1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/sysdev.h> 29 #include <linux/ctype.h> 30 #include <linux/edac.h> 31 #include <asm/uaccess.h> 32 #include <asm/page.h> 33 #include <asm/edac.h> 34 #include "edac_core.h" 35 #include "edac_module.h" 36 37 /* lock to memory controller's control array */ 38 static DEFINE_MUTEX(mem_ctls_mutex); 39 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices); 40 41 #ifdef CONFIG_EDAC_DEBUG 42 43 static void edac_mc_dump_channel(struct channel_info *chan) 44 { 45 debugf4("\tchannel = %p\n", chan); 46 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx); 47 debugf4("\tchannel->ce_count = %d\n", chan->ce_count); 48 debugf4("\tchannel->label = '%s'\n", chan->label); 49 debugf4("\tchannel->csrow = %p\n\n", chan->csrow); 50 } 51 52 static void edac_mc_dump_csrow(struct csrow_info *csrow) 53 { 54 debugf4("\tcsrow = %p\n", csrow); 55 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx); 56 debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page); 57 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page); 58 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask); 59 debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages); 60 debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels); 61 debugf4("\tcsrow->channels = %p\n", csrow->channels); 62 debugf4("\tcsrow->mci = %p\n\n", csrow->mci); 63 } 64 65 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 66 { 67 debugf3("\tmci = %p\n", mci); 68 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap); 69 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 70 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap); 71 debugf4("\tmci->edac_check = %p\n", mci->edac_check); 72 debugf3("\tmci->nr_csrows = %d, csrows = %p\n", 73 mci->nr_csrows, mci->csrows); 74 debugf3("\tdev = %p\n", mci->dev); 75 debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name); 76 debugf3("\tpvt_info = %p\n\n", mci->pvt_info); 77 } 78 79 #endif /* CONFIG_EDAC_DEBUG */ 80 81 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'. 82 * Adjust 'ptr' so that its alignment is at least as stringent as what the 83 * compiler would provide for X and return the aligned result. 84 * 85 * If 'size' is a constant, the compiler will optimize this whole function 86 * down to either a no-op or the addition of a constant to the value of 'ptr'. 87 */ 88 void *edac_align_ptr(void *ptr, unsigned size) 89 { 90 unsigned align, r; 91 92 /* Here we assume that the alignment of a "long long" is the most 93 * stringent alignment that the compiler will ever provide by default. 94 * As far as I know, this is a reasonable assumption. 95 */ 96 if (size > sizeof(long)) 97 align = sizeof(long long); 98 else if (size > sizeof(int)) 99 align = sizeof(long); 100 else if (size > sizeof(short)) 101 align = sizeof(int); 102 else if (size > sizeof(char)) 103 align = sizeof(short); 104 else 105 return (char *)ptr; 106 107 r = size % align; 108 109 if (r == 0) 110 return (char *)ptr; 111 112 return (void *)(((unsigned long)ptr) + align - r); 113 } 114 115 /** 116 * edac_mc_alloc: Allocate a struct mem_ctl_info structure 117 * @size_pvt: size of private storage needed 118 * @nr_csrows: Number of CWROWS needed for this MC 119 * @nr_chans: Number of channels for the MC 120 * 121 * Everything is kmalloc'ed as one big chunk - more efficient. 122 * Only can be used if all structures have the same lifetime - otherwise 123 * you have to allocate and initialize your own structures. 124 * 125 * Use edac_mc_free() to free mc structures allocated by this function. 126 * 127 * Returns: 128 * NULL allocation failed 129 * struct mem_ctl_info pointer 130 */ 131 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows, 132 unsigned nr_chans, int edac_index) 133 { 134 struct mem_ctl_info *mci; 135 struct csrow_info *csi, *csrow; 136 struct channel_info *chi, *chp, *chan; 137 void *pvt; 138 unsigned size; 139 int row, chn; 140 int err; 141 142 /* Figure out the offsets of the various items from the start of an mc 143 * structure. We want the alignment of each item to be at least as 144 * stringent as what the compiler would provide if we could simply 145 * hardcode everything into a single struct. 146 */ 147 mci = (struct mem_ctl_info *)0; 148 csi = edac_align_ptr(&mci[1], sizeof(*csi)); 149 chi = edac_align_ptr(&csi[nr_csrows], sizeof(*chi)); 150 pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt); 151 size = ((unsigned long)pvt) + sz_pvt; 152 153 mci = kzalloc(size, GFP_KERNEL); 154 if (mci == NULL) 155 return NULL; 156 157 /* Adjust pointers so they point within the memory we just allocated 158 * rather than an imaginary chunk of memory located at address 0. 159 */ 160 csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi)); 161 chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi)); 162 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 163 164 /* setup index and various internal pointers */ 165 mci->mc_idx = edac_index; 166 mci->csrows = csi; 167 mci->pvt_info = pvt; 168 mci->nr_csrows = nr_csrows; 169 170 for (row = 0; row < nr_csrows; row++) { 171 csrow = &csi[row]; 172 csrow->csrow_idx = row; 173 csrow->mci = mci; 174 csrow->nr_channels = nr_chans; 175 chp = &chi[row * nr_chans]; 176 csrow->channels = chp; 177 178 for (chn = 0; chn < nr_chans; chn++) { 179 chan = &chp[chn]; 180 chan->chan_idx = chn; 181 chan->csrow = csrow; 182 } 183 } 184 185 mci->op_state = OP_ALLOC; 186 187 /* 188 * Initialize the 'root' kobj for the edac_mc controller 189 */ 190 err = edac_mc_register_sysfs_main_kobj(mci); 191 if (err) { 192 kfree(mci); 193 return NULL; 194 } 195 196 /* at this point, the root kobj is valid, and in order to 197 * 'free' the object, then the function: 198 * edac_mc_unregister_sysfs_main_kobj() must be called 199 * which will perform kobj unregistration and the actual free 200 * will occur during the kobject callback operation 201 */ 202 return mci; 203 } 204 EXPORT_SYMBOL_GPL(edac_mc_alloc); 205 206 /** 207 * edac_mc_free 208 * 'Free' a previously allocated 'mci' structure 209 * @mci: pointer to a struct mem_ctl_info structure 210 */ 211 void edac_mc_free(struct mem_ctl_info *mci) 212 { 213 edac_mc_unregister_sysfs_main_kobj(mci); 214 } 215 EXPORT_SYMBOL_GPL(edac_mc_free); 216 217 218 /* 219 * find_mci_by_dev 220 * 221 * scan list of controllers looking for the one that manages 222 * the 'dev' device 223 */ 224 static struct mem_ctl_info *find_mci_by_dev(struct device *dev) 225 { 226 struct mem_ctl_info *mci; 227 struct list_head *item; 228 229 debugf3("%s()\n", __func__); 230 231 list_for_each(item, &mc_devices) { 232 mci = list_entry(item, struct mem_ctl_info, link); 233 234 if (mci->dev == dev) 235 return mci; 236 } 237 238 return NULL; 239 } 240 241 /* 242 * handler for EDAC to check if NMI type handler has asserted interrupt 243 */ 244 static int edac_mc_assert_error_check_and_clear(void) 245 { 246 int old_state; 247 248 if (edac_op_state == EDAC_OPSTATE_POLL) 249 return 1; 250 251 old_state = edac_err_assert; 252 edac_err_assert = 0; 253 254 return old_state; 255 } 256 257 /* 258 * edac_mc_workq_function 259 * performs the operation scheduled by a workq request 260 */ 261 static void edac_mc_workq_function(struct work_struct *work_req) 262 { 263 struct delayed_work *d_work = (struct delayed_work *)work_req; 264 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 265 266 mutex_lock(&mem_ctls_mutex); 267 268 /* if this control struct has movd to offline state, we are done */ 269 if (mci->op_state == OP_OFFLINE) { 270 mutex_unlock(&mem_ctls_mutex); 271 return; 272 } 273 274 /* Only poll controllers that are running polled and have a check */ 275 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) 276 mci->edac_check(mci); 277 278 mutex_unlock(&mem_ctls_mutex); 279 280 /* Reschedule */ 281 queue_delayed_work(edac_workqueue, &mci->work, 282 msecs_to_jiffies(edac_mc_get_poll_msec())); 283 } 284 285 /* 286 * edac_mc_workq_setup 287 * initialize a workq item for this mci 288 * passing in the new delay period in msec 289 * 290 * locking model: 291 * 292 * called with the mem_ctls_mutex held 293 */ 294 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec) 295 { 296 debugf0("%s()\n", __func__); 297 298 /* if this instance is not in the POLL state, then simply return */ 299 if (mci->op_state != OP_RUNNING_POLL) 300 return; 301 302 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 303 queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); 304 } 305 306 /* 307 * edac_mc_workq_teardown 308 * stop the workq processing on this mci 309 * 310 * locking model: 311 * 312 * called WITHOUT lock held 313 */ 314 static void edac_mc_workq_teardown(struct mem_ctl_info *mci) 315 { 316 int status; 317 318 status = cancel_delayed_work(&mci->work); 319 if (status == 0) { 320 debugf0("%s() not canceled, flush the queue\n", 321 __func__); 322 323 /* workq instance might be running, wait for it */ 324 flush_workqueue(edac_workqueue); 325 } 326 } 327 328 /* 329 * edac_mc_reset_delay_period(unsigned long value) 330 * 331 * user space has updated our poll period value, need to 332 * reset our workq delays 333 */ 334 void edac_mc_reset_delay_period(int value) 335 { 336 struct mem_ctl_info *mci; 337 struct list_head *item; 338 339 mutex_lock(&mem_ctls_mutex); 340 341 /* scan the list and turn off all workq timers, doing so under lock 342 */ 343 list_for_each(item, &mc_devices) { 344 mci = list_entry(item, struct mem_ctl_info, link); 345 346 if (mci->op_state == OP_RUNNING_POLL) 347 cancel_delayed_work(&mci->work); 348 } 349 350 mutex_unlock(&mem_ctls_mutex); 351 352 353 /* re-walk the list, and reset the poll delay */ 354 mutex_lock(&mem_ctls_mutex); 355 356 list_for_each(item, &mc_devices) { 357 mci = list_entry(item, struct mem_ctl_info, link); 358 359 edac_mc_workq_setup(mci, (unsigned long) value); 360 } 361 362 mutex_unlock(&mem_ctls_mutex); 363 } 364 365 366 367 /* Return 0 on success, 1 on failure. 368 * Before calling this function, caller must 369 * assign a unique value to mci->mc_idx. 370 * 371 * locking model: 372 * 373 * called with the mem_ctls_mutex lock held 374 */ 375 static int add_mc_to_global_list(struct mem_ctl_info *mci) 376 { 377 struct list_head *item, *insert_before; 378 struct mem_ctl_info *p; 379 380 insert_before = &mc_devices; 381 382 p = find_mci_by_dev(mci->dev); 383 if (unlikely(p != NULL)) 384 goto fail0; 385 386 list_for_each(item, &mc_devices) { 387 p = list_entry(item, struct mem_ctl_info, link); 388 389 if (p->mc_idx >= mci->mc_idx) { 390 if (unlikely(p->mc_idx == mci->mc_idx)) 391 goto fail1; 392 393 insert_before = item; 394 break; 395 } 396 } 397 398 list_add_tail_rcu(&mci->link, insert_before); 399 atomic_inc(&edac_handlers); 400 return 0; 401 402 fail0: 403 edac_printk(KERN_WARNING, EDAC_MC, 404 "%s (%s) %s %s already assigned %d\n", p->dev->bus_id, 405 dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 406 return 1; 407 408 fail1: 409 edac_printk(KERN_WARNING, EDAC_MC, 410 "bug in low-level driver: attempt to assign\n" 411 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 412 return 1; 413 } 414 415 static void complete_mc_list_del(struct rcu_head *head) 416 { 417 struct mem_ctl_info *mci; 418 419 mci = container_of(head, struct mem_ctl_info, rcu); 420 INIT_LIST_HEAD(&mci->link); 421 complete(&mci->complete); 422 } 423 424 static void del_mc_from_global_list(struct mem_ctl_info *mci) 425 { 426 atomic_dec(&edac_handlers); 427 list_del_rcu(&mci->link); 428 init_completion(&mci->complete); 429 call_rcu(&mci->rcu, complete_mc_list_del); 430 wait_for_completion(&mci->complete); 431 } 432 433 /** 434 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 435 * 436 * If found, return a pointer to the structure. 437 * Else return NULL. 438 * 439 * Caller must hold mem_ctls_mutex. 440 */ 441 struct mem_ctl_info *edac_mc_find(int idx) 442 { 443 struct list_head *item; 444 struct mem_ctl_info *mci; 445 446 list_for_each(item, &mc_devices) { 447 mci = list_entry(item, struct mem_ctl_info, link); 448 449 if (mci->mc_idx >= idx) { 450 if (mci->mc_idx == idx) 451 return mci; 452 453 break; 454 } 455 } 456 457 return NULL; 458 } 459 EXPORT_SYMBOL(edac_mc_find); 460 461 /** 462 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and 463 * create sysfs entries associated with mci structure 464 * @mci: pointer to the mci structure to be added to the list 465 * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure. 466 * 467 * Return: 468 * 0 Success 469 * !0 Failure 470 */ 471 472 /* FIXME - should a warning be printed if no error detection? correction? */ 473 int edac_mc_add_mc(struct mem_ctl_info *mci) 474 { 475 debugf0("%s()\n", __func__); 476 477 #ifdef CONFIG_EDAC_DEBUG 478 if (edac_debug_level >= 3) 479 edac_mc_dump_mci(mci); 480 481 if (edac_debug_level >= 4) { 482 int i; 483 484 for (i = 0; i < mci->nr_csrows; i++) { 485 int j; 486 487 edac_mc_dump_csrow(&mci->csrows[i]); 488 for (j = 0; j < mci->csrows[i].nr_channels; j++) 489 edac_mc_dump_channel(&mci->csrows[i]. 490 channels[j]); 491 } 492 } 493 #endif 494 mutex_lock(&mem_ctls_mutex); 495 496 if (add_mc_to_global_list(mci)) 497 goto fail0; 498 499 /* set load time so that error rate can be tracked */ 500 mci->start_time = jiffies; 501 502 if (edac_create_sysfs_mci_device(mci)) { 503 edac_mc_printk(mci, KERN_WARNING, 504 "failed to create sysfs device\n"); 505 goto fail1; 506 } 507 508 /* If there IS a check routine, then we are running POLLED */ 509 if (mci->edac_check != NULL) { 510 /* This instance is NOW RUNNING */ 511 mci->op_state = OP_RUNNING_POLL; 512 513 edac_mc_workq_setup(mci, edac_mc_get_poll_msec()); 514 } else { 515 mci->op_state = OP_RUNNING_INTERRUPT; 516 } 517 518 /* Report action taken */ 519 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':" 520 " DEV %s\n", mci->mod_name, mci->ctl_name, dev_name(mci)); 521 522 mutex_unlock(&mem_ctls_mutex); 523 return 0; 524 525 fail1: 526 del_mc_from_global_list(mci); 527 528 fail0: 529 mutex_unlock(&mem_ctls_mutex); 530 return 1; 531 } 532 EXPORT_SYMBOL_GPL(edac_mc_add_mc); 533 534 /** 535 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 536 * remove mci structure from global list 537 * @pdev: Pointer to 'struct device' representing mci structure to remove. 538 * 539 * Return pointer to removed mci structure, or NULL if device not found. 540 */ 541 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 542 { 543 struct mem_ctl_info *mci; 544 545 debugf0("%s()\n", __func__); 546 547 mutex_lock(&mem_ctls_mutex); 548 549 /* find the requested mci struct in the global list */ 550 mci = find_mci_by_dev(dev); 551 if (mci == NULL) { 552 mutex_unlock(&mem_ctls_mutex); 553 return NULL; 554 } 555 556 /* marking MCI offline */ 557 mci->op_state = OP_OFFLINE; 558 559 del_mc_from_global_list(mci); 560 mutex_unlock(&mem_ctls_mutex); 561 562 /* flush workq processes and remove sysfs */ 563 edac_mc_workq_teardown(mci); 564 edac_remove_sysfs_mci_device(mci); 565 566 edac_printk(KERN_INFO, EDAC_MC, 567 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 568 mci->mod_name, mci->ctl_name, dev_name(mci)); 569 570 return mci; 571 } 572 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 573 574 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 575 u32 size) 576 { 577 struct page *pg; 578 void *virt_addr; 579 unsigned long flags = 0; 580 581 debugf3("%s()\n", __func__); 582 583 /* ECC error page was not in our memory. Ignore it. */ 584 if (!pfn_valid(page)) 585 return; 586 587 /* Find the actual page structure then map it and fix */ 588 pg = pfn_to_page(page); 589 590 if (PageHighMem(pg)) 591 local_irq_save(flags); 592 593 virt_addr = kmap_atomic(pg, KM_BOUNCE_READ); 594 595 /* Perform architecture specific atomic scrub operation */ 596 atomic_scrub(virt_addr + offset, size); 597 598 /* Unmap and complete */ 599 kunmap_atomic(virt_addr, KM_BOUNCE_READ); 600 601 if (PageHighMem(pg)) 602 local_irq_restore(flags); 603 } 604 605 /* FIXME - should return -1 */ 606 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 607 { 608 struct csrow_info *csrows = mci->csrows; 609 int row, i; 610 611 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page); 612 row = -1; 613 614 for (i = 0; i < mci->nr_csrows; i++) { 615 struct csrow_info *csrow = &csrows[i]; 616 617 if (csrow->nr_pages == 0) 618 continue; 619 620 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) " 621 "mask(0x%lx)\n", mci->mc_idx, __func__, 622 csrow->first_page, page, csrow->last_page, 623 csrow->page_mask); 624 625 if ((page >= csrow->first_page) && 626 (page <= csrow->last_page) && 627 ((page & csrow->page_mask) == 628 (csrow->first_page & csrow->page_mask))) { 629 row = i; 630 break; 631 } 632 } 633 634 if (row == -1) 635 edac_mc_printk(mci, KERN_ERR, 636 "could not look up page error address %lx\n", 637 (unsigned long)page); 638 639 return row; 640 } 641 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 642 643 /* FIXME - setable log (warning/emerg) levels */ 644 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */ 645 void edac_mc_handle_ce(struct mem_ctl_info *mci, 646 unsigned long page_frame_number, 647 unsigned long offset_in_page, unsigned long syndrome, 648 int row, int channel, const char *msg) 649 { 650 unsigned long remapped_page; 651 652 debugf3("MC%d: %s()\n", mci->mc_idx, __func__); 653 654 /* FIXME - maybe make panic on INTERNAL ERROR an option */ 655 if (row >= mci->nr_csrows || row < 0) { 656 /* something is wrong */ 657 edac_mc_printk(mci, KERN_ERR, 658 "INTERNAL ERROR: row out of range " 659 "(%d >= %d)\n", row, mci->nr_csrows); 660 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 661 return; 662 } 663 664 if (channel >= mci->csrows[row].nr_channels || channel < 0) { 665 /* something is wrong */ 666 edac_mc_printk(mci, KERN_ERR, 667 "INTERNAL ERROR: channel out of range " 668 "(%d >= %d)\n", channel, 669 mci->csrows[row].nr_channels); 670 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 671 return; 672 } 673 674 if (edac_mc_get_log_ce()) 675 /* FIXME - put in DIMM location */ 676 edac_mc_printk(mci, KERN_WARNING, 677 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome " 678 "0x%lx, row %d, channel %d, label \"%s\": %s\n", 679 page_frame_number, offset_in_page, 680 mci->csrows[row].grain, syndrome, row, channel, 681 mci->csrows[row].channels[channel].label, msg); 682 683 mci->ce_count++; 684 mci->csrows[row].ce_count++; 685 mci->csrows[row].channels[channel].ce_count++; 686 687 if (mci->scrub_mode & SCRUB_SW_SRC) { 688 /* 689 * Some MC's can remap memory so that it is still available 690 * at a different address when PCI devices map into memory. 691 * MC's that can't do this lose the memory where PCI devices 692 * are mapped. This mapping is MC dependant and so we call 693 * back into the MC driver for it to map the MC page to 694 * a physical (CPU) page which can then be mapped to a virtual 695 * page - which can then be scrubbed. 696 */ 697 remapped_page = mci->ctl_page_to_phys ? 698 mci->ctl_page_to_phys(mci, page_frame_number) : 699 page_frame_number; 700 701 edac_mc_scrub_block(remapped_page, offset_in_page, 702 mci->csrows[row].grain); 703 } 704 } 705 EXPORT_SYMBOL_GPL(edac_mc_handle_ce); 706 707 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg) 708 { 709 if (edac_mc_get_log_ce()) 710 edac_mc_printk(mci, KERN_WARNING, 711 "CE - no information available: %s\n", msg); 712 713 mci->ce_noinfo_count++; 714 mci->ce_count++; 715 } 716 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info); 717 718 void edac_mc_handle_ue(struct mem_ctl_info *mci, 719 unsigned long page_frame_number, 720 unsigned long offset_in_page, int row, const char *msg) 721 { 722 int len = EDAC_MC_LABEL_LEN * 4; 723 char labels[len + 1]; 724 char *pos = labels; 725 int chan; 726 int chars; 727 728 debugf3("MC%d: %s()\n", mci->mc_idx, __func__); 729 730 /* FIXME - maybe make panic on INTERNAL ERROR an option */ 731 if (row >= mci->nr_csrows || row < 0) { 732 /* something is wrong */ 733 edac_mc_printk(mci, KERN_ERR, 734 "INTERNAL ERROR: row out of range " 735 "(%d >= %d)\n", row, mci->nr_csrows); 736 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 737 return; 738 } 739 740 chars = snprintf(pos, len + 1, "%s", 741 mci->csrows[row].channels[0].label); 742 len -= chars; 743 pos += chars; 744 745 for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0); 746 chan++) { 747 chars = snprintf(pos, len + 1, ":%s", 748 mci->csrows[row].channels[chan].label); 749 len -= chars; 750 pos += chars; 751 } 752 753 if (edac_mc_get_log_ue()) 754 edac_mc_printk(mci, KERN_EMERG, 755 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, " 756 "labels \"%s\": %s\n", page_frame_number, 757 offset_in_page, mci->csrows[row].grain, row, 758 labels, msg); 759 760 if (edac_mc_get_panic_on_ue()) 761 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, " 762 "row %d, labels \"%s\": %s\n", mci->mc_idx, 763 page_frame_number, offset_in_page, 764 mci->csrows[row].grain, row, labels, msg); 765 766 mci->ue_count++; 767 mci->csrows[row].ue_count++; 768 } 769 EXPORT_SYMBOL_GPL(edac_mc_handle_ue); 770 771 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg) 772 { 773 if (edac_mc_get_panic_on_ue()) 774 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx); 775 776 if (edac_mc_get_log_ue()) 777 edac_mc_printk(mci, KERN_WARNING, 778 "UE - no information available: %s\n", msg); 779 mci->ue_noinfo_count++; 780 mci->ue_count++; 781 } 782 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info); 783 784 /************************************************************* 785 * On Fully Buffered DIMM modules, this help function is 786 * called to process UE events 787 */ 788 void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, 789 unsigned int csrow, 790 unsigned int channela, 791 unsigned int channelb, char *msg) 792 { 793 int len = EDAC_MC_LABEL_LEN * 4; 794 char labels[len + 1]; 795 char *pos = labels; 796 int chars; 797 798 if (csrow >= mci->nr_csrows) { 799 /* something is wrong */ 800 edac_mc_printk(mci, KERN_ERR, 801 "INTERNAL ERROR: row out of range (%d >= %d)\n", 802 csrow, mci->nr_csrows); 803 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 804 return; 805 } 806 807 if (channela >= mci->csrows[csrow].nr_channels) { 808 /* something is wrong */ 809 edac_mc_printk(mci, KERN_ERR, 810 "INTERNAL ERROR: channel-a out of range " 811 "(%d >= %d)\n", 812 channela, mci->csrows[csrow].nr_channels); 813 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 814 return; 815 } 816 817 if (channelb >= mci->csrows[csrow].nr_channels) { 818 /* something is wrong */ 819 edac_mc_printk(mci, KERN_ERR, 820 "INTERNAL ERROR: channel-b out of range " 821 "(%d >= %d)\n", 822 channelb, mci->csrows[csrow].nr_channels); 823 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 824 return; 825 } 826 827 mci->ue_count++; 828 mci->csrows[csrow].ue_count++; 829 830 /* Generate the DIMM labels from the specified channels */ 831 chars = snprintf(pos, len + 1, "%s", 832 mci->csrows[csrow].channels[channela].label); 833 len -= chars; 834 pos += chars; 835 chars = snprintf(pos, len + 1, "-%s", 836 mci->csrows[csrow].channels[channelb].label); 837 838 if (edac_mc_get_log_ue()) 839 edac_mc_printk(mci, KERN_EMERG, 840 "UE row %d, channel-a= %d channel-b= %d " 841 "labels \"%s\": %s\n", csrow, channela, channelb, 842 labels, msg); 843 844 if (edac_mc_get_panic_on_ue()) 845 panic("UE row %d, channel-a= %d channel-b= %d " 846 "labels \"%s\": %s\n", csrow, channela, 847 channelb, labels, msg); 848 } 849 EXPORT_SYMBOL(edac_mc_handle_fbd_ue); 850 851 /************************************************************* 852 * On Fully Buffered DIMM modules, this help function is 853 * called to process CE events 854 */ 855 void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, 856 unsigned int csrow, unsigned int channel, char *msg) 857 { 858 859 /* Ensure boundary values */ 860 if (csrow >= mci->nr_csrows) { 861 /* something is wrong */ 862 edac_mc_printk(mci, KERN_ERR, 863 "INTERNAL ERROR: row out of range (%d >= %d)\n", 864 csrow, mci->nr_csrows); 865 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 866 return; 867 } 868 if (channel >= mci->csrows[csrow].nr_channels) { 869 /* something is wrong */ 870 edac_mc_printk(mci, KERN_ERR, 871 "INTERNAL ERROR: channel out of range (%d >= %d)\n", 872 channel, mci->csrows[csrow].nr_channels); 873 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 874 return; 875 } 876 877 if (edac_mc_get_log_ce()) 878 /* FIXME - put in DIMM location */ 879 edac_mc_printk(mci, KERN_WARNING, 880 "CE row %d, channel %d, label \"%s\": %s\n", 881 csrow, channel, 882 mci->csrows[csrow].channels[channel].label, msg); 883 884 mci->ce_count++; 885 mci->csrows[csrow].ce_count++; 886 mci->csrows[csrow].channels[channel].ce_count++; 887 } 888 EXPORT_SYMBOL(edac_mc_handle_fbd_ce); 889 890 /* 891 * Iterate over all MC instances and check for ECC, et al, errors 892 */ 893 void edac_check_mc_devices(void) 894 { 895 struct list_head *item; 896 struct mem_ctl_info *mci; 897 898 debugf3("%s()\n", __func__); 899 mutex_lock(&mem_ctls_mutex); 900 901 list_for_each(item, &mc_devices) { 902 mci = list_entry(item, struct mem_ctl_info, link); 903 904 if (mci->edac_check != NULL) 905 mci->edac_check(mci); 906 } 907 908 mutex_unlock(&mem_ctls_mutex); 909 } 910