xref: /openbmc/linux/drivers/firmware/qcom_scm.c (revision 6417f03132a6952cd17ddd8eaddbac92b61b17e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/cpumask.h>
8 #include <linux/export.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/qcom_scm.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_platform.h>
16 #include <linux/clk.h>
17 #include <linux/reset-controller.h>
18 #include <linux/arm-smccc.h>
19 
20 #include "qcom_scm.h"
21 
22 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
23 module_param(download_mode, bool, 0);
24 
25 #define SCM_HAS_CORE_CLK	BIT(0)
26 #define SCM_HAS_IFACE_CLK	BIT(1)
27 #define SCM_HAS_BUS_CLK		BIT(2)
28 
29 struct qcom_scm {
30 	struct device *dev;
31 	struct clk *core_clk;
32 	struct clk *iface_clk;
33 	struct clk *bus_clk;
34 	struct reset_controller_dev reset;
35 
36 	u64 dload_mode_addr;
37 };
38 
39 struct qcom_scm_current_perm_info {
40 	__le32 vmid;
41 	__le32 perm;
42 	__le64 ctx;
43 	__le32 ctx_size;
44 	__le32 unused;
45 };
46 
47 struct qcom_scm_mem_map_info {
48 	__le64 mem_addr;
49 	__le64 mem_size;
50 };
51 
52 #define QCOM_SCM_FLAG_COLDBOOT_CPU0	0x00
53 #define QCOM_SCM_FLAG_COLDBOOT_CPU1	0x01
54 #define QCOM_SCM_FLAG_COLDBOOT_CPU2	0x08
55 #define QCOM_SCM_FLAG_COLDBOOT_CPU3	0x20
56 
57 #define QCOM_SCM_FLAG_WARMBOOT_CPU0	0x04
58 #define QCOM_SCM_FLAG_WARMBOOT_CPU1	0x02
59 #define QCOM_SCM_FLAG_WARMBOOT_CPU2	0x10
60 #define QCOM_SCM_FLAG_WARMBOOT_CPU3	0x40
61 
62 struct qcom_scm_wb_entry {
63 	int flag;
64 	void *entry;
65 };
66 
67 static struct qcom_scm_wb_entry qcom_scm_wb[] = {
68 	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
69 	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
70 	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
71 	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
72 };
73 
74 static const char *qcom_scm_convention_names[] = {
75 	[SMC_CONVENTION_UNKNOWN] = "unknown",
76 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
77 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
78 	[SMC_CONVENTION_LEGACY] = "smc legacy",
79 };
80 
81 static struct qcom_scm *__scm;
82 
83 static int qcom_scm_clk_enable(void)
84 {
85 	int ret;
86 
87 	ret = clk_prepare_enable(__scm->core_clk);
88 	if (ret)
89 		goto bail;
90 
91 	ret = clk_prepare_enable(__scm->iface_clk);
92 	if (ret)
93 		goto disable_core;
94 
95 	ret = clk_prepare_enable(__scm->bus_clk);
96 	if (ret)
97 		goto disable_iface;
98 
99 	return 0;
100 
101 disable_iface:
102 	clk_disable_unprepare(__scm->iface_clk);
103 disable_core:
104 	clk_disable_unprepare(__scm->core_clk);
105 bail:
106 	return ret;
107 }
108 
109 static void qcom_scm_clk_disable(void)
110 {
111 	clk_disable_unprepare(__scm->core_clk);
112 	clk_disable_unprepare(__scm->iface_clk);
113 	clk_disable_unprepare(__scm->bus_clk);
114 }
115 
116 static int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
117 					u32 cmd_id);
118 
119 enum qcom_scm_convention qcom_scm_convention;
120 static bool has_queried __read_mostly;
121 static DEFINE_SPINLOCK(query_lock);
122 
123 static void __query_convention(void)
124 {
125 	unsigned long flags;
126 	struct qcom_scm_desc desc = {
127 		.svc = QCOM_SCM_SVC_INFO,
128 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
129 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
130 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
131 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
132 		.arginfo = QCOM_SCM_ARGS(1),
133 		.owner = ARM_SMCCC_OWNER_SIP,
134 	};
135 	struct qcom_scm_res res;
136 	int ret;
137 
138 	spin_lock_irqsave(&query_lock, flags);
139 	if (has_queried)
140 		goto out;
141 
142 	qcom_scm_convention = SMC_CONVENTION_ARM_64;
143 	// Device isn't required as there is only one argument - no device
144 	// needed to dma_map_single to secure world
145 	ret = scm_smc_call(NULL, &desc, &res, true);
146 	if (!ret && res.result[0] == 1)
147 		goto out;
148 
149 	qcom_scm_convention = SMC_CONVENTION_ARM_32;
150 	ret = scm_smc_call(NULL, &desc, &res, true);
151 	if (!ret && res.result[0] == 1)
152 		goto out;
153 
154 	qcom_scm_convention = SMC_CONVENTION_LEGACY;
155 out:
156 	has_queried = true;
157 	spin_unlock_irqrestore(&query_lock, flags);
158 	pr_info("qcom_scm: convention: %s\n",
159 		qcom_scm_convention_names[qcom_scm_convention]);
160 }
161 
162 static inline enum qcom_scm_convention __get_convention(void)
163 {
164 	if (unlikely(!has_queried))
165 		__query_convention();
166 	return qcom_scm_convention;
167 }
168 
169 /**
170  * qcom_scm_call() - Invoke a syscall in the secure world
171  * @dev:	device
172  * @svc_id:	service identifier
173  * @cmd_id:	command identifier
174  * @desc:	Descriptor structure containing arguments and return values
175  *
176  * Sends a command to the SCM and waits for the command to finish processing.
177  * This should *only* be called in pre-emptible context.
178  */
179 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
180 			 struct qcom_scm_res *res)
181 {
182 	might_sleep();
183 	switch (__get_convention()) {
184 	case SMC_CONVENTION_ARM_32:
185 	case SMC_CONVENTION_ARM_64:
186 		return scm_smc_call(dev, desc, res, false);
187 	case SMC_CONVENTION_LEGACY:
188 		return scm_legacy_call(dev, desc, res);
189 	default:
190 		pr_err("Unknown current SCM calling convention.\n");
191 		return -EINVAL;
192 	}
193 }
194 
195 /**
196  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
197  * @dev:	device
198  * @svc_id:	service identifier
199  * @cmd_id:	command identifier
200  * @desc:	Descriptor structure containing arguments and return values
201  * @res:	Structure containing results from SMC/HVC call
202  *
203  * Sends a command to the SCM and waits for the command to finish processing.
204  * This can be called in atomic context.
205  */
206 static int qcom_scm_call_atomic(struct device *dev,
207 				const struct qcom_scm_desc *desc,
208 				struct qcom_scm_res *res)
209 {
210 	switch (__get_convention()) {
211 	case SMC_CONVENTION_ARM_32:
212 	case SMC_CONVENTION_ARM_64:
213 		return scm_smc_call(dev, desc, res, true);
214 	case SMC_CONVENTION_LEGACY:
215 		return scm_legacy_call_atomic(dev, desc, res);
216 	default:
217 		pr_err("Unknown current SCM calling convention.\n");
218 		return -EINVAL;
219 	}
220 }
221 
222 static int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
223 					u32 cmd_id)
224 {
225 	int ret;
226 	struct qcom_scm_desc desc = {
227 		.svc = QCOM_SCM_SVC_INFO,
228 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
229 		.owner = ARM_SMCCC_OWNER_SIP,
230 	};
231 	struct qcom_scm_res res;
232 
233 	desc.arginfo = QCOM_SCM_ARGS(1);
234 	switch (__get_convention()) {
235 	case SMC_CONVENTION_ARM_32:
236 	case SMC_CONVENTION_ARM_64:
237 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
238 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
239 		break;
240 	case SMC_CONVENTION_LEGACY:
241 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
242 		break;
243 	default:
244 		pr_err("Unknown SMC convention being used\n");
245 		return -EINVAL;
246 	}
247 
248 	ret = qcom_scm_call(dev, &desc, &res);
249 
250 	return ret ? : res.result[0];
251 }
252 
253 /**
254  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
255  * @entry: Entry point function for the cpus
256  * @cpus: The cpumask of cpus that will use the entry point
257  *
258  * Set the Linux entry point for the SCM to transfer control to when coming
259  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
260  */
261 int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
262 {
263 	int ret;
264 	int flags = 0;
265 	int cpu;
266 	struct qcom_scm_desc desc = {
267 		.svc = QCOM_SCM_SVC_BOOT,
268 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
269 		.arginfo = QCOM_SCM_ARGS(2),
270 	};
271 
272 	/*
273 	 * Reassign only if we are switching from hotplug entry point
274 	 * to cpuidle entry point or vice versa.
275 	 */
276 	for_each_cpu(cpu, cpus) {
277 		if (entry == qcom_scm_wb[cpu].entry)
278 			continue;
279 		flags |= qcom_scm_wb[cpu].flag;
280 	}
281 
282 	/* No change in entry function */
283 	if (!flags)
284 		return 0;
285 
286 	desc.args[0] = flags;
287 	desc.args[1] = virt_to_phys(entry);
288 
289 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
290 	if (!ret) {
291 		for_each_cpu(cpu, cpus)
292 			qcom_scm_wb[cpu].entry = entry;
293 	}
294 
295 	return ret;
296 }
297 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
298 
299 /**
300  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
301  * @entry: Entry point function for the cpus
302  * @cpus: The cpumask of cpus that will use the entry point
303  *
304  * Set the cold boot address of the cpus. Any cpu outside the supported
305  * range would be removed from the cpu present mask.
306  */
307 int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
308 {
309 	int flags = 0;
310 	int cpu;
311 	int scm_cb_flags[] = {
312 		QCOM_SCM_FLAG_COLDBOOT_CPU0,
313 		QCOM_SCM_FLAG_COLDBOOT_CPU1,
314 		QCOM_SCM_FLAG_COLDBOOT_CPU2,
315 		QCOM_SCM_FLAG_COLDBOOT_CPU3,
316 	};
317 	struct qcom_scm_desc desc = {
318 		.svc = QCOM_SCM_SVC_BOOT,
319 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
320 		.arginfo = QCOM_SCM_ARGS(2),
321 		.owner = ARM_SMCCC_OWNER_SIP,
322 	};
323 
324 	if (!cpus || (cpus && cpumask_empty(cpus)))
325 		return -EINVAL;
326 
327 	for_each_cpu(cpu, cpus) {
328 		if (cpu < ARRAY_SIZE(scm_cb_flags))
329 			flags |= scm_cb_flags[cpu];
330 		else
331 			set_cpu_present(cpu, false);
332 	}
333 
334 	desc.args[0] = flags;
335 	desc.args[1] = virt_to_phys(entry);
336 
337 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
338 }
339 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
340 
341 /**
342  * qcom_scm_cpu_power_down() - Power down the cpu
343  * @flags - Flags to flush cache
344  *
345  * This is an end point to power down cpu. If there was a pending interrupt,
346  * the control would return from this function, otherwise, the cpu jumps to the
347  * warm boot entry point set for this cpu upon reset.
348  */
349 void qcom_scm_cpu_power_down(u32 flags)
350 {
351 	struct qcom_scm_desc desc = {
352 		.svc = QCOM_SCM_SVC_BOOT,
353 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
354 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
355 		.arginfo = QCOM_SCM_ARGS(1),
356 		.owner = ARM_SMCCC_OWNER_SIP,
357 	};
358 
359 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
360 }
361 EXPORT_SYMBOL(qcom_scm_cpu_power_down);
362 
363 int qcom_scm_set_remote_state(u32 state, u32 id)
364 {
365 	struct qcom_scm_desc desc = {
366 		.svc = QCOM_SCM_SVC_BOOT,
367 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
368 		.arginfo = QCOM_SCM_ARGS(2),
369 		.args[0] = state,
370 		.args[1] = id,
371 		.owner = ARM_SMCCC_OWNER_SIP,
372 	};
373 	struct qcom_scm_res res;
374 	int ret;
375 
376 	ret = qcom_scm_call(__scm->dev, &desc, &res);
377 
378 	return ret ? : res.result[0];
379 }
380 EXPORT_SYMBOL(qcom_scm_set_remote_state);
381 
382 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
383 {
384 	struct qcom_scm_desc desc = {
385 		.svc = QCOM_SCM_SVC_BOOT,
386 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
387 		.arginfo = QCOM_SCM_ARGS(2),
388 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
389 		.owner = ARM_SMCCC_OWNER_SIP,
390 	};
391 
392 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
393 
394 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
395 }
396 
397 static void qcom_scm_set_download_mode(bool enable)
398 {
399 	bool avail;
400 	int ret = 0;
401 
402 	avail = __qcom_scm_is_call_available(__scm->dev,
403 					     QCOM_SCM_SVC_BOOT,
404 					     QCOM_SCM_BOOT_SET_DLOAD_MODE);
405 	if (avail) {
406 		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
407 	} else if (__scm->dload_mode_addr) {
408 		ret = qcom_scm_io_writel(__scm->dload_mode_addr,
409 				enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
410 	} else {
411 		dev_err(__scm->dev,
412 			"No available mechanism for setting download mode\n");
413 	}
414 
415 	if (ret)
416 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
417 }
418 
419 /**
420  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
421  *			       state machine for a given peripheral, using the
422  *			       metadata
423  * @peripheral: peripheral id
424  * @metadata:	pointer to memory containing ELF header, program header table
425  *		and optional blob of data used for authenticating the metadata
426  *		and the rest of the firmware
427  * @size:	size of the metadata
428  *
429  * Returns 0 on success.
430  */
431 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
432 {
433 	dma_addr_t mdata_phys;
434 	void *mdata_buf;
435 	int ret;
436 	struct qcom_scm_desc desc = {
437 		.svc = QCOM_SCM_SVC_PIL,
438 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
439 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
440 		.args[0] = peripheral,
441 		.owner = ARM_SMCCC_OWNER_SIP,
442 	};
443 	struct qcom_scm_res res;
444 
445 	/*
446 	 * During the scm call memory protection will be enabled for the meta
447 	 * data blob, so make sure it's physically contiguous, 4K aligned and
448 	 * non-cachable to avoid XPU violations.
449 	 */
450 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
451 				       GFP_KERNEL);
452 	if (!mdata_buf) {
453 		dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
454 		return -ENOMEM;
455 	}
456 	memcpy(mdata_buf, metadata, size);
457 
458 	ret = qcom_scm_clk_enable();
459 	if (ret)
460 		goto free_metadata;
461 
462 	desc.args[1] = mdata_phys;
463 
464 	ret = qcom_scm_call(__scm->dev, &desc, &res);
465 
466 	qcom_scm_clk_disable();
467 
468 free_metadata:
469 	dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
470 
471 	return ret ? : res.result[0];
472 }
473 EXPORT_SYMBOL(qcom_scm_pas_init_image);
474 
475 /**
476  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
477  *			      for firmware loading
478  * @peripheral:	peripheral id
479  * @addr:	start address of memory area to prepare
480  * @size:	size of the memory area to prepare
481  *
482  * Returns 0 on success.
483  */
484 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
485 {
486 	int ret;
487 	struct qcom_scm_desc desc = {
488 		.svc = QCOM_SCM_SVC_PIL,
489 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
490 		.arginfo = QCOM_SCM_ARGS(3),
491 		.args[0] = peripheral,
492 		.args[1] = addr,
493 		.args[2] = size,
494 		.owner = ARM_SMCCC_OWNER_SIP,
495 	};
496 	struct qcom_scm_res res;
497 
498 	ret = qcom_scm_clk_enable();
499 	if (ret)
500 		return ret;
501 
502 	ret = qcom_scm_call(__scm->dev, &desc, &res);
503 	qcom_scm_clk_disable();
504 
505 	return ret ? : res.result[0];
506 }
507 EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
508 
509 /**
510  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
511  *				   and reset the remote processor
512  * @peripheral:	peripheral id
513  *
514  * Return 0 on success.
515  */
516 int qcom_scm_pas_auth_and_reset(u32 peripheral)
517 {
518 	int ret;
519 	struct qcom_scm_desc desc = {
520 		.svc = QCOM_SCM_SVC_PIL,
521 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
522 		.arginfo = QCOM_SCM_ARGS(1),
523 		.args[0] = peripheral,
524 		.owner = ARM_SMCCC_OWNER_SIP,
525 	};
526 	struct qcom_scm_res res;
527 
528 	ret = qcom_scm_clk_enable();
529 	if (ret)
530 		return ret;
531 
532 	ret = qcom_scm_call(__scm->dev, &desc, &res);
533 	qcom_scm_clk_disable();
534 
535 	return ret ? : res.result[0];
536 }
537 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
538 
539 /**
540  * qcom_scm_pas_shutdown() - Shut down the remote processor
541  * @peripheral: peripheral id
542  *
543  * Returns 0 on success.
544  */
545 int qcom_scm_pas_shutdown(u32 peripheral)
546 {
547 	int ret;
548 	struct qcom_scm_desc desc = {
549 		.svc = QCOM_SCM_SVC_PIL,
550 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
551 		.arginfo = QCOM_SCM_ARGS(1),
552 		.args[0] = peripheral,
553 		.owner = ARM_SMCCC_OWNER_SIP,
554 	};
555 	struct qcom_scm_res res;
556 
557 	ret = qcom_scm_clk_enable();
558 	if (ret)
559 		return ret;
560 
561 	ret = qcom_scm_call(__scm->dev, &desc, &res);
562 
563 	qcom_scm_clk_disable();
564 
565 	return ret ? : res.result[0];
566 }
567 EXPORT_SYMBOL(qcom_scm_pas_shutdown);
568 
569 /**
570  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
571  *			      available for the given peripherial
572  * @peripheral:	peripheral id
573  *
574  * Returns true if PAS is supported for this peripheral, otherwise false.
575  */
576 bool qcom_scm_pas_supported(u32 peripheral)
577 {
578 	int ret;
579 	struct qcom_scm_desc desc = {
580 		.svc = QCOM_SCM_SVC_PIL,
581 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
582 		.arginfo = QCOM_SCM_ARGS(1),
583 		.args[0] = peripheral,
584 		.owner = ARM_SMCCC_OWNER_SIP,
585 	};
586 	struct qcom_scm_res res;
587 
588 	ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
589 					   QCOM_SCM_PIL_PAS_IS_SUPPORTED);
590 	if (ret <= 0)
591 		return false;
592 
593 	ret = qcom_scm_call(__scm->dev, &desc, &res);
594 
595 	return ret ? false : !!res.result[0];
596 }
597 EXPORT_SYMBOL(qcom_scm_pas_supported);
598 
599 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
600 {
601 	struct qcom_scm_desc desc = {
602 		.svc = QCOM_SCM_SVC_PIL,
603 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
604 		.arginfo = QCOM_SCM_ARGS(2),
605 		.args[0] = reset,
606 		.args[1] = 0,
607 		.owner = ARM_SMCCC_OWNER_SIP,
608 	};
609 	struct qcom_scm_res res;
610 	int ret;
611 
612 	ret = qcom_scm_call(__scm->dev, &desc, &res);
613 
614 	return ret ? : res.result[0];
615 }
616 
617 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
618 				     unsigned long idx)
619 {
620 	if (idx != 0)
621 		return -EINVAL;
622 
623 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
624 }
625 
626 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
627 				       unsigned long idx)
628 {
629 	if (idx != 0)
630 		return -EINVAL;
631 
632 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
633 }
634 
635 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
636 	.assert = qcom_scm_pas_reset_assert,
637 	.deassert = qcom_scm_pas_reset_deassert,
638 };
639 
640 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
641 {
642 	struct qcom_scm_desc desc = {
643 		.svc = QCOM_SCM_SVC_IO,
644 		.cmd = QCOM_SCM_IO_READ,
645 		.arginfo = QCOM_SCM_ARGS(1),
646 		.args[0] = addr,
647 		.owner = ARM_SMCCC_OWNER_SIP,
648 	};
649 	struct qcom_scm_res res;
650 	int ret;
651 
652 
653 	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
654 	if (ret >= 0)
655 		*val = res.result[0];
656 
657 	return ret < 0 ? ret : 0;
658 }
659 EXPORT_SYMBOL(qcom_scm_io_readl);
660 
661 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
662 {
663 	struct qcom_scm_desc desc = {
664 		.svc = QCOM_SCM_SVC_IO,
665 		.cmd = QCOM_SCM_IO_WRITE,
666 		.arginfo = QCOM_SCM_ARGS(2),
667 		.args[0] = addr,
668 		.args[1] = val,
669 		.owner = ARM_SMCCC_OWNER_SIP,
670 	};
671 
672 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
673 }
674 EXPORT_SYMBOL(qcom_scm_io_writel);
675 
676 /**
677  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
678  * supports restore security config interface.
679  *
680  * Return true if restore-cfg interface is supported, false if not.
681  */
682 bool qcom_scm_restore_sec_cfg_available(void)
683 {
684 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
685 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
686 }
687 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
688 
689 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
690 {
691 	struct qcom_scm_desc desc = {
692 		.svc = QCOM_SCM_SVC_MP,
693 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
694 		.arginfo = QCOM_SCM_ARGS(2),
695 		.args[0] = device_id,
696 		.args[1] = spare,
697 		.owner = ARM_SMCCC_OWNER_SIP,
698 	};
699 	struct qcom_scm_res res;
700 	int ret;
701 
702 	ret = qcom_scm_call(__scm->dev, &desc, &res);
703 
704 	return ret ? : res.result[0];
705 }
706 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
707 
708 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
709 {
710 	struct qcom_scm_desc desc = {
711 		.svc = QCOM_SCM_SVC_MP,
712 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
713 		.arginfo = QCOM_SCM_ARGS(1),
714 		.args[0] = spare,
715 		.owner = ARM_SMCCC_OWNER_SIP,
716 	};
717 	struct qcom_scm_res res;
718 	int ret;
719 
720 	ret = qcom_scm_call(__scm->dev, &desc, &res);
721 
722 	if (size)
723 		*size = res.result[0];
724 
725 	return ret ? : res.result[1];
726 }
727 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
728 
729 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
730 {
731 	struct qcom_scm_desc desc = {
732 		.svc = QCOM_SCM_SVC_MP,
733 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
734 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
735 					 QCOM_SCM_VAL),
736 		.args[0] = addr,
737 		.args[1] = size,
738 		.args[2] = spare,
739 		.owner = ARM_SMCCC_OWNER_SIP,
740 	};
741 	int ret;
742 
743 	desc.args[0] = addr;
744 	desc.args[1] = size;
745 	desc.args[2] = spare;
746 	desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
747 				     QCOM_SCM_VAL);
748 
749 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
750 
751 	/* the pg table has been initialized already, ignore the error */
752 	if (ret == -EPERM)
753 		ret = 0;
754 
755 	return ret;
756 }
757 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
758 
759 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
760 				   u32 cp_nonpixel_start,
761 				   u32 cp_nonpixel_size)
762 {
763 	int ret;
764 	struct qcom_scm_desc desc = {
765 		.svc = QCOM_SCM_SVC_MP,
766 		.cmd = QCOM_SCM_MP_VIDEO_VAR,
767 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
768 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
769 		.args[0] = cp_start,
770 		.args[1] = cp_size,
771 		.args[2] = cp_nonpixel_start,
772 		.args[3] = cp_nonpixel_size,
773 		.owner = ARM_SMCCC_OWNER_SIP,
774 	};
775 	struct qcom_scm_res res;
776 
777 	ret = qcom_scm_call(__scm->dev, &desc, &res);
778 
779 	return ret ? : res.result[0];
780 }
781 EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
782 
783 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
784 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
785 				 phys_addr_t dest, size_t dest_sz)
786 {
787 	int ret;
788 	struct qcom_scm_desc desc = {
789 		.svc = QCOM_SCM_SVC_MP,
790 		.cmd = QCOM_SCM_MP_ASSIGN,
791 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
792 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
793 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
794 		.args[0] = mem_region,
795 		.args[1] = mem_sz,
796 		.args[2] = src,
797 		.args[3] = src_sz,
798 		.args[4] = dest,
799 		.args[5] = dest_sz,
800 		.args[6] = 0,
801 		.owner = ARM_SMCCC_OWNER_SIP,
802 	};
803 	struct qcom_scm_res res;
804 
805 	ret = qcom_scm_call(dev, &desc, &res);
806 
807 	return ret ? : res.result[0];
808 }
809 
810 /**
811  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
812  * @mem_addr: mem region whose ownership need to be reassigned
813  * @mem_sz:   size of the region.
814  * @srcvm:    vmid for current set of owners, each set bit in
815  *            flag indicate a unique owner
816  * @newvm:    array having new owners and corresponding permission
817  *            flags
818  * @dest_cnt: number of owners in next set.
819  *
820  * Return negative errno on failure or 0 on success with @srcvm updated.
821  */
822 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
823 			unsigned int *srcvm,
824 			const struct qcom_scm_vmperm *newvm,
825 			unsigned int dest_cnt)
826 {
827 	struct qcom_scm_current_perm_info *destvm;
828 	struct qcom_scm_mem_map_info *mem_to_map;
829 	phys_addr_t mem_to_map_phys;
830 	phys_addr_t dest_phys;
831 	dma_addr_t ptr_phys;
832 	size_t mem_to_map_sz;
833 	size_t dest_sz;
834 	size_t src_sz;
835 	size_t ptr_sz;
836 	int next_vm;
837 	__le32 *src;
838 	void *ptr;
839 	int ret, i, b;
840 	unsigned long srcvm_bits = *srcvm;
841 
842 	src_sz = hweight_long(srcvm_bits) * sizeof(*src);
843 	mem_to_map_sz = sizeof(*mem_to_map);
844 	dest_sz = dest_cnt * sizeof(*destvm);
845 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
846 			ALIGN(dest_sz, SZ_64);
847 
848 	ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
849 	if (!ptr)
850 		return -ENOMEM;
851 
852 	/* Fill source vmid detail */
853 	src = ptr;
854 	i = 0;
855 	for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
856 		src[i++] = cpu_to_le32(b);
857 
858 	/* Fill details of mem buff to map */
859 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
860 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
861 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
862 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
863 
864 	next_vm = 0;
865 	/* Fill details of next vmid detail */
866 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
867 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
868 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
869 		destvm->vmid = cpu_to_le32(newvm->vmid);
870 		destvm->perm = cpu_to_le32(newvm->perm);
871 		destvm->ctx = 0;
872 		destvm->ctx_size = 0;
873 		next_vm |= BIT(newvm->vmid);
874 	}
875 
876 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
877 				    ptr_phys, src_sz, dest_phys, dest_sz);
878 	dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
879 	if (ret) {
880 		dev_err(__scm->dev,
881 			"Assign memory protection call failed %d\n", ret);
882 		return -EINVAL;
883 	}
884 
885 	*srcvm = next_vm;
886 	return 0;
887 }
888 EXPORT_SYMBOL(qcom_scm_assign_mem);
889 
890 /**
891  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
892  */
893 bool qcom_scm_ocmem_lock_available(void)
894 {
895 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
896 					    QCOM_SCM_OCMEM_LOCK_CMD);
897 }
898 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
899 
900 /**
901  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
902  * region to the specified initiator
903  *
904  * @id:     tz initiator id
905  * @offset: OCMEM offset
906  * @size:   OCMEM size
907  * @mode:   access mode (WIDE/NARROW)
908  */
909 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
910 			u32 mode)
911 {
912 	struct qcom_scm_desc desc = {
913 		.svc = QCOM_SCM_SVC_OCMEM,
914 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
915 		.args[0] = id,
916 		.args[1] = offset,
917 		.args[2] = size,
918 		.args[3] = mode,
919 		.arginfo = QCOM_SCM_ARGS(4),
920 	};
921 
922 	return qcom_scm_call(__scm->dev, &desc, NULL);
923 }
924 EXPORT_SYMBOL(qcom_scm_ocmem_lock);
925 
926 /**
927  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
928  * region from the specified initiator
929  *
930  * @id:     tz initiator id
931  * @offset: OCMEM offset
932  * @size:   OCMEM size
933  */
934 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
935 {
936 	struct qcom_scm_desc desc = {
937 		.svc = QCOM_SCM_SVC_OCMEM,
938 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
939 		.args[0] = id,
940 		.args[1] = offset,
941 		.args[2] = size,
942 		.arginfo = QCOM_SCM_ARGS(3),
943 	};
944 
945 	return qcom_scm_call(__scm->dev, &desc, NULL);
946 }
947 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
948 
949 /**
950  * qcom_scm_ice_available() - Is the ICE key programming interface available?
951  *
952  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
953  *	   qcom_scm_ice_set_key() are available.
954  */
955 bool qcom_scm_ice_available(void)
956 {
957 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
958 					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
959 		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
960 					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
961 }
962 EXPORT_SYMBOL(qcom_scm_ice_available);
963 
964 /**
965  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
966  * @index: the keyslot to invalidate
967  *
968  * The UFSHCI and eMMC standards define a standard way to do this, but it
969  * doesn't work on these SoCs; only this SCM call does.
970  *
971  * It is assumed that the SoC has only one ICE instance being used, as this SCM
972  * call doesn't specify which ICE instance the keyslot belongs to.
973  *
974  * Return: 0 on success; -errno on failure.
975  */
976 int qcom_scm_ice_invalidate_key(u32 index)
977 {
978 	struct qcom_scm_desc desc = {
979 		.svc = QCOM_SCM_SVC_ES,
980 		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
981 		.arginfo = QCOM_SCM_ARGS(1),
982 		.args[0] = index,
983 		.owner = ARM_SMCCC_OWNER_SIP,
984 	};
985 
986 	return qcom_scm_call(__scm->dev, &desc, NULL);
987 }
988 EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
989 
990 /**
991  * qcom_scm_ice_set_key() - Set an inline encryption key
992  * @index: the keyslot into which to set the key
993  * @key: the key to program
994  * @key_size: the size of the key in bytes
995  * @cipher: the encryption algorithm the key is for
996  * @data_unit_size: the encryption data unit size, i.e. the size of each
997  *		    individual plaintext and ciphertext.  Given in 512-byte
998  *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
999  *
1000  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1001  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1002  *
1003  * The UFSHCI and eMMC standards define a standard way to do this, but it
1004  * doesn't work on these SoCs; only this SCM call does.
1005  *
1006  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1007  * call doesn't specify which ICE instance the keyslot belongs to.
1008  *
1009  * Return: 0 on success; -errno on failure.
1010  */
1011 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1012 			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1013 {
1014 	struct qcom_scm_desc desc = {
1015 		.svc = QCOM_SCM_SVC_ES,
1016 		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1017 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1018 					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1019 					 QCOM_SCM_VAL),
1020 		.args[0] = index,
1021 		.args[2] = key_size,
1022 		.args[3] = cipher,
1023 		.args[4] = data_unit_size,
1024 		.owner = ARM_SMCCC_OWNER_SIP,
1025 	};
1026 	void *keybuf;
1027 	dma_addr_t key_phys;
1028 	int ret;
1029 
1030 	/*
1031 	 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1032 	 * physical address that's been properly flushed.  The sanctioned way to
1033 	 * do this is by using the DMA API.  But as is best practice for crypto
1034 	 * keys, we also must wipe the key after use.  This makes kmemdup() +
1035 	 * dma_map_single() not clearly correct, since the DMA API can use
1036 	 * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1037 	 * keys is normally rare and thus not performance-critical.
1038 	 */
1039 
1040 	keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1041 				    GFP_KERNEL);
1042 	if (!keybuf)
1043 		return -ENOMEM;
1044 	memcpy(keybuf, key, key_size);
1045 	desc.args[1] = key_phys;
1046 
1047 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1048 
1049 	memzero_explicit(keybuf, key_size);
1050 
1051 	dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1052 	return ret;
1053 }
1054 EXPORT_SYMBOL(qcom_scm_ice_set_key);
1055 
1056 /**
1057  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1058  *
1059  * Return true if HDCP is supported, false if not.
1060  */
1061 bool qcom_scm_hdcp_available(void)
1062 {
1063 	int ret = qcom_scm_clk_enable();
1064 
1065 	if (ret)
1066 		return ret;
1067 
1068 	ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1069 						QCOM_SCM_HDCP_INVOKE);
1070 
1071 	qcom_scm_clk_disable();
1072 
1073 	return ret > 0;
1074 }
1075 EXPORT_SYMBOL(qcom_scm_hdcp_available);
1076 
1077 /**
1078  * qcom_scm_hdcp_req() - Send HDCP request.
1079  * @req: HDCP request array
1080  * @req_cnt: HDCP request array count
1081  * @resp: response buffer passed to SCM
1082  *
1083  * Write HDCP register(s) through SCM.
1084  */
1085 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1086 {
1087 	int ret;
1088 	struct qcom_scm_desc desc = {
1089 		.svc = QCOM_SCM_SVC_HDCP,
1090 		.cmd = QCOM_SCM_HDCP_INVOKE,
1091 		.arginfo = QCOM_SCM_ARGS(10),
1092 		.args = {
1093 			req[0].addr,
1094 			req[0].val,
1095 			req[1].addr,
1096 			req[1].val,
1097 			req[2].addr,
1098 			req[2].val,
1099 			req[3].addr,
1100 			req[3].val,
1101 			req[4].addr,
1102 			req[4].val
1103 		},
1104 		.owner = ARM_SMCCC_OWNER_SIP,
1105 	};
1106 	struct qcom_scm_res res;
1107 
1108 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1109 		return -ERANGE;
1110 
1111 	ret = qcom_scm_clk_enable();
1112 	if (ret)
1113 		return ret;
1114 
1115 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1116 	*resp = res.result[0];
1117 
1118 	qcom_scm_clk_disable();
1119 
1120 	return ret;
1121 }
1122 EXPORT_SYMBOL(qcom_scm_hdcp_req);
1123 
1124 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1125 {
1126 	struct qcom_scm_desc desc = {
1127 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1128 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1129 		.arginfo = QCOM_SCM_ARGS(2),
1130 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1131 		.args[1] = en,
1132 		.owner = ARM_SMCCC_OWNER_SIP,
1133 	};
1134 
1135 
1136 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1137 }
1138 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1139 
1140 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1141 {
1142 	struct device_node *tcsr;
1143 	struct device_node *np = dev->of_node;
1144 	struct resource res;
1145 	u32 offset;
1146 	int ret;
1147 
1148 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1149 	if (!tcsr)
1150 		return 0;
1151 
1152 	ret = of_address_to_resource(tcsr, 0, &res);
1153 	of_node_put(tcsr);
1154 	if (ret)
1155 		return ret;
1156 
1157 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1158 	if (ret < 0)
1159 		return ret;
1160 
1161 	*addr = res.start + offset;
1162 
1163 	return 0;
1164 }
1165 
1166 /**
1167  * qcom_scm_is_available() - Checks if SCM is available
1168  */
1169 bool qcom_scm_is_available(void)
1170 {
1171 	return !!__scm;
1172 }
1173 EXPORT_SYMBOL(qcom_scm_is_available);
1174 
1175 static int qcom_scm_probe(struct platform_device *pdev)
1176 {
1177 	struct qcom_scm *scm;
1178 	unsigned long clks;
1179 	int ret;
1180 
1181 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1182 	if (!scm)
1183 		return -ENOMEM;
1184 
1185 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1186 	if (ret < 0)
1187 		return ret;
1188 
1189 	clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1190 
1191 	scm->core_clk = devm_clk_get(&pdev->dev, "core");
1192 	if (IS_ERR(scm->core_clk)) {
1193 		if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1194 			return PTR_ERR(scm->core_clk);
1195 
1196 		if (clks & SCM_HAS_CORE_CLK) {
1197 			dev_err(&pdev->dev, "failed to acquire core clk\n");
1198 			return PTR_ERR(scm->core_clk);
1199 		}
1200 
1201 		scm->core_clk = NULL;
1202 	}
1203 
1204 	scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1205 	if (IS_ERR(scm->iface_clk)) {
1206 		if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1207 			return PTR_ERR(scm->iface_clk);
1208 
1209 		if (clks & SCM_HAS_IFACE_CLK) {
1210 			dev_err(&pdev->dev, "failed to acquire iface clk\n");
1211 			return PTR_ERR(scm->iface_clk);
1212 		}
1213 
1214 		scm->iface_clk = NULL;
1215 	}
1216 
1217 	scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1218 	if (IS_ERR(scm->bus_clk)) {
1219 		if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1220 			return PTR_ERR(scm->bus_clk);
1221 
1222 		if (clks & SCM_HAS_BUS_CLK) {
1223 			dev_err(&pdev->dev, "failed to acquire bus clk\n");
1224 			return PTR_ERR(scm->bus_clk);
1225 		}
1226 
1227 		scm->bus_clk = NULL;
1228 	}
1229 
1230 	scm->reset.ops = &qcom_scm_pas_reset_ops;
1231 	scm->reset.nr_resets = 1;
1232 	scm->reset.of_node = pdev->dev.of_node;
1233 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1234 	if (ret)
1235 		return ret;
1236 
1237 	/* vote for max clk rate for highest performance */
1238 	ret = clk_set_rate(scm->core_clk, INT_MAX);
1239 	if (ret)
1240 		return ret;
1241 
1242 	__scm = scm;
1243 	__scm->dev = &pdev->dev;
1244 
1245 	__query_convention();
1246 
1247 	/*
1248 	 * If requested enable "download mode", from this point on warmboot
1249 	 * will cause the the boot stages to enter download mode, unless
1250 	 * disabled below by a clean shutdown/reboot.
1251 	 */
1252 	if (download_mode)
1253 		qcom_scm_set_download_mode(true);
1254 
1255 	return 0;
1256 }
1257 
1258 static void qcom_scm_shutdown(struct platform_device *pdev)
1259 {
1260 	/* Clean shutdown, disable download mode to allow normal restart */
1261 	if (download_mode)
1262 		qcom_scm_set_download_mode(false);
1263 }
1264 
1265 static const struct of_device_id qcom_scm_dt_match[] = {
1266 	{ .compatible = "qcom,scm-apq8064",
1267 	  /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1268 	},
1269 	{ .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1270 							     SCM_HAS_IFACE_CLK |
1271 							     SCM_HAS_BUS_CLK)
1272 	},
1273 	{ .compatible = "qcom,scm-ipq4019" },
1274 	{ .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1275 	{ .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1276 	{ .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1277 							     SCM_HAS_IFACE_CLK |
1278 							     SCM_HAS_BUS_CLK)
1279 	},
1280 	{ .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1281 							     SCM_HAS_IFACE_CLK |
1282 							     SCM_HAS_BUS_CLK)
1283 	},
1284 	{ .compatible = "qcom,scm-msm8994" },
1285 	{ .compatible = "qcom,scm-msm8996" },
1286 	{ .compatible = "qcom,scm" },
1287 	{}
1288 };
1289 
1290 static struct platform_driver qcom_scm_driver = {
1291 	.driver = {
1292 		.name	= "qcom_scm",
1293 		.of_match_table = qcom_scm_dt_match,
1294 	},
1295 	.probe = qcom_scm_probe,
1296 	.shutdown = qcom_scm_shutdown,
1297 };
1298 
1299 static int __init qcom_scm_init(void)
1300 {
1301 	return platform_driver_register(&qcom_scm_driver);
1302 }
1303 subsys_initcall(qcom_scm_init);
1304