xref: /openbmc/linux/drivers/edac/edac_mc.c (revision 7dfb71030f7636a0d65200158113c37764552f93)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/sysdev.h>
29 #include <linux/ctype.h>
30 #include <linux/kthread.h>
31 #include <linux/freezer.h>
32 #include <asm/uaccess.h>
33 #include <asm/page.h>
34 #include <asm/edac.h>
35 #include "edac_mc.h"
36 
37 #define EDAC_MC_VERSION "Ver: 2.0.1 " __DATE__
38 
39 
40 #ifdef CONFIG_EDAC_DEBUG
41 /* Values of 0 to 4 will generate output */
42 int edac_debug_level = 1;
43 EXPORT_SYMBOL_GPL(edac_debug_level);
44 #endif
45 
46 /* EDAC Controls, setable by module parameter, and sysfs */
47 static int log_ue = 1;
48 static int log_ce = 1;
49 static int panic_on_ue;
50 static int poll_msec = 1000;
51 
52 /* lock to memory controller's control array */
53 static DECLARE_MUTEX(mem_ctls_mutex);
54 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
55 
56 static struct task_struct *edac_thread;
57 
58 #ifdef CONFIG_PCI
59 static int check_pci_parity = 0;	/* default YES check PCI parity */
60 static int panic_on_pci_parity;		/* default no panic on PCI Parity */
61 static atomic_t pci_parity_count = ATOMIC_INIT(0);
62 
63 static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
64 static struct completion edac_pci_kobj_complete;
65 #endif	/* CONFIG_PCI */
66 
67 /*  START sysfs data and methods */
68 
69 
70 static const char *mem_types[] = {
71 	[MEM_EMPTY] = "Empty",
72 	[MEM_RESERVED] = "Reserved",
73 	[MEM_UNKNOWN] = "Unknown",
74 	[MEM_FPM] = "FPM",
75 	[MEM_EDO] = "EDO",
76 	[MEM_BEDO] = "BEDO",
77 	[MEM_SDR] = "Unbuffered-SDR",
78 	[MEM_RDR] = "Registered-SDR",
79 	[MEM_DDR] = "Unbuffered-DDR",
80 	[MEM_RDDR] = "Registered-DDR",
81 	[MEM_RMBS] = "RMBS"
82 };
83 
84 static const char *dev_types[] = {
85 	[DEV_UNKNOWN] = "Unknown",
86 	[DEV_X1] = "x1",
87 	[DEV_X2] = "x2",
88 	[DEV_X4] = "x4",
89 	[DEV_X8] = "x8",
90 	[DEV_X16] = "x16",
91 	[DEV_X32] = "x32",
92 	[DEV_X64] = "x64"
93 };
94 
95 static const char *edac_caps[] = {
96 	[EDAC_UNKNOWN] = "Unknown",
97 	[EDAC_NONE] = "None",
98 	[EDAC_RESERVED] = "Reserved",
99 	[EDAC_PARITY] = "PARITY",
100 	[EDAC_EC] = "EC",
101 	[EDAC_SECDED] = "SECDED",
102 	[EDAC_S2ECD2ED] = "S2ECD2ED",
103 	[EDAC_S4ECD4ED] = "S4ECD4ED",
104 	[EDAC_S8ECD8ED] = "S8ECD8ED",
105 	[EDAC_S16ECD16ED] = "S16ECD16ED"
106 };
107 
108 /* sysfs object: /sys/devices/system/edac */
109 static struct sysdev_class edac_class = {
110 	set_kset_name("edac"),
111 };
112 
113 /* sysfs object:
114  *	/sys/devices/system/edac/mc
115  */
116 static struct kobject edac_memctrl_kobj;
117 
118 /* We use these to wait for the reference counts on edac_memctrl_kobj and
119  * edac_pci_kobj to reach 0.
120  */
121 static struct completion edac_memctrl_kobj_complete;
122 
123 /*
124  * /sys/devices/system/edac/mc;
125  *	data structures and methods
126  */
127 static ssize_t memctrl_int_show(void *ptr, char *buffer)
128 {
129 	int *value = (int*) ptr;
130 	return sprintf(buffer, "%u\n", *value);
131 }
132 
133 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
134 {
135 	int *value = (int*) ptr;
136 
137 	if (isdigit(*buffer))
138 		*value = simple_strtoul(buffer, NULL, 0);
139 
140 	return count;
141 }
142 
143 struct memctrl_dev_attribute {
144 	struct attribute attr;
145 	void *value;
146 	ssize_t (*show)(void *,char *);
147 	ssize_t (*store)(void *, const char *, size_t);
148 };
149 
150 /* Set of show/store abstract level functions for memory control object */
151 static ssize_t memctrl_dev_show(struct kobject *kobj,
152 		struct attribute *attr, char *buffer)
153 {
154 	struct memctrl_dev_attribute *memctrl_dev;
155 	memctrl_dev = (struct memctrl_dev_attribute*)attr;
156 
157 	if (memctrl_dev->show)
158 		return memctrl_dev->show(memctrl_dev->value, buffer);
159 
160 	return -EIO;
161 }
162 
163 static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
164 		const char *buffer, size_t count)
165 {
166 	struct memctrl_dev_attribute *memctrl_dev;
167 	memctrl_dev = (struct memctrl_dev_attribute*)attr;
168 
169 	if (memctrl_dev->store)
170 		return memctrl_dev->store(memctrl_dev->value, buffer, count);
171 
172 	return -EIO;
173 }
174 
175 static struct sysfs_ops memctrlfs_ops = {
176 	.show   = memctrl_dev_show,
177 	.store  = memctrl_dev_store
178 };
179 
180 #define MEMCTRL_ATTR(_name,_mode,_show,_store)			\
181 struct memctrl_dev_attribute attr_##_name = {			\
182 	.attr = {.name = __stringify(_name), .mode = _mode },	\
183 	.value  = &_name,					\
184 	.show   = _show,					\
185 	.store  = _store,					\
186 };
187 
188 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)	\
189 struct memctrl_dev_attribute attr_##_name = {			\
190 	.attr = {.name = __stringify(_name), .mode = _mode },	\
191 	.value  = _data,					\
192 	.show   = _show,					\
193 	.store  = _store,					\
194 };
195 
196 /* csrow<id> control files */
197 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
198 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
199 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
200 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
201 
202 /* Base Attributes of the memory ECC object */
203 static struct memctrl_dev_attribute *memctrl_attr[] = {
204 	&attr_panic_on_ue,
205 	&attr_log_ue,
206 	&attr_log_ce,
207 	&attr_poll_msec,
208 	NULL,
209 };
210 
211 /* Main MC kobject release() function */
212 static void edac_memctrl_master_release(struct kobject *kobj)
213 {
214 	debugf1("%s()\n", __func__);
215 	complete(&edac_memctrl_kobj_complete);
216 }
217 
218 static struct kobj_type ktype_memctrl = {
219 	.release = edac_memctrl_master_release,
220 	.sysfs_ops = &memctrlfs_ops,
221 	.default_attrs = (struct attribute **) memctrl_attr,
222 };
223 
224 /* Initialize the main sysfs entries for edac:
225  *   /sys/devices/system/edac
226  *
227  * and children
228  *
229  * Return:  0 SUCCESS
230  *         !0 FAILURE
231  */
232 static int edac_sysfs_memctrl_setup(void)
233 {
234 	int err = 0;
235 
236 	debugf1("%s()\n", __func__);
237 
238 	/* create the /sys/devices/system/edac directory */
239 	err = sysdev_class_register(&edac_class);
240 
241 	if (err) {
242 		debugf1("%s() error=%d\n", __func__, err);
243 		return err;
244 	}
245 
246 	/* Init the MC's kobject */
247 	memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
248 	edac_memctrl_kobj.parent = &edac_class.kset.kobj;
249 	edac_memctrl_kobj.ktype = &ktype_memctrl;
250 
251 	/* generate sysfs "..../edac/mc"   */
252 	err = kobject_set_name(&edac_memctrl_kobj,"mc");
253 
254 	if (err)
255 		goto fail;
256 
257 	/* FIXME: maybe new sysdev_create_subdir() */
258 	err = kobject_register(&edac_memctrl_kobj);
259 
260 	if (err) {
261 		debugf1("Failed to register '.../edac/mc'\n");
262 		goto fail;
263 	}
264 
265 	debugf1("Registered '.../edac/mc' kobject\n");
266 
267 	return 0;
268 
269 fail:
270 	sysdev_class_unregister(&edac_class);
271 	return err;
272 }
273 
274 /*
275  * MC teardown:
276  *	the '..../edac/mc' kobject followed by '..../edac' itself
277  */
278 static void edac_sysfs_memctrl_teardown(void)
279 {
280 	debugf0("MC: " __FILE__ ": %s()\n", __func__);
281 
282 	/* Unregister the MC's kobject and wait for reference count to reach
283 	 * 0.
284 	 */
285 	init_completion(&edac_memctrl_kobj_complete);
286 	kobject_unregister(&edac_memctrl_kobj);
287 	wait_for_completion(&edac_memctrl_kobj_complete);
288 
289 	/* Unregister the 'edac' object */
290 	sysdev_class_unregister(&edac_class);
291 }
292 
293 #ifdef CONFIG_PCI
294 static ssize_t edac_pci_int_show(void *ptr, char *buffer)
295 {
296 	int *value = ptr;
297 	return sprintf(buffer,"%d\n",*value);
298 }
299 
300 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
301 {
302 	int *value = ptr;
303 
304 	if (isdigit(*buffer))
305 		*value = simple_strtoul(buffer,NULL,0);
306 
307 	return count;
308 }
309 
310 struct edac_pci_dev_attribute {
311 	struct attribute attr;
312 	void *value;
313 	ssize_t (*show)(void *,char *);
314 	ssize_t (*store)(void *, const char *,size_t);
315 };
316 
317 /* Set of show/store abstract level functions for PCI Parity object */
318 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
319 		char *buffer)
320 {
321 	struct edac_pci_dev_attribute *edac_pci_dev;
322 	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
323 
324 	if (edac_pci_dev->show)
325 		return edac_pci_dev->show(edac_pci_dev->value, buffer);
326 	return -EIO;
327 }
328 
329 static ssize_t edac_pci_dev_store(struct kobject *kobj,
330 		struct attribute *attr, const char *buffer, size_t count)
331 {
332 	struct edac_pci_dev_attribute *edac_pci_dev;
333 	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
334 
335 	if (edac_pci_dev->show)
336 		return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
337 	return -EIO;
338 }
339 
340 static struct sysfs_ops edac_pci_sysfs_ops = {
341 	.show   = edac_pci_dev_show,
342 	.store  = edac_pci_dev_store
343 };
344 
345 #define EDAC_PCI_ATTR(_name,_mode,_show,_store)			\
346 struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
347 	.attr = {.name = __stringify(_name), .mode = _mode },	\
348 	.value  = &_name,					\
349 	.show   = _show,					\
350 	.store  = _store,					\
351 };
352 
353 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)	\
354 struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
355 	.attr = {.name = __stringify(_name), .mode = _mode },	\
356 	.value  = _data,					\
357 	.show   = _show,					\
358 	.store  = _store,					\
359 };
360 
361 /* PCI Parity control files */
362 EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
363 	edac_pci_int_store);
364 EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
365 	edac_pci_int_store);
366 EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
367 
368 /* Base Attributes of the memory ECC object */
369 static struct edac_pci_dev_attribute *edac_pci_attr[] = {
370 	&edac_pci_attr_check_pci_parity,
371 	&edac_pci_attr_panic_on_pci_parity,
372 	&edac_pci_attr_pci_parity_count,
373 	NULL,
374 };
375 
376 /* No memory to release */
377 static void edac_pci_release(struct kobject *kobj)
378 {
379 	debugf1("%s()\n", __func__);
380 	complete(&edac_pci_kobj_complete);
381 }
382 
383 static struct kobj_type ktype_edac_pci = {
384 	.release = edac_pci_release,
385 	.sysfs_ops = &edac_pci_sysfs_ops,
386 	.default_attrs = (struct attribute **) edac_pci_attr,
387 };
388 
389 /**
390  * edac_sysfs_pci_setup()
391  *
392  */
393 static int edac_sysfs_pci_setup(void)
394 {
395 	int err;
396 
397 	debugf1("%s()\n", __func__);
398 
399 	memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
400 	edac_pci_kobj.parent = &edac_class.kset.kobj;
401 	edac_pci_kobj.ktype = &ktype_edac_pci;
402 	err = kobject_set_name(&edac_pci_kobj, "pci");
403 
404 	if (!err) {
405 		/* Instanstiate the csrow object */
406 		/* FIXME: maybe new sysdev_create_subdir() */
407 		err = kobject_register(&edac_pci_kobj);
408 
409 		if (err)
410 			debugf1("Failed to register '.../edac/pci'\n");
411 		else
412 			debugf1("Registered '.../edac/pci' kobject\n");
413 	}
414 
415 	return err;
416 }
417 
418 static void edac_sysfs_pci_teardown(void)
419 {
420 	debugf0("%s()\n", __func__);
421 	init_completion(&edac_pci_kobj_complete);
422 	kobject_unregister(&edac_pci_kobj);
423 	wait_for_completion(&edac_pci_kobj_complete);
424 }
425 
426 
427 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
428 {
429 	int where;
430 	u16 status;
431 
432 	where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
433 	pci_read_config_word(dev, where, &status);
434 
435 	/* If we get back 0xFFFF then we must suspect that the card has been
436 	 * pulled but the Linux PCI layer has not yet finished cleaning up.
437 	 * We don't want to report on such devices
438 	 */
439 
440 	if (status == 0xFFFF) {
441 		u32 sanity;
442 
443 		pci_read_config_dword(dev, 0, &sanity);
444 
445 		if (sanity == 0xFFFFFFFF)
446 			return 0;
447 	}
448 
449 	status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
450 		PCI_STATUS_PARITY;
451 
452 	if (status)
453 		/* reset only the bits we are interested in */
454 		pci_write_config_word(dev, where, status);
455 
456 	return status;
457 }
458 
459 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
460 
461 /* Clear any PCI parity errors logged by this device. */
462 static void edac_pci_dev_parity_clear(struct pci_dev *dev)
463 {
464 	u8 header_type;
465 
466 	get_pci_parity_status(dev, 0);
467 
468 	/* read the device TYPE, looking for bridges */
469 	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
470 
471 	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
472 		get_pci_parity_status(dev, 1);
473 }
474 
475 /*
476  *  PCI Parity polling
477  *
478  */
479 static void edac_pci_dev_parity_test(struct pci_dev *dev)
480 {
481 	u16 status;
482 	u8  header_type;
483 
484 	/* read the STATUS register on this device
485 	 */
486 	status = get_pci_parity_status(dev, 0);
487 
488 	debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
489 
490 	/* check the status reg for errors */
491 	if (status) {
492 		if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
493 			edac_printk(KERN_CRIT, EDAC_PCI,
494 				"Signaled System Error on %s\n",
495 				pci_name(dev));
496 
497 		if (status & (PCI_STATUS_PARITY)) {
498 			edac_printk(KERN_CRIT, EDAC_PCI,
499 				"Master Data Parity Error on %s\n",
500 				pci_name(dev));
501 
502 			atomic_inc(&pci_parity_count);
503 		}
504 
505 		if (status & (PCI_STATUS_DETECTED_PARITY)) {
506 			edac_printk(KERN_CRIT, EDAC_PCI,
507 				"Detected Parity Error on %s\n",
508 				pci_name(dev));
509 
510 			atomic_inc(&pci_parity_count);
511 		}
512 	}
513 
514 	/* read the device TYPE, looking for bridges */
515 	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
516 
517 	debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
518 
519 	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
520 		/* On bridges, need to examine secondary status register  */
521 		status = get_pci_parity_status(dev, 1);
522 
523 		debugf2("PCI SEC_STATUS= 0x%04x %s\n",
524 				status, dev->dev.bus_id );
525 
526 		/* check the secondary status reg for errors */
527 		if (status) {
528 			if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
529 				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
530 					"Signaled System Error on %s\n",
531 					pci_name(dev));
532 
533 			if (status & (PCI_STATUS_PARITY)) {
534 				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
535 					"Master Data Parity Error on "
536 					"%s\n", pci_name(dev));
537 
538 				atomic_inc(&pci_parity_count);
539 			}
540 
541 			if (status & (PCI_STATUS_DETECTED_PARITY)) {
542 				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
543 					"Detected Parity Error on %s\n",
544 					pci_name(dev));
545 
546 				atomic_inc(&pci_parity_count);
547 			}
548 		}
549 	}
550 }
551 
552 /*
553  * pci_dev parity list iterator
554  *	Scan the PCI device list for one iteration, looking for SERRORs
555  *	Master Parity ERRORS or Parity ERRORs on primary or secondary devices
556  */
557 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
558 {
559 	struct pci_dev *dev = NULL;
560 
561 	/* request for kernel access to the next PCI device, if any,
562 	 * and while we are looking at it have its reference count
563 	 * bumped until we are done with it
564 	 */
565 	while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
566 		fn(dev);
567 	}
568 }
569 
570 static void do_pci_parity_check(void)
571 {
572 	unsigned long flags;
573 	int before_count;
574 
575 	debugf3("%s()\n", __func__);
576 
577 	if (!check_pci_parity)
578 		return;
579 
580 	before_count = atomic_read(&pci_parity_count);
581 
582 	/* scan all PCI devices looking for a Parity Error on devices and
583 	 * bridges
584 	 */
585 	local_irq_save(flags);
586 	edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
587 	local_irq_restore(flags);
588 
589 	/* Only if operator has selected panic on PCI Error */
590 	if (panic_on_pci_parity) {
591 		/* If the count is different 'after' from 'before' */
592 		if (before_count != atomic_read(&pci_parity_count))
593 			panic("EDAC: PCI Parity Error");
594 	}
595 }
596 
597 static inline void clear_pci_parity_errors(void)
598 {
599 	/* Clear any PCI bus parity errors that devices initially have logged
600 	 * in their registers.
601 	 */
602 	edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
603 }
604 
605 #else	/* CONFIG_PCI */
606 
607 /* pre-process these away */
608 #define	do_pci_parity_check()
609 #define	clear_pci_parity_errors()
610 #define	edac_sysfs_pci_teardown()
611 #define	edac_sysfs_pci_setup()	(0)
612 
613 #endif	/* CONFIG_PCI */
614 
615 /* EDAC sysfs CSROW data structures and methods
616  */
617 
618 /* Set of more default csrow<id> attribute show/store functions */
619 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data, int private)
620 {
621 	return sprintf(data,"%u\n", csrow->ue_count);
622 }
623 
624 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data, int private)
625 {
626 	return sprintf(data,"%u\n", csrow->ce_count);
627 }
628 
629 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data, int private)
630 {
631 	return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
632 }
633 
634 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data, int private)
635 {
636 	return sprintf(data,"%s\n", mem_types[csrow->mtype]);
637 }
638 
639 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data, int private)
640 {
641 	return sprintf(data,"%s\n", dev_types[csrow->dtype]);
642 }
643 
644 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data, int private)
645 {
646 	return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
647 }
648 
649 /* show/store functions for DIMM Label attributes */
650 static ssize_t channel_dimm_label_show(struct csrow_info *csrow,
651 		char *data, int channel)
652 {
653 	return snprintf(data, EDAC_MC_LABEL_LEN,"%s",
654 			csrow->channels[channel].label);
655 }
656 
657 static ssize_t channel_dimm_label_store(struct csrow_info *csrow,
658 				const char *data,
659 				size_t count,
660 				int channel)
661 {
662 	ssize_t max_size = 0;
663 
664 	max_size = min((ssize_t)count,(ssize_t)EDAC_MC_LABEL_LEN-1);
665 	strncpy(csrow->channels[channel].label, data, max_size);
666 	csrow->channels[channel].label[max_size] = '\0';
667 
668 	return max_size;
669 }
670 
671 /* show function for dynamic chX_ce_count attribute */
672 static ssize_t channel_ce_count_show(struct csrow_info *csrow,
673 				char *data,
674 				int channel)
675 {
676 	return sprintf(data, "%u\n", csrow->channels[channel].ce_count);
677 }
678 
679 /* csrow specific attribute structure */
680 struct csrowdev_attribute {
681 	struct attribute attr;
682 	ssize_t (*show)(struct csrow_info *,char *,int);
683 	ssize_t (*store)(struct csrow_info *, const char *,size_t,int);
684 	int    private;
685 };
686 
687 #define to_csrow(k) container_of(k, struct csrow_info, kobj)
688 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
689 
690 /* Set of show/store higher level functions for default csrow attributes */
691 static ssize_t csrowdev_show(struct kobject *kobj,
692 			struct attribute *attr,
693 			char *buffer)
694 {
695 	struct csrow_info *csrow = to_csrow(kobj);
696 	struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
697 
698 	if (csrowdev_attr->show)
699 		return csrowdev_attr->show(csrow,
700 					buffer,
701 					csrowdev_attr->private);
702 	return -EIO;
703 }
704 
705 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
706 		const char *buffer, size_t count)
707 {
708 	struct csrow_info *csrow = to_csrow(kobj);
709 	struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
710 
711 	if (csrowdev_attr->store)
712 		return csrowdev_attr->store(csrow,
713 					buffer,
714 					count,
715 					csrowdev_attr->private);
716 	return -EIO;
717 }
718 
719 static struct sysfs_ops csrowfs_ops = {
720 	.show   = csrowdev_show,
721 	.store  = csrowdev_store
722 };
723 
724 #define CSROWDEV_ATTR(_name,_mode,_show,_store,_private)	\
725 struct csrowdev_attribute attr_##_name = {			\
726 	.attr = {.name = __stringify(_name), .mode = _mode },	\
727 	.show   = _show,					\
728 	.store  = _store,					\
729 	.private = _private,					\
730 };
731 
732 /* default cwrow<id>/attribute files */
733 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL,0);
734 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL,0);
735 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL,0);
736 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL,0);
737 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL,0);
738 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL,0);
739 
740 /* default attributes of the CSROW<id> object */
741 static struct csrowdev_attribute *default_csrow_attr[] = {
742 	&attr_dev_type,
743 	&attr_mem_type,
744 	&attr_edac_mode,
745 	&attr_size_mb,
746 	&attr_ue_count,
747 	&attr_ce_count,
748 	NULL,
749 };
750 
751 
752 /* possible dynamic channel DIMM Label attribute files */
753 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
754 		channel_dimm_label_show,
755 		channel_dimm_label_store,
756 		0 );
757 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
758 		channel_dimm_label_show,
759 		channel_dimm_label_store,
760 		1 );
761 CSROWDEV_ATTR(ch2_dimm_label,S_IRUGO|S_IWUSR,
762 		channel_dimm_label_show,
763 		channel_dimm_label_store,
764 		2 );
765 CSROWDEV_ATTR(ch3_dimm_label,S_IRUGO|S_IWUSR,
766 		channel_dimm_label_show,
767 		channel_dimm_label_store,
768 		3 );
769 CSROWDEV_ATTR(ch4_dimm_label,S_IRUGO|S_IWUSR,
770 		channel_dimm_label_show,
771 		channel_dimm_label_store,
772 		4 );
773 CSROWDEV_ATTR(ch5_dimm_label,S_IRUGO|S_IWUSR,
774 		channel_dimm_label_show,
775 		channel_dimm_label_store,
776 		5 );
777 
778 /* Total possible dynamic DIMM Label attribute file table */
779 static struct csrowdev_attribute *dynamic_csrow_dimm_attr[] = {
780 		&attr_ch0_dimm_label,
781 		&attr_ch1_dimm_label,
782 		&attr_ch2_dimm_label,
783 		&attr_ch3_dimm_label,
784 		&attr_ch4_dimm_label,
785 		&attr_ch5_dimm_label
786 };
787 
788 /* possible dynamic channel ce_count attribute files */
789 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO|S_IWUSR,
790 		channel_ce_count_show,
791 		NULL,
792 		0 );
793 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO|S_IWUSR,
794 		channel_ce_count_show,
795 		NULL,
796 		1 );
797 CSROWDEV_ATTR(ch2_ce_count,S_IRUGO|S_IWUSR,
798 		channel_ce_count_show,
799 		NULL,
800 		2 );
801 CSROWDEV_ATTR(ch3_ce_count,S_IRUGO|S_IWUSR,
802 		channel_ce_count_show,
803 		NULL,
804 		3 );
805 CSROWDEV_ATTR(ch4_ce_count,S_IRUGO|S_IWUSR,
806 		channel_ce_count_show,
807 		NULL,
808 		4 );
809 CSROWDEV_ATTR(ch5_ce_count,S_IRUGO|S_IWUSR,
810 		channel_ce_count_show,
811 		NULL,
812 		5 );
813 
814 /* Total possible dynamic ce_count attribute file table */
815 static struct csrowdev_attribute *dynamic_csrow_ce_count_attr[] = {
816 		&attr_ch0_ce_count,
817 		&attr_ch1_ce_count,
818 		&attr_ch2_ce_count,
819 		&attr_ch3_ce_count,
820 		&attr_ch4_ce_count,
821 		&attr_ch5_ce_count
822 };
823 
824 
825 #define EDAC_NR_CHANNELS	6
826 
827 /* Create dynamic CHANNEL files, indexed by 'chan',  under specifed CSROW */
828 static int edac_create_channel_files(struct kobject *kobj, int chan)
829 {
830 	int err=-ENODEV;
831 
832 	if (chan >= EDAC_NR_CHANNELS)
833 		return err;
834 
835 	/* create the DIMM label attribute file */
836 	err = sysfs_create_file(kobj,
837 			(struct attribute *) dynamic_csrow_dimm_attr[chan]);
838 
839 	if (!err) {
840 		/* create the CE Count attribute file */
841 		err = sysfs_create_file(kobj,
842 			(struct attribute *) dynamic_csrow_ce_count_attr[chan]);
843 	} else {
844 		debugf1("%s()  dimm labels and ce_count files created", __func__);
845 	}
846 
847 	return err;
848 }
849 
850 /* No memory to release for this kobj */
851 static void edac_csrow_instance_release(struct kobject *kobj)
852 {
853 	struct csrow_info *cs;
854 
855 	cs = container_of(kobj, struct csrow_info, kobj);
856 	complete(&cs->kobj_complete);
857 }
858 
859 /* the kobj_type instance for a CSROW */
860 static struct kobj_type ktype_csrow = {
861 	.release = edac_csrow_instance_release,
862 	.sysfs_ops = &csrowfs_ops,
863 	.default_attrs = (struct attribute **) default_csrow_attr,
864 };
865 
866 /* Create a CSROW object under specifed edac_mc_device */
867 static int edac_create_csrow_object(
868 		struct kobject *edac_mci_kobj,
869 		struct csrow_info *csrow,
870 		int index)
871 {
872 	int err = 0;
873 	int chan;
874 
875 	memset(&csrow->kobj, 0, sizeof(csrow->kobj));
876 
877 	/* generate ..../edac/mc/mc<id>/csrow<index>   */
878 
879 	csrow->kobj.parent = edac_mci_kobj;
880 	csrow->kobj.ktype = &ktype_csrow;
881 
882 	/* name this instance of csrow<id> */
883 	err = kobject_set_name(&csrow->kobj,"csrow%d",index);
884 	if (err)
885 		goto error_exit;
886 
887 	/* Instanstiate the csrow object */
888 	err = kobject_register(&csrow->kobj);
889 	if (!err) {
890 		/* Create the dyanmic attribute files on this csrow,
891 		 * namely, the DIMM labels and the channel ce_count
892 		 */
893 		for (chan = 0; chan < csrow->nr_channels; chan++) {
894 			err = edac_create_channel_files(&csrow->kobj,chan);
895 			if (err)
896 				break;
897 		}
898 	}
899 
900 error_exit:
901 	return err;
902 }
903 
904 /* default sysfs methods and data structures for the main MCI kobject */
905 
906 static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
907 		const char *data, size_t count)
908 {
909 	int row, chan;
910 
911 	mci->ue_noinfo_count = 0;
912 	mci->ce_noinfo_count = 0;
913 	mci->ue_count = 0;
914 	mci->ce_count = 0;
915 
916 	for (row = 0; row < mci->nr_csrows; row++) {
917 		struct csrow_info *ri = &mci->csrows[row];
918 
919 		ri->ue_count = 0;
920 		ri->ce_count = 0;
921 
922 		for (chan = 0; chan < ri->nr_channels; chan++)
923 			ri->channels[chan].ce_count = 0;
924 	}
925 
926 	mci->start_time = jiffies;
927 	return count;
928 }
929 
930 /* default attribute files for the MCI object */
931 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
932 {
933 	return sprintf(data,"%d\n", mci->ue_count);
934 }
935 
936 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
937 {
938 	return sprintf(data,"%d\n", mci->ce_count);
939 }
940 
941 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
942 {
943 	return sprintf(data,"%d\n", mci->ce_noinfo_count);
944 }
945 
946 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
947 {
948 	return sprintf(data,"%d\n", mci->ue_noinfo_count);
949 }
950 
951 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
952 {
953 	return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
954 }
955 
956 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
957 {
958 	return sprintf(data,"%s\n", mci->ctl_name);
959 }
960 
961 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
962 {
963 	int total_pages, csrow_idx;
964 
965 	for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
966 			csrow_idx++) {
967 		struct csrow_info *csrow = &mci->csrows[csrow_idx];
968 
969 		if (!csrow->nr_pages)
970 			continue;
971 
972 		total_pages += csrow->nr_pages;
973 	}
974 
975 	return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
976 }
977 
978 struct mcidev_attribute {
979 	struct attribute attr;
980 	ssize_t (*show)(struct mem_ctl_info *,char *);
981 	ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
982 };
983 
984 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
985 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
986 
987 /* MCI show/store functions for top most object */
988 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
989 		char *buffer)
990 {
991 	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
992 	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
993 
994 	if (mcidev_attr->show)
995 		return mcidev_attr->show(mem_ctl_info, buffer);
996 
997 	return -EIO;
998 }
999 
1000 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1001 		const char *buffer, size_t count)
1002 {
1003 	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1004 	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1005 
1006 	if (mcidev_attr->store)
1007 		return mcidev_attr->store(mem_ctl_info, buffer, count);
1008 
1009 	return -EIO;
1010 }
1011 
1012 static struct sysfs_ops mci_ops = {
1013 	.show = mcidev_show,
1014 	.store = mcidev_store
1015 };
1016 
1017 #define MCIDEV_ATTR(_name,_mode,_show,_store)			\
1018 struct mcidev_attribute mci_attr_##_name = {			\
1019 	.attr = {.name = __stringify(_name), .mode = _mode },	\
1020 	.show   = _show,					\
1021 	.store  = _store,					\
1022 };
1023 
1024 /* default Control file */
1025 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1026 
1027 /* default Attribute files */
1028 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1029 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1030 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1031 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1032 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1033 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1034 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1035 
1036 static struct mcidev_attribute *mci_attr[] = {
1037 	&mci_attr_reset_counters,
1038 	&mci_attr_mc_name,
1039 	&mci_attr_size_mb,
1040 	&mci_attr_seconds_since_reset,
1041 	&mci_attr_ue_noinfo_count,
1042 	&mci_attr_ce_noinfo_count,
1043 	&mci_attr_ue_count,
1044 	&mci_attr_ce_count,
1045 	NULL
1046 };
1047 
1048 /*
1049  * Release of a MC controlling instance
1050  */
1051 static void edac_mci_instance_release(struct kobject *kobj)
1052 {
1053 	struct mem_ctl_info *mci;
1054 
1055 	mci = to_mci(kobj);
1056 	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1057 	complete(&mci->kobj_complete);
1058 }
1059 
1060 static struct kobj_type ktype_mci = {
1061 	.release = edac_mci_instance_release,
1062 	.sysfs_ops = &mci_ops,
1063 	.default_attrs = (struct attribute **) mci_attr,
1064 };
1065 
1066 
1067 #define EDAC_DEVICE_SYMLINK	"device"
1068 
1069 /*
1070  * Create a new Memory Controller kobject instance,
1071  *	mc<id> under the 'mc' directory
1072  *
1073  * Return:
1074  *	0	Success
1075  *	!0	Failure
1076  */
1077 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1078 {
1079 	int i;
1080 	int err;
1081 	struct csrow_info *csrow;
1082 	struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1083 
1084 	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1085 	memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1086 
1087 	/* set the name of the mc<id> object */
1088 	err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1089 	if (err)
1090 		return err;
1091 
1092 	/* link to our parent the '..../edac/mc' object */
1093 	edac_mci_kobj->parent = &edac_memctrl_kobj;
1094 	edac_mci_kobj->ktype = &ktype_mci;
1095 
1096 	/* register the mc<id> kobject */
1097 	err = kobject_register(edac_mci_kobj);
1098 	if (err)
1099 		return err;
1100 
1101 	/* create a symlink for the device */
1102 	err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
1103 				EDAC_DEVICE_SYMLINK);
1104 	if (err)
1105 		goto fail0;
1106 
1107 	/* Make directories for each CSROW object
1108 	 * under the mc<id> kobject
1109 	 */
1110 	for (i = 0; i < mci->nr_csrows; i++) {
1111 		csrow = &mci->csrows[i];
1112 
1113 		/* Only expose populated CSROWs */
1114 		if (csrow->nr_pages > 0) {
1115 			err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1116 			if (err)
1117 				goto fail1;
1118 		}
1119 	}
1120 
1121 	return 0;
1122 
1123 	/* CSROW error: backout what has already been registered,  */
1124 fail1:
1125 	for ( i--; i >= 0; i--) {
1126 		if (csrow->nr_pages > 0) {
1127 			init_completion(&csrow->kobj_complete);
1128 			kobject_unregister(&mci->csrows[i].kobj);
1129 			wait_for_completion(&csrow->kobj_complete);
1130 		}
1131 	}
1132 
1133 fail0:
1134 	init_completion(&mci->kobj_complete);
1135 	kobject_unregister(edac_mci_kobj);
1136 	wait_for_completion(&mci->kobj_complete);
1137 	return err;
1138 }
1139 
1140 /*
1141  * remove a Memory Controller instance
1142  */
1143 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1144 {
1145 	int i;
1146 
1147 	debugf0("%s()\n", __func__);
1148 
1149 	/* remove all csrow kobjects */
1150 	for (i = 0; i < mci->nr_csrows; i++) {
1151 		if (mci->csrows[i].nr_pages > 0) {
1152 			init_completion(&mci->csrows[i].kobj_complete);
1153 			kobject_unregister(&mci->csrows[i].kobj);
1154 			wait_for_completion(&mci->csrows[i].kobj_complete);
1155 		}
1156 	}
1157 
1158 	sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1159 	init_completion(&mci->kobj_complete);
1160 	kobject_unregister(&mci->edac_mci_kobj);
1161 	wait_for_completion(&mci->kobj_complete);
1162 }
1163 
1164 /* END OF sysfs data and methods */
1165 
1166 #ifdef CONFIG_EDAC_DEBUG
1167 
1168 void edac_mc_dump_channel(struct channel_info *chan)
1169 {
1170 	debugf4("\tchannel = %p\n", chan);
1171 	debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1172 	debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1173 	debugf4("\tchannel->label = '%s'\n", chan->label);
1174 	debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1175 }
1176 EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
1177 
1178 void edac_mc_dump_csrow(struct csrow_info *csrow)
1179 {
1180 	debugf4("\tcsrow = %p\n", csrow);
1181 	debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1182 	debugf4("\tcsrow->first_page = 0x%lx\n",
1183 		csrow->first_page);
1184 	debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1185 	debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1186 	debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1187 	debugf4("\tcsrow->nr_channels = %d\n",
1188 		csrow->nr_channels);
1189 	debugf4("\tcsrow->channels = %p\n", csrow->channels);
1190 	debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1191 }
1192 EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
1193 
1194 void edac_mc_dump_mci(struct mem_ctl_info *mci)
1195 {
1196 	debugf3("\tmci = %p\n", mci);
1197 	debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1198 	debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1199 	debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1200 	debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1201 	debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1202 		mci->nr_csrows, mci->csrows);
1203 	debugf3("\tdev = %p\n", mci->dev);
1204 	debugf3("\tmod_name:ctl_name = %s:%s\n",
1205 		mci->mod_name, mci->ctl_name);
1206 	debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1207 }
1208 EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
1209 
1210 #endif  /* CONFIG_EDAC_DEBUG */
1211 
1212 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1213  * Adjust 'ptr' so that its alignment is at least as stringent as what the
1214  * compiler would provide for X and return the aligned result.
1215  *
1216  * If 'size' is a constant, the compiler will optimize this whole function
1217  * down to either a no-op or the addition of a constant to the value of 'ptr'.
1218  */
1219 static inline char * align_ptr(void *ptr, unsigned size)
1220 {
1221 	unsigned align, r;
1222 
1223 	/* Here we assume that the alignment of a "long long" is the most
1224 	 * stringent alignment that the compiler will ever provide by default.
1225 	 * As far as I know, this is a reasonable assumption.
1226 	 */
1227 	if (size > sizeof(long))
1228 		align = sizeof(long long);
1229 	else if (size > sizeof(int))
1230 		align = sizeof(long);
1231 	else if (size > sizeof(short))
1232 		align = sizeof(int);
1233 	else if (size > sizeof(char))
1234 		align = sizeof(short);
1235 	else
1236 		return (char *) ptr;
1237 
1238 	r = size % align;
1239 
1240 	if (r == 0)
1241 		return (char *) ptr;
1242 
1243 	return (char *) (((unsigned long) ptr) + align - r);
1244 }
1245 
1246 /**
1247  * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1248  * @size_pvt:	size of private storage needed
1249  * @nr_csrows:	Number of CWROWS needed for this MC
1250  * @nr_chans:	Number of channels for the MC
1251  *
1252  * Everything is kmalloc'ed as one big chunk - more efficient.
1253  * Only can be used if all structures have the same lifetime - otherwise
1254  * you have to allocate and initialize your own structures.
1255  *
1256  * Use edac_mc_free() to free mc structures allocated by this function.
1257  *
1258  * Returns:
1259  *	NULL allocation failed
1260  *	struct mem_ctl_info pointer
1261  */
1262 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1263 		unsigned nr_chans)
1264 {
1265 	struct mem_ctl_info *mci;
1266 	struct csrow_info *csi, *csrow;
1267 	struct channel_info *chi, *chp, *chan;
1268 	void *pvt;
1269 	unsigned size;
1270 	int row, chn;
1271 
1272 	/* Figure out the offsets of the various items from the start of an mc
1273 	 * structure.  We want the alignment of each item to be at least as
1274 	 * stringent as what the compiler would provide if we could simply
1275 	 * hardcode everything into a single struct.
1276 	 */
1277 	mci = (struct mem_ctl_info *) 0;
1278 	csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1279 	chi = (struct channel_info *)
1280 			align_ptr(&csi[nr_csrows], sizeof(*chi));
1281 	pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1282 	size = ((unsigned long) pvt) + sz_pvt;
1283 
1284 	if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1285 		return NULL;
1286 
1287 	/* Adjust pointers so they point within the memory we just allocated
1288 	 * rather than an imaginary chunk of memory located at address 0.
1289 	 */
1290 	csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1291 	chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1292 	pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1293 
1294 	memset(mci, 0, size);  /* clear all fields */
1295 	mci->csrows = csi;
1296 	mci->pvt_info = pvt;
1297 	mci->nr_csrows = nr_csrows;
1298 
1299 	for (row = 0; row < nr_csrows; row++) {
1300 		csrow = &csi[row];
1301 		csrow->csrow_idx = row;
1302 		csrow->mci = mci;
1303 		csrow->nr_channels = nr_chans;
1304 		chp = &chi[row * nr_chans];
1305 		csrow->channels = chp;
1306 
1307 		for (chn = 0; chn < nr_chans; chn++) {
1308 			chan = &chp[chn];
1309 			chan->chan_idx = chn;
1310 			chan->csrow = csrow;
1311 		}
1312 	}
1313 
1314 	return mci;
1315 }
1316 EXPORT_SYMBOL_GPL(edac_mc_alloc);
1317 
1318 /**
1319  * edac_mc_free:  Free a previously allocated 'mci' structure
1320  * @mci: pointer to a struct mem_ctl_info structure
1321  */
1322 void edac_mc_free(struct mem_ctl_info *mci)
1323 {
1324 	kfree(mci);
1325 }
1326 EXPORT_SYMBOL_GPL(edac_mc_free);
1327 
1328 static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
1329 {
1330 	struct mem_ctl_info *mci;
1331 	struct list_head *item;
1332 
1333 	debugf3("%s()\n", __func__);
1334 
1335 	list_for_each(item, &mc_devices) {
1336 		mci = list_entry(item, struct mem_ctl_info, link);
1337 
1338 		if (mci->dev == dev)
1339 			return mci;
1340 	}
1341 
1342 	return NULL;
1343 }
1344 
1345 /* Return 0 on success, 1 on failure.
1346  * Before calling this function, caller must
1347  * assign a unique value to mci->mc_idx.
1348  */
1349 static int add_mc_to_global_list (struct mem_ctl_info *mci)
1350 {
1351 	struct list_head *item, *insert_before;
1352 	struct mem_ctl_info *p;
1353 
1354 	insert_before = &mc_devices;
1355 
1356 	if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
1357 		goto fail0;
1358 
1359 	list_for_each(item, &mc_devices) {
1360 		p = list_entry(item, struct mem_ctl_info, link);
1361 
1362 		if (p->mc_idx >= mci->mc_idx) {
1363 			if (unlikely(p->mc_idx == mci->mc_idx))
1364 				goto fail1;
1365 
1366 			insert_before = item;
1367 			break;
1368 		}
1369 	}
1370 
1371 	list_add_tail_rcu(&mci->link, insert_before);
1372 	return 0;
1373 
1374 fail0:
1375 	edac_printk(KERN_WARNING, EDAC_MC,
1376 		    "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
1377 		    dev_name(p->dev), p->mod_name, p->ctl_name, p->mc_idx);
1378 	return 1;
1379 
1380 fail1:
1381 	edac_printk(KERN_WARNING, EDAC_MC,
1382 		    "bug in low-level driver: attempt to assign\n"
1383 		    "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
1384 	return 1;
1385 }
1386 
1387 static void complete_mc_list_del(struct rcu_head *head)
1388 {
1389 	struct mem_ctl_info *mci;
1390 
1391 	mci = container_of(head, struct mem_ctl_info, rcu);
1392 	INIT_LIST_HEAD(&mci->link);
1393 	complete(&mci->complete);
1394 }
1395 
1396 static void del_mc_from_global_list(struct mem_ctl_info *mci)
1397 {
1398 	list_del_rcu(&mci->link);
1399 	init_completion(&mci->complete);
1400 	call_rcu(&mci->rcu, complete_mc_list_del);
1401 	wait_for_completion(&mci->complete);
1402 }
1403 
1404 /**
1405  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1406  *                 create sysfs entries associated with mci structure
1407  * @mci: pointer to the mci structure to be added to the list
1408  * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
1409  *
1410  * Return:
1411  *	0	Success
1412  *	!0	Failure
1413  */
1414 
1415 /* FIXME - should a warning be printed if no error detection? correction? */
1416 int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
1417 {
1418 	debugf0("%s()\n", __func__);
1419 	mci->mc_idx = mc_idx;
1420 #ifdef CONFIG_EDAC_DEBUG
1421 	if (edac_debug_level >= 3)
1422 		edac_mc_dump_mci(mci);
1423 
1424 	if (edac_debug_level >= 4) {
1425 		int i;
1426 
1427 		for (i = 0; i < mci->nr_csrows; i++) {
1428 			int j;
1429 
1430 			edac_mc_dump_csrow(&mci->csrows[i]);
1431 			for (j = 0; j < mci->csrows[i].nr_channels; j++)
1432 				edac_mc_dump_channel(
1433 					&mci->csrows[i].channels[j]);
1434 		}
1435 	}
1436 #endif
1437 	down(&mem_ctls_mutex);
1438 
1439 	if (add_mc_to_global_list(mci))
1440 		goto fail0;
1441 
1442 	/* set load time so that error rate can be tracked */
1443 	mci->start_time = jiffies;
1444 
1445         if (edac_create_sysfs_mci_device(mci)) {
1446                 edac_mc_printk(mci, KERN_WARNING,
1447 			"failed to create sysfs device\n");
1448                 goto fail1;
1449         }
1450 
1451 	/* Report action taken */
1452 	edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
1453 		mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1454 
1455 	up(&mem_ctls_mutex);
1456 	return 0;
1457 
1458 fail1:
1459 	del_mc_from_global_list(mci);
1460 
1461 fail0:
1462 	up(&mem_ctls_mutex);
1463 	return 1;
1464 }
1465 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
1466 
1467 /**
1468  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1469  *                 remove mci structure from global list
1470  * @pdev: Pointer to 'struct device' representing mci structure to remove.
1471  *
1472  * Return pointer to removed mci structure, or NULL if device not found.
1473  */
1474 struct mem_ctl_info * edac_mc_del_mc(struct device *dev)
1475 {
1476 	struct mem_ctl_info *mci;
1477 
1478 	debugf0("MC: %s()\n", __func__);
1479 	down(&mem_ctls_mutex);
1480 
1481 	if ((mci = find_mci_by_dev(dev)) == NULL) {
1482 		up(&mem_ctls_mutex);
1483 		return NULL;
1484 	}
1485 
1486 	edac_remove_sysfs_mci_device(mci);
1487 	del_mc_from_global_list(mci);
1488 	up(&mem_ctls_mutex);
1489 	edac_printk(KERN_INFO, EDAC_MC,
1490 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
1491 		mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1492 	return mci;
1493 }
1494 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
1495 
1496 void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
1497 {
1498 	struct page *pg;
1499 	void *virt_addr;
1500 	unsigned long flags = 0;
1501 
1502 	debugf3("%s()\n", __func__);
1503 
1504 	/* ECC error page was not in our memory. Ignore it. */
1505 	if(!pfn_valid(page))
1506 		return;
1507 
1508 	/* Find the actual page structure then map it and fix */
1509 	pg = pfn_to_page(page);
1510 
1511 	if (PageHighMem(pg))
1512 		local_irq_save(flags);
1513 
1514 	virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1515 
1516 	/* Perform architecture specific atomic scrub operation */
1517 	atomic_scrub(virt_addr + offset, size);
1518 
1519 	/* Unmap and complete */
1520 	kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1521 
1522 	if (PageHighMem(pg))
1523 		local_irq_restore(flags);
1524 }
1525 EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
1526 
1527 /* FIXME - should return -1 */
1528 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
1529 {
1530 	struct csrow_info *csrows = mci->csrows;
1531 	int row, i;
1532 
1533 	debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1534 	row = -1;
1535 
1536 	for (i = 0; i < mci->nr_csrows; i++) {
1537 		struct csrow_info *csrow = &csrows[i];
1538 
1539 		if (csrow->nr_pages == 0)
1540 			continue;
1541 
1542 		debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1543 			"mask(0x%lx)\n", mci->mc_idx, __func__,
1544 			csrow->first_page, page, csrow->last_page,
1545 			csrow->page_mask);
1546 
1547 		if ((page >= csrow->first_page) &&
1548 		    (page <= csrow->last_page) &&
1549 		    ((page & csrow->page_mask) ==
1550 		     (csrow->first_page & csrow->page_mask))) {
1551 			row = i;
1552 			break;
1553 		}
1554 	}
1555 
1556 	if (row == -1)
1557 		edac_mc_printk(mci, KERN_ERR,
1558 			"could not look up page error address %lx\n",
1559 			(unsigned long) page);
1560 
1561 	return row;
1562 }
1563 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
1564 
1565 /* FIXME - setable log (warning/emerg) levels */
1566 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1567 void edac_mc_handle_ce(struct mem_ctl_info *mci,
1568 		unsigned long page_frame_number, unsigned long offset_in_page,
1569 		unsigned long syndrome, int row, int channel, const char *msg)
1570 {
1571 	unsigned long remapped_page;
1572 
1573 	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1574 
1575 	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1576 	if (row >= mci->nr_csrows || row < 0) {
1577 		/* something is wrong */
1578 		edac_mc_printk(mci, KERN_ERR,
1579 			"INTERNAL ERROR: row out of range "
1580 			"(%d >= %d)\n", row, mci->nr_csrows);
1581 		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1582 		return;
1583 	}
1584 
1585 	if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1586 		/* something is wrong */
1587 		edac_mc_printk(mci, KERN_ERR,
1588 			"INTERNAL ERROR: channel out of range "
1589 			"(%d >= %d)\n", channel,
1590 			mci->csrows[row].nr_channels);
1591 		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1592 		return;
1593 	}
1594 
1595 	if (log_ce)
1596 		/* FIXME - put in DIMM location */
1597 		edac_mc_printk(mci, KERN_WARNING,
1598 			"CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1599 			"0x%lx, row %d, channel %d, label \"%s\": %s\n",
1600 			page_frame_number, offset_in_page,
1601 			mci->csrows[row].grain, syndrome, row, channel,
1602 			mci->csrows[row].channels[channel].label, msg);
1603 
1604 	mci->ce_count++;
1605 	mci->csrows[row].ce_count++;
1606 	mci->csrows[row].channels[channel].ce_count++;
1607 
1608 	if (mci->scrub_mode & SCRUB_SW_SRC) {
1609 		/*
1610 		 * Some MC's can remap memory so that it is still available
1611 		 * at a different address when PCI devices map into memory.
1612 		 * MC's that can't do this lose the memory where PCI devices
1613 		 * are mapped.  This mapping is MC dependant and so we call
1614 		 * back into the MC driver for it to map the MC page to
1615 		 * a physical (CPU) page which can then be mapped to a virtual
1616 		 * page - which can then be scrubbed.
1617 		 */
1618 		remapped_page = mci->ctl_page_to_phys ?
1619 		    mci->ctl_page_to_phys(mci, page_frame_number) :
1620 		    page_frame_number;
1621 
1622 		edac_mc_scrub_block(remapped_page, offset_in_page,
1623 					mci->csrows[row].grain);
1624 	}
1625 }
1626 EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
1627 
1628 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1629 {
1630 	if (log_ce)
1631 		edac_mc_printk(mci, KERN_WARNING,
1632 			"CE - no information available: %s\n", msg);
1633 
1634 	mci->ce_noinfo_count++;
1635 	mci->ce_count++;
1636 }
1637 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
1638 
1639 void edac_mc_handle_ue(struct mem_ctl_info *mci,
1640 		unsigned long page_frame_number, unsigned long offset_in_page,
1641 		int row, const char *msg)
1642 {
1643 	int len = EDAC_MC_LABEL_LEN * 4;
1644 	char labels[len + 1];
1645 	char *pos = labels;
1646 	int chan;
1647 	int chars;
1648 
1649 	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1650 
1651 	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1652 	if (row >= mci->nr_csrows || row < 0) {
1653 		/* something is wrong */
1654 		edac_mc_printk(mci, KERN_ERR,
1655 			"INTERNAL ERROR: row out of range "
1656 			"(%d >= %d)\n", row, mci->nr_csrows);
1657 		edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1658 		return;
1659 	}
1660 
1661 	chars = snprintf(pos, len + 1, "%s",
1662 			mci->csrows[row].channels[0].label);
1663 	len -= chars;
1664 	pos += chars;
1665 
1666 	for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1667 	     chan++) {
1668 		chars = snprintf(pos, len + 1, ":%s",
1669 				mci->csrows[row].channels[chan].label);
1670 		len -= chars;
1671 		pos += chars;
1672 	}
1673 
1674 	if (log_ue)
1675 		edac_mc_printk(mci, KERN_EMERG,
1676 			"UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1677 			"labels \"%s\": %s\n", page_frame_number,
1678 			offset_in_page, mci->csrows[row].grain, row, labels,
1679 			msg);
1680 
1681 	if (panic_on_ue)
1682 		panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1683 			"row %d, labels \"%s\": %s\n", mci->mc_idx,
1684 			page_frame_number, offset_in_page,
1685 			mci->csrows[row].grain, row, labels, msg);
1686 
1687 	mci->ue_count++;
1688 	mci->csrows[row].ue_count++;
1689 }
1690 EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
1691 
1692 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1693 {
1694 	if (panic_on_ue)
1695 		panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1696 
1697 	if (log_ue)
1698 		edac_mc_printk(mci, KERN_WARNING,
1699 			"UE - no information available: %s\n", msg);
1700 	mci->ue_noinfo_count++;
1701 	mci->ue_count++;
1702 }
1703 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
1704 
1705 
1706 /*
1707  * Iterate over all MC instances and check for ECC, et al, errors
1708  */
1709 static inline void check_mc_devices(void)
1710 {
1711 	struct list_head *item;
1712 	struct mem_ctl_info *mci;
1713 
1714 	debugf3("%s()\n", __func__);
1715 	down(&mem_ctls_mutex);
1716 
1717 	list_for_each(item, &mc_devices) {
1718 		mci = list_entry(item, struct mem_ctl_info, link);
1719 
1720 		if (mci->edac_check != NULL)
1721 			mci->edac_check(mci);
1722 	}
1723 
1724 	up(&mem_ctls_mutex);
1725 }
1726 
1727 /*
1728  * Check MC status every poll_msec.
1729  * Check PCI status every poll_msec as well.
1730  *
1731  * This where the work gets done for edac.
1732  *
1733  * SMP safe, doesn't use NMI, and auto-rate-limits.
1734  */
1735 static void do_edac_check(void)
1736 {
1737 	debugf3("%s()\n", __func__);
1738 	check_mc_devices();
1739 	do_pci_parity_check();
1740 }
1741 
1742 static int edac_kernel_thread(void *arg)
1743 {
1744 	while (!kthread_should_stop()) {
1745 		do_edac_check();
1746 
1747 		/* goto sleep for the interval */
1748 		schedule_timeout_interruptible((HZ * poll_msec) / 1000);
1749 		try_to_freeze();
1750 	}
1751 
1752 	return 0;
1753 }
1754 
1755 /*
1756  * edac_mc_init
1757  *      module initialization entry point
1758  */
1759 static int __init edac_mc_init(void)
1760 {
1761 	edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
1762 
1763 	/*
1764 	 * Harvest and clear any boot/initialization PCI parity errors
1765 	 *
1766 	 * FIXME: This only clears errors logged by devices present at time of
1767 	 * 	module initialization.  We should also do an initial clear
1768 	 *	of each newly hotplugged device.
1769 	 */
1770 	clear_pci_parity_errors();
1771 
1772 	/* Create the MC sysfs entries */
1773 	if (edac_sysfs_memctrl_setup()) {
1774 		edac_printk(KERN_ERR, EDAC_MC,
1775 			"Error initializing sysfs code\n");
1776 		return -ENODEV;
1777 	}
1778 
1779 	/* Create the PCI parity sysfs entries */
1780 	if (edac_sysfs_pci_setup()) {
1781 		edac_sysfs_memctrl_teardown();
1782 		edac_printk(KERN_ERR, EDAC_MC,
1783 			"EDAC PCI: Error initializing sysfs code\n");
1784 		return -ENODEV;
1785 	}
1786 
1787 	/* create our kernel thread */
1788 	edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
1789 
1790 	if (IS_ERR(edac_thread)) {
1791 		/* remove the sysfs entries */
1792 		edac_sysfs_memctrl_teardown();
1793 		edac_sysfs_pci_teardown();
1794 		return PTR_ERR(edac_thread);
1795 	}
1796 
1797 	return 0;
1798 }
1799 
1800 /*
1801  * edac_mc_exit()
1802  *      module exit/termination functioni
1803  */
1804 static void __exit edac_mc_exit(void)
1805 {
1806 	debugf0("%s()\n", __func__);
1807 	kthread_stop(edac_thread);
1808 
1809         /* tear down the sysfs device */
1810 	edac_sysfs_memctrl_teardown();
1811 	edac_sysfs_pci_teardown();
1812 }
1813 
1814 module_init(edac_mc_init);
1815 module_exit(edac_mc_exit);
1816 
1817 MODULE_LICENSE("GPL");
1818 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
1819 	"Based on work by Dan Hollis et al");
1820 MODULE_DESCRIPTION("Core library routines for MC reporting");
1821 
1822 module_param(panic_on_ue, int, 0644);
1823 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
1824 #ifdef CONFIG_PCI
1825 module_param(check_pci_parity, int, 0644);
1826 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
1827 module_param(panic_on_pci_parity, int, 0644);
1828 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
1829 #endif
1830 module_param(log_ue, int, 0644);
1831 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
1832 module_param(log_ce, int, 0644);
1833 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
1834 module_param(poll_msec, int, 0644);
1835 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
1836 #ifdef CONFIG_EDAC_DEBUG
1837 module_param(edac_debug_level, int, 0644);
1838 MODULE_PARM_DESC(edac_debug_level, "Debug level");
1839 #endif
1840