xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision cd72b8462a2ebbf9524e726c65c2770f0bf70d22)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 #include <linux/of_dma.h>
40 
41 #include <asm/irq.h>
42 #include <linux/platform_data/dma-imx-sdma.h>
43 #include <linux/platform_data/dma-imx.h>
44 
45 #include "dmaengine.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130 	u32 count   : 16; /* size of the buffer pointed by this BD */
131 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132 	u32 command :  8; /* command mostlky used for channel 0 */
133 };
134 
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139 	struct sdma_mode_count  mode;
140 	u32 buffer_addr;	/* address of the buffer described */
141 	u32 ext_buffer_addr;	/* extended buffer address */
142 } __attribute__ ((packed));
143 
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr	current buffer descriptor processed
148  * @base_bd_ptr		first element of buffer descriptor array
149  * @unused		padding. The SDMA engine expects an array of 128 byte
150  *			control blocks
151  */
152 struct sdma_channel_control {
153 	u32 current_bd_ptr;
154 	u32 base_bd_ptr;
155 	u32 unused[2];
156 } __attribute__ ((packed));
157 
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:		program counter
162  * @t:		test bit: status of arithmetic & test instruction
163  * @rpc:	return program counter
164  * @sf:		source fault while loading data
165  * @spc:	loop start program counter
166  * @df:		destination fault while storing data
167  * @epc:	loop end program counter
168  * @lm:		loop mode
169  */
170 struct sdma_state_registers {
171 	u32 pc     :14;
172 	u32 unused1: 1;
173 	u32 t      : 1;
174 	u32 rpc    :14;
175 	u32 unused0: 1;
176 	u32 sf     : 1;
177 	u32 spc    :14;
178 	u32 unused2: 1;
179 	u32 df     : 1;
180 	u32 epc    :14;
181 	u32 lm     : 2;
182 } __attribute__ ((packed));
183 
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:	channel state bits
188  * @gReg:		general registers
189  * @mda:		burst dma destination address register
190  * @msa:		burst dma source address register
191  * @ms:			burst dma status register
192  * @md:			burst dma data register
193  * @pda:		peripheral dma destination address register
194  * @psa:		peripheral dma source address register
195  * @ps:			peripheral dma status register
196  * @pd:			peripheral dma data register
197  * @ca:			CRC polynomial register
198  * @cs:			CRC accumulator register
199  * @dda:		dedicated core destination address register
200  * @dsa:		dedicated core source address register
201  * @ds:			dedicated core status register
202  * @dd:			dedicated core data register
203  */
204 struct sdma_context_data {
205 	struct sdma_state_registers  channel_state;
206 	u32  gReg[8];
207 	u32  mda;
208 	u32  msa;
209 	u32  ms;
210 	u32  md;
211 	u32  pda;
212 	u32  psa;
213 	u32  ps;
214 	u32  pd;
215 	u32  ca;
216 	u32  cs;
217 	u32  dda;
218 	u32  dsa;
219 	u32  ds;
220 	u32  dd;
221 	u32  scratch0;
222 	u32  scratch1;
223 	u32  scratch2;
224 	u32  scratch3;
225 	u32  scratch4;
226 	u32  scratch5;
227 	u32  scratch6;
228 	u32  scratch7;
229 } __attribute__ ((packed));
230 
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232 
233 struct sdma_engine;
234 
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma		pointer to the SDMA engine for this channel
239  * @channel		the channel number, matches dmaengine chan_id + 1
240  * @direction		transfer type. Needed for setting SDMA script
241  * @peripheral_type	Peripheral type. Needed for setting SDMA script
242  * @event_id0		aka dma request line
243  * @event_id1		for channels that use 2 events
244  * @word_size		peripheral access size
245  * @buf_tail		ID of the buffer that was processed
246  * @num_bd		max NUM_BD. number of descriptors currently handling
247  */
248 struct sdma_channel {
249 	struct sdma_engine		*sdma;
250 	unsigned int			channel;
251 	enum dma_transfer_direction		direction;
252 	enum sdma_peripheral_type	peripheral_type;
253 	unsigned int			event_id0;
254 	unsigned int			event_id1;
255 	enum dma_slave_buswidth		word_size;
256 	unsigned int			buf_tail;
257 	unsigned int			num_bd;
258 	struct sdma_buffer_descriptor	*bd;
259 	dma_addr_t			bd_phys;
260 	unsigned int			pc_from_device, pc_to_device;
261 	unsigned long			flags;
262 	dma_addr_t			per_address;
263 	unsigned long			event_mask[2];
264 	unsigned long			watermark_level;
265 	u32				shp_addr, per_addr;
266 	struct dma_chan			chan;
267 	spinlock_t			lock;
268 	struct dma_async_tx_descriptor	desc;
269 	enum dma_status			status;
270 	unsigned int			chn_count;
271 	unsigned int			chn_real_count;
272 	struct tasklet_struct		tasklet;
273 };
274 
275 #define IMX_DMA_SG_LOOP		BIT(0)
276 
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281 
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283 
284 /**
285  * struct sdma_firmware_header - Layout of the firmware image
286  *
287  * @magic		"SDMA"
288  * @version_major	increased whenever layout of struct sdma_script_start_addrs
289  *			changes.
290  * @version_minor	firmware minor version (for binary compatible changes)
291  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
292  * @num_script_addrs	Number of script addresses in this image
293  * @ram_code_start	offset of SDMA ram image in this firmware image
294  * @ram_code_size	size of SDMA ram image
295  * @script_addrs	Stores the start address of the SDMA scripts
296  *			(in SDMA memory space)
297  */
298 struct sdma_firmware_header {
299 	u32	magic;
300 	u32	version_major;
301 	u32	version_minor;
302 	u32	script_addrs_start;
303 	u32	num_script_addrs;
304 	u32	ram_code_start;
305 	u32	ram_code_size;
306 };
307 
308 struct sdma_driver_data {
309 	int chnenbl0;
310 	int num_events;
311 	struct sdma_script_start_addrs	*script_addrs;
312 };
313 
314 struct sdma_engine {
315 	struct device			*dev;
316 	struct device_dma_parameters	dma_parms;
317 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
318 	struct sdma_channel_control	*channel_control;
319 	void __iomem			*regs;
320 	struct sdma_context_data	*context;
321 	dma_addr_t			context_phys;
322 	struct dma_device		dma_device;
323 	struct clk			*clk_ipg;
324 	struct clk			*clk_ahb;
325 	spinlock_t			channel_0_lock;
326 	u32				script_number;
327 	struct sdma_script_start_addrs	*script_addrs;
328 	const struct sdma_driver_data	*drvdata;
329 };
330 
331 static struct sdma_driver_data sdma_imx31 = {
332 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
333 	.num_events = 32,
334 };
335 
336 static struct sdma_script_start_addrs sdma_script_imx25 = {
337 	.ap_2_ap_addr = 729,
338 	.uart_2_mcu_addr = 904,
339 	.per_2_app_addr = 1255,
340 	.mcu_2_app_addr = 834,
341 	.uartsh_2_mcu_addr = 1120,
342 	.per_2_shp_addr = 1329,
343 	.mcu_2_shp_addr = 1048,
344 	.ata_2_mcu_addr = 1560,
345 	.mcu_2_ata_addr = 1479,
346 	.app_2_per_addr = 1189,
347 	.app_2_mcu_addr = 770,
348 	.shp_2_per_addr = 1407,
349 	.shp_2_mcu_addr = 979,
350 };
351 
352 static struct sdma_driver_data sdma_imx25 = {
353 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
354 	.num_events = 48,
355 	.script_addrs = &sdma_script_imx25,
356 };
357 
358 static struct sdma_driver_data sdma_imx35 = {
359 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
360 	.num_events = 48,
361 };
362 
363 static struct sdma_script_start_addrs sdma_script_imx51 = {
364 	.ap_2_ap_addr = 642,
365 	.uart_2_mcu_addr = 817,
366 	.mcu_2_app_addr = 747,
367 	.mcu_2_shp_addr = 961,
368 	.ata_2_mcu_addr = 1473,
369 	.mcu_2_ata_addr = 1392,
370 	.app_2_per_addr = 1033,
371 	.app_2_mcu_addr = 683,
372 	.shp_2_per_addr = 1251,
373 	.shp_2_mcu_addr = 892,
374 };
375 
376 static struct sdma_driver_data sdma_imx51 = {
377 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
378 	.num_events = 48,
379 	.script_addrs = &sdma_script_imx51,
380 };
381 
382 static struct sdma_script_start_addrs sdma_script_imx53 = {
383 	.ap_2_ap_addr = 642,
384 	.app_2_mcu_addr = 683,
385 	.mcu_2_app_addr = 747,
386 	.uart_2_mcu_addr = 817,
387 	.shp_2_mcu_addr = 891,
388 	.mcu_2_shp_addr = 960,
389 	.uartsh_2_mcu_addr = 1032,
390 	.spdif_2_mcu_addr = 1100,
391 	.mcu_2_spdif_addr = 1134,
392 	.firi_2_mcu_addr = 1193,
393 	.mcu_2_firi_addr = 1290,
394 };
395 
396 static struct sdma_driver_data sdma_imx53 = {
397 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
398 	.num_events = 48,
399 	.script_addrs = &sdma_script_imx53,
400 };
401 
402 static struct sdma_script_start_addrs sdma_script_imx6q = {
403 	.ap_2_ap_addr = 642,
404 	.uart_2_mcu_addr = 817,
405 	.mcu_2_app_addr = 747,
406 	.per_2_per_addr = 6331,
407 	.uartsh_2_mcu_addr = 1032,
408 	.mcu_2_shp_addr = 960,
409 	.app_2_mcu_addr = 683,
410 	.shp_2_mcu_addr = 891,
411 	.spdif_2_mcu_addr = 1100,
412 	.mcu_2_spdif_addr = 1134,
413 };
414 
415 static struct sdma_driver_data sdma_imx6q = {
416 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
417 	.num_events = 48,
418 	.script_addrs = &sdma_script_imx6q,
419 };
420 
421 static struct platform_device_id sdma_devtypes[] = {
422 	{
423 		.name = "imx25-sdma",
424 		.driver_data = (unsigned long)&sdma_imx25,
425 	}, {
426 		.name = "imx31-sdma",
427 		.driver_data = (unsigned long)&sdma_imx31,
428 	}, {
429 		.name = "imx35-sdma",
430 		.driver_data = (unsigned long)&sdma_imx35,
431 	}, {
432 		.name = "imx51-sdma",
433 		.driver_data = (unsigned long)&sdma_imx51,
434 	}, {
435 		.name = "imx53-sdma",
436 		.driver_data = (unsigned long)&sdma_imx53,
437 	}, {
438 		.name = "imx6q-sdma",
439 		.driver_data = (unsigned long)&sdma_imx6q,
440 	}, {
441 		/* sentinel */
442 	}
443 };
444 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
445 
446 static const struct of_device_id sdma_dt_ids[] = {
447 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
448 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
449 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
450 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
451 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
452 	{ /* sentinel */ }
453 };
454 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
455 
456 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
457 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
458 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
459 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
460 
461 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
462 {
463 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
464 	return chnenbl0 + event * 4;
465 }
466 
467 static int sdma_config_ownership(struct sdma_channel *sdmac,
468 		bool event_override, bool mcu_override, bool dsp_override)
469 {
470 	struct sdma_engine *sdma = sdmac->sdma;
471 	int channel = sdmac->channel;
472 	unsigned long evt, mcu, dsp;
473 
474 	if (event_override && mcu_override && dsp_override)
475 		return -EINVAL;
476 
477 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
478 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
479 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
480 
481 	if (dsp_override)
482 		__clear_bit(channel, &dsp);
483 	else
484 		__set_bit(channel, &dsp);
485 
486 	if (event_override)
487 		__clear_bit(channel, &evt);
488 	else
489 		__set_bit(channel, &evt);
490 
491 	if (mcu_override)
492 		__clear_bit(channel, &mcu);
493 	else
494 		__set_bit(channel, &mcu);
495 
496 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
497 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
498 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
499 
500 	return 0;
501 }
502 
503 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
504 {
505 	writel(BIT(channel), sdma->regs + SDMA_H_START);
506 }
507 
508 /*
509  * sdma_run_channel0 - run a channel and wait till it's done
510  */
511 static int sdma_run_channel0(struct sdma_engine *sdma)
512 {
513 	int ret;
514 	unsigned long timeout = 500;
515 
516 	sdma_enable_channel(sdma, 0);
517 
518 	while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
519 		if (timeout-- <= 0)
520 			break;
521 		udelay(1);
522 	}
523 
524 	if (ret) {
525 		/* Clear the interrupt status */
526 		writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
527 	} else {
528 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
529 	}
530 
531 	return ret ? 0 : -ETIMEDOUT;
532 }
533 
534 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
535 		u32 address)
536 {
537 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
538 	void *buf_virt;
539 	dma_addr_t buf_phys;
540 	int ret;
541 	unsigned long flags;
542 
543 	buf_virt = dma_alloc_coherent(NULL,
544 			size,
545 			&buf_phys, GFP_KERNEL);
546 	if (!buf_virt) {
547 		return -ENOMEM;
548 	}
549 
550 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
551 
552 	bd0->mode.command = C0_SETPM;
553 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
554 	bd0->mode.count = size / 2;
555 	bd0->buffer_addr = buf_phys;
556 	bd0->ext_buffer_addr = address;
557 
558 	memcpy(buf_virt, buf, size);
559 
560 	ret = sdma_run_channel0(sdma);
561 
562 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
563 
564 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
565 
566 	return ret;
567 }
568 
569 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
570 {
571 	struct sdma_engine *sdma = sdmac->sdma;
572 	int channel = sdmac->channel;
573 	unsigned long val;
574 	u32 chnenbl = chnenbl_ofs(sdma, event);
575 
576 	val = readl_relaxed(sdma->regs + chnenbl);
577 	__set_bit(channel, &val);
578 	writel_relaxed(val, sdma->regs + chnenbl);
579 }
580 
581 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
582 {
583 	struct sdma_engine *sdma = sdmac->sdma;
584 	int channel = sdmac->channel;
585 	u32 chnenbl = chnenbl_ofs(sdma, event);
586 	unsigned long val;
587 
588 	val = readl_relaxed(sdma->regs + chnenbl);
589 	__clear_bit(channel, &val);
590 	writel_relaxed(val, sdma->regs + chnenbl);
591 }
592 
593 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
594 {
595 	struct sdma_buffer_descriptor *bd;
596 
597 	/*
598 	 * loop mode. Iterate over descriptors, re-setup them and
599 	 * call callback function.
600 	 */
601 	while (1) {
602 		bd = &sdmac->bd[sdmac->buf_tail];
603 
604 		if (bd->mode.status & BD_DONE)
605 			break;
606 
607 		if (bd->mode.status & BD_RROR)
608 			sdmac->status = DMA_ERROR;
609 		else
610 			sdmac->status = DMA_IN_PROGRESS;
611 
612 		bd->mode.status |= BD_DONE;
613 		sdmac->buf_tail++;
614 		sdmac->buf_tail %= sdmac->num_bd;
615 
616 		if (sdmac->desc.callback)
617 			sdmac->desc.callback(sdmac->desc.callback_param);
618 	}
619 }
620 
621 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
622 {
623 	struct sdma_buffer_descriptor *bd;
624 	int i, error = 0;
625 
626 	sdmac->chn_real_count = 0;
627 	/*
628 	 * non loop mode. Iterate over all descriptors, collect
629 	 * errors and call callback function
630 	 */
631 	for (i = 0; i < sdmac->num_bd; i++) {
632 		bd = &sdmac->bd[i];
633 
634 		 if (bd->mode.status & (BD_DONE | BD_RROR))
635 			error = -EIO;
636 		 sdmac->chn_real_count += bd->mode.count;
637 	}
638 
639 	if (error)
640 		sdmac->status = DMA_ERROR;
641 	else
642 		sdmac->status = DMA_COMPLETE;
643 
644 	dma_cookie_complete(&sdmac->desc);
645 	if (sdmac->desc.callback)
646 		sdmac->desc.callback(sdmac->desc.callback_param);
647 }
648 
649 static void sdma_tasklet(unsigned long data)
650 {
651 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
652 
653 	if (sdmac->flags & IMX_DMA_SG_LOOP)
654 		sdma_handle_channel_loop(sdmac);
655 	else
656 		mxc_sdma_handle_channel_normal(sdmac);
657 }
658 
659 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
660 {
661 	struct sdma_engine *sdma = dev_id;
662 	unsigned long stat;
663 
664 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
665 	/* not interested in channel 0 interrupts */
666 	stat &= ~1;
667 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
668 
669 	while (stat) {
670 		int channel = fls(stat) - 1;
671 		struct sdma_channel *sdmac = &sdma->channel[channel];
672 
673 		tasklet_schedule(&sdmac->tasklet);
674 
675 		__clear_bit(channel, &stat);
676 	}
677 
678 	return IRQ_HANDLED;
679 }
680 
681 /*
682  * sets the pc of SDMA script according to the peripheral type
683  */
684 static void sdma_get_pc(struct sdma_channel *sdmac,
685 		enum sdma_peripheral_type peripheral_type)
686 {
687 	struct sdma_engine *sdma = sdmac->sdma;
688 	int per_2_emi = 0, emi_2_per = 0;
689 	/*
690 	 * These are needed once we start to support transfers between
691 	 * two peripherals or memory-to-memory transfers
692 	 */
693 	int per_2_per = 0, emi_2_emi = 0;
694 
695 	sdmac->pc_from_device = 0;
696 	sdmac->pc_to_device = 0;
697 
698 	switch (peripheral_type) {
699 	case IMX_DMATYPE_MEMORY:
700 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
701 		break;
702 	case IMX_DMATYPE_DSP:
703 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
704 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
705 		break;
706 	case IMX_DMATYPE_FIRI:
707 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
708 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
709 		break;
710 	case IMX_DMATYPE_UART:
711 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
712 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
713 		break;
714 	case IMX_DMATYPE_UART_SP:
715 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
716 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
717 		break;
718 	case IMX_DMATYPE_ATA:
719 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
720 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
721 		break;
722 	case IMX_DMATYPE_CSPI:
723 	case IMX_DMATYPE_EXT:
724 	case IMX_DMATYPE_SSI:
725 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
726 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
727 		break;
728 	case IMX_DMATYPE_SSI_SP:
729 	case IMX_DMATYPE_MMC:
730 	case IMX_DMATYPE_SDHC:
731 	case IMX_DMATYPE_CSPI_SP:
732 	case IMX_DMATYPE_ESAI:
733 	case IMX_DMATYPE_MSHC_SP:
734 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
735 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
736 		break;
737 	case IMX_DMATYPE_ASRC:
738 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
739 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
740 		per_2_per = sdma->script_addrs->per_2_per_addr;
741 		break;
742 	case IMX_DMATYPE_MSHC:
743 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
744 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
745 		break;
746 	case IMX_DMATYPE_CCM:
747 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
748 		break;
749 	case IMX_DMATYPE_SPDIF:
750 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
751 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
752 		break;
753 	case IMX_DMATYPE_IPU_MEMORY:
754 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
755 		break;
756 	default:
757 		break;
758 	}
759 
760 	sdmac->pc_from_device = per_2_emi;
761 	sdmac->pc_to_device = emi_2_per;
762 }
763 
764 static int sdma_load_context(struct sdma_channel *sdmac)
765 {
766 	struct sdma_engine *sdma = sdmac->sdma;
767 	int channel = sdmac->channel;
768 	int load_address;
769 	struct sdma_context_data *context = sdma->context;
770 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
771 	int ret;
772 	unsigned long flags;
773 
774 	if (sdmac->direction == DMA_DEV_TO_MEM) {
775 		load_address = sdmac->pc_from_device;
776 	} else {
777 		load_address = sdmac->pc_to_device;
778 	}
779 
780 	if (load_address < 0)
781 		return load_address;
782 
783 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
784 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
785 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
786 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
787 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
788 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
789 
790 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
791 
792 	memset(context, 0, sizeof(*context));
793 	context->channel_state.pc = load_address;
794 
795 	/* Send by context the event mask,base address for peripheral
796 	 * and watermark level
797 	 */
798 	context->gReg[0] = sdmac->event_mask[1];
799 	context->gReg[1] = sdmac->event_mask[0];
800 	context->gReg[2] = sdmac->per_addr;
801 	context->gReg[6] = sdmac->shp_addr;
802 	context->gReg[7] = sdmac->watermark_level;
803 
804 	bd0->mode.command = C0_SETDM;
805 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
806 	bd0->mode.count = sizeof(*context) / 4;
807 	bd0->buffer_addr = sdma->context_phys;
808 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
809 	ret = sdma_run_channel0(sdma);
810 
811 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
812 
813 	return ret;
814 }
815 
816 static void sdma_disable_channel(struct sdma_channel *sdmac)
817 {
818 	struct sdma_engine *sdma = sdmac->sdma;
819 	int channel = sdmac->channel;
820 
821 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
822 	sdmac->status = DMA_ERROR;
823 }
824 
825 static int sdma_config_channel(struct sdma_channel *sdmac)
826 {
827 	int ret;
828 
829 	sdma_disable_channel(sdmac);
830 
831 	sdmac->event_mask[0] = 0;
832 	sdmac->event_mask[1] = 0;
833 	sdmac->shp_addr = 0;
834 	sdmac->per_addr = 0;
835 
836 	if (sdmac->event_id0) {
837 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
838 			return -EINVAL;
839 		sdma_event_enable(sdmac, sdmac->event_id0);
840 	}
841 
842 	switch (sdmac->peripheral_type) {
843 	case IMX_DMATYPE_DSP:
844 		sdma_config_ownership(sdmac, false, true, true);
845 		break;
846 	case IMX_DMATYPE_MEMORY:
847 		sdma_config_ownership(sdmac, false, true, false);
848 		break;
849 	default:
850 		sdma_config_ownership(sdmac, true, true, false);
851 		break;
852 	}
853 
854 	sdma_get_pc(sdmac, sdmac->peripheral_type);
855 
856 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
857 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
858 		/* Handle multiple event channels differently */
859 		if (sdmac->event_id1) {
860 			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
861 			if (sdmac->event_id1 > 31)
862 				__set_bit(31, &sdmac->watermark_level);
863 			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
864 			if (sdmac->event_id0 > 31)
865 				__set_bit(30, &sdmac->watermark_level);
866 		} else {
867 			__set_bit(sdmac->event_id0, sdmac->event_mask);
868 		}
869 		/* Watermark Level */
870 		sdmac->watermark_level |= sdmac->watermark_level;
871 		/* Address */
872 		sdmac->shp_addr = sdmac->per_address;
873 	} else {
874 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
875 	}
876 
877 	ret = sdma_load_context(sdmac);
878 
879 	return ret;
880 }
881 
882 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
883 		unsigned int priority)
884 {
885 	struct sdma_engine *sdma = sdmac->sdma;
886 	int channel = sdmac->channel;
887 
888 	if (priority < MXC_SDMA_MIN_PRIORITY
889 	    || priority > MXC_SDMA_MAX_PRIORITY) {
890 		return -EINVAL;
891 	}
892 
893 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
894 
895 	return 0;
896 }
897 
898 static int sdma_request_channel(struct sdma_channel *sdmac)
899 {
900 	struct sdma_engine *sdma = sdmac->sdma;
901 	int channel = sdmac->channel;
902 	int ret = -EBUSY;
903 
904 	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
905 	if (!sdmac->bd) {
906 		ret = -ENOMEM;
907 		goto out;
908 	}
909 
910 	memset(sdmac->bd, 0, PAGE_SIZE);
911 
912 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
913 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
914 
915 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
916 	return 0;
917 out:
918 
919 	return ret;
920 }
921 
922 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
923 {
924 	return container_of(chan, struct sdma_channel, chan);
925 }
926 
927 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
928 {
929 	unsigned long flags;
930 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
931 	dma_cookie_t cookie;
932 
933 	spin_lock_irqsave(&sdmac->lock, flags);
934 
935 	cookie = dma_cookie_assign(tx);
936 
937 	spin_unlock_irqrestore(&sdmac->lock, flags);
938 
939 	return cookie;
940 }
941 
942 static int sdma_alloc_chan_resources(struct dma_chan *chan)
943 {
944 	struct sdma_channel *sdmac = to_sdma_chan(chan);
945 	struct imx_dma_data *data = chan->private;
946 	int prio, ret;
947 
948 	if (!data)
949 		return -EINVAL;
950 
951 	switch (data->priority) {
952 	case DMA_PRIO_HIGH:
953 		prio = 3;
954 		break;
955 	case DMA_PRIO_MEDIUM:
956 		prio = 2;
957 		break;
958 	case DMA_PRIO_LOW:
959 	default:
960 		prio = 1;
961 		break;
962 	}
963 
964 	sdmac->peripheral_type = data->peripheral_type;
965 	sdmac->event_id0 = data->dma_request;
966 
967 	clk_enable(sdmac->sdma->clk_ipg);
968 	clk_enable(sdmac->sdma->clk_ahb);
969 
970 	ret = sdma_request_channel(sdmac);
971 	if (ret)
972 		return ret;
973 
974 	ret = sdma_set_channel_priority(sdmac, prio);
975 	if (ret)
976 		return ret;
977 
978 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
979 	sdmac->desc.tx_submit = sdma_tx_submit;
980 	/* txd.flags will be overwritten in prep funcs */
981 	sdmac->desc.flags = DMA_CTRL_ACK;
982 
983 	return 0;
984 }
985 
986 static void sdma_free_chan_resources(struct dma_chan *chan)
987 {
988 	struct sdma_channel *sdmac = to_sdma_chan(chan);
989 	struct sdma_engine *sdma = sdmac->sdma;
990 
991 	sdma_disable_channel(sdmac);
992 
993 	if (sdmac->event_id0)
994 		sdma_event_disable(sdmac, sdmac->event_id0);
995 	if (sdmac->event_id1)
996 		sdma_event_disable(sdmac, sdmac->event_id1);
997 
998 	sdmac->event_id0 = 0;
999 	sdmac->event_id1 = 0;
1000 
1001 	sdma_set_channel_priority(sdmac, 0);
1002 
1003 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1004 
1005 	clk_disable(sdma->clk_ipg);
1006 	clk_disable(sdma->clk_ahb);
1007 }
1008 
1009 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1010 		struct dma_chan *chan, struct scatterlist *sgl,
1011 		unsigned int sg_len, enum dma_transfer_direction direction,
1012 		unsigned long flags, void *context)
1013 {
1014 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1015 	struct sdma_engine *sdma = sdmac->sdma;
1016 	int ret, i, count;
1017 	int channel = sdmac->channel;
1018 	struct scatterlist *sg;
1019 
1020 	if (sdmac->status == DMA_IN_PROGRESS)
1021 		return NULL;
1022 	sdmac->status = DMA_IN_PROGRESS;
1023 
1024 	sdmac->flags = 0;
1025 
1026 	sdmac->buf_tail = 0;
1027 
1028 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1029 			sg_len, channel);
1030 
1031 	sdmac->direction = direction;
1032 	ret = sdma_load_context(sdmac);
1033 	if (ret)
1034 		goto err_out;
1035 
1036 	if (sg_len > NUM_BD) {
1037 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1038 				channel, sg_len, NUM_BD);
1039 		ret = -EINVAL;
1040 		goto err_out;
1041 	}
1042 
1043 	sdmac->chn_count = 0;
1044 	for_each_sg(sgl, sg, sg_len, i) {
1045 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1046 		int param;
1047 
1048 		bd->buffer_addr = sg->dma_address;
1049 
1050 		count = sg_dma_len(sg);
1051 
1052 		if (count > 0xffff) {
1053 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1054 					channel, count, 0xffff);
1055 			ret = -EINVAL;
1056 			goto err_out;
1057 		}
1058 
1059 		bd->mode.count = count;
1060 		sdmac->chn_count += count;
1061 
1062 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1063 			ret =  -EINVAL;
1064 			goto err_out;
1065 		}
1066 
1067 		switch (sdmac->word_size) {
1068 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1069 			bd->mode.command = 0;
1070 			if (count & 3 || sg->dma_address & 3)
1071 				return NULL;
1072 			break;
1073 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1074 			bd->mode.command = 2;
1075 			if (count & 1 || sg->dma_address & 1)
1076 				return NULL;
1077 			break;
1078 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1079 			bd->mode.command = 1;
1080 			break;
1081 		default:
1082 			return NULL;
1083 		}
1084 
1085 		param = BD_DONE | BD_EXTD | BD_CONT;
1086 
1087 		if (i + 1 == sg_len) {
1088 			param |= BD_INTR;
1089 			param |= BD_LAST;
1090 			param &= ~BD_CONT;
1091 		}
1092 
1093 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1094 				i, count, (u64)sg->dma_address,
1095 				param & BD_WRAP ? "wrap" : "",
1096 				param & BD_INTR ? " intr" : "");
1097 
1098 		bd->mode.status = param;
1099 	}
1100 
1101 	sdmac->num_bd = sg_len;
1102 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1103 
1104 	return &sdmac->desc;
1105 err_out:
1106 	sdmac->status = DMA_ERROR;
1107 	return NULL;
1108 }
1109 
1110 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1111 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1112 		size_t period_len, enum dma_transfer_direction direction,
1113 		unsigned long flags, void *context)
1114 {
1115 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1116 	struct sdma_engine *sdma = sdmac->sdma;
1117 	int num_periods = buf_len / period_len;
1118 	int channel = sdmac->channel;
1119 	int ret, i = 0, buf = 0;
1120 
1121 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1122 
1123 	if (sdmac->status == DMA_IN_PROGRESS)
1124 		return NULL;
1125 
1126 	sdmac->status = DMA_IN_PROGRESS;
1127 
1128 	sdmac->buf_tail = 0;
1129 
1130 	sdmac->flags |= IMX_DMA_SG_LOOP;
1131 	sdmac->direction = direction;
1132 	ret = sdma_load_context(sdmac);
1133 	if (ret)
1134 		goto err_out;
1135 
1136 	if (num_periods > NUM_BD) {
1137 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1138 				channel, num_periods, NUM_BD);
1139 		goto err_out;
1140 	}
1141 
1142 	if (period_len > 0xffff) {
1143 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1144 				channel, period_len, 0xffff);
1145 		goto err_out;
1146 	}
1147 
1148 	while (buf < buf_len) {
1149 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1150 		int param;
1151 
1152 		bd->buffer_addr = dma_addr;
1153 
1154 		bd->mode.count = period_len;
1155 
1156 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1157 			goto err_out;
1158 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1159 			bd->mode.command = 0;
1160 		else
1161 			bd->mode.command = sdmac->word_size;
1162 
1163 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1164 		if (i + 1 == num_periods)
1165 			param |= BD_WRAP;
1166 
1167 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1168 				i, period_len, (u64)dma_addr,
1169 				param & BD_WRAP ? "wrap" : "",
1170 				param & BD_INTR ? " intr" : "");
1171 
1172 		bd->mode.status = param;
1173 
1174 		dma_addr += period_len;
1175 		buf += period_len;
1176 
1177 		i++;
1178 	}
1179 
1180 	sdmac->num_bd = num_periods;
1181 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1182 
1183 	return &sdmac->desc;
1184 err_out:
1185 	sdmac->status = DMA_ERROR;
1186 	return NULL;
1187 }
1188 
1189 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1190 		unsigned long arg)
1191 {
1192 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1193 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1194 
1195 	switch (cmd) {
1196 	case DMA_TERMINATE_ALL:
1197 		sdma_disable_channel(sdmac);
1198 		return 0;
1199 	case DMA_SLAVE_CONFIG:
1200 		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1201 			sdmac->per_address = dmaengine_cfg->src_addr;
1202 			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1203 						dmaengine_cfg->src_addr_width;
1204 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1205 		} else {
1206 			sdmac->per_address = dmaengine_cfg->dst_addr;
1207 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1208 						dmaengine_cfg->dst_addr_width;
1209 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1210 		}
1211 		sdmac->direction = dmaengine_cfg->direction;
1212 		return sdma_config_channel(sdmac);
1213 	default:
1214 		return -ENOSYS;
1215 	}
1216 
1217 	return -EINVAL;
1218 }
1219 
1220 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1221 				      dma_cookie_t cookie,
1222 				      struct dma_tx_state *txstate)
1223 {
1224 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1225 
1226 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1227 			sdmac->chn_count - sdmac->chn_real_count);
1228 
1229 	return sdmac->status;
1230 }
1231 
1232 static void sdma_issue_pending(struct dma_chan *chan)
1233 {
1234 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1235 	struct sdma_engine *sdma = sdmac->sdma;
1236 
1237 	if (sdmac->status == DMA_IN_PROGRESS)
1238 		sdma_enable_channel(sdma, sdmac->channel);
1239 }
1240 
1241 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1242 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1243 
1244 static void sdma_add_scripts(struct sdma_engine *sdma,
1245 		const struct sdma_script_start_addrs *addr)
1246 {
1247 	s32 *addr_arr = (u32 *)addr;
1248 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1249 	int i;
1250 
1251 	for (i = 0; i < sdma->script_number; i++)
1252 		if (addr_arr[i] > 0)
1253 			saddr_arr[i] = addr_arr[i];
1254 }
1255 
1256 static void sdma_load_firmware(const struct firmware *fw, void *context)
1257 {
1258 	struct sdma_engine *sdma = context;
1259 	const struct sdma_firmware_header *header;
1260 	const struct sdma_script_start_addrs *addr;
1261 	unsigned short *ram_code;
1262 
1263 	if (!fw) {
1264 		dev_err(sdma->dev, "firmware not found\n");
1265 		return;
1266 	}
1267 
1268 	if (fw->size < sizeof(*header))
1269 		goto err_firmware;
1270 
1271 	header = (struct sdma_firmware_header *)fw->data;
1272 
1273 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1274 		goto err_firmware;
1275 	if (header->ram_code_start + header->ram_code_size > fw->size)
1276 		goto err_firmware;
1277 	switch (header->version_major) {
1278 		case 1:
1279 			sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1280 			break;
1281 		case 2:
1282 			sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1283 			break;
1284 		default:
1285 			dev_err(sdma->dev, "unknown firmware version\n");
1286 			goto err_firmware;
1287 	}
1288 
1289 	addr = (void *)header + header->script_addrs_start;
1290 	ram_code = (void *)header + header->ram_code_start;
1291 
1292 	clk_enable(sdma->clk_ipg);
1293 	clk_enable(sdma->clk_ahb);
1294 	/* download the RAM image for SDMA */
1295 	sdma_load_script(sdma, ram_code,
1296 			header->ram_code_size,
1297 			addr->ram_code_start_addr);
1298 	clk_disable(sdma->clk_ipg);
1299 	clk_disable(sdma->clk_ahb);
1300 
1301 	sdma_add_scripts(sdma, addr);
1302 
1303 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1304 			header->version_major,
1305 			header->version_minor);
1306 
1307 err_firmware:
1308 	release_firmware(fw);
1309 }
1310 
1311 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1312 		const char *fw_name)
1313 {
1314 	int ret;
1315 
1316 	ret = request_firmware_nowait(THIS_MODULE,
1317 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1318 			GFP_KERNEL, sdma, sdma_load_firmware);
1319 
1320 	return ret;
1321 }
1322 
1323 static int __init sdma_init(struct sdma_engine *sdma)
1324 {
1325 	int i, ret;
1326 	dma_addr_t ccb_phys;
1327 
1328 	clk_enable(sdma->clk_ipg);
1329 	clk_enable(sdma->clk_ahb);
1330 
1331 	/* Be sure SDMA has not started yet */
1332 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1333 
1334 	sdma->channel_control = dma_alloc_coherent(NULL,
1335 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1336 			sizeof(struct sdma_context_data),
1337 			&ccb_phys, GFP_KERNEL);
1338 
1339 	if (!sdma->channel_control) {
1340 		ret = -ENOMEM;
1341 		goto err_dma_alloc;
1342 	}
1343 
1344 	sdma->context = (void *)sdma->channel_control +
1345 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1346 	sdma->context_phys = ccb_phys +
1347 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1348 
1349 	/* Zero-out the CCB structures array just allocated */
1350 	memset(sdma->channel_control, 0,
1351 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1352 
1353 	/* disable all channels */
1354 	for (i = 0; i < sdma->drvdata->num_events; i++)
1355 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1356 
1357 	/* All channels have priority 0 */
1358 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1359 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1360 
1361 	ret = sdma_request_channel(&sdma->channel[0]);
1362 	if (ret)
1363 		goto err_dma_alloc;
1364 
1365 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1366 
1367 	/* Set Command Channel (Channel Zero) */
1368 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1369 
1370 	/* Set bits of CONFIG register but with static context switching */
1371 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1372 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1373 
1374 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1375 
1376 	/* Set bits of CONFIG register with given context switching mode */
1377 	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1378 
1379 	/* Initializes channel's priorities */
1380 	sdma_set_channel_priority(&sdma->channel[0], 7);
1381 
1382 	clk_disable(sdma->clk_ipg);
1383 	clk_disable(sdma->clk_ahb);
1384 
1385 	return 0;
1386 
1387 err_dma_alloc:
1388 	clk_disable(sdma->clk_ipg);
1389 	clk_disable(sdma->clk_ahb);
1390 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1391 	return ret;
1392 }
1393 
1394 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1395 {
1396 	struct imx_dma_data *data = fn_param;
1397 
1398 	if (!imx_dma_is_general_purpose(chan))
1399 		return false;
1400 
1401 	chan->private = data;
1402 
1403 	return true;
1404 }
1405 
1406 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1407 				   struct of_dma *ofdma)
1408 {
1409 	struct sdma_engine *sdma = ofdma->of_dma_data;
1410 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1411 	struct imx_dma_data data;
1412 
1413 	if (dma_spec->args_count != 3)
1414 		return NULL;
1415 
1416 	data.dma_request = dma_spec->args[0];
1417 	data.peripheral_type = dma_spec->args[1];
1418 	data.priority = dma_spec->args[2];
1419 
1420 	return dma_request_channel(mask, sdma_filter_fn, &data);
1421 }
1422 
1423 static int __init sdma_probe(struct platform_device *pdev)
1424 {
1425 	const struct of_device_id *of_id =
1426 			of_match_device(sdma_dt_ids, &pdev->dev);
1427 	struct device_node *np = pdev->dev.of_node;
1428 	const char *fw_name;
1429 	int ret;
1430 	int irq;
1431 	struct resource *iores;
1432 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1433 	int i;
1434 	struct sdma_engine *sdma;
1435 	s32 *saddr_arr;
1436 	const struct sdma_driver_data *drvdata = NULL;
1437 
1438 	if (of_id)
1439 		drvdata = of_id->data;
1440 	else if (pdev->id_entry)
1441 		drvdata = (void *)pdev->id_entry->driver_data;
1442 
1443 	if (!drvdata) {
1444 		dev_err(&pdev->dev, "unable to find driver data\n");
1445 		return -EINVAL;
1446 	}
1447 
1448 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1449 	if (ret)
1450 		return ret;
1451 
1452 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1453 	if (!sdma)
1454 		return -ENOMEM;
1455 
1456 	spin_lock_init(&sdma->channel_0_lock);
1457 
1458 	sdma->dev = &pdev->dev;
1459 	sdma->drvdata = drvdata;
1460 
1461 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1462 	irq = platform_get_irq(pdev, 0);
1463 	if (!iores || irq < 0) {
1464 		ret = -EINVAL;
1465 		goto err_irq;
1466 	}
1467 
1468 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1469 		ret = -EBUSY;
1470 		goto err_request_region;
1471 	}
1472 
1473 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1474 	if (IS_ERR(sdma->clk_ipg)) {
1475 		ret = PTR_ERR(sdma->clk_ipg);
1476 		goto err_clk;
1477 	}
1478 
1479 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1480 	if (IS_ERR(sdma->clk_ahb)) {
1481 		ret = PTR_ERR(sdma->clk_ahb);
1482 		goto err_clk;
1483 	}
1484 
1485 	clk_prepare(sdma->clk_ipg);
1486 	clk_prepare(sdma->clk_ahb);
1487 
1488 	sdma->regs = ioremap(iores->start, resource_size(iores));
1489 	if (!sdma->regs) {
1490 		ret = -ENOMEM;
1491 		goto err_ioremap;
1492 	}
1493 
1494 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1495 	if (ret)
1496 		goto err_request_irq;
1497 
1498 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1499 	if (!sdma->script_addrs) {
1500 		ret = -ENOMEM;
1501 		goto err_alloc;
1502 	}
1503 
1504 	/* initially no scripts available */
1505 	saddr_arr = (s32 *)sdma->script_addrs;
1506 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1507 		saddr_arr[i] = -EINVAL;
1508 
1509 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1510 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1511 
1512 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1513 	/* Initialize channel parameters */
1514 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1515 		struct sdma_channel *sdmac = &sdma->channel[i];
1516 
1517 		sdmac->sdma = sdma;
1518 		spin_lock_init(&sdmac->lock);
1519 
1520 		sdmac->chan.device = &sdma->dma_device;
1521 		dma_cookie_init(&sdmac->chan);
1522 		sdmac->channel = i;
1523 
1524 		tasklet_init(&sdmac->tasklet, sdma_tasklet,
1525 			     (unsigned long) sdmac);
1526 		/*
1527 		 * Add the channel to the DMAC list. Do not add channel 0 though
1528 		 * because we need it internally in the SDMA driver. This also means
1529 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1530 		 */
1531 		if (i)
1532 			list_add_tail(&sdmac->chan.device_node,
1533 					&sdma->dma_device.channels);
1534 	}
1535 
1536 	ret = sdma_init(sdma);
1537 	if (ret)
1538 		goto err_init;
1539 
1540 	if (sdma->drvdata->script_addrs)
1541 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1542 	if (pdata && pdata->script_addrs)
1543 		sdma_add_scripts(sdma, pdata->script_addrs);
1544 
1545 	if (pdata) {
1546 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1547 		if (ret)
1548 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1549 	} else {
1550 		/*
1551 		 * Because that device tree does not encode ROM script address,
1552 		 * the RAM script in firmware is mandatory for device tree
1553 		 * probe, otherwise it fails.
1554 		 */
1555 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1556 					      &fw_name);
1557 		if (ret)
1558 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1559 		else {
1560 			ret = sdma_get_firmware(sdma, fw_name);
1561 			if (ret)
1562 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1563 		}
1564 	}
1565 
1566 	sdma->dma_device.dev = &pdev->dev;
1567 
1568 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1569 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1570 	sdma->dma_device.device_tx_status = sdma_tx_status;
1571 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1572 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1573 	sdma->dma_device.device_control = sdma_control;
1574 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1575 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1576 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1577 
1578 	ret = dma_async_device_register(&sdma->dma_device);
1579 	if (ret) {
1580 		dev_err(&pdev->dev, "unable to register\n");
1581 		goto err_init;
1582 	}
1583 
1584 	if (np) {
1585 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1586 		if (ret) {
1587 			dev_err(&pdev->dev, "failed to register controller\n");
1588 			goto err_register;
1589 		}
1590 	}
1591 
1592 	dev_info(sdma->dev, "initialized\n");
1593 
1594 	return 0;
1595 
1596 err_register:
1597 	dma_async_device_unregister(&sdma->dma_device);
1598 err_init:
1599 	kfree(sdma->script_addrs);
1600 err_alloc:
1601 	free_irq(irq, sdma);
1602 err_request_irq:
1603 	iounmap(sdma->regs);
1604 err_ioremap:
1605 err_clk:
1606 	release_mem_region(iores->start, resource_size(iores));
1607 err_request_region:
1608 err_irq:
1609 	kfree(sdma);
1610 	return ret;
1611 }
1612 
1613 static int sdma_remove(struct platform_device *pdev)
1614 {
1615 	return -EBUSY;
1616 }
1617 
1618 static struct platform_driver sdma_driver = {
1619 	.driver		= {
1620 		.name	= "imx-sdma",
1621 		.of_match_table = sdma_dt_ids,
1622 	},
1623 	.id_table	= sdma_devtypes,
1624 	.remove		= sdma_remove,
1625 };
1626 
1627 static int __init sdma_module_init(void)
1628 {
1629 	return platform_driver_probe(&sdma_driver, sdma_probe);
1630 }
1631 module_init(sdma_module_init);
1632 
1633 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1634 MODULE_DESCRIPTION("i.MX SDMA driver");
1635 MODULE_LICENSE("GPL");
1636