xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision c2c744d3aa48f845626131176772bae2a3c9d5bc)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/clk.h>
26 #include <linux/wait.h>
27 #include <linux/sched.h>
28 #include <linux/semaphore.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/firmware.h>
33 #include <linux/slab.h>
34 #include <linux/platform_device.h>
35 #include <linux/dmaengine.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/module.h>
39 
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
44 
45 /* SDMA registers */
46 #define SDMA_H_C0PTR		0x000
47 #define SDMA_H_INTR		0x004
48 #define SDMA_H_STATSTOP		0x008
49 #define SDMA_H_START		0x00c
50 #define SDMA_H_EVTOVR		0x010
51 #define SDMA_H_DSPOVR		0x014
52 #define SDMA_H_HOSTOVR		0x018
53 #define SDMA_H_EVTPEND		0x01c
54 #define SDMA_H_DSPENBL		0x020
55 #define SDMA_H_RESET		0x024
56 #define SDMA_H_EVTERR		0x028
57 #define SDMA_H_INTRMSK		0x02c
58 #define SDMA_H_PSW		0x030
59 #define SDMA_H_EVTERRDBG	0x034
60 #define SDMA_H_CONFIG		0x038
61 #define SDMA_ONCE_ENB		0x040
62 #define SDMA_ONCE_DATA		0x044
63 #define SDMA_ONCE_INSTR		0x048
64 #define SDMA_ONCE_STAT		0x04c
65 #define SDMA_ONCE_CMD		0x050
66 #define SDMA_EVT_MIRROR		0x054
67 #define SDMA_ILLINSTADDR	0x058
68 #define SDMA_CHN0ADDR		0x05c
69 #define SDMA_ONCE_RTB		0x060
70 #define SDMA_XTRIG_CONF1	0x070
71 #define SDMA_XTRIG_CONF2	0x074
72 #define SDMA_CHNENBL0_IMX35	0x200
73 #define SDMA_CHNENBL0_IMX31	0x080
74 #define SDMA_CHNPRI_0		0x100
75 
76 /*
77  * Buffer descriptor status values.
78  */
79 #define BD_DONE  0x01
80 #define BD_WRAP  0x02
81 #define BD_CONT  0x04
82 #define BD_INTR  0x08
83 #define BD_RROR  0x10
84 #define BD_LAST  0x20
85 #define BD_EXTD  0x80
86 
87 /*
88  * Data Node descriptor status values.
89  */
90 #define DND_END_OF_FRAME  0x80
91 #define DND_END_OF_XFER   0x40
92 #define DND_DONE          0x20
93 #define DND_UNUSED        0x01
94 
95 /*
96  * IPCV2 descriptor status values.
97  */
98 #define BD_IPCV2_END_OF_FRAME  0x40
99 
100 #define IPCV2_MAX_NODES        50
101 /*
102  * Error bit set in the CCB status field by the SDMA,
103  * in setbd routine, in case of a transfer error
104  */
105 #define DATA_ERROR  0x10000000
106 
107 /*
108  * Buffer descriptor commands.
109  */
110 #define C0_ADDR             0x01
111 #define C0_LOAD             0x02
112 #define C0_DUMP             0x03
113 #define C0_SETCTX           0x07
114 #define C0_GETCTX           0x03
115 #define C0_SETDM            0x01
116 #define C0_SETPM            0x04
117 #define C0_GETDM            0x02
118 #define C0_GETPM            0x08
119 /*
120  * Change endianness indicator in the BD command field
121  */
122 #define CHANGE_ENDIANNESS   0x80
123 
124 /*
125  * Mode/Count of data node descriptors - IPCv2
126  */
127 struct sdma_mode_count {
128 	u32 count   : 16; /* size of the buffer pointed by this BD */
129 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
130 	u32 command :  8; /* command mostlky used for channel 0 */
131 };
132 
133 /*
134  * Buffer descriptor
135  */
136 struct sdma_buffer_descriptor {
137 	struct sdma_mode_count  mode;
138 	u32 buffer_addr;	/* address of the buffer described */
139 	u32 ext_buffer_addr;	/* extended buffer address */
140 } __attribute__ ((packed));
141 
142 /**
143  * struct sdma_channel_control - Channel control Block
144  *
145  * @current_bd_ptr	current buffer descriptor processed
146  * @base_bd_ptr		first element of buffer descriptor array
147  * @unused		padding. The SDMA engine expects an array of 128 byte
148  *			control blocks
149  */
150 struct sdma_channel_control {
151 	u32 current_bd_ptr;
152 	u32 base_bd_ptr;
153 	u32 unused[2];
154 } __attribute__ ((packed));
155 
156 /**
157  * struct sdma_state_registers - SDMA context for a channel
158  *
159  * @pc:		program counter
160  * @t:		test bit: status of arithmetic & test instruction
161  * @rpc:	return program counter
162  * @sf:		source fault while loading data
163  * @spc:	loop start program counter
164  * @df:		destination fault while storing data
165  * @epc:	loop end program counter
166  * @lm:		loop mode
167  */
168 struct sdma_state_registers {
169 	u32 pc     :14;
170 	u32 unused1: 1;
171 	u32 t      : 1;
172 	u32 rpc    :14;
173 	u32 unused0: 1;
174 	u32 sf     : 1;
175 	u32 spc    :14;
176 	u32 unused2: 1;
177 	u32 df     : 1;
178 	u32 epc    :14;
179 	u32 lm     : 2;
180 } __attribute__ ((packed));
181 
182 /**
183  * struct sdma_context_data - sdma context specific to a channel
184  *
185  * @channel_state:	channel state bits
186  * @gReg:		general registers
187  * @mda:		burst dma destination address register
188  * @msa:		burst dma source address register
189  * @ms:			burst dma status register
190  * @md:			burst dma data register
191  * @pda:		peripheral dma destination address register
192  * @psa:		peripheral dma source address register
193  * @ps:			peripheral dma status register
194  * @pd:			peripheral dma data register
195  * @ca:			CRC polynomial register
196  * @cs:			CRC accumulator register
197  * @dda:		dedicated core destination address register
198  * @dsa:		dedicated core source address register
199  * @ds:			dedicated core status register
200  * @dd:			dedicated core data register
201  */
202 struct sdma_context_data {
203 	struct sdma_state_registers  channel_state;
204 	u32  gReg[8];
205 	u32  mda;
206 	u32  msa;
207 	u32  ms;
208 	u32  md;
209 	u32  pda;
210 	u32  psa;
211 	u32  ps;
212 	u32  pd;
213 	u32  ca;
214 	u32  cs;
215 	u32  dda;
216 	u32  dsa;
217 	u32  ds;
218 	u32  dd;
219 	u32  scratch0;
220 	u32  scratch1;
221 	u32  scratch2;
222 	u32  scratch3;
223 	u32  scratch4;
224 	u32  scratch5;
225 	u32  scratch6;
226 	u32  scratch7;
227 } __attribute__ ((packed));
228 
229 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
230 
231 struct sdma_engine;
232 
233 /**
234  * struct sdma_channel - housekeeping for a SDMA channel
235  *
236  * @sdma		pointer to the SDMA engine for this channel
237  * @channel		the channel number, matches dmaengine chan_id + 1
238  * @direction		transfer type. Needed for setting SDMA script
239  * @peripheral_type	Peripheral type. Needed for setting SDMA script
240  * @event_id0		aka dma request line
241  * @event_id1		for channels that use 2 events
242  * @word_size		peripheral access size
243  * @buf_tail		ID of the buffer that was processed
244  * @done		channel completion
245  * @num_bd		max NUM_BD. number of descriptors currently handling
246  */
247 struct sdma_channel {
248 	struct sdma_engine		*sdma;
249 	unsigned int			channel;
250 	enum dma_transfer_direction		direction;
251 	enum sdma_peripheral_type	peripheral_type;
252 	unsigned int			event_id0;
253 	unsigned int			event_id1;
254 	enum dma_slave_buswidth		word_size;
255 	unsigned int			buf_tail;
256 	struct completion		done;
257 	unsigned int			num_bd;
258 	struct sdma_buffer_descriptor	*bd;
259 	dma_addr_t			bd_phys;
260 	unsigned int			pc_from_device, pc_to_device;
261 	unsigned long			flags;
262 	dma_addr_t			per_address;
263 	u32				event_mask0, event_mask1;
264 	u32				watermark_level;
265 	u32				shp_addr, per_addr;
266 	struct dma_chan			chan;
267 	spinlock_t			lock;
268 	struct dma_async_tx_descriptor	desc;
269 	dma_cookie_t			last_completed;
270 	enum dma_status			status;
271 	unsigned int			chn_count;
272 	unsigned int			chn_real_count;
273 };
274 
275 #define IMX_DMA_SG_LOOP		(1 << 0)
276 
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281 
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283 
284 /**
285  * struct sdma_firmware_header - Layout of the firmware image
286  *
287  * @magic		"SDMA"
288  * @version_major	increased whenever layout of struct sdma_script_start_addrs
289  *			changes.
290  * @version_minor	firmware minor version (for binary compatible changes)
291  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
292  * @num_script_addrs	Number of script addresses in this image
293  * @ram_code_start	offset of SDMA ram image in this firmware image
294  * @ram_code_size	size of SDMA ram image
295  * @script_addrs	Stores the start address of the SDMA scripts
296  *			(in SDMA memory space)
297  */
298 struct sdma_firmware_header {
299 	u32	magic;
300 	u32	version_major;
301 	u32	version_minor;
302 	u32	script_addrs_start;
303 	u32	num_script_addrs;
304 	u32	ram_code_start;
305 	u32	ram_code_size;
306 };
307 
308 enum sdma_devtype {
309 	IMX31_SDMA,	/* runs on i.mx31 */
310 	IMX35_SDMA,	/* runs on i.mx35 and later */
311 };
312 
313 struct sdma_engine {
314 	struct device			*dev;
315 	struct device_dma_parameters	dma_parms;
316 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
317 	struct sdma_channel_control	*channel_control;
318 	void __iomem			*regs;
319 	enum sdma_devtype		devtype;
320 	unsigned int			num_events;
321 	struct sdma_context_data	*context;
322 	dma_addr_t			context_phys;
323 	struct dma_device		dma_device;
324 	struct clk			*clk;
325 	struct mutex			channel_0_lock;
326 	struct sdma_script_start_addrs	*script_addrs;
327 };
328 
329 static struct platform_device_id sdma_devtypes[] = {
330 	{
331 		.name = "imx31-sdma",
332 		.driver_data = IMX31_SDMA,
333 	}, {
334 		.name = "imx35-sdma",
335 		.driver_data = IMX35_SDMA,
336 	}, {
337 		/* sentinel */
338 	}
339 };
340 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
341 
342 static const struct of_device_id sdma_dt_ids[] = {
343 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
344 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
345 	{ /* sentinel */ }
346 };
347 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
348 
349 #define SDMA_H_CONFIG_DSPDMA	(1 << 12) /* indicates if the DSPDMA is used */
350 #define SDMA_H_CONFIG_RTD_PINS	(1 << 11) /* indicates if Real-Time Debug pins are enabled */
351 #define SDMA_H_CONFIG_ACR	(1 << 4)  /* indicates if AHB freq /core freq = 2 or 1 */
352 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
353 
354 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
355 {
356 	u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
357 						      SDMA_CHNENBL0_IMX35);
358 	return chnenbl0 + event * 4;
359 }
360 
361 static int sdma_config_ownership(struct sdma_channel *sdmac,
362 		bool event_override, bool mcu_override, bool dsp_override)
363 {
364 	struct sdma_engine *sdma = sdmac->sdma;
365 	int channel = sdmac->channel;
366 	u32 evt, mcu, dsp;
367 
368 	if (event_override && mcu_override && dsp_override)
369 		return -EINVAL;
370 
371 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
372 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
373 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
374 
375 	if (dsp_override)
376 		dsp &= ~(1 << channel);
377 	else
378 		dsp |= (1 << channel);
379 
380 	if (event_override)
381 		evt &= ~(1 << channel);
382 	else
383 		evt |= (1 << channel);
384 
385 	if (mcu_override)
386 		mcu &= ~(1 << channel);
387 	else
388 		mcu |= (1 << channel);
389 
390 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
391 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
392 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
393 
394 	return 0;
395 }
396 
397 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
398 {
399 	writel(1 << channel, sdma->regs + SDMA_H_START);
400 }
401 
402 /*
403  * sdma_run_channel - run a channel and wait till it's done
404  */
405 static int sdma_run_channel(struct sdma_channel *sdmac)
406 {
407 	struct sdma_engine *sdma = sdmac->sdma;
408 	int channel = sdmac->channel;
409 	int ret;
410 
411 	init_completion(&sdmac->done);
412 
413 	sdma_enable_channel(sdma, channel);
414 
415 	ret = wait_for_completion_timeout(&sdmac->done, HZ);
416 
417 	return ret ? 0 : -ETIMEDOUT;
418 }
419 
420 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
421 		u32 address)
422 {
423 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
424 	void *buf_virt;
425 	dma_addr_t buf_phys;
426 	int ret;
427 
428 	mutex_lock(&sdma->channel_0_lock);
429 
430 	buf_virt = dma_alloc_coherent(NULL,
431 			size,
432 			&buf_phys, GFP_KERNEL);
433 	if (!buf_virt) {
434 		ret = -ENOMEM;
435 		goto err_out;
436 	}
437 
438 	bd0->mode.command = C0_SETPM;
439 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
440 	bd0->mode.count = size / 2;
441 	bd0->buffer_addr = buf_phys;
442 	bd0->ext_buffer_addr = address;
443 
444 	memcpy(buf_virt, buf, size);
445 
446 	ret = sdma_run_channel(&sdma->channel[0]);
447 
448 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
449 
450 err_out:
451 	mutex_unlock(&sdma->channel_0_lock);
452 
453 	return ret;
454 }
455 
456 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
457 {
458 	struct sdma_engine *sdma = sdmac->sdma;
459 	int channel = sdmac->channel;
460 	u32 val;
461 	u32 chnenbl = chnenbl_ofs(sdma, event);
462 
463 	val = readl_relaxed(sdma->regs + chnenbl);
464 	val |= (1 << channel);
465 	writel_relaxed(val, sdma->regs + chnenbl);
466 }
467 
468 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
469 {
470 	struct sdma_engine *sdma = sdmac->sdma;
471 	int channel = sdmac->channel;
472 	u32 chnenbl = chnenbl_ofs(sdma, event);
473 	u32 val;
474 
475 	val = readl_relaxed(sdma->regs + chnenbl);
476 	val &= ~(1 << channel);
477 	writel_relaxed(val, sdma->regs + chnenbl);
478 }
479 
480 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
481 {
482 	struct sdma_buffer_descriptor *bd;
483 
484 	/*
485 	 * loop mode. Iterate over descriptors, re-setup them and
486 	 * call callback function.
487 	 */
488 	while (1) {
489 		bd = &sdmac->bd[sdmac->buf_tail];
490 
491 		if (bd->mode.status & BD_DONE)
492 			break;
493 
494 		if (bd->mode.status & BD_RROR)
495 			sdmac->status = DMA_ERROR;
496 		else
497 			sdmac->status = DMA_IN_PROGRESS;
498 
499 		bd->mode.status |= BD_DONE;
500 		sdmac->buf_tail++;
501 		sdmac->buf_tail %= sdmac->num_bd;
502 
503 		if (sdmac->desc.callback)
504 			sdmac->desc.callback(sdmac->desc.callback_param);
505 	}
506 }
507 
508 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
509 {
510 	struct sdma_buffer_descriptor *bd;
511 	int i, error = 0;
512 
513 	sdmac->chn_real_count = 0;
514 	/*
515 	 * non loop mode. Iterate over all descriptors, collect
516 	 * errors and call callback function
517 	 */
518 	for (i = 0; i < sdmac->num_bd; i++) {
519 		bd = &sdmac->bd[i];
520 
521 		 if (bd->mode.status & (BD_DONE | BD_RROR))
522 			error = -EIO;
523 		 sdmac->chn_real_count += bd->mode.count;
524 	}
525 
526 	if (error)
527 		sdmac->status = DMA_ERROR;
528 	else
529 		sdmac->status = DMA_SUCCESS;
530 
531 	sdmac->last_completed = sdmac->desc.cookie;
532 	if (sdmac->desc.callback)
533 		sdmac->desc.callback(sdmac->desc.callback_param);
534 }
535 
536 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
537 {
538 	complete(&sdmac->done);
539 
540 	/* not interested in channel 0 interrupts */
541 	if (sdmac->channel == 0)
542 		return;
543 
544 	if (sdmac->flags & IMX_DMA_SG_LOOP)
545 		sdma_handle_channel_loop(sdmac);
546 	else
547 		mxc_sdma_handle_channel_normal(sdmac);
548 }
549 
550 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
551 {
552 	struct sdma_engine *sdma = dev_id;
553 	u32 stat;
554 
555 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
556 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
557 
558 	while (stat) {
559 		int channel = fls(stat) - 1;
560 		struct sdma_channel *sdmac = &sdma->channel[channel];
561 
562 		mxc_sdma_handle_channel(sdmac);
563 
564 		stat &= ~(1 << channel);
565 	}
566 
567 	return IRQ_HANDLED;
568 }
569 
570 /*
571  * sets the pc of SDMA script according to the peripheral type
572  */
573 static void sdma_get_pc(struct sdma_channel *sdmac,
574 		enum sdma_peripheral_type peripheral_type)
575 {
576 	struct sdma_engine *sdma = sdmac->sdma;
577 	int per_2_emi = 0, emi_2_per = 0;
578 	/*
579 	 * These are needed once we start to support transfers between
580 	 * two peripherals or memory-to-memory transfers
581 	 */
582 	int per_2_per = 0, emi_2_emi = 0;
583 
584 	sdmac->pc_from_device = 0;
585 	sdmac->pc_to_device = 0;
586 
587 	switch (peripheral_type) {
588 	case IMX_DMATYPE_MEMORY:
589 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
590 		break;
591 	case IMX_DMATYPE_DSP:
592 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
593 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
594 		break;
595 	case IMX_DMATYPE_FIRI:
596 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
597 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
598 		break;
599 	case IMX_DMATYPE_UART:
600 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
601 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
602 		break;
603 	case IMX_DMATYPE_UART_SP:
604 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
605 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
606 		break;
607 	case IMX_DMATYPE_ATA:
608 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
609 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
610 		break;
611 	case IMX_DMATYPE_CSPI:
612 	case IMX_DMATYPE_EXT:
613 	case IMX_DMATYPE_SSI:
614 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
615 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
616 		break;
617 	case IMX_DMATYPE_SSI_SP:
618 	case IMX_DMATYPE_MMC:
619 	case IMX_DMATYPE_SDHC:
620 	case IMX_DMATYPE_CSPI_SP:
621 	case IMX_DMATYPE_ESAI:
622 	case IMX_DMATYPE_MSHC_SP:
623 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
624 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
625 		break;
626 	case IMX_DMATYPE_ASRC:
627 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
628 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
629 		per_2_per = sdma->script_addrs->per_2_per_addr;
630 		break;
631 	case IMX_DMATYPE_MSHC:
632 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
633 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
634 		break;
635 	case IMX_DMATYPE_CCM:
636 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
637 		break;
638 	case IMX_DMATYPE_SPDIF:
639 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
640 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
641 		break;
642 	case IMX_DMATYPE_IPU_MEMORY:
643 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
644 		break;
645 	default:
646 		break;
647 	}
648 
649 	sdmac->pc_from_device = per_2_emi;
650 	sdmac->pc_to_device = emi_2_per;
651 }
652 
653 static int sdma_load_context(struct sdma_channel *sdmac)
654 {
655 	struct sdma_engine *sdma = sdmac->sdma;
656 	int channel = sdmac->channel;
657 	int load_address;
658 	struct sdma_context_data *context = sdma->context;
659 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
660 	int ret;
661 
662 	if (sdmac->direction == DMA_DEV_TO_MEM) {
663 		load_address = sdmac->pc_from_device;
664 	} else {
665 		load_address = sdmac->pc_to_device;
666 	}
667 
668 	if (load_address < 0)
669 		return load_address;
670 
671 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
672 	dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
673 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
674 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
675 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
676 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
677 
678 	mutex_lock(&sdma->channel_0_lock);
679 
680 	memset(context, 0, sizeof(*context));
681 	context->channel_state.pc = load_address;
682 
683 	/* Send by context the event mask,base address for peripheral
684 	 * and watermark level
685 	 */
686 	context->gReg[0] = sdmac->event_mask1;
687 	context->gReg[1] = sdmac->event_mask0;
688 	context->gReg[2] = sdmac->per_addr;
689 	context->gReg[6] = sdmac->shp_addr;
690 	context->gReg[7] = sdmac->watermark_level;
691 
692 	bd0->mode.command = C0_SETDM;
693 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
694 	bd0->mode.count = sizeof(*context) / 4;
695 	bd0->buffer_addr = sdma->context_phys;
696 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
697 
698 	ret = sdma_run_channel(&sdma->channel[0]);
699 
700 	mutex_unlock(&sdma->channel_0_lock);
701 
702 	return ret;
703 }
704 
705 static void sdma_disable_channel(struct sdma_channel *sdmac)
706 {
707 	struct sdma_engine *sdma = sdmac->sdma;
708 	int channel = sdmac->channel;
709 
710 	writel_relaxed(1 << channel, sdma->regs + SDMA_H_STATSTOP);
711 	sdmac->status = DMA_ERROR;
712 }
713 
714 static int sdma_config_channel(struct sdma_channel *sdmac)
715 {
716 	int ret;
717 
718 	sdma_disable_channel(sdmac);
719 
720 	sdmac->event_mask0 = 0;
721 	sdmac->event_mask1 = 0;
722 	sdmac->shp_addr = 0;
723 	sdmac->per_addr = 0;
724 
725 	if (sdmac->event_id0) {
726 		if (sdmac->event_id0 > 32)
727 			return -EINVAL;
728 		sdma_event_enable(sdmac, sdmac->event_id0);
729 	}
730 
731 	switch (sdmac->peripheral_type) {
732 	case IMX_DMATYPE_DSP:
733 		sdma_config_ownership(sdmac, false, true, true);
734 		break;
735 	case IMX_DMATYPE_MEMORY:
736 		sdma_config_ownership(sdmac, false, true, false);
737 		break;
738 	default:
739 		sdma_config_ownership(sdmac, true, true, false);
740 		break;
741 	}
742 
743 	sdma_get_pc(sdmac, sdmac->peripheral_type);
744 
745 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
746 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
747 		/* Handle multiple event channels differently */
748 		if (sdmac->event_id1) {
749 			sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
750 			if (sdmac->event_id1 > 31)
751 				sdmac->watermark_level |= 1 << 31;
752 			sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
753 			if (sdmac->event_id0 > 31)
754 				sdmac->watermark_level |= 1 << 30;
755 		} else {
756 			sdmac->event_mask0 = 1 << sdmac->event_id0;
757 			sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
758 		}
759 		/* Watermark Level */
760 		sdmac->watermark_level |= sdmac->watermark_level;
761 		/* Address */
762 		sdmac->shp_addr = sdmac->per_address;
763 	} else {
764 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
765 	}
766 
767 	ret = sdma_load_context(sdmac);
768 
769 	return ret;
770 }
771 
772 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
773 		unsigned int priority)
774 {
775 	struct sdma_engine *sdma = sdmac->sdma;
776 	int channel = sdmac->channel;
777 
778 	if (priority < MXC_SDMA_MIN_PRIORITY
779 	    || priority > MXC_SDMA_MAX_PRIORITY) {
780 		return -EINVAL;
781 	}
782 
783 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
784 
785 	return 0;
786 }
787 
788 static int sdma_request_channel(struct sdma_channel *sdmac)
789 {
790 	struct sdma_engine *sdma = sdmac->sdma;
791 	int channel = sdmac->channel;
792 	int ret = -EBUSY;
793 
794 	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
795 	if (!sdmac->bd) {
796 		ret = -ENOMEM;
797 		goto out;
798 	}
799 
800 	memset(sdmac->bd, 0, PAGE_SIZE);
801 
802 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
803 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
804 
805 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
806 
807 	init_completion(&sdmac->done);
808 
809 	sdmac->buf_tail = 0;
810 
811 	return 0;
812 out:
813 
814 	return ret;
815 }
816 
817 static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
818 {
819 	dma_cookie_t cookie = sdmac->chan.cookie;
820 
821 	if (++cookie < 0)
822 		cookie = 1;
823 
824 	sdmac->chan.cookie = cookie;
825 	sdmac->desc.cookie = cookie;
826 
827 	return cookie;
828 }
829 
830 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
831 {
832 	return container_of(chan, struct sdma_channel, chan);
833 }
834 
835 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
836 {
837 	unsigned long flags;
838 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
839 	dma_cookie_t cookie;
840 
841 	spin_lock_irqsave(&sdmac->lock, flags);
842 
843 	cookie = sdma_assign_cookie(sdmac);
844 
845 	spin_unlock_irqrestore(&sdmac->lock, flags);
846 
847 	return cookie;
848 }
849 
850 static int sdma_alloc_chan_resources(struct dma_chan *chan)
851 {
852 	struct sdma_channel *sdmac = to_sdma_chan(chan);
853 	struct imx_dma_data *data = chan->private;
854 	int prio, ret;
855 
856 	if (!data)
857 		return -EINVAL;
858 
859 	switch (data->priority) {
860 	case DMA_PRIO_HIGH:
861 		prio = 3;
862 		break;
863 	case DMA_PRIO_MEDIUM:
864 		prio = 2;
865 		break;
866 	case DMA_PRIO_LOW:
867 	default:
868 		prio = 1;
869 		break;
870 	}
871 
872 	sdmac->peripheral_type = data->peripheral_type;
873 	sdmac->event_id0 = data->dma_request;
874 
875 	clk_enable(sdmac->sdma->clk);
876 
877 	ret = sdma_request_channel(sdmac);
878 	if (ret)
879 		return ret;
880 
881 	ret = sdma_set_channel_priority(sdmac, prio);
882 	if (ret)
883 		return ret;
884 
885 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
886 	sdmac->desc.tx_submit = sdma_tx_submit;
887 	/* txd.flags will be overwritten in prep funcs */
888 	sdmac->desc.flags = DMA_CTRL_ACK;
889 
890 	return 0;
891 }
892 
893 static void sdma_free_chan_resources(struct dma_chan *chan)
894 {
895 	struct sdma_channel *sdmac = to_sdma_chan(chan);
896 	struct sdma_engine *sdma = sdmac->sdma;
897 
898 	sdma_disable_channel(sdmac);
899 
900 	if (sdmac->event_id0)
901 		sdma_event_disable(sdmac, sdmac->event_id0);
902 	if (sdmac->event_id1)
903 		sdma_event_disable(sdmac, sdmac->event_id1);
904 
905 	sdmac->event_id0 = 0;
906 	sdmac->event_id1 = 0;
907 
908 	sdma_set_channel_priority(sdmac, 0);
909 
910 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
911 
912 	clk_disable(sdma->clk);
913 }
914 
915 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
916 		struct dma_chan *chan, struct scatterlist *sgl,
917 		unsigned int sg_len, enum dma_transfer_direction direction,
918 		unsigned long flags)
919 {
920 	struct sdma_channel *sdmac = to_sdma_chan(chan);
921 	struct sdma_engine *sdma = sdmac->sdma;
922 	int ret, i, count;
923 	int channel = sdmac->channel;
924 	struct scatterlist *sg;
925 
926 	if (sdmac->status == DMA_IN_PROGRESS)
927 		return NULL;
928 	sdmac->status = DMA_IN_PROGRESS;
929 
930 	sdmac->flags = 0;
931 
932 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
933 			sg_len, channel);
934 
935 	sdmac->direction = direction;
936 	ret = sdma_load_context(sdmac);
937 	if (ret)
938 		goto err_out;
939 
940 	if (sg_len > NUM_BD) {
941 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
942 				channel, sg_len, NUM_BD);
943 		ret = -EINVAL;
944 		goto err_out;
945 	}
946 
947 	sdmac->chn_count = 0;
948 	for_each_sg(sgl, sg, sg_len, i) {
949 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
950 		int param;
951 
952 		bd->buffer_addr = sg->dma_address;
953 
954 		count = sg->length;
955 
956 		if (count > 0xffff) {
957 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
958 					channel, count, 0xffff);
959 			ret = -EINVAL;
960 			goto err_out;
961 		}
962 
963 		bd->mode.count = count;
964 		sdmac->chn_count += count;
965 
966 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
967 			ret =  -EINVAL;
968 			goto err_out;
969 		}
970 
971 		switch (sdmac->word_size) {
972 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
973 			bd->mode.command = 0;
974 			if (count & 3 || sg->dma_address & 3)
975 				return NULL;
976 			break;
977 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
978 			bd->mode.command = 2;
979 			if (count & 1 || sg->dma_address & 1)
980 				return NULL;
981 			break;
982 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
983 			bd->mode.command = 1;
984 			break;
985 		default:
986 			return NULL;
987 		}
988 
989 		param = BD_DONE | BD_EXTD | BD_CONT;
990 
991 		if (i + 1 == sg_len) {
992 			param |= BD_INTR;
993 			param |= BD_LAST;
994 			param &= ~BD_CONT;
995 		}
996 
997 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
998 				i, count, sg->dma_address,
999 				param & BD_WRAP ? "wrap" : "",
1000 				param & BD_INTR ? " intr" : "");
1001 
1002 		bd->mode.status = param;
1003 	}
1004 
1005 	sdmac->num_bd = sg_len;
1006 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1007 
1008 	return &sdmac->desc;
1009 err_out:
1010 	sdmac->status = DMA_ERROR;
1011 	return NULL;
1012 }
1013 
1014 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1015 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1016 		size_t period_len, enum dma_transfer_direction direction)
1017 {
1018 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1019 	struct sdma_engine *sdma = sdmac->sdma;
1020 	int num_periods = buf_len / period_len;
1021 	int channel = sdmac->channel;
1022 	int ret, i = 0, buf = 0;
1023 
1024 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1025 
1026 	if (sdmac->status == DMA_IN_PROGRESS)
1027 		return NULL;
1028 
1029 	sdmac->status = DMA_IN_PROGRESS;
1030 
1031 	sdmac->flags |= IMX_DMA_SG_LOOP;
1032 	sdmac->direction = direction;
1033 	ret = sdma_load_context(sdmac);
1034 	if (ret)
1035 		goto err_out;
1036 
1037 	if (num_periods > NUM_BD) {
1038 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1039 				channel, num_periods, NUM_BD);
1040 		goto err_out;
1041 	}
1042 
1043 	if (period_len > 0xffff) {
1044 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1045 				channel, period_len, 0xffff);
1046 		goto err_out;
1047 	}
1048 
1049 	while (buf < buf_len) {
1050 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1051 		int param;
1052 
1053 		bd->buffer_addr = dma_addr;
1054 
1055 		bd->mode.count = period_len;
1056 
1057 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1058 			goto err_out;
1059 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1060 			bd->mode.command = 0;
1061 		else
1062 			bd->mode.command = sdmac->word_size;
1063 
1064 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1065 		if (i + 1 == num_periods)
1066 			param |= BD_WRAP;
1067 
1068 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1069 				i, period_len, dma_addr,
1070 				param & BD_WRAP ? "wrap" : "",
1071 				param & BD_INTR ? " intr" : "");
1072 
1073 		bd->mode.status = param;
1074 
1075 		dma_addr += period_len;
1076 		buf += period_len;
1077 
1078 		i++;
1079 	}
1080 
1081 	sdmac->num_bd = num_periods;
1082 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1083 
1084 	return &sdmac->desc;
1085 err_out:
1086 	sdmac->status = DMA_ERROR;
1087 	return NULL;
1088 }
1089 
1090 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1091 		unsigned long arg)
1092 {
1093 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1094 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1095 
1096 	switch (cmd) {
1097 	case DMA_TERMINATE_ALL:
1098 		sdma_disable_channel(sdmac);
1099 		return 0;
1100 	case DMA_SLAVE_CONFIG:
1101 		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1102 			sdmac->per_address = dmaengine_cfg->src_addr;
1103 			sdmac->watermark_level = dmaengine_cfg->src_maxburst;
1104 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1105 		} else {
1106 			sdmac->per_address = dmaengine_cfg->dst_addr;
1107 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst;
1108 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1109 		}
1110 		sdmac->direction = dmaengine_cfg->direction;
1111 		return sdma_config_channel(sdmac);
1112 	default:
1113 		return -ENOSYS;
1114 	}
1115 
1116 	return -EINVAL;
1117 }
1118 
1119 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1120 					    dma_cookie_t cookie,
1121 					    struct dma_tx_state *txstate)
1122 {
1123 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1124 	dma_cookie_t last_used;
1125 
1126 	last_used = chan->cookie;
1127 
1128 	dma_set_tx_state(txstate, sdmac->last_completed, last_used,
1129 			sdmac->chn_count - sdmac->chn_real_count);
1130 
1131 	return sdmac->status;
1132 }
1133 
1134 static void sdma_issue_pending(struct dma_chan *chan)
1135 {
1136 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1137 	struct sdma_engine *sdma = sdmac->sdma;
1138 
1139 	if (sdmac->status == DMA_IN_PROGRESS)
1140 		sdma_enable_channel(sdma, sdmac->channel);
1141 }
1142 
1143 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1144 
1145 static void sdma_add_scripts(struct sdma_engine *sdma,
1146 		const struct sdma_script_start_addrs *addr)
1147 {
1148 	s32 *addr_arr = (u32 *)addr;
1149 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1150 	int i;
1151 
1152 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1153 		if (addr_arr[i] > 0)
1154 			saddr_arr[i] = addr_arr[i];
1155 }
1156 
1157 static void sdma_load_firmware(const struct firmware *fw, void *context)
1158 {
1159 	struct sdma_engine *sdma = context;
1160 	const struct sdma_firmware_header *header;
1161 	const struct sdma_script_start_addrs *addr;
1162 	unsigned short *ram_code;
1163 
1164 	if (!fw) {
1165 		dev_err(sdma->dev, "firmware not found\n");
1166 		return;
1167 	}
1168 
1169 	if (fw->size < sizeof(*header))
1170 		goto err_firmware;
1171 
1172 	header = (struct sdma_firmware_header *)fw->data;
1173 
1174 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1175 		goto err_firmware;
1176 	if (header->ram_code_start + header->ram_code_size > fw->size)
1177 		goto err_firmware;
1178 
1179 	addr = (void *)header + header->script_addrs_start;
1180 	ram_code = (void *)header + header->ram_code_start;
1181 
1182 	clk_enable(sdma->clk);
1183 	/* download the RAM image for SDMA */
1184 	sdma_load_script(sdma, ram_code,
1185 			header->ram_code_size,
1186 			addr->ram_code_start_addr);
1187 	clk_disable(sdma->clk);
1188 
1189 	sdma_add_scripts(sdma, addr);
1190 
1191 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1192 			header->version_major,
1193 			header->version_minor);
1194 
1195 err_firmware:
1196 	release_firmware(fw);
1197 }
1198 
1199 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1200 		const char *fw_name)
1201 {
1202 	int ret;
1203 
1204 	ret = request_firmware_nowait(THIS_MODULE,
1205 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1206 			GFP_KERNEL, sdma, sdma_load_firmware);
1207 
1208 	return ret;
1209 }
1210 
1211 static int __init sdma_init(struct sdma_engine *sdma)
1212 {
1213 	int i, ret;
1214 	dma_addr_t ccb_phys;
1215 
1216 	switch (sdma->devtype) {
1217 	case IMX31_SDMA:
1218 		sdma->num_events = 32;
1219 		break;
1220 	case IMX35_SDMA:
1221 		sdma->num_events = 48;
1222 		break;
1223 	default:
1224 		dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1225 			sdma->devtype);
1226 		return -ENODEV;
1227 	}
1228 
1229 	clk_enable(sdma->clk);
1230 
1231 	/* Be sure SDMA has not started yet */
1232 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1233 
1234 	sdma->channel_control = dma_alloc_coherent(NULL,
1235 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1236 			sizeof(struct sdma_context_data),
1237 			&ccb_phys, GFP_KERNEL);
1238 
1239 	if (!sdma->channel_control) {
1240 		ret = -ENOMEM;
1241 		goto err_dma_alloc;
1242 	}
1243 
1244 	sdma->context = (void *)sdma->channel_control +
1245 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1246 	sdma->context_phys = ccb_phys +
1247 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1248 
1249 	/* Zero-out the CCB structures array just allocated */
1250 	memset(sdma->channel_control, 0,
1251 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1252 
1253 	/* disable all channels */
1254 	for (i = 0; i < sdma->num_events; i++)
1255 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1256 
1257 	/* All channels have priority 0 */
1258 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1259 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1260 
1261 	ret = sdma_request_channel(&sdma->channel[0]);
1262 	if (ret)
1263 		goto err_dma_alloc;
1264 
1265 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1266 
1267 	/* Set Command Channel (Channel Zero) */
1268 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1269 
1270 	/* Set bits of CONFIG register but with static context switching */
1271 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1272 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1273 
1274 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1275 
1276 	/* Set bits of CONFIG register with given context switching mode */
1277 	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1278 
1279 	/* Initializes channel's priorities */
1280 	sdma_set_channel_priority(&sdma->channel[0], 7);
1281 
1282 	clk_disable(sdma->clk);
1283 
1284 	return 0;
1285 
1286 err_dma_alloc:
1287 	clk_disable(sdma->clk);
1288 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1289 	return ret;
1290 }
1291 
1292 static int __init sdma_probe(struct platform_device *pdev)
1293 {
1294 	const struct of_device_id *of_id =
1295 			of_match_device(sdma_dt_ids, &pdev->dev);
1296 	struct device_node *np = pdev->dev.of_node;
1297 	const char *fw_name;
1298 	int ret;
1299 	int irq;
1300 	struct resource *iores;
1301 	struct sdma_platform_data *pdata = pdev->dev.platform_data;
1302 	int i;
1303 	struct sdma_engine *sdma;
1304 	s32 *saddr_arr;
1305 
1306 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1307 	if (!sdma)
1308 		return -ENOMEM;
1309 
1310 	mutex_init(&sdma->channel_0_lock);
1311 
1312 	sdma->dev = &pdev->dev;
1313 
1314 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1315 	irq = platform_get_irq(pdev, 0);
1316 	if (!iores || irq < 0) {
1317 		ret = -EINVAL;
1318 		goto err_irq;
1319 	}
1320 
1321 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1322 		ret = -EBUSY;
1323 		goto err_request_region;
1324 	}
1325 
1326 	sdma->clk = clk_get(&pdev->dev, NULL);
1327 	if (IS_ERR(sdma->clk)) {
1328 		ret = PTR_ERR(sdma->clk);
1329 		goto err_clk;
1330 	}
1331 
1332 	sdma->regs = ioremap(iores->start, resource_size(iores));
1333 	if (!sdma->regs) {
1334 		ret = -ENOMEM;
1335 		goto err_ioremap;
1336 	}
1337 
1338 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1339 	if (ret)
1340 		goto err_request_irq;
1341 
1342 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1343 	if (!sdma->script_addrs) {
1344 		ret = -ENOMEM;
1345 		goto err_alloc;
1346 	}
1347 
1348 	/* initially no scripts available */
1349 	saddr_arr = (s32 *)sdma->script_addrs;
1350 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1351 		saddr_arr[i] = -EINVAL;
1352 
1353 	if (of_id)
1354 		pdev->id_entry = of_id->data;
1355 	sdma->devtype = pdev->id_entry->driver_data;
1356 
1357 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1358 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1359 
1360 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1361 	/* Initialize channel parameters */
1362 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1363 		struct sdma_channel *sdmac = &sdma->channel[i];
1364 
1365 		sdmac->sdma = sdma;
1366 		spin_lock_init(&sdmac->lock);
1367 
1368 		sdmac->chan.device = &sdma->dma_device;
1369 		sdmac->channel = i;
1370 
1371 		/*
1372 		 * Add the channel to the DMAC list. Do not add channel 0 though
1373 		 * because we need it internally in the SDMA driver. This also means
1374 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1375 		 */
1376 		if (i)
1377 			list_add_tail(&sdmac->chan.device_node,
1378 					&sdma->dma_device.channels);
1379 	}
1380 
1381 	ret = sdma_init(sdma);
1382 	if (ret)
1383 		goto err_init;
1384 
1385 	if (pdata && pdata->script_addrs)
1386 		sdma_add_scripts(sdma, pdata->script_addrs);
1387 
1388 	if (pdata) {
1389 		sdma_get_firmware(sdma, pdata->fw_name);
1390 	} else {
1391 		/*
1392 		 * Because that device tree does not encode ROM script address,
1393 		 * the RAM script in firmware is mandatory for device tree
1394 		 * probe, otherwise it fails.
1395 		 */
1396 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1397 					      &fw_name);
1398 		if (ret) {
1399 			dev_err(&pdev->dev, "failed to get firmware name\n");
1400 			goto err_init;
1401 		}
1402 
1403 		ret = sdma_get_firmware(sdma, fw_name);
1404 		if (ret) {
1405 			dev_err(&pdev->dev, "failed to get firmware\n");
1406 			goto err_init;
1407 		}
1408 	}
1409 
1410 	sdma->dma_device.dev = &pdev->dev;
1411 
1412 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1413 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1414 	sdma->dma_device.device_tx_status = sdma_tx_status;
1415 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1416 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1417 	sdma->dma_device.device_control = sdma_control;
1418 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1419 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1420 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1421 
1422 	ret = dma_async_device_register(&sdma->dma_device);
1423 	if (ret) {
1424 		dev_err(&pdev->dev, "unable to register\n");
1425 		goto err_init;
1426 	}
1427 
1428 	dev_info(sdma->dev, "initialized\n");
1429 
1430 	return 0;
1431 
1432 err_init:
1433 	kfree(sdma->script_addrs);
1434 err_alloc:
1435 	free_irq(irq, sdma);
1436 err_request_irq:
1437 	iounmap(sdma->regs);
1438 err_ioremap:
1439 	clk_put(sdma->clk);
1440 err_clk:
1441 	release_mem_region(iores->start, resource_size(iores));
1442 err_request_region:
1443 err_irq:
1444 	kfree(sdma);
1445 	return ret;
1446 }
1447 
1448 static int __exit sdma_remove(struct platform_device *pdev)
1449 {
1450 	return -EBUSY;
1451 }
1452 
1453 static struct platform_driver sdma_driver = {
1454 	.driver		= {
1455 		.name	= "imx-sdma",
1456 		.of_match_table = sdma_dt_ids,
1457 	},
1458 	.id_table	= sdma_devtypes,
1459 	.remove		= __exit_p(sdma_remove),
1460 };
1461 
1462 static int __init sdma_module_init(void)
1463 {
1464 	return platform_driver_probe(&sdma_driver, sdma_probe);
1465 }
1466 module_init(sdma_module_init);
1467 
1468 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1469 MODULE_DESCRIPTION("i.MX SDMA driver");
1470 MODULE_LICENSE("GPL");
1471