xref: /openbmc/linux/drivers/dma/stm32-dma.c (revision 81464192839de0b5bc84c5739381101e04d94f62)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 
31 #include "virt-dma.h"
32 
33 #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI			(STM32_DMA_TCI \
43 					 | STM32_DMA_TEI \
44 					 | STM32_DMA_DMEI \
45 					 | STM32_DMA_FEI)
46 
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
63 #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
64 #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
65 #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
66 #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
67 #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
68 #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
69 #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
70 #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
71 						*/
72 #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
73 #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
74 #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
75 #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
76 					| STM32_DMA_SCR_MINC \
77 					| STM32_DMA_SCR_PINCOS \
78 					| STM32_DMA_SCR_PL_MASK)
79 #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
80 					| STM32_DMA_SCR_TEIE \
81 					| STM32_DMA_SCR_DMEIE)
82 
83 /* DMA Stream x number of data register */
84 #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
85 
86 /* DMA stream peripheral address register */
87 #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
88 
89 /* DMA stream x memory 0 address register */
90 #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
91 
92 /* DMA stream x memory 1 address register */
93 #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
94 
95 /* DMA stream x FIFO control register */
96 #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
97 #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
98 #define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
99 #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
100 #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
101 #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
102 					| STM32_DMA_SFCR_DMDIS)
103 
104 /* DMA direction */
105 #define STM32_DMA_DEV_TO_MEM		0x00
106 #define	STM32_DMA_MEM_TO_DEV		0x01
107 #define	STM32_DMA_MEM_TO_MEM		0x02
108 
109 /* DMA priority level */
110 #define STM32_DMA_PRIORITY_LOW		0x00
111 #define STM32_DMA_PRIORITY_MEDIUM	0x01
112 #define STM32_DMA_PRIORITY_HIGH		0x02
113 #define STM32_DMA_PRIORITY_VERY_HIGH	0x03
114 
115 /* DMA FIFO threshold selection */
116 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
117 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
118 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
119 #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
120 #define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
121 
122 #define STM32_DMA_MAX_DATA_ITEMS	0xffff
123 /*
124  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
125  * gather at boundary. Thus it's safer to round down this value on FIFO
126  * size (16 Bytes)
127  */
128 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
129 	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
130 #define STM32_DMA_MAX_CHANNELS		0x08
131 #define STM32_DMA_MAX_REQUEST_ID	0x08
132 #define STM32_DMA_MAX_DATA_PARAM	0x03
133 #define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
134 #define STM32_DMA_MIN_BURST		4
135 #define STM32_DMA_MAX_BURST		16
136 
137 /* DMA Features */
138 #define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
139 #define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
140 #define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
141 #define STM32_DMA_DIRECT_MODE_GET(n)	(((n) & STM32_DMA_DIRECT_MODE_MASK) \
142 					 >> 2)
143 
144 enum stm32_dma_width {
145 	STM32_DMA_BYTE,
146 	STM32_DMA_HALF_WORD,
147 	STM32_DMA_WORD,
148 };
149 
150 enum stm32_dma_burst_size {
151 	STM32_DMA_BURST_SINGLE,
152 	STM32_DMA_BURST_INCR4,
153 	STM32_DMA_BURST_INCR8,
154 	STM32_DMA_BURST_INCR16,
155 };
156 
157 /**
158  * struct stm32_dma_cfg - STM32 DMA custom configuration
159  * @channel_id: channel ID
160  * @request_line: DMA request
161  * @stream_config: 32bit mask specifying the DMA channel configuration
162  * @features: 32bit mask specifying the DMA Feature list
163  */
164 struct stm32_dma_cfg {
165 	u32 channel_id;
166 	u32 request_line;
167 	u32 stream_config;
168 	u32 features;
169 };
170 
171 struct stm32_dma_chan_reg {
172 	u32 dma_lisr;
173 	u32 dma_hisr;
174 	u32 dma_lifcr;
175 	u32 dma_hifcr;
176 	u32 dma_scr;
177 	u32 dma_sndtr;
178 	u32 dma_spar;
179 	u32 dma_sm0ar;
180 	u32 dma_sm1ar;
181 	u32 dma_sfcr;
182 };
183 
184 struct stm32_dma_sg_req {
185 	u32 len;
186 	struct stm32_dma_chan_reg chan_reg;
187 };
188 
189 struct stm32_dma_desc {
190 	struct virt_dma_desc vdesc;
191 	bool cyclic;
192 	u32 num_sgs;
193 	struct stm32_dma_sg_req sg_req[];
194 };
195 
196 struct stm32_dma_chan {
197 	struct virt_dma_chan vchan;
198 	bool config_init;
199 	bool busy;
200 	u32 id;
201 	u32 irq;
202 	struct stm32_dma_desc *desc;
203 	u32 next_sg;
204 	struct dma_slave_config	dma_sconfig;
205 	struct stm32_dma_chan_reg chan_reg;
206 	u32 threshold;
207 	u32 mem_burst;
208 	u32 mem_width;
209 };
210 
211 struct stm32_dma_device {
212 	struct dma_device ddev;
213 	void __iomem *base;
214 	struct clk *clk;
215 	bool mem2mem;
216 	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
217 };
218 
219 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
220 {
221 	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
222 			    ddev);
223 }
224 
225 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
226 {
227 	return container_of(c, struct stm32_dma_chan, vchan.chan);
228 }
229 
230 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
231 {
232 	return container_of(vdesc, struct stm32_dma_desc, vdesc);
233 }
234 
235 static struct device *chan2dev(struct stm32_dma_chan *chan)
236 {
237 	return &chan->vchan.chan.dev->device;
238 }
239 
240 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
241 {
242 	return readl_relaxed(dmadev->base + reg);
243 }
244 
245 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
246 {
247 	writel_relaxed(val, dmadev->base + reg);
248 }
249 
250 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
251 			       enum dma_slave_buswidth width)
252 {
253 	switch (width) {
254 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
255 		return STM32_DMA_BYTE;
256 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
257 		return STM32_DMA_HALF_WORD;
258 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
259 		return STM32_DMA_WORD;
260 	default:
261 		dev_err(chan2dev(chan), "Dma bus width not supported\n");
262 		return -EINVAL;
263 	}
264 }
265 
266 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
267 						       u32 threshold)
268 {
269 	enum dma_slave_buswidth max_width;
270 
271 	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
272 		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
273 	else
274 		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
275 
276 	while ((buf_len < max_width  || buf_len % max_width) &&
277 	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
278 		max_width = max_width >> 1;
279 
280 	return max_width;
281 }
282 
283 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
284 						enum dma_slave_buswidth width)
285 {
286 	u32 remaining;
287 
288 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
289 		return false;
290 
291 	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
292 		if (burst != 0) {
293 			/*
294 			 * If number of beats fit in several whole bursts
295 			 * this configuration is allowed.
296 			 */
297 			remaining = ((STM32_DMA_FIFO_SIZE / width) *
298 				     (threshold + 1) / 4) % burst;
299 
300 			if (remaining == 0)
301 				return true;
302 		} else {
303 			return true;
304 		}
305 	}
306 
307 	return false;
308 }
309 
310 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
311 {
312 	/* If FIFO direct mode, burst is not possible */
313 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
314 		return false;
315 
316 	/*
317 	 * Buffer or period length has to be aligned on FIFO depth.
318 	 * Otherwise bytes may be stuck within FIFO at buffer or period
319 	 * length.
320 	 */
321 	return ((buf_len % ((threshold + 1) * 4)) == 0);
322 }
323 
324 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
325 				    enum dma_slave_buswidth width)
326 {
327 	u32 best_burst = max_burst;
328 
329 	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
330 		return 0;
331 
332 	while ((buf_len < best_burst * width && best_burst > 1) ||
333 	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
334 						    width)) {
335 		if (best_burst > STM32_DMA_MIN_BURST)
336 			best_burst = best_burst >> 1;
337 		else
338 			best_burst = 0;
339 	}
340 
341 	return best_burst;
342 }
343 
344 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
345 {
346 	switch (maxburst) {
347 	case 0:
348 	case 1:
349 		return STM32_DMA_BURST_SINGLE;
350 	case 4:
351 		return STM32_DMA_BURST_INCR4;
352 	case 8:
353 		return STM32_DMA_BURST_INCR8;
354 	case 16:
355 		return STM32_DMA_BURST_INCR16;
356 	default:
357 		dev_err(chan2dev(chan), "Dma burst size not supported\n");
358 		return -EINVAL;
359 	}
360 }
361 
362 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
363 				      u32 src_burst, u32 dst_burst)
364 {
365 	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
366 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
367 
368 	if (!src_burst && !dst_burst) {
369 		/* Using direct mode */
370 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
371 	} else {
372 		/* Using FIFO mode */
373 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
374 	}
375 }
376 
377 static int stm32_dma_slave_config(struct dma_chan *c,
378 				  struct dma_slave_config *config)
379 {
380 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
381 
382 	memcpy(&chan->dma_sconfig, config, sizeof(*config));
383 
384 	chan->config_init = true;
385 
386 	return 0;
387 }
388 
389 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
390 {
391 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
392 	u32 flags, dma_isr;
393 
394 	/*
395 	 * Read "flags" from DMA_xISR register corresponding to the selected
396 	 * DMA channel at the correct bit offset inside that register.
397 	 *
398 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
399 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
400 	 */
401 
402 	if (chan->id & 4)
403 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
404 	else
405 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
406 
407 	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
408 
409 	return flags & STM32_DMA_MASKI;
410 }
411 
412 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
413 {
414 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
415 	u32 dma_ifcr;
416 
417 	/*
418 	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
419 	 * DMA channel at the correct bit offset inside that register.
420 	 *
421 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
422 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
423 	 */
424 	flags &= STM32_DMA_MASKI;
425 	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
426 
427 	if (chan->id & 4)
428 		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
429 	else
430 		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
431 }
432 
433 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
434 {
435 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
436 	u32 dma_scr, id, reg;
437 
438 	id = chan->id;
439 	reg = STM32_DMA_SCR(id);
440 	dma_scr = stm32_dma_read(dmadev, reg);
441 
442 	if (dma_scr & STM32_DMA_SCR_EN) {
443 		dma_scr &= ~STM32_DMA_SCR_EN;
444 		stm32_dma_write(dmadev, reg, dma_scr);
445 
446 		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
447 					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
448 					10, 1000000);
449 	}
450 
451 	return 0;
452 }
453 
454 static void stm32_dma_stop(struct stm32_dma_chan *chan)
455 {
456 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
457 	u32 dma_scr, dma_sfcr, status;
458 	int ret;
459 
460 	/* Disable interrupts */
461 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
462 	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
463 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
464 	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
465 	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
466 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
467 
468 	/* Disable DMA */
469 	ret = stm32_dma_disable_chan(chan);
470 	if (ret < 0)
471 		return;
472 
473 	/* Clear interrupt status if it is there */
474 	status = stm32_dma_irq_status(chan);
475 	if (status) {
476 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
477 			__func__, status);
478 		stm32_dma_irq_clear(chan, status);
479 	}
480 
481 	chan->busy = false;
482 }
483 
484 static int stm32_dma_terminate_all(struct dma_chan *c)
485 {
486 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
487 	unsigned long flags;
488 	LIST_HEAD(head);
489 
490 	spin_lock_irqsave(&chan->vchan.lock, flags);
491 
492 	if (chan->desc) {
493 		vchan_terminate_vdesc(&chan->desc->vdesc);
494 		if (chan->busy)
495 			stm32_dma_stop(chan);
496 		chan->desc = NULL;
497 	}
498 
499 	vchan_get_all_descriptors(&chan->vchan, &head);
500 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
501 	vchan_dma_desc_free_list(&chan->vchan, &head);
502 
503 	return 0;
504 }
505 
506 static void stm32_dma_synchronize(struct dma_chan *c)
507 {
508 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
509 
510 	vchan_synchronize(&chan->vchan);
511 }
512 
513 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
514 {
515 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
516 	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
517 	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
518 	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
519 	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
520 	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
521 	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
522 
523 	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
524 	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
525 	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
526 	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
527 	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
528 	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
529 }
530 
531 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
532 
533 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
534 {
535 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
536 	struct virt_dma_desc *vdesc;
537 	struct stm32_dma_sg_req *sg_req;
538 	struct stm32_dma_chan_reg *reg;
539 	u32 status;
540 	int ret;
541 
542 	ret = stm32_dma_disable_chan(chan);
543 	if (ret < 0)
544 		return;
545 
546 	if (!chan->desc) {
547 		vdesc = vchan_next_desc(&chan->vchan);
548 		if (!vdesc)
549 			return;
550 
551 		list_del(&vdesc->node);
552 
553 		chan->desc = to_stm32_dma_desc(vdesc);
554 		chan->next_sg = 0;
555 	}
556 
557 	if (chan->next_sg == chan->desc->num_sgs)
558 		chan->next_sg = 0;
559 
560 	sg_req = &chan->desc->sg_req[chan->next_sg];
561 	reg = &sg_req->chan_reg;
562 
563 	reg->dma_scr &= ~STM32_DMA_SCR_EN;
564 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
565 	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
566 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
567 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
568 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
569 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
570 
571 	chan->next_sg++;
572 
573 	/* Clear interrupt status if it is there */
574 	status = stm32_dma_irq_status(chan);
575 	if (status)
576 		stm32_dma_irq_clear(chan, status);
577 
578 	if (chan->desc->cyclic)
579 		stm32_dma_configure_next_sg(chan);
580 
581 	stm32_dma_dump_reg(chan);
582 
583 	/* Start DMA */
584 	reg->dma_scr |= STM32_DMA_SCR_EN;
585 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
586 
587 	chan->busy = true;
588 
589 	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
590 }
591 
592 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
593 {
594 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
595 	struct stm32_dma_sg_req *sg_req;
596 	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
597 
598 	id = chan->id;
599 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
600 
601 	if (dma_scr & STM32_DMA_SCR_DBM) {
602 		if (chan->next_sg == chan->desc->num_sgs)
603 			chan->next_sg = 0;
604 
605 		sg_req = &chan->desc->sg_req[chan->next_sg];
606 
607 		if (dma_scr & STM32_DMA_SCR_CT) {
608 			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
609 			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
610 			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
611 				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
612 		} else {
613 			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
614 			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
615 			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
616 				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
617 		}
618 	}
619 }
620 
621 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
622 {
623 	if (chan->desc) {
624 		if (chan->desc->cyclic) {
625 			vchan_cyclic_callback(&chan->desc->vdesc);
626 			chan->next_sg++;
627 			stm32_dma_configure_next_sg(chan);
628 		} else {
629 			chan->busy = false;
630 			if (chan->next_sg == chan->desc->num_sgs) {
631 				vchan_cookie_complete(&chan->desc->vdesc);
632 				chan->desc = NULL;
633 			}
634 			stm32_dma_start_transfer(chan);
635 		}
636 	}
637 }
638 
639 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
640 {
641 	struct stm32_dma_chan *chan = devid;
642 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
643 	u32 status, scr, sfcr;
644 
645 	spin_lock(&chan->vchan.lock);
646 
647 	status = stm32_dma_irq_status(chan);
648 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
649 	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
650 
651 	if (status & STM32_DMA_TCI) {
652 		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
653 		if (scr & STM32_DMA_SCR_TCIE)
654 			stm32_dma_handle_chan_done(chan);
655 		status &= ~STM32_DMA_TCI;
656 	}
657 	if (status & STM32_DMA_HTI) {
658 		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
659 		status &= ~STM32_DMA_HTI;
660 	}
661 	if (status & STM32_DMA_FEI) {
662 		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
663 		status &= ~STM32_DMA_FEI;
664 		if (sfcr & STM32_DMA_SFCR_FEIE) {
665 			if (!(scr & STM32_DMA_SCR_EN))
666 				dev_err(chan2dev(chan), "FIFO Error\n");
667 			else
668 				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
669 		}
670 	}
671 	if (status & STM32_DMA_DMEI) {
672 		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
673 		status &= ~STM32_DMA_DMEI;
674 		if (sfcr & STM32_DMA_SCR_DMEIE)
675 			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
676 	}
677 	if (status) {
678 		stm32_dma_irq_clear(chan, status);
679 		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
680 		if (!(scr & STM32_DMA_SCR_EN))
681 			dev_err(chan2dev(chan), "chan disabled by HW\n");
682 	}
683 
684 	spin_unlock(&chan->vchan.lock);
685 
686 	return IRQ_HANDLED;
687 }
688 
689 static void stm32_dma_issue_pending(struct dma_chan *c)
690 {
691 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
692 	unsigned long flags;
693 
694 	spin_lock_irqsave(&chan->vchan.lock, flags);
695 	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
696 		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
697 		stm32_dma_start_transfer(chan);
698 
699 	}
700 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
701 }
702 
703 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
704 				    enum dma_transfer_direction direction,
705 				    enum dma_slave_buswidth *buswidth,
706 				    u32 buf_len)
707 {
708 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
709 	int src_bus_width, dst_bus_width;
710 	int src_burst_size, dst_burst_size;
711 	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
712 	u32 dma_scr, fifoth;
713 
714 	src_addr_width = chan->dma_sconfig.src_addr_width;
715 	dst_addr_width = chan->dma_sconfig.dst_addr_width;
716 	src_maxburst = chan->dma_sconfig.src_maxburst;
717 	dst_maxburst = chan->dma_sconfig.dst_maxburst;
718 	fifoth = chan->threshold;
719 
720 	switch (direction) {
721 	case DMA_MEM_TO_DEV:
722 		/* Set device data size */
723 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
724 		if (dst_bus_width < 0)
725 			return dst_bus_width;
726 
727 		/* Set device burst size */
728 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
729 							  dst_maxburst,
730 							  fifoth,
731 							  dst_addr_width);
732 
733 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
734 		if (dst_burst_size < 0)
735 			return dst_burst_size;
736 
737 		/* Set memory data size */
738 		src_addr_width = stm32_dma_get_max_width(buf_len, fifoth);
739 		chan->mem_width = src_addr_width;
740 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
741 		if (src_bus_width < 0)
742 			return src_bus_width;
743 
744 		/* Set memory burst size */
745 		src_maxburst = STM32_DMA_MAX_BURST;
746 		src_best_burst = stm32_dma_get_best_burst(buf_len,
747 							  src_maxburst,
748 							  fifoth,
749 							  src_addr_width);
750 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
751 		if (src_burst_size < 0)
752 			return src_burst_size;
753 
754 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
755 			STM32_DMA_SCR_PSIZE(dst_bus_width) |
756 			STM32_DMA_SCR_MSIZE(src_bus_width) |
757 			STM32_DMA_SCR_PBURST(dst_burst_size) |
758 			STM32_DMA_SCR_MBURST(src_burst_size);
759 
760 		/* Set FIFO threshold */
761 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
762 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
763 			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
764 
765 		/* Set peripheral address */
766 		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
767 		*buswidth = dst_addr_width;
768 		break;
769 
770 	case DMA_DEV_TO_MEM:
771 		/* Set device data size */
772 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
773 		if (src_bus_width < 0)
774 			return src_bus_width;
775 
776 		/* Set device burst size */
777 		src_best_burst = stm32_dma_get_best_burst(buf_len,
778 							  src_maxburst,
779 							  fifoth,
780 							  src_addr_width);
781 		chan->mem_burst = src_best_burst;
782 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
783 		if (src_burst_size < 0)
784 			return src_burst_size;
785 
786 		/* Set memory data size */
787 		dst_addr_width = stm32_dma_get_max_width(buf_len, fifoth);
788 		chan->mem_width = dst_addr_width;
789 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
790 		if (dst_bus_width < 0)
791 			return dst_bus_width;
792 
793 		/* Set memory burst size */
794 		dst_maxburst = STM32_DMA_MAX_BURST;
795 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
796 							  dst_maxburst,
797 							  fifoth,
798 							  dst_addr_width);
799 		chan->mem_burst = dst_best_burst;
800 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
801 		if (dst_burst_size < 0)
802 			return dst_burst_size;
803 
804 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
805 			STM32_DMA_SCR_PSIZE(src_bus_width) |
806 			STM32_DMA_SCR_MSIZE(dst_bus_width) |
807 			STM32_DMA_SCR_PBURST(src_burst_size) |
808 			STM32_DMA_SCR_MBURST(dst_burst_size);
809 
810 		/* Set FIFO threshold */
811 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
812 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
813 			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
814 
815 		/* Set peripheral address */
816 		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
817 		*buswidth = chan->dma_sconfig.src_addr_width;
818 		break;
819 
820 	default:
821 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
822 		return -EINVAL;
823 	}
824 
825 	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
826 
827 	/* Set DMA control register */
828 	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
829 			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
830 			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
831 	chan->chan_reg.dma_scr |= dma_scr;
832 
833 	return 0;
834 }
835 
836 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
837 {
838 	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
839 }
840 
841 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
842 	struct dma_chan *c, struct scatterlist *sgl,
843 	u32 sg_len, enum dma_transfer_direction direction,
844 	unsigned long flags, void *context)
845 {
846 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
847 	struct stm32_dma_desc *desc;
848 	struct scatterlist *sg;
849 	enum dma_slave_buswidth buswidth;
850 	u32 nb_data_items;
851 	int i, ret;
852 
853 	if (!chan->config_init) {
854 		dev_err(chan2dev(chan), "dma channel is not configured\n");
855 		return NULL;
856 	}
857 
858 	if (sg_len < 1) {
859 		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
860 		return NULL;
861 	}
862 
863 	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
864 	if (!desc)
865 		return NULL;
866 
867 	/* Set peripheral flow controller */
868 	if (chan->dma_sconfig.device_fc)
869 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
870 	else
871 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
872 
873 	for_each_sg(sgl, sg, sg_len, i) {
874 		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
875 					       sg_dma_len(sg));
876 		if (ret < 0)
877 			goto err;
878 
879 		desc->sg_req[i].len = sg_dma_len(sg);
880 
881 		nb_data_items = desc->sg_req[i].len / buswidth;
882 		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
883 			dev_err(chan2dev(chan), "nb items not supported\n");
884 			goto err;
885 		}
886 
887 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
888 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
889 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
890 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
891 		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
892 		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
893 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
894 	}
895 
896 	desc->num_sgs = sg_len;
897 	desc->cyclic = false;
898 
899 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
900 
901 err:
902 	kfree(desc);
903 	return NULL;
904 }
905 
906 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
907 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
908 	size_t period_len, enum dma_transfer_direction direction,
909 	unsigned long flags)
910 {
911 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
912 	struct stm32_dma_desc *desc;
913 	enum dma_slave_buswidth buswidth;
914 	u32 num_periods, nb_data_items;
915 	int i, ret;
916 
917 	if (!buf_len || !period_len) {
918 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
919 		return NULL;
920 	}
921 
922 	if (!chan->config_init) {
923 		dev_err(chan2dev(chan), "dma channel is not configured\n");
924 		return NULL;
925 	}
926 
927 	if (buf_len % period_len) {
928 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
929 		return NULL;
930 	}
931 
932 	/*
933 	 * We allow to take more number of requests till DMA is
934 	 * not started. The driver will loop over all requests.
935 	 * Once DMA is started then new requests can be queued only after
936 	 * terminating the DMA.
937 	 */
938 	if (chan->busy) {
939 		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
940 		return NULL;
941 	}
942 
943 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
944 	if (ret < 0)
945 		return NULL;
946 
947 	nb_data_items = period_len / buswidth;
948 	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
949 		dev_err(chan2dev(chan), "number of items not supported\n");
950 		return NULL;
951 	}
952 
953 	/*  Enable Circular mode or double buffer mode */
954 	if (buf_len == period_len)
955 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
956 	else
957 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
958 
959 	/* Clear periph ctrl if client set it */
960 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
961 
962 	num_periods = buf_len / period_len;
963 
964 	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
965 	if (!desc)
966 		return NULL;
967 
968 	for (i = 0; i < num_periods; i++) {
969 		desc->sg_req[i].len = period_len;
970 
971 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
972 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
973 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
974 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
975 		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
976 		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
977 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
978 		buf_addr += period_len;
979 	}
980 
981 	desc->num_sgs = num_periods;
982 	desc->cyclic = true;
983 
984 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
985 }
986 
987 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
988 	struct dma_chan *c, dma_addr_t dest,
989 	dma_addr_t src, size_t len, unsigned long flags)
990 {
991 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
992 	enum dma_slave_buswidth max_width;
993 	struct stm32_dma_desc *desc;
994 	size_t xfer_count, offset;
995 	u32 num_sgs, best_burst, dma_burst, threshold;
996 	int i;
997 
998 	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
999 	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1000 	if (!desc)
1001 		return NULL;
1002 
1003 	threshold = chan->threshold;
1004 
1005 	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1006 		xfer_count = min_t(size_t, len - offset,
1007 				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1008 
1009 		/* Compute best burst size */
1010 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1011 		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1012 						      threshold, max_width);
1013 		dma_burst = stm32_dma_get_burst(chan, best_burst);
1014 
1015 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1016 		desc->sg_req[i].chan_reg.dma_scr =
1017 			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1018 			STM32_DMA_SCR_PBURST(dma_burst) |
1019 			STM32_DMA_SCR_MBURST(dma_burst) |
1020 			STM32_DMA_SCR_MINC |
1021 			STM32_DMA_SCR_PINC |
1022 			STM32_DMA_SCR_TCIE |
1023 			STM32_DMA_SCR_TEIE;
1024 		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1025 		desc->sg_req[i].chan_reg.dma_sfcr |=
1026 			STM32_DMA_SFCR_FTH(threshold);
1027 		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1028 		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1029 		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1030 		desc->sg_req[i].len = xfer_count;
1031 	}
1032 
1033 	desc->num_sgs = num_sgs;
1034 	desc->cyclic = false;
1035 
1036 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1037 }
1038 
1039 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1040 {
1041 	u32 dma_scr, width, ndtr;
1042 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1043 
1044 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1045 	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1046 	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1047 
1048 	return ndtr << width;
1049 }
1050 
1051 /**
1052  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1053  * @chan: dma channel
1054  *
1055  * This function called when IRQ are disable, checks that the hardware has not
1056  * switched on the next transfer in double buffer mode. The test is done by
1057  * comparing the next_sg memory address with the hardware related register
1058  * (based on CT bit value).
1059  *
1060  * Returns true if expected current transfer is still running or double
1061  * buffer mode is not activated.
1062  */
1063 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1064 {
1065 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1066 	struct stm32_dma_sg_req *sg_req;
1067 	u32 dma_scr, dma_smar, id;
1068 
1069 	id = chan->id;
1070 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1071 
1072 	if (!(dma_scr & STM32_DMA_SCR_DBM))
1073 		return true;
1074 
1075 	sg_req = &chan->desc->sg_req[chan->next_sg];
1076 
1077 	if (dma_scr & STM32_DMA_SCR_CT) {
1078 		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1079 		return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1080 	}
1081 
1082 	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1083 
1084 	return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1085 }
1086 
1087 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1088 				     struct stm32_dma_desc *desc,
1089 				     u32 next_sg)
1090 {
1091 	u32 modulo, burst_size;
1092 	u32 residue;
1093 	u32 n_sg = next_sg;
1094 	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1095 	int i;
1096 
1097 	/*
1098 	 * Calculate the residue means compute the descriptors
1099 	 * information:
1100 	 * - the sg_req currently transferred
1101 	 * - the Hardware remaining position in this sg (NDTR bits field).
1102 	 *
1103 	 * A race condition may occur if DMA is running in cyclic or double
1104 	 * buffer mode, since the DMA register are automatically reloaded at end
1105 	 * of period transfer. The hardware may have switched to the next
1106 	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1107 	 * read.
1108 	 * In this case the SxNDTR reg could (or not) correspond to the new
1109 	 * transfer position, and not the expected one.
1110 	 * The strategy implemented in the stm32 driver is to:
1111 	 *  - read the SxNDTR register
1112 	 *  - crosscheck that hardware is still in current transfer.
1113 	 * In case of switch, we can assume that the DMA is at the beginning of
1114 	 * the next transfer. So we approximate the residue in consequence, by
1115 	 * pointing on the beginning of next transfer.
1116 	 *
1117 	 * This race condition doesn't apply for none cyclic mode, as double
1118 	 * buffer is not used. In such situation registers are updated by the
1119 	 * software.
1120 	 */
1121 
1122 	residue = stm32_dma_get_remaining_bytes(chan);
1123 
1124 	if (!stm32_dma_is_current_sg(chan)) {
1125 		n_sg++;
1126 		if (n_sg == chan->desc->num_sgs)
1127 			n_sg = 0;
1128 		residue = sg_req->len;
1129 	}
1130 
1131 	/*
1132 	 * In cyclic mode, for the last period, residue = remaining bytes
1133 	 * from NDTR,
1134 	 * else for all other periods in cyclic mode, and in sg mode,
1135 	 * residue = remaining bytes from NDTR + remaining
1136 	 * periods/sg to be transferred
1137 	 */
1138 	if (!chan->desc->cyclic || n_sg != 0)
1139 		for (i = n_sg; i < desc->num_sgs; i++)
1140 			residue += desc->sg_req[i].len;
1141 
1142 	if (!chan->mem_burst)
1143 		return residue;
1144 
1145 	burst_size = chan->mem_burst * chan->mem_width;
1146 	modulo = residue % burst_size;
1147 	if (modulo)
1148 		residue = residue - modulo + burst_size;
1149 
1150 	return residue;
1151 }
1152 
1153 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1154 					   dma_cookie_t cookie,
1155 					   struct dma_tx_state *state)
1156 {
1157 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1158 	struct virt_dma_desc *vdesc;
1159 	enum dma_status status;
1160 	unsigned long flags;
1161 	u32 residue = 0;
1162 
1163 	status = dma_cookie_status(c, cookie, state);
1164 	if (status == DMA_COMPLETE || !state)
1165 		return status;
1166 
1167 	spin_lock_irqsave(&chan->vchan.lock, flags);
1168 	vdesc = vchan_find_desc(&chan->vchan, cookie);
1169 	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1170 		residue = stm32_dma_desc_residue(chan, chan->desc,
1171 						 chan->next_sg);
1172 	else if (vdesc)
1173 		residue = stm32_dma_desc_residue(chan,
1174 						 to_stm32_dma_desc(vdesc), 0);
1175 	dma_set_residue(state, residue);
1176 
1177 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1178 
1179 	return status;
1180 }
1181 
1182 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1183 {
1184 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1185 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1186 	int ret;
1187 
1188 	chan->config_init = false;
1189 
1190 	ret = pm_runtime_get_sync(dmadev->ddev.dev);
1191 	if (ret < 0)
1192 		return ret;
1193 
1194 	ret = stm32_dma_disable_chan(chan);
1195 	if (ret < 0)
1196 		pm_runtime_put(dmadev->ddev.dev);
1197 
1198 	return ret;
1199 }
1200 
1201 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1202 {
1203 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1204 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1205 	unsigned long flags;
1206 
1207 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1208 
1209 	if (chan->busy) {
1210 		spin_lock_irqsave(&chan->vchan.lock, flags);
1211 		stm32_dma_stop(chan);
1212 		chan->desc = NULL;
1213 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1214 	}
1215 
1216 	pm_runtime_put(dmadev->ddev.dev);
1217 
1218 	vchan_free_chan_resources(to_virt_chan(c));
1219 }
1220 
1221 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1222 {
1223 	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1224 }
1225 
1226 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1227 				 struct stm32_dma_cfg *cfg)
1228 {
1229 	stm32_dma_clear_reg(&chan->chan_reg);
1230 
1231 	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1232 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1233 
1234 	/* Enable Interrupts  */
1235 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1236 
1237 	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1238 	if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1239 		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1240 }
1241 
1242 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1243 					   struct of_dma *ofdma)
1244 {
1245 	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1246 	struct device *dev = dmadev->ddev.dev;
1247 	struct stm32_dma_cfg cfg;
1248 	struct stm32_dma_chan *chan;
1249 	struct dma_chan *c;
1250 
1251 	if (dma_spec->args_count < 4) {
1252 		dev_err(dev, "Bad number of cells\n");
1253 		return NULL;
1254 	}
1255 
1256 	cfg.channel_id = dma_spec->args[0];
1257 	cfg.request_line = dma_spec->args[1];
1258 	cfg.stream_config = dma_spec->args[2];
1259 	cfg.features = dma_spec->args[3];
1260 
1261 	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1262 	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1263 		dev_err(dev, "Bad channel and/or request id\n");
1264 		return NULL;
1265 	}
1266 
1267 	chan = &dmadev->chan[cfg.channel_id];
1268 
1269 	c = dma_get_slave_channel(&chan->vchan.chan);
1270 	if (!c) {
1271 		dev_err(dev, "No more channels available\n");
1272 		return NULL;
1273 	}
1274 
1275 	stm32_dma_set_config(chan, &cfg);
1276 
1277 	return c;
1278 }
1279 
1280 static const struct of_device_id stm32_dma_of_match[] = {
1281 	{ .compatible = "st,stm32-dma", },
1282 	{ /* sentinel */ },
1283 };
1284 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1285 
1286 static int stm32_dma_probe(struct platform_device *pdev)
1287 {
1288 	struct stm32_dma_chan *chan;
1289 	struct stm32_dma_device *dmadev;
1290 	struct dma_device *dd;
1291 	const struct of_device_id *match;
1292 	struct resource *res;
1293 	struct reset_control *rst;
1294 	int i, ret;
1295 
1296 	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1297 	if (!match) {
1298 		dev_err(&pdev->dev, "Error: No device match found\n");
1299 		return -ENODEV;
1300 	}
1301 
1302 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1303 	if (!dmadev)
1304 		return -ENOMEM;
1305 
1306 	dd = &dmadev->ddev;
1307 
1308 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1309 	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1310 	if (IS_ERR(dmadev->base))
1311 		return PTR_ERR(dmadev->base);
1312 
1313 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1314 	if (IS_ERR(dmadev->clk)) {
1315 		ret = PTR_ERR(dmadev->clk);
1316 		if (ret != -EPROBE_DEFER)
1317 			dev_err(&pdev->dev, "Can't get clock\n");
1318 		return ret;
1319 	}
1320 
1321 	ret = clk_prepare_enable(dmadev->clk);
1322 	if (ret < 0) {
1323 		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1324 		return ret;
1325 	}
1326 
1327 	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1328 						"st,mem2mem");
1329 
1330 	rst = devm_reset_control_get(&pdev->dev, NULL);
1331 	if (IS_ERR(rst)) {
1332 		ret = PTR_ERR(rst);
1333 		if (ret == -EPROBE_DEFER)
1334 			goto clk_free;
1335 	} else {
1336 		reset_control_assert(rst);
1337 		udelay(2);
1338 		reset_control_deassert(rst);
1339 	}
1340 
1341 	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1342 
1343 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1344 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1345 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1346 	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1347 	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1348 	dd->device_tx_status = stm32_dma_tx_status;
1349 	dd->device_issue_pending = stm32_dma_issue_pending;
1350 	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1351 	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1352 	dd->device_config = stm32_dma_slave_config;
1353 	dd->device_terminate_all = stm32_dma_terminate_all;
1354 	dd->device_synchronize = stm32_dma_synchronize;
1355 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1356 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1357 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1358 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1359 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1360 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1361 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1362 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1363 	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1364 	dd->max_burst = STM32_DMA_MAX_BURST;
1365 	dd->descriptor_reuse = true;
1366 	dd->dev = &pdev->dev;
1367 	INIT_LIST_HEAD(&dd->channels);
1368 
1369 	if (dmadev->mem2mem) {
1370 		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1371 		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1372 		dd->directions |= BIT(DMA_MEM_TO_MEM);
1373 	}
1374 
1375 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1376 		chan = &dmadev->chan[i];
1377 		chan->id = i;
1378 		chan->vchan.desc_free = stm32_dma_desc_free;
1379 		vchan_init(&chan->vchan, dd);
1380 	}
1381 
1382 	ret = dma_async_device_register(dd);
1383 	if (ret)
1384 		goto clk_free;
1385 
1386 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1387 		chan = &dmadev->chan[i];
1388 		ret = platform_get_irq(pdev, i);
1389 		if (ret < 0)
1390 			goto err_unregister;
1391 		chan->irq = ret;
1392 
1393 		ret = devm_request_irq(&pdev->dev, chan->irq,
1394 				       stm32_dma_chan_irq, 0,
1395 				       dev_name(chan2dev(chan)), chan);
1396 		if (ret) {
1397 			dev_err(&pdev->dev,
1398 				"request_irq failed with err %d channel %d\n",
1399 				ret, i);
1400 			goto err_unregister;
1401 		}
1402 	}
1403 
1404 	ret = of_dma_controller_register(pdev->dev.of_node,
1405 					 stm32_dma_of_xlate, dmadev);
1406 	if (ret < 0) {
1407 		dev_err(&pdev->dev,
1408 			"STM32 DMA DMA OF registration failed %d\n", ret);
1409 		goto err_unregister;
1410 	}
1411 
1412 	platform_set_drvdata(pdev, dmadev);
1413 
1414 	pm_runtime_set_active(&pdev->dev);
1415 	pm_runtime_enable(&pdev->dev);
1416 	pm_runtime_get_noresume(&pdev->dev);
1417 	pm_runtime_put(&pdev->dev);
1418 
1419 	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1420 
1421 	return 0;
1422 
1423 err_unregister:
1424 	dma_async_device_unregister(dd);
1425 clk_free:
1426 	clk_disable_unprepare(dmadev->clk);
1427 
1428 	return ret;
1429 }
1430 
1431 #ifdef CONFIG_PM
1432 static int stm32_dma_runtime_suspend(struct device *dev)
1433 {
1434 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1435 
1436 	clk_disable_unprepare(dmadev->clk);
1437 
1438 	return 0;
1439 }
1440 
1441 static int stm32_dma_runtime_resume(struct device *dev)
1442 {
1443 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1444 	int ret;
1445 
1446 	ret = clk_prepare_enable(dmadev->clk);
1447 	if (ret) {
1448 		dev_err(dev, "failed to prepare_enable clock\n");
1449 		return ret;
1450 	}
1451 
1452 	return 0;
1453 }
1454 #endif
1455 
1456 #ifdef CONFIG_PM_SLEEP
1457 static int stm32_dma_suspend(struct device *dev)
1458 {
1459 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1460 	int id, ret, scr;
1461 
1462 	ret = pm_runtime_get_sync(dev);
1463 	if (ret < 0)
1464 		return ret;
1465 
1466 	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1467 		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1468 		if (scr & STM32_DMA_SCR_EN) {
1469 			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1470 			return -EBUSY;
1471 		}
1472 	}
1473 
1474 	pm_runtime_put_sync(dev);
1475 
1476 	pm_runtime_force_suspend(dev);
1477 
1478 	return 0;
1479 }
1480 
1481 static int stm32_dma_resume(struct device *dev)
1482 {
1483 	return pm_runtime_force_resume(dev);
1484 }
1485 #endif
1486 
1487 static const struct dev_pm_ops stm32_dma_pm_ops = {
1488 	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1489 	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1490 			   stm32_dma_runtime_resume, NULL)
1491 };
1492 
1493 static struct platform_driver stm32_dma_driver = {
1494 	.driver = {
1495 		.name = "stm32-dma",
1496 		.of_match_table = stm32_dma_of_match,
1497 		.pm = &stm32_dma_pm_ops,
1498 	},
1499 	.probe = stm32_dma_probe,
1500 };
1501 
1502 static int __init stm32_dma_init(void)
1503 {
1504 	return platform_driver_register(&stm32_dma_driver);
1505 }
1506 subsys_initcall(stm32_dma_init);
1507