xref: /openbmc/linux/drivers/edac/skx_common.c (revision ed32f8d42cee118b075e4372a55c7739a11094b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Shared code by both skx_edac and i10nm_edac. Originally split out
5  * from the skx_edac driver.
6  *
7  * This file is linked into both skx_edac and i10nm_edac drivers. In
8  * order to avoid link errors, this file must be like a pure library
9  * without including symbols and defines which would otherwise conflict,
10  * when linked once into a module and into a built-in object, at the
11  * same time. For example, __this_module symbol references when that
12  * file is being linked into a built-in object.
13  *
14  * Copyright (c) 2018, Intel Corporation.
15  */
16 
17 #include <linux/acpi.h>
18 #include <linux/dmi.h>
19 #include <linux/adxl.h>
20 #include <acpi/nfit.h>
21 #include <asm/mce.h>
22 #include "edac_module.h"
23 #include "skx_common.h"
24 
25 static const char * const component_names[] = {
26 	[INDEX_SOCKET]	= "ProcessorSocketId",
27 	[INDEX_MEMCTRL]	= "MemoryControllerId",
28 	[INDEX_CHANNEL]	= "ChannelId",
29 	[INDEX_DIMM]	= "DimmSlotId",
30 };
31 
32 static int component_indices[ARRAY_SIZE(component_names)];
33 static int adxl_component_count;
34 static const char * const *adxl_component_names;
35 static u64 *adxl_values;
36 static char *adxl_msg;
37 
38 static char skx_msg[MSG_SIZE];
39 static skx_decode_f skx_decode;
40 static u64 skx_tolm, skx_tohm;
41 static LIST_HEAD(dev_edac_list);
42 
43 int __init skx_adxl_get(void)
44 {
45 	const char * const *names;
46 	int i, j;
47 
48 	names = adxl_get_component_names();
49 	if (!names) {
50 		skx_printk(KERN_NOTICE, "No firmware support for address translation.\n");
51 		return -ENODEV;
52 	}
53 
54 	for (i = 0; i < INDEX_MAX; i++) {
55 		for (j = 0; names[j]; j++) {
56 			if (!strcmp(component_names[i], names[j])) {
57 				component_indices[i] = j;
58 				break;
59 			}
60 		}
61 
62 		if (!names[j])
63 			goto err;
64 	}
65 
66 	adxl_component_names = names;
67 	while (*names++)
68 		adxl_component_count++;
69 
70 	adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
71 			      GFP_KERNEL);
72 	if (!adxl_values) {
73 		adxl_component_count = 0;
74 		return -ENOMEM;
75 	}
76 
77 	adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
78 	if (!adxl_msg) {
79 		adxl_component_count = 0;
80 		kfree(adxl_values);
81 		return -ENOMEM;
82 	}
83 
84 	return 0;
85 err:
86 	skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
87 		   component_names[i]);
88 	for (j = 0; names[j]; j++)
89 		skx_printk(KERN_CONT, "%s ", names[j]);
90 	skx_printk(KERN_CONT, "\n");
91 
92 	return -ENODEV;
93 }
94 
95 void __exit skx_adxl_put(void)
96 {
97 	kfree(adxl_values);
98 	kfree(adxl_msg);
99 }
100 
101 static bool skx_adxl_decode(struct decoded_addr *res)
102 {
103 	int i, len = 0;
104 
105 	if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
106 				      res->addr < BIT_ULL(32))) {
107 		edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
108 		return false;
109 	}
110 
111 	if (adxl_decode(res->addr, adxl_values)) {
112 		edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
113 		return false;
114 	}
115 
116 	res->socket  = (int)adxl_values[component_indices[INDEX_SOCKET]];
117 	res->imc     = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
118 	res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
119 	res->dimm    = (int)adxl_values[component_indices[INDEX_DIMM]];
120 
121 	for (i = 0; i < adxl_component_count; i++) {
122 		if (adxl_values[i] == ~0x0ull)
123 			continue;
124 
125 		len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
126 				adxl_component_names[i], adxl_values[i]);
127 		if (MSG_SIZE - len <= 0)
128 			break;
129 	}
130 
131 	return true;
132 }
133 
134 void skx_set_decode(skx_decode_f decode)
135 {
136 	skx_decode = decode;
137 }
138 
139 int skx_get_src_id(struct skx_dev *d, int off, u8 *id)
140 {
141 	u32 reg;
142 
143 	if (pci_read_config_dword(d->util_all, off, &reg)) {
144 		skx_printk(KERN_ERR, "Failed to read src id\n");
145 		return -ENODEV;
146 	}
147 
148 	*id = GET_BITFIELD(reg, 12, 14);
149 	return 0;
150 }
151 
152 int skx_get_node_id(struct skx_dev *d, u8 *id)
153 {
154 	u32 reg;
155 
156 	if (pci_read_config_dword(d->util_all, 0xf4, &reg)) {
157 		skx_printk(KERN_ERR, "Failed to read node id\n");
158 		return -ENODEV;
159 	}
160 
161 	*id = GET_BITFIELD(reg, 0, 2);
162 	return 0;
163 }
164 
165 static int get_width(u32 mtr)
166 {
167 	switch (GET_BITFIELD(mtr, 8, 9)) {
168 	case 0:
169 		return DEV_X4;
170 	case 1:
171 		return DEV_X8;
172 	case 2:
173 		return DEV_X16;
174 	}
175 	return DEV_UNKNOWN;
176 }
177 
178 /*
179  * We use the per-socket device @did to count how many sockets are present,
180  * and to detemine which PCI buses are associated with each socket. Allocate
181  * and build the full list of all the skx_dev structures that we need here.
182  */
183 int skx_get_all_bus_mappings(unsigned int did, int off, enum type type,
184 			     struct list_head **list)
185 {
186 	struct pci_dev *pdev, *prev;
187 	struct skx_dev *d;
188 	u32 reg;
189 	int ndev = 0;
190 
191 	prev = NULL;
192 	for (;;) {
193 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, prev);
194 		if (!pdev)
195 			break;
196 		ndev++;
197 		d = kzalloc(sizeof(*d), GFP_KERNEL);
198 		if (!d) {
199 			pci_dev_put(pdev);
200 			return -ENOMEM;
201 		}
202 
203 		if (pci_read_config_dword(pdev, off, &reg)) {
204 			kfree(d);
205 			pci_dev_put(pdev);
206 			skx_printk(KERN_ERR, "Failed to read bus idx\n");
207 			return -ENODEV;
208 		}
209 
210 		d->bus[0] = GET_BITFIELD(reg, 0, 7);
211 		d->bus[1] = GET_BITFIELD(reg, 8, 15);
212 		if (type == SKX) {
213 			d->seg = pci_domain_nr(pdev->bus);
214 			d->bus[2] = GET_BITFIELD(reg, 16, 23);
215 			d->bus[3] = GET_BITFIELD(reg, 24, 31);
216 		} else {
217 			d->seg = GET_BITFIELD(reg, 16, 23);
218 		}
219 
220 		edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
221 			 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
222 		list_add_tail(&d->list, &dev_edac_list);
223 		prev = pdev;
224 	}
225 
226 	if (list)
227 		*list = &dev_edac_list;
228 	return ndev;
229 }
230 
231 int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm)
232 {
233 	struct pci_dev *pdev;
234 	u32 reg;
235 
236 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL);
237 	if (!pdev) {
238 		skx_printk(KERN_ERR, "Can't get tolm/tohm\n");
239 		return -ENODEV;
240 	}
241 
242 	if (pci_read_config_dword(pdev, off[0], &reg)) {
243 		skx_printk(KERN_ERR, "Failed to read tolm\n");
244 		goto fail;
245 	}
246 	skx_tolm = reg;
247 
248 	if (pci_read_config_dword(pdev, off[1], &reg)) {
249 		skx_printk(KERN_ERR, "Failed to read lower tohm\n");
250 		goto fail;
251 	}
252 	skx_tohm = reg;
253 
254 	if (pci_read_config_dword(pdev, off[2], &reg)) {
255 		skx_printk(KERN_ERR, "Failed to read upper tohm\n");
256 		goto fail;
257 	}
258 	skx_tohm |= (u64)reg << 32;
259 
260 	pci_dev_put(pdev);
261 	*tolm = skx_tolm;
262 	*tohm = skx_tohm;
263 	edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm);
264 	return 0;
265 fail:
266 	pci_dev_put(pdev);
267 	return -ENODEV;
268 }
269 
270 static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add,
271 			     int minval, int maxval, const char *name)
272 {
273 	u32 val = GET_BITFIELD(reg, lobit, hibit);
274 
275 	if (val < minval || val > maxval) {
276 		edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
277 		return -EINVAL;
278 	}
279 	return val + add;
280 }
281 
282 #define numrank(reg)	skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks")
283 #define numrow(reg)	skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows")
284 #define numcol(reg)	skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols")
285 
286 int skx_get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
287 		      struct skx_imc *imc, int chan, int dimmno)
288 {
289 	int  banks = 16, ranks, rows, cols, npages;
290 	u64 size;
291 
292 	ranks = numrank(mtr);
293 	rows = numrow(mtr);
294 	cols = numcol(mtr);
295 
296 	/*
297 	 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
298 	 */
299 	size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
300 	npages = MiB_TO_PAGES(size);
301 
302 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n",
303 		 imc->mc, chan, dimmno, size, npages,
304 		 banks, 1 << ranks, rows, cols);
305 
306 	imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
307 	imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
308 	imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
309 	imc->chan[chan].dimms[dimmno].rowbits = rows;
310 	imc->chan[chan].dimms[dimmno].colbits = cols;
311 
312 	dimm->nr_pages = npages;
313 	dimm->grain = 32;
314 	dimm->dtype = get_width(mtr);
315 	dimm->mtype = MEM_DDR4;
316 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
317 	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
318 		 imc->src_id, imc->lmc, chan, dimmno);
319 
320 	return 1;
321 }
322 
323 int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
324 			int chan, int dimmno, const char *mod_str)
325 {
326 	int smbios_handle;
327 	u32 dev_handle;
328 	u16 flags;
329 	u64 size = 0;
330 
331 	dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
332 						   imc->src_id, 0);
333 
334 	smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
335 	if (smbios_handle == -EOPNOTSUPP) {
336 		pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str);
337 		goto unknown_size;
338 	}
339 
340 	if (smbios_handle < 0) {
341 		skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
342 		goto unknown_size;
343 	}
344 
345 	if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
346 		skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
347 		goto unknown_size;
348 	}
349 
350 	size = dmi_memdev_size(smbios_handle);
351 	if (size == ~0ull)
352 		skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
353 			   dev_handle, smbios_handle);
354 
355 unknown_size:
356 	dimm->nr_pages = size >> PAGE_SHIFT;
357 	dimm->grain = 32;
358 	dimm->dtype = DEV_UNKNOWN;
359 	dimm->mtype = MEM_NVDIMM;
360 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
361 
362 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
363 		 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
364 
365 	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
366 		 imc->src_id, imc->lmc, chan, dimmno);
367 
368 	return (size == 0 || size == ~0ull) ? 0 : 1;
369 }
370 
371 int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev,
372 		     const char *ctl_name, const char *mod_str,
373 		     get_dimm_config_f get_dimm_config)
374 {
375 	struct mem_ctl_info *mci;
376 	struct edac_mc_layer layers[2];
377 	struct skx_pvt *pvt;
378 	int rc;
379 
380 	/* Allocate a new MC control structure */
381 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
382 	layers[0].size = NUM_CHANNELS;
383 	layers[0].is_virt_csrow = false;
384 	layers[1].type = EDAC_MC_LAYER_SLOT;
385 	layers[1].size = NUM_DIMMS;
386 	layers[1].is_virt_csrow = true;
387 	mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
388 			    sizeof(struct skx_pvt));
389 
390 	if (unlikely(!mci))
391 		return -ENOMEM;
392 
393 	edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
394 
395 	/* Associate skx_dev and mci for future usage */
396 	imc->mci = mci;
397 	pvt = mci->pvt_info;
398 	pvt->imc = imc;
399 
400 	mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name,
401 				  imc->node_id, imc->lmc);
402 	if (!mci->ctl_name) {
403 		rc = -ENOMEM;
404 		goto fail0;
405 	}
406 
407 	mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
408 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
409 	mci->edac_cap = EDAC_FLAG_NONE;
410 	mci->mod_name = mod_str;
411 	mci->dev_name = pci_name(pdev);
412 	mci->ctl_page_to_phys = NULL;
413 
414 	rc = get_dimm_config(mci);
415 	if (rc < 0)
416 		goto fail;
417 
418 	/* Record ptr to the generic device */
419 	mci->pdev = &pdev->dev;
420 
421 	/* Add this new MC control structure to EDAC's list of MCs */
422 	if (unlikely(edac_mc_add_mc(mci))) {
423 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
424 		rc = -EINVAL;
425 		goto fail;
426 	}
427 
428 	return 0;
429 
430 fail:
431 	kfree(mci->ctl_name);
432 fail0:
433 	edac_mc_free(mci);
434 	imc->mci = NULL;
435 	return rc;
436 }
437 
438 static void skx_unregister_mci(struct skx_imc *imc)
439 {
440 	struct mem_ctl_info *mci = imc->mci;
441 
442 	if (!mci)
443 		return;
444 
445 	edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
446 
447 	/* Remove MC sysfs nodes */
448 	edac_mc_del_mc(mci->pdev);
449 
450 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
451 	kfree(mci->ctl_name);
452 	edac_mc_free(mci);
453 }
454 
455 static struct mem_ctl_info *get_mci(int src_id, int lmc)
456 {
457 	struct skx_dev *d;
458 
459 	if (lmc > NUM_IMC - 1) {
460 		skx_printk(KERN_ERR, "Bad lmc %d\n", lmc);
461 		return NULL;
462 	}
463 
464 	list_for_each_entry(d, &dev_edac_list, list) {
465 		if (d->imc[0].src_id == src_id)
466 			return d->imc[lmc].mci;
467 	}
468 
469 	skx_printk(KERN_ERR, "No mci for src_id %d lmc %d\n", src_id, lmc);
470 	return NULL;
471 }
472 
473 static void skx_mce_output_error(struct mem_ctl_info *mci,
474 				 const struct mce *m,
475 				 struct decoded_addr *res)
476 {
477 	enum hw_event_mc_err_type tp_event;
478 	char *type, *optype;
479 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
480 	bool overflow = GET_BITFIELD(m->status, 62, 62);
481 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
482 	bool recoverable;
483 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
484 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
485 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
486 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
487 
488 	recoverable = GET_BITFIELD(m->status, 56, 56);
489 
490 	if (uncorrected_error) {
491 		core_err_cnt = 1;
492 		if (ripv) {
493 			type = "FATAL";
494 			tp_event = HW_EVENT_ERR_FATAL;
495 		} else {
496 			type = "NON_FATAL";
497 			tp_event = HW_EVENT_ERR_UNCORRECTED;
498 		}
499 	} else {
500 		type = "CORRECTED";
501 		tp_event = HW_EVENT_ERR_CORRECTED;
502 	}
503 
504 	/*
505 	 * According to Intel Architecture spec vol 3B,
506 	 * Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding"
507 	 * memory errors should fit one of these masks:
508 	 *	000f 0000 1mmm cccc (binary)
509 	 *	000f 0010 1mmm cccc (binary)	[RAM used as cache]
510 	 * where:
511 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
512 	 *	    won't be shown
513 	 *	mmm = error type
514 	 *	cccc = channel
515 	 * If the mask doesn't match, report an error to the parsing logic
516 	 */
517 	if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) {
518 		optype = "Can't parse: it is not a mem";
519 	} else {
520 		switch (optypenum) {
521 		case 0:
522 			optype = "generic undef request error";
523 			break;
524 		case 1:
525 			optype = "memory read error";
526 			break;
527 		case 2:
528 			optype = "memory write error";
529 			break;
530 		case 3:
531 			optype = "addr/cmd error";
532 			break;
533 		case 4:
534 			optype = "memory scrubbing error";
535 			break;
536 		default:
537 			optype = "reserved";
538 			break;
539 		}
540 	}
541 	if (adxl_component_count) {
542 		snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
543 			 overflow ? " OVERFLOW" : "",
544 			 (uncorrected_error && recoverable) ? " recoverable" : "",
545 			 mscod, errcode, adxl_msg);
546 	} else {
547 		snprintf(skx_msg, MSG_SIZE,
548 			 "%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x",
549 			 overflow ? " OVERFLOW" : "",
550 			 (uncorrected_error && recoverable) ? " recoverable" : "",
551 			 mscod, errcode,
552 			 res->socket, res->imc, res->rank,
553 			 res->bank_group, res->bank_address, res->row, res->column);
554 	}
555 
556 	edac_dbg(0, "%s\n", skx_msg);
557 
558 	/* Call the helper to output message */
559 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
560 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
561 			     res->channel, res->dimm, -1,
562 			     optype, skx_msg);
563 }
564 
565 int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
566 			void *data)
567 {
568 	struct mce *mce = (struct mce *)data;
569 	struct decoded_addr res;
570 	struct mem_ctl_info *mci;
571 	char *type;
572 
573 	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
574 		return NOTIFY_DONE;
575 
576 	/* ignore unless this is memory related with an address */
577 	if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
578 		return NOTIFY_DONE;
579 
580 	memset(&res, 0, sizeof(res));
581 	res.addr = mce->addr;
582 
583 	if (adxl_component_count) {
584 		if (!skx_adxl_decode(&res))
585 			return NOTIFY_DONE;
586 
587 		mci = get_mci(res.socket, res.imc);
588 	} else {
589 		if (!skx_decode || !skx_decode(&res))
590 			return NOTIFY_DONE;
591 
592 		mci = res.dev->imc[res.imc].mci;
593 	}
594 
595 	if (!mci)
596 		return NOTIFY_DONE;
597 
598 	if (mce->mcgstatus & MCG_STATUS_MCIP)
599 		type = "Exception";
600 	else
601 		type = "Event";
602 
603 	skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
604 
605 	skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
606 			   "Bank %d: 0x%llx\n", mce->extcpu, type,
607 			   mce->mcgstatus, mce->bank, mce->status);
608 	skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
609 	skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
610 	skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);
611 
612 	skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
613 			   "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
614 			   mce->time, mce->socketid, mce->apicid);
615 
616 	skx_mce_output_error(mci, mce, &res);
617 
618 	return NOTIFY_DONE;
619 }
620 
621 void skx_remove(void)
622 {
623 	int i, j;
624 	struct skx_dev *d, *tmp;
625 
626 	edac_dbg(0, "\n");
627 
628 	list_for_each_entry_safe(d, tmp, &dev_edac_list, list) {
629 		list_del(&d->list);
630 		for (i = 0; i < NUM_IMC; i++) {
631 			if (d->imc[i].mci)
632 				skx_unregister_mci(&d->imc[i]);
633 
634 			if (d->imc[i].mdev)
635 				pci_dev_put(d->imc[i].mdev);
636 
637 			if (d->imc[i].mbase)
638 				iounmap(d->imc[i].mbase);
639 
640 			for (j = 0; j < NUM_CHANNELS; j++) {
641 				if (d->imc[i].chan[j].cdev)
642 					pci_dev_put(d->imc[i].chan[j].cdev);
643 			}
644 		}
645 		if (d->util_all)
646 			pci_dev_put(d->util_all);
647 		if (d->sad_all)
648 			pci_dev_put(d->sad_all);
649 		if (d->uracu)
650 			pci_dev_put(d->uracu);
651 
652 		kfree(d);
653 	}
654 }
655