handle *info = data;
1574 	struct dma_fence *fence;
1575 	struct drm_syncobj *syncobj;
1576 	struct sync_file *sync_file;
1577 	int fd, r;
1578 
1579 	fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence);
1580 	if (IS_ERR(fence))
1581 		return PTR_ERR(fence);
1582 
1583 	if (!fence)
1584 		fence = dma_fence_get_stub();
1585 
1586 	switch (info->in.what) {
1587 	case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ:
1588 		r = drm_syncobj_create(&syncobj, 0, fence);
1589 		dma_fence_put(fence);
1590 		if (r)
1591 			return r;
1592 		r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle);
1593 		drm_syncobj_put(syncobj);
1594 		return r;
1595 
1596 	case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD:
1597 		r = drm_syncobj_create(&syncobj, 0, fence);
1598 		dma_fence_put(fence);
1599 		if (r)
1600 			return r;
1601 		r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle);
1602 		drm_syncobj_put(syncobj);
1603 		return r;
1604 
1605 	case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD:
1606 		fd = get_unused_fd_flags(O_CLOEXEC);
1607 		if (fd < 0) {
1608 			dma_fence_put(fence);
1609 			return fd;
1610 		}
1611 
1612 		sync_file = sync_file_create(fence);
1613 		dma_fence_put(fence);
1614 		if (!sync_file) {
1615 			put_unused_fd(fd);
1616 			return -ENOMEM;
1617 		}
1618 
1619 		fd_install(fd, sync_file->file);
1620 		info->out.handle = fd;
1621 		return 0;
1622 
1623 	default:
1624 		dma_fence_put(fence);
1625 		return -EINVAL;
1626 	}
1627 }
1628 
1629 /**
1630  * amdgpu_cs_wait_all_fences - wait on all fences to signal
1631  *
1632  * @adev: amdgpu device
1633  * @filp: file private
1634  * @wait: wait parameters
1635  * @fences: array of drm_amdgpu_fence
1636  */
1637 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev,
1638 				     struct drm_file *filp,
1639 				     union drm_amdgpu_wait_fences *wait,
1640 				     struct drm_amdgpu_fence *fences)
1641 {
1642 	uint32_t fence_count = wait->in.fence_count;
1643 	unsigned int i;
1644 	long r = 1;
1645 
1646 	for (i = 0; i < fence_count; i++) {
1647 		struct dma_fence *fence;
1648 		unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns);
1649 
1650 		fence = amdgpu_cs_get_fence(adev, filp, &fences[i]);
1651 		if (IS_ERR(fence))
1652 			return PTR_ERR(fence);
1653 		else if (!fence)
1654 			continue;
1655 
1656 		r = dma_fence_wait_timeout(fence, true, timeout);
1657 		if (r > 0 && fence->error)
1658 			r = fence->error;
1659 
1660 		dma_fence_put(fence);
1661 		if (r < 0)
1662 			return r;
1663 
1664 		if (r == 0)
1665 			break;
1666 	}
1667 
1668 	memset(wait, 0, sizeof(*wait));
1669 	wait->out.status = (r > 0);
1670 
1671 	return 0;
1672 }
1673 
1674 /**
1675  * amdgpu_cs_wait_any_fence - wait on any fence to signal
1676  *
1677  * @adev: amdgpu device
1678  * @filp: file private
1679  * @wait: wait parameters
1680  * @fences: array of drm_amdgpu_fence
1681  */
1682 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev,
1683 				    struct drm_file *filp,
1684 				    union drm_amdgpu_wait_fences *wait,
1685 				    struct drm_amdgpu_fence *fences)
1686 {
1687 	unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns);
1688 	uint32_t fence_count = wait->in.fence_count;
1689 	uint32_t first = ~0;
1690 	struct dma_fence **array;
1691 	unsigned int i;
1692 	long r;
1693 
1694 	/* Prepare the fence array */
1695 	array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL);
1696 
1697 	if (array == NULL)
1698 		return -ENOMEM;
1699 
1700 	for (i = 0; i < fence_count; i++) {
1701 		struct dma_fence *fence;
1702 
1703 		fence = amdgpu_cs_get_fence(adev, filp, &fences[i]);
1704 		if (IS_ERR(fence)) {
1705 			r = PTR_ERR(fence);
1706 			goto err_free_fence_array;
1707 		} else if (fence) {
1708 			array[i] = fence;
1709 		} else { /* NULL, the fence has been already signaled */
1710 			r = 1;
1711 			first = i;
1712 			goto out;
1713 		}
1714 	}
1715 
1716 	r = dma_fence_wait_any_timeout(array, fence_count, true, timeout,
1717 				       &first);
1718 	if (r < 0)
1719 		goto err_free_fence_array;
1720 
1721 out:
1722 	memset(wait, 0, sizeof(*wait));
1723 	wait->out.status = (r > 0);
1724 	wait->out.first_signaled = first;
1725 
1726 	if (first < fence_count && array[first])
1727 		r = array[first]->error;
1728 	else
1729 		r = 0;
1730 
1731 err_free_fence_array:
1732 	for (i = 0; i < fence_count; i++)
1733 		dma_fence_put(array[i]);
1734 	kfree(array);
1735 
1736 	return r;
1737 }
1738 
1739 /**
1740  * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish
1741  *
1742  * @dev: drm device
1743  * @data: data from userspace
1744  * @filp: file private
1745  */
1746 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data,
1747 				struct drm_file *filp)
1748 {
1749 	struct amdgpu_device *adev = drm_to_adev(dev);
1750 	union drm_amdgpu_wait_fences *wait = data;
1751 	uint32_t fence_count = wait->in.fence_count;
1752 	struct drm_amdgpu_fence *fences_user;
1753 	struct drm_amdgpu_fence *fences;
1754 	int r;
1755 
1756 	/* Get the fences from userspace */
1757 	fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence),
1758 			GFP_KERNEL);
1759 	if (fences == NULL)
1760 		return -ENOMEM;
1761 
1762 	fences_user = u64_to_user_ptr(wait->in.fences);
1763 	if (copy_from_user(fences, fences_user,
1764 		sizeof(struct drm_amdgpu_fence) * fence_count)) {
1765 		r = -EFAULT;
1766 		goto err_free_fences;
1767 	}
1768 
1769 	if (wait->in.wait_all)
1770 		r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences);
1771 	else
1772 		r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences);
1773 
1774 err_free_fences:
1775 	kfree(fences);
1776 
1777 	return r;
1778 }
1779 
1780 /**
1781  * amdgpu_cs_find_mapping - find bo_va for VM address
1782  *
1783  * @parser: command submission parser context
1784  * @addr: VM address
1785  * @bo: resulting BO of the mapping found
1786  * @map: Placeholder to return found BO mapping
1787  *
1788  * Search the buffer objects in the command submission context for a certain
1789  * virtual memory address. Returns allocation structure when found, NULL
1790  * otherwise.
1791  */
1792 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
1793 			   uint64_t addr, struct amdgpu_bo **bo,
1794 			   struct amdgpu_bo_va_mapping **map)
1795 {
1796 	struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
1797 	struct ttm_operation_ctx ctx = { false, false };
1798 	struct amdgpu_vm *vm = &fpriv->vm;
1799 	struct amdgpu_bo_va_mapping *mapping;
1800 	int r;
1801 
1802 	addr /= AMDGPU_GPU_PAGE_SIZE;
1803 
1804 	mapping = amdgpu_vm_bo_lookup_mapping(vm, addr);
1805 	if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo)
1806 		return -EINVAL;
1807 
1808 	*bo = mapping->bo_va->base.bo;
1809 	*map = mapping;
1810 
1811 	/* Double check that the BO is reserved by this CS */
1812 	if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->ticket)
1813 		return -EINVAL;
1814 
1815 	if (!((*bo)->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS)) {
1816 		(*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1817 		amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains);
1818 		r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx);
1819 		if (r)
1820 			return r;
1821 	}
1822 
1823 	return amdgpu_ttm_alloc_gart(&(*bo)->tbo);
1824 }
1825