xref: /openbmc/linux/drivers/edac/i3000_edac.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Intel 3000/3010 Memory Controller kernel module
3  * Copyright (C) 2007 Akamai Technologies, Inc.
4  * Shamelessly copied from:
5  * 	Intel D82875P Memory Controller kernel module
6  * 	(C) 2003 Linux Networx (http://lnxi.com)
7  *
8  * This file may be distributed under the terms of the
9  * GNU General Public License.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/slab.h>
17 #include "edac_core.h"
18 
19 #define I3000_REVISION		"1.1"
20 
21 #define EDAC_MOD_STR		"i3000_edac"
22 
23 #define I3000_RANKS		8
24 #define I3000_RANKS_PER_CHANNEL	4
25 #define I3000_CHANNELS		2
26 
27 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28 
29 #define I3000_MCHBAR		0x44	/* MCH Memory Mapped Register BAR */
30 #define I3000_MCHBAR_MASK	0xffffc000
31 #define I3000_MMR_WINDOW_SIZE	16384
32 
33 #define I3000_EDEAP		0x70	/* Extended DRAM Error Address Pointer (8b)
34 					 *
35 					 * 7:1   reserved
36 					 * 0     bit 32 of address
37 					 */
38 #define I3000_DEAP		0x58	/* DRAM Error Address Pointer (32b)
39 					 *
40 					 * 31:7  address
41 					 * 6:1   reserved
42 					 * 0     Error channel 0/1
43 					 */
44 #define I3000_DEAP_GRAIN	(1 << 7)
45 #define I3000_DEAP_PFN(edeap, deap)	((((edeap) & 1) << (32 - PAGE_SHIFT)) | \
46 					((deap) >> PAGE_SHIFT))
47 #define I3000_DEAP_OFFSET(deap)		((deap) & ~(I3000_DEAP_GRAIN-1) & ~PAGE_MASK)
48 #define I3000_DEAP_CHANNEL(deap)	((deap) & 1)
49 
50 #define I3000_DERRSYN		0x5c	/* DRAM Error Syndrome (8b)
51 					 *
52 					 *  7:0  DRAM ECC Syndrome
53 					 */
54 
55 #define I3000_ERRSTS		0xc8	/* Error Status Register (16b)
56 					 *
57 					 * 15:12 reserved
58 					 * 11    MCH Thermal Sensor Event for SMI/SCI/SERR
59 					 * 10    reserved
60 					 *  9    LOCK to non-DRAM Memory Flag (LCKF)
61 					 *  8    Received Refresh Timeout Flag (RRTOF)
62 					 *  7:2  reserved
63 					 *  1    Multiple-bit DRAM ECC Error Flag (DMERR)
64 					 *  0    Single-bit DRAM ECC Error Flag (DSERR)
65 					 */
66 #define I3000_ERRSTS_BITS	0x0b03	/* bits which indicate errors */
67 #define I3000_ERRSTS_UE		0x0002
68 #define I3000_ERRSTS_CE		0x0001
69 
70 #define I3000_ERRCMD		0xca	/* Error Command (16b)
71 					 *
72 					 * 15:12 reserved
73 					 * 11    SERR on MCH Thermal Sensor Event (TSESERR)
74 					 * 10    reserved
75 					 *  9    SERR on LOCK to non-DRAM Memory (LCKERR)
76 					 *  8    SERR on DRAM Refresh Timeout (DRTOERR)
77 					 *  7:2  reserved
78 					 *  1    SERR Multiple-Bit DRAM ECC Error (DMERR)
79 					 *  0    SERR on Single-Bit ECC Error (DSERR)
80 					 */
81 
82 /* Intel  MMIO register space - device 0 function 0 - MMR space */
83 
84 #define I3000_DRB_SHIFT 25	/* 32MiB grain */
85 
86 #define I3000_C0DRB		0x100	/* Channel 0 DRAM Rank Boundary (8b x 4)
87 					 *
88 					 * 7:0   Channel 0 DRAM Rank Boundary Address
89 					 */
90 #define I3000_C1DRB		0x180	/* Channel 1 DRAM Rank Boundary (8b x 4)
91 					 *
92 					 * 7:0   Channel 1 DRAM Rank Boundary Address
93 					 */
94 
95 #define I3000_C0DRA		0x108	/* Channel 0 DRAM Rank Attribute (8b x 2)
96 					 *
97 					 * 7     reserved
98 					 * 6:4   DRAM odd Rank Attribute
99 					 * 3     reserved
100 					 * 2:0   DRAM even Rank Attribute
101 					 *
102 					 * Each attribute defines the page
103 					 * size of the corresponding rank:
104 					 *     000: unpopulated
105 					 *     001: reserved
106 					 *     010: 4 KB
107 					 *     011: 8 KB
108 					 *     100: 16 KB
109 					 *     Others: reserved
110 					 */
111 #define I3000_C1DRA		0x188	/* Channel 1 DRAM Rank Attribute (8b x 2) */
112 #define ODD_RANK_ATTRIB(dra) (((dra) & 0x70) >> 4)
113 #define EVEN_RANK_ATTRIB(dra) ((dra) & 0x07)
114 
115 #define I3000_C0DRC0		0x120	/* DRAM Controller Mode 0 (32b)
116 					 *
117 					 * 31:30 reserved
118 					 * 29    Initialization Complete (IC)
119 					 * 28:11 reserved
120 					 * 10:8  Refresh Mode Select (RMS)
121 					 * 7     reserved
122 					 * 6:4   Mode Select (SMS)
123 					 * 3:2   reserved
124 					 * 1:0   DRAM Type (DT)
125 					 */
126 
127 #define I3000_C0DRC1		0x124	/* DRAM Controller Mode 1 (32b)
128 					 *
129 					 * 31    Enhanced Addressing Enable (ENHADE)
130 					 * 30:0  reserved
131 					 */
132 
133 enum i3000p_chips {
134 	I3000 = 0,
135 };
136 
137 struct i3000_dev_info {
138 	const char *ctl_name;
139 };
140 
141 struct i3000_error_info {
142 	u16 errsts;
143 	u8 derrsyn;
144 	u8 edeap;
145 	u32 deap;
146 	u16 errsts2;
147 };
148 
149 static const struct i3000_dev_info i3000_devs[] = {
150 	[I3000] = {
151 		.ctl_name = "i3000"},
152 };
153 
154 static struct pci_dev *mci_pdev;
155 static int i3000_registered = 1;
156 static struct edac_pci_ctl_info *i3000_pci;
157 
158 static void i3000_get_error_info(struct mem_ctl_info *mci,
159 				 struct i3000_error_info *info)
160 {
161 	struct pci_dev *pdev;
162 
163 	pdev = to_pci_dev(mci->dev);
164 
165 	/*
166 	 * This is a mess because there is no atomic way to read all the
167 	 * registers at once and the registers can transition from CE being
168 	 * overwritten by UE.
169 	 */
170 	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
171 	if (!(info->errsts & I3000_ERRSTS_BITS))
172 		return;
173 	pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
174 	pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
175 	pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
176 	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
177 
178 	/*
179 	 * If the error is the same for both reads then the first set
180 	 * of reads is valid.  If there is a change then there is a CE
181 	 * with no info and the second set of reads is valid and
182 	 * should be UE info.
183 	 */
184 	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
185 		pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
186 		pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
187 		pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
188 	}
189 
190 	/* Clear any error bits.
191 	 * (Yes, we really clear bits by writing 1 to them.)
192 	 */
193 	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
194 			 I3000_ERRSTS_BITS);
195 }
196 
197 static int i3000_process_error_info(struct mem_ctl_info *mci,
198 				struct i3000_error_info *info,
199 				int handle_errors)
200 {
201 	int row, multi_chan;
202 	int pfn, offset, channel;
203 
204 	multi_chan = mci->csrows[0].nr_channels - 1;
205 
206 	if (!(info->errsts & I3000_ERRSTS_BITS))
207 		return 0;
208 
209 	if (!handle_errors)
210 		return 1;
211 
212 	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
213 		edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
214 		info->errsts = info->errsts2;
215 	}
216 
217 	pfn = I3000_DEAP_PFN(info->edeap, info->deap);
218 	offset = I3000_DEAP_OFFSET(info->deap);
219 	channel = I3000_DEAP_CHANNEL(info->deap);
220 
221 	row = edac_mc_find_csrow_by_page(mci, pfn);
222 
223 	if (info->errsts & I3000_ERRSTS_UE)
224 		edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
225 	else
226 		edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
227 				multi_chan ? channel : 0, "i3000 CE");
228 
229 	return 1;
230 }
231 
232 static void i3000_check(struct mem_ctl_info *mci)
233 {
234 	struct i3000_error_info info;
235 
236 	debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
237 	i3000_get_error_info(mci, &info);
238 	i3000_process_error_info(mci, &info, 1);
239 }
240 
241 static int i3000_is_interleaved(const unsigned char *c0dra,
242 				const unsigned char *c1dra,
243 				const unsigned char *c0drb,
244 				const unsigned char *c1drb)
245 {
246 	int i;
247 
248 	/* If the channels aren't populated identically then
249 	 * we're not interleaved.
250 	 */
251 	for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
252 		if (ODD_RANK_ATTRIB(c0dra[i]) != ODD_RANK_ATTRIB(c1dra[i]) ||
253 			EVEN_RANK_ATTRIB(c0dra[i]) !=
254 						EVEN_RANK_ATTRIB(c1dra[i]))
255 			return 0;
256 
257 	/* If the rank boundaries for the two channels are different
258 	 * then we're not interleaved.
259 	 */
260 	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
261 		if (c0drb[i] != c1drb[i])
262 			return 0;
263 
264 	return 1;
265 }
266 
267 static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
268 {
269 	int rc;
270 	int i;
271 	struct mem_ctl_info *mci = NULL;
272 	unsigned long last_cumul_size;
273 	int interleaved, nr_channels;
274 	unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
275 	unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
276 	unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
277 	unsigned long mchbar;
278 	void __iomem *window;
279 
280 	debugf0("MC: %s()\n", __func__);
281 
282 	pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
283 	mchbar &= I3000_MCHBAR_MASK;
284 	window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
285 	if (!window) {
286 		printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
287 			mchbar);
288 		return -ENODEV;
289 	}
290 
291 	c0dra[0] = readb(window + I3000_C0DRA + 0);	/* ranks 0,1 */
292 	c0dra[1] = readb(window + I3000_C0DRA + 1);	/* ranks 2,3 */
293 	c1dra[0] = readb(window + I3000_C1DRA + 0);	/* ranks 0,1 */
294 	c1dra[1] = readb(window + I3000_C1DRA + 1);	/* ranks 2,3 */
295 
296 	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
297 		c0drb[i] = readb(window + I3000_C0DRB + i);
298 		c1drb[i] = readb(window + I3000_C1DRB + i);
299 	}
300 
301 	iounmap(window);
302 
303 	/* Figure out how many channels we have.
304 	 *
305 	 * If we have what the datasheet calls "asymmetric channels"
306 	 * (essentially the same as what was called "virtual single
307 	 * channel mode" in the i82875) then it's a single channel as
308 	 * far as EDAC is concerned.
309 	 */
310 	interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
311 	nr_channels = interleaved ? 2 : 1;
312 	mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
313 	if (!mci)
314 		return -ENOMEM;
315 
316 	debugf3("MC: %s(): init mci\n", __func__);
317 
318 	mci->dev = &pdev->dev;
319 	mci->mtype_cap = MEM_FLAG_DDR2;
320 
321 	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
322 	mci->edac_cap = EDAC_FLAG_SECDED;
323 
324 	mci->mod_name = EDAC_MOD_STR;
325 	mci->mod_ver = I3000_REVISION;
326 	mci->ctl_name = i3000_devs[dev_idx].ctl_name;
327 	mci->dev_name = pci_name(pdev);
328 	mci->edac_check = i3000_check;
329 	mci->ctl_page_to_phys = NULL;
330 
331 	/*
332 	 * The dram rank boundary (DRB) reg values are boundary addresses
333 	 * for each DRAM rank with a granularity of 32MB.  DRB regs are
334 	 * cumulative; the last one will contain the total memory
335 	 * contained in all ranks.
336 	 *
337 	 * If we're in interleaved mode then we're only walking through
338 	 * the ranks of controller 0, so we double all the values we see.
339 	 */
340 	for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
341 		u8 value;
342 		u32 cumul_size;
343 		struct csrow_info *csrow = &mci->csrows[i];
344 
345 		value = drb[i];
346 		cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
347 		if (interleaved)
348 			cumul_size <<= 1;
349 		debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
350 			__func__, i, cumul_size);
351 		if (cumul_size == last_cumul_size) {
352 			csrow->mtype = MEM_EMPTY;
353 			continue;
354 		}
355 
356 		csrow->first_page = last_cumul_size;
357 		csrow->last_page = cumul_size - 1;
358 		csrow->nr_pages = cumul_size - last_cumul_size;
359 		last_cumul_size = cumul_size;
360 		csrow->grain = I3000_DEAP_GRAIN;
361 		csrow->mtype = MEM_DDR2;
362 		csrow->dtype = DEV_UNKNOWN;
363 		csrow->edac_mode = EDAC_UNKNOWN;
364 	}
365 
366 	/* Clear any error bits.
367 	 * (Yes, we really clear bits by writing 1 to them.)
368 	 */
369 	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
370 			 I3000_ERRSTS_BITS);
371 
372 	rc = -ENODEV;
373 	if (edac_mc_add_mc(mci)) {
374 		debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
375 		goto fail;
376 	}
377 
378 	/* allocating generic PCI control info */
379 	i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
380 	if (!i3000_pci) {
381 		printk(KERN_WARNING
382 			"%s(): Unable to create PCI control\n",
383 			__func__);
384 		printk(KERN_WARNING
385 			"%s(): PCI error report via EDAC not setup\n",
386 			__func__);
387 	}
388 
389 	/* get this far and it's successful */
390 	debugf3("MC: %s(): success\n", __func__);
391 	return 0;
392 
393       fail:
394 	if (mci)
395 		edac_mc_free(mci);
396 
397 	return rc;
398 }
399 
400 /* returns count (>= 0), or negative on error */
401 static int __devinit i3000_init_one(struct pci_dev *pdev,
402 				const struct pci_device_id *ent)
403 {
404 	int rc;
405 
406 	debugf0("MC: %s()\n", __func__);
407 
408 	if (pci_enable_device(pdev) < 0)
409 		return -EIO;
410 
411 	rc = i3000_probe1(pdev, ent->driver_data);
412 	if (mci_pdev == NULL)
413 		mci_pdev = pci_dev_get(pdev);
414 
415 	return rc;
416 }
417 
418 static void __devexit i3000_remove_one(struct pci_dev *pdev)
419 {
420 	struct mem_ctl_info *mci;
421 
422 	debugf0("%s()\n", __func__);
423 
424 	if (i3000_pci)
425 		edac_pci_release_generic_ctl(i3000_pci);
426 
427 	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
428 		return;
429 
430 	edac_mc_free(mci);
431 }
432 
433 static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
434 	{
435 	 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
436 	 I3000},
437 	{
438 	 0,
439 	 }			/* 0 terminated list. */
440 };
441 
442 MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
443 
444 static struct pci_driver i3000_driver = {
445 	.name = EDAC_MOD_STR,
446 	.probe = i3000_init_one,
447 	.remove = __devexit_p(i3000_remove_one),
448 	.id_table = i3000_pci_tbl,
449 };
450 
451 static int __init i3000_init(void)
452 {
453 	int pci_rc;
454 
455 	debugf3("MC: %s()\n", __func__);
456 	pci_rc = pci_register_driver(&i3000_driver);
457 	if (pci_rc < 0)
458 		goto fail0;
459 
460 	if (mci_pdev == NULL) {
461 		i3000_registered = 0;
462 		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
463 					PCI_DEVICE_ID_INTEL_3000_HB, NULL);
464 		if (!mci_pdev) {
465 			debugf0("i3000 pci_get_device fail\n");
466 			pci_rc = -ENODEV;
467 			goto fail1;
468 		}
469 
470 		pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
471 		if (pci_rc < 0) {
472 			debugf0("i3000 init fail\n");
473 			pci_rc = -ENODEV;
474 			goto fail1;
475 		}
476 	}
477 
478 	return 0;
479 
480 fail1:
481 	pci_unregister_driver(&i3000_driver);
482 
483 fail0:
484 	if (mci_pdev)
485 		pci_dev_put(mci_pdev);
486 
487 	return pci_rc;
488 }
489 
490 static void __exit i3000_exit(void)
491 {
492 	debugf3("MC: %s()\n", __func__);
493 
494 	pci_unregister_driver(&i3000_driver);
495 	if (!i3000_registered) {
496 		i3000_remove_one(mci_pdev);
497 		pci_dev_put(mci_pdev);
498 	}
499 }
500 
501 module_init(i3000_init);
502 module_exit(i3000_exit);
503 
504 MODULE_LICENSE("GPL");
505 MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
506 MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
507