xref: /openbmc/linux/drivers/dma/imx-sdma.c (revision 94ac27a54be6a14948f0a9b3f542b4ff1faac232)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/clk.h>
26 #include <linux/wait.h>
27 #include <linux/sched.h>
28 #include <linux/semaphore.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/firmware.h>
33 #include <linux/slab.h>
34 #include <linux/platform_device.h>
35 #include <linux/dmaengine.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/module.h>
39 
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
44 
45 /* SDMA registers */
46 #define SDMA_H_C0PTR		0x000
47 #define SDMA_H_INTR		0x004
48 #define SDMA_H_STATSTOP		0x008
49 #define SDMA_H_START		0x00c
50 #define SDMA_H_EVTOVR		0x010
51 #define SDMA_H_DSPOVR		0x014
52 #define SDMA_H_HOSTOVR		0x018
53 #define SDMA_H_EVTPEND		0x01c
54 #define SDMA_H_DSPENBL		0x020
55 #define SDMA_H_RESET		0x024
56 #define SDMA_H_EVTERR		0x028
57 #define SDMA_H_INTRMSK		0x02c
58 #define SDMA_H_PSW		0x030
59 #define SDMA_H_EVTERRDBG	0x034
60 #define SDMA_H_CONFIG		0x038
61 #define SDMA_ONCE_ENB		0x040
62 #define SDMA_ONCE_DATA		0x044
63 #define SDMA_ONCE_INSTR		0x048
64 #define SDMA_ONCE_STAT		0x04c
65 #define SDMA_ONCE_CMD		0x050
66 #define SDMA_EVT_MIRROR		0x054
67 #define SDMA_ILLINSTADDR	0x058
68 #define SDMA_CHN0ADDR		0x05c
69 #define SDMA_ONCE_RTB		0x060
70 #define SDMA_XTRIG_CONF1	0x070
71 #define SDMA_XTRIG_CONF2	0x074
72 #define SDMA_CHNENBL0_IMX35	0x200
73 #define SDMA_CHNENBL0_IMX31	0x080
74 #define SDMA_CHNPRI_0		0x100
75 
76 /*
77  * Buffer descriptor status values.
78  */
79 #define BD_DONE  0x01
80 #define BD_WRAP  0x02
81 #define BD_CONT  0x04
82 #define BD_INTR  0x08
83 #define BD_RROR  0x10
84 #define BD_LAST  0x20
85 #define BD_EXTD  0x80
86 
87 /*
88  * Data Node descriptor status values.
89  */
90 #define DND_END_OF_FRAME  0x80
91 #define DND_END_OF_XFER   0x40
92 #define DND_DONE          0x20
93 #define DND_UNUSED        0x01
94 
95 /*
96  * IPCV2 descriptor status values.
97  */
98 #define BD_IPCV2_END_OF_FRAME  0x40
99 
100 #define IPCV2_MAX_NODES        50
101 /*
102  * Error bit set in the CCB status field by the SDMA,
103  * in setbd routine, in case of a transfer error
104  */
105 #define DATA_ERROR  0x10000000
106 
107 /*
108  * Buffer descriptor commands.
109  */
110 #define C0_ADDR             0x01
111 #define C0_LOAD             0x02
112 #define C0_DUMP             0x03
113 #define C0_SETCTX           0x07
114 #define C0_GETCTX           0x03
115 #define C0_SETDM            0x01
116 #define C0_SETPM            0x04
117 #define C0_GETDM            0x02
118 #define C0_GETPM            0x08
119 /*
120  * Change endianness indicator in the BD command field
121  */
122 #define CHANGE_ENDIANNESS   0x80
123 
124 /*
125  * Mode/Count of data node descriptors - IPCv2
126  */
127 struct sdma_mode_count {
128 	u32 count   : 16; /* size of the buffer pointed by this BD */
129 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
130 	u32 command :  8; /* command mostlky used for channel 0 */
131 };
132 
133 /*
134  * Buffer descriptor
135  */
136 struct sdma_buffer_descriptor {
137 	struct sdma_mode_count  mode;
138 	u32 buffer_addr;	/* address of the buffer described */
139 	u32 ext_buffer_addr;	/* extended buffer address */
140 } __attribute__ ((packed));
141 
142 /**
143  * struct sdma_channel_control - Channel control Block
144  *
145  * @current_bd_ptr	current buffer descriptor processed
146  * @base_bd_ptr		first element of buffer descriptor array
147  * @unused		padding. The SDMA engine expects an array of 128 byte
148  *			control blocks
149  */
150 struct sdma_channel_control {
151 	u32 current_bd_ptr;
152 	u32 base_bd_ptr;
153 	u32 unused[2];
154 } __attribute__ ((packed));
155 
156 /**
157  * struct sdma_state_registers - SDMA context for a channel
158  *
159  * @pc:		program counter
160  * @t:		test bit: status of arithmetic & test instruction
161  * @rpc:	return program counter
162  * @sf:		source fault while loading data
163  * @spc:	loop start program counter
164  * @df:		destination fault while storing data
165  * @epc:	loop end program counter
166  * @lm:		loop mode
167  */
168 struct sdma_state_registers {
169 	u32 pc     :14;
170 	u32 unused1: 1;
171 	u32 t      : 1;
172 	u32 rpc    :14;
173 	u32 unused0: 1;
174 	u32 sf     : 1;
175 	u32 spc    :14;
176 	u32 unused2: 1;
177 	u32 df     : 1;
178 	u32 epc    :14;
179 	u32 lm     : 2;
180 } __attribute__ ((packed));
181 
182 /**
183  * struct sdma_context_data - sdma context specific to a channel
184  *
185  * @channel_state:	channel state bits
186  * @gReg:		general registers
187  * @mda:		burst dma destination address register
188  * @msa:		burst dma source address register
189  * @ms:			burst dma status register
190  * @md:			burst dma data register
191  * @pda:		peripheral dma destination address register
192  * @psa:		peripheral dma source address register
193  * @ps:			peripheral dma status register
194  * @pd:			peripheral dma data register
195  * @ca:			CRC polynomial register
196  * @cs:			CRC accumulator register
197  * @dda:		dedicated core destination address register
198  * @dsa:		dedicated core source address register
199  * @ds:			dedicated core status register
200  * @dd:			dedicated core data register
201  */
202 struct sdma_context_data {
203 	struct sdma_state_registers  channel_state;
204 	u32  gReg[8];
205 	u32  mda;
206 	u32  msa;
207 	u32  ms;
208 	u32  md;
209 	u32  pda;
210 	u32  psa;
211 	u32  ps;
212 	u32  pd;
213 	u32  ca;
214 	u32  cs;
215 	u32  dda;
216 	u32  dsa;
217 	u32  ds;
218 	u32  dd;
219 	u32  scratch0;
220 	u32  scratch1;
221 	u32  scratch2;
222 	u32  scratch3;
223 	u32  scratch4;
224 	u32  scratch5;
225 	u32  scratch6;
226 	u32  scratch7;
227 } __attribute__ ((packed));
228 
229 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
230 
231 struct sdma_engine;
232 
233 /**
234  * struct sdma_channel - housekeeping for a SDMA channel
235  *
236  * @sdma		pointer to the SDMA engine for this channel
237  * @channel		the channel number, matches dmaengine chan_id + 1
238  * @direction		transfer type. Needed for setting SDMA script
239  * @peripheral_type	Peripheral type. Needed for setting SDMA script
240  * @event_id0		aka dma request line
241  * @event_id1		for channels that use 2 events
242  * @word_size		peripheral access size
243  * @buf_tail		ID of the buffer that was processed
244  * @done		channel completion
245  * @num_bd		max NUM_BD. number of descriptors currently handling
246  */
247 struct sdma_channel {
248 	struct sdma_engine		*sdma;
249 	unsigned int			channel;
250 	enum dma_transfer_direction		direction;
251 	enum sdma_peripheral_type	peripheral_type;
252 	unsigned int			event_id0;
253 	unsigned int			event_id1;
254 	enum dma_slave_buswidth		word_size;
255 	unsigned int			buf_tail;
256 	struct completion		done;
257 	unsigned int			num_bd;
258 	struct sdma_buffer_descriptor	*bd;
259 	dma_addr_t			bd_phys;
260 	unsigned int			pc_from_device, pc_to_device;
261 	unsigned long			flags;
262 	dma_addr_t			per_address;
263 	u32				event_mask0, event_mask1;
264 	u32				watermark_level;
265 	u32				shp_addr, per_addr;
266 	struct dma_chan			chan;
267 	spinlock_t			lock;
268 	struct dma_async_tx_descriptor	desc;
269 	dma_cookie_t			last_completed;
270 	enum dma_status			status;
271 	unsigned int			chn_count;
272 	unsigned int			chn_real_count;
273 };
274 
275 #define IMX_DMA_SG_LOOP		(1 << 0)
276 
277 #define MAX_DMA_CHANNELS 32
278 #define MXC_SDMA_DEFAULT_PRIORITY 1
279 #define MXC_SDMA_MIN_PRIORITY 1
280 #define MXC_SDMA_MAX_PRIORITY 7
281 
282 #define SDMA_FIRMWARE_MAGIC 0x414d4453
283 
284 /**
285  * struct sdma_firmware_header - Layout of the firmware image
286  *
287  * @magic		"SDMA"
288  * @version_major	increased whenever layout of struct sdma_script_start_addrs
289  *			changes.
290  * @version_minor	firmware minor version (for binary compatible changes)
291  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
292  * @num_script_addrs	Number of script addresses in this image
293  * @ram_code_start	offset of SDMA ram image in this firmware image
294  * @ram_code_size	size of SDMA ram image
295  * @script_addrs	Stores the start address of the SDMA scripts
296  *			(in SDMA memory space)
297  */
298 struct sdma_firmware_header {
299 	u32	magic;
300 	u32	version_major;
301 	u32	version_minor;
302 	u32	script_addrs_start;
303 	u32	num_script_addrs;
304 	u32	ram_code_start;
305 	u32	ram_code_size;
306 };
307 
308 enum sdma_devtype {
309 	IMX31_SDMA,	/* runs on i.mx31 */
310 	IMX35_SDMA,	/* runs on i.mx35 and later */
311 };
312 
313 struct sdma_engine {
314 	struct device			*dev;
315 	struct device_dma_parameters	dma_parms;
316 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
317 	struct sdma_channel_control	*channel_control;
318 	void __iomem			*regs;
319 	enum sdma_devtype		devtype;
320 	unsigned int			num_events;
321 	struct sdma_context_data	*context;
322 	dma_addr_t			context_phys;
323 	struct dma_device		dma_device;
324 	struct clk			*clk;
325 	struct mutex			channel_0_lock;
326 	struct sdma_script_start_addrs	*script_addrs;
327 };
328 
329 static struct platform_device_id sdma_devtypes[] = {
330 	{
331 		.name = "imx31-sdma",
332 		.driver_data = IMX31_SDMA,
333 	}, {
334 		.name = "imx35-sdma",
335 		.driver_data = IMX35_SDMA,
336 	}, {
337 		/* sentinel */
338 	}
339 };
340 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
341 
342 static const struct of_device_id sdma_dt_ids[] = {
343 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
344 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
345 	{ /* sentinel */ }
346 };
347 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
348 
349 #define SDMA_H_CONFIG_DSPDMA	(1 << 12) /* indicates if the DSPDMA is used */
350 #define SDMA_H_CONFIG_RTD_PINS	(1 << 11) /* indicates if Real-Time Debug pins are enabled */
351 #define SDMA_H_CONFIG_ACR	(1 << 4)  /* indicates if AHB freq /core freq = 2 or 1 */
352 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
353 
354 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
355 {
356 	u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
357 						      SDMA_CHNENBL0_IMX35);
358 	return chnenbl0 + event * 4;
359 }
360 
361 static int sdma_config_ownership(struct sdma_channel *sdmac,
362 		bool event_override, bool mcu_override, bool dsp_override)
363 {
364 	struct sdma_engine *sdma = sdmac->sdma;
365 	int channel = sdmac->channel;
366 	u32 evt, mcu, dsp;
367 
368 	if (event_override && mcu_override && dsp_override)
369 		return -EINVAL;
370 
371 	evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
372 	mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
373 	dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
374 
375 	if (dsp_override)
376 		dsp &= ~(1 << channel);
377 	else
378 		dsp |= (1 << channel);
379 
380 	if (event_override)
381 		evt &= ~(1 << channel);
382 	else
383 		evt |= (1 << channel);
384 
385 	if (mcu_override)
386 		mcu &= ~(1 << channel);
387 	else
388 		mcu |= (1 << channel);
389 
390 	__raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
391 	__raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
392 	__raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
393 
394 	return 0;
395 }
396 
397 /*
398  * sdma_run_channel - run a channel and wait till it's done
399  */
400 static int sdma_run_channel(struct sdma_channel *sdmac)
401 {
402 	struct sdma_engine *sdma = sdmac->sdma;
403 	int channel = sdmac->channel;
404 	int ret;
405 
406 	init_completion(&sdmac->done);
407 
408 	__raw_writel(1 << channel, sdma->regs + SDMA_H_START);
409 
410 	ret = wait_for_completion_timeout(&sdmac->done, HZ);
411 
412 	return ret ? 0 : -ETIMEDOUT;
413 }
414 
415 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
416 		u32 address)
417 {
418 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
419 	void *buf_virt;
420 	dma_addr_t buf_phys;
421 	int ret;
422 
423 	mutex_lock(&sdma->channel_0_lock);
424 
425 	buf_virt = dma_alloc_coherent(NULL,
426 			size,
427 			&buf_phys, GFP_KERNEL);
428 	if (!buf_virt) {
429 		ret = -ENOMEM;
430 		goto err_out;
431 	}
432 
433 	bd0->mode.command = C0_SETPM;
434 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
435 	bd0->mode.count = size / 2;
436 	bd0->buffer_addr = buf_phys;
437 	bd0->ext_buffer_addr = address;
438 
439 	memcpy(buf_virt, buf, size);
440 
441 	ret = sdma_run_channel(&sdma->channel[0]);
442 
443 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
444 
445 err_out:
446 	mutex_unlock(&sdma->channel_0_lock);
447 
448 	return ret;
449 }
450 
451 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
452 {
453 	struct sdma_engine *sdma = sdmac->sdma;
454 	int channel = sdmac->channel;
455 	u32 val;
456 	u32 chnenbl = chnenbl_ofs(sdma, event);
457 
458 	val = __raw_readl(sdma->regs + chnenbl);
459 	val |= (1 << channel);
460 	__raw_writel(val, sdma->regs + chnenbl);
461 }
462 
463 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
464 {
465 	struct sdma_engine *sdma = sdmac->sdma;
466 	int channel = sdmac->channel;
467 	u32 chnenbl = chnenbl_ofs(sdma, event);
468 	u32 val;
469 
470 	val = __raw_readl(sdma->regs + chnenbl);
471 	val &= ~(1 << channel);
472 	__raw_writel(val, sdma->regs + chnenbl);
473 }
474 
475 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
476 {
477 	struct sdma_buffer_descriptor *bd;
478 
479 	/*
480 	 * loop mode. Iterate over descriptors, re-setup them and
481 	 * call callback function.
482 	 */
483 	while (1) {
484 		bd = &sdmac->bd[sdmac->buf_tail];
485 
486 		if (bd->mode.status & BD_DONE)
487 			break;
488 
489 		if (bd->mode.status & BD_RROR)
490 			sdmac->status = DMA_ERROR;
491 		else
492 			sdmac->status = DMA_IN_PROGRESS;
493 
494 		bd->mode.status |= BD_DONE;
495 		sdmac->buf_tail++;
496 		sdmac->buf_tail %= sdmac->num_bd;
497 
498 		if (sdmac->desc.callback)
499 			sdmac->desc.callback(sdmac->desc.callback_param);
500 	}
501 }
502 
503 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
504 {
505 	struct sdma_buffer_descriptor *bd;
506 	int i, error = 0;
507 
508 	sdmac->chn_real_count = 0;
509 	/*
510 	 * non loop mode. Iterate over all descriptors, collect
511 	 * errors and call callback function
512 	 */
513 	for (i = 0; i < sdmac->num_bd; i++) {
514 		bd = &sdmac->bd[i];
515 
516 		 if (bd->mode.status & (BD_DONE | BD_RROR))
517 			error = -EIO;
518 		 sdmac->chn_real_count += bd->mode.count;
519 	}
520 
521 	if (error)
522 		sdmac->status = DMA_ERROR;
523 	else
524 		sdmac->status = DMA_SUCCESS;
525 
526 	sdmac->last_completed = sdmac->desc.cookie;
527 	if (sdmac->desc.callback)
528 		sdmac->desc.callback(sdmac->desc.callback_param);
529 }
530 
531 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
532 {
533 	complete(&sdmac->done);
534 
535 	/* not interested in channel 0 interrupts */
536 	if (sdmac->channel == 0)
537 		return;
538 
539 	if (sdmac->flags & IMX_DMA_SG_LOOP)
540 		sdma_handle_channel_loop(sdmac);
541 	else
542 		mxc_sdma_handle_channel_normal(sdmac);
543 }
544 
545 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
546 {
547 	struct sdma_engine *sdma = dev_id;
548 	u32 stat;
549 
550 	stat = __raw_readl(sdma->regs + SDMA_H_INTR);
551 	__raw_writel(stat, sdma->regs + SDMA_H_INTR);
552 
553 	while (stat) {
554 		int channel = fls(stat) - 1;
555 		struct sdma_channel *sdmac = &sdma->channel[channel];
556 
557 		mxc_sdma_handle_channel(sdmac);
558 
559 		stat &= ~(1 << channel);
560 	}
561 
562 	return IRQ_HANDLED;
563 }
564 
565 /*
566  * sets the pc of SDMA script according to the peripheral type
567  */
568 static void sdma_get_pc(struct sdma_channel *sdmac,
569 		enum sdma_peripheral_type peripheral_type)
570 {
571 	struct sdma_engine *sdma = sdmac->sdma;
572 	int per_2_emi = 0, emi_2_per = 0;
573 	/*
574 	 * These are needed once we start to support transfers between
575 	 * two peripherals or memory-to-memory transfers
576 	 */
577 	int per_2_per = 0, emi_2_emi = 0;
578 
579 	sdmac->pc_from_device = 0;
580 	sdmac->pc_to_device = 0;
581 
582 	switch (peripheral_type) {
583 	case IMX_DMATYPE_MEMORY:
584 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
585 		break;
586 	case IMX_DMATYPE_DSP:
587 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
588 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
589 		break;
590 	case IMX_DMATYPE_FIRI:
591 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
592 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
593 		break;
594 	case IMX_DMATYPE_UART:
595 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
596 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
597 		break;
598 	case IMX_DMATYPE_UART_SP:
599 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
600 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
601 		break;
602 	case IMX_DMATYPE_ATA:
603 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
604 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
605 		break;
606 	case IMX_DMATYPE_CSPI:
607 	case IMX_DMATYPE_EXT:
608 	case IMX_DMATYPE_SSI:
609 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
610 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
611 		break;
612 	case IMX_DMATYPE_SSI_SP:
613 	case IMX_DMATYPE_MMC:
614 	case IMX_DMATYPE_SDHC:
615 	case IMX_DMATYPE_CSPI_SP:
616 	case IMX_DMATYPE_ESAI:
617 	case IMX_DMATYPE_MSHC_SP:
618 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
619 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
620 		break;
621 	case IMX_DMATYPE_ASRC:
622 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
623 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
624 		per_2_per = sdma->script_addrs->per_2_per_addr;
625 		break;
626 	case IMX_DMATYPE_MSHC:
627 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
628 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
629 		break;
630 	case IMX_DMATYPE_CCM:
631 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
632 		break;
633 	case IMX_DMATYPE_SPDIF:
634 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
635 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
636 		break;
637 	case IMX_DMATYPE_IPU_MEMORY:
638 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
639 		break;
640 	default:
641 		break;
642 	}
643 
644 	sdmac->pc_from_device = per_2_emi;
645 	sdmac->pc_to_device = emi_2_per;
646 }
647 
648 static int sdma_load_context(struct sdma_channel *sdmac)
649 {
650 	struct sdma_engine *sdma = sdmac->sdma;
651 	int channel = sdmac->channel;
652 	int load_address;
653 	struct sdma_context_data *context = sdma->context;
654 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
655 	int ret;
656 
657 	if (sdmac->direction == DMA_DEV_TO_MEM) {
658 		load_address = sdmac->pc_from_device;
659 	} else {
660 		load_address = sdmac->pc_to_device;
661 	}
662 
663 	if (load_address < 0)
664 		return load_address;
665 
666 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
667 	dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
668 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
669 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
670 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
671 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
672 
673 	mutex_lock(&sdma->channel_0_lock);
674 
675 	memset(context, 0, sizeof(*context));
676 	context->channel_state.pc = load_address;
677 
678 	/* Send by context the event mask,base address for peripheral
679 	 * and watermark level
680 	 */
681 	context->gReg[0] = sdmac->event_mask1;
682 	context->gReg[1] = sdmac->event_mask0;
683 	context->gReg[2] = sdmac->per_addr;
684 	context->gReg[6] = sdmac->shp_addr;
685 	context->gReg[7] = sdmac->watermark_level;
686 
687 	bd0->mode.command = C0_SETDM;
688 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
689 	bd0->mode.count = sizeof(*context) / 4;
690 	bd0->buffer_addr = sdma->context_phys;
691 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
692 
693 	ret = sdma_run_channel(&sdma->channel[0]);
694 
695 	mutex_unlock(&sdma->channel_0_lock);
696 
697 	return ret;
698 }
699 
700 static void sdma_disable_channel(struct sdma_channel *sdmac)
701 {
702 	struct sdma_engine *sdma = sdmac->sdma;
703 	int channel = sdmac->channel;
704 
705 	__raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
706 	sdmac->status = DMA_ERROR;
707 }
708 
709 static int sdma_config_channel(struct sdma_channel *sdmac)
710 {
711 	int ret;
712 
713 	sdma_disable_channel(sdmac);
714 
715 	sdmac->event_mask0 = 0;
716 	sdmac->event_mask1 = 0;
717 	sdmac->shp_addr = 0;
718 	sdmac->per_addr = 0;
719 
720 	if (sdmac->event_id0) {
721 		if (sdmac->event_id0 > 32)
722 			return -EINVAL;
723 		sdma_event_enable(sdmac, sdmac->event_id0);
724 	}
725 
726 	switch (sdmac->peripheral_type) {
727 	case IMX_DMATYPE_DSP:
728 		sdma_config_ownership(sdmac, false, true, true);
729 		break;
730 	case IMX_DMATYPE_MEMORY:
731 		sdma_config_ownership(sdmac, false, true, false);
732 		break;
733 	default:
734 		sdma_config_ownership(sdmac, true, true, false);
735 		break;
736 	}
737 
738 	sdma_get_pc(sdmac, sdmac->peripheral_type);
739 
740 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
741 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
742 		/* Handle multiple event channels differently */
743 		if (sdmac->event_id1) {
744 			sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
745 			if (sdmac->event_id1 > 31)
746 				sdmac->watermark_level |= 1 << 31;
747 			sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
748 			if (sdmac->event_id0 > 31)
749 				sdmac->watermark_level |= 1 << 30;
750 		} else {
751 			sdmac->event_mask0 = 1 << sdmac->event_id0;
752 			sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
753 		}
754 		/* Watermark Level */
755 		sdmac->watermark_level |= sdmac->watermark_level;
756 		/* Address */
757 		sdmac->shp_addr = sdmac->per_address;
758 	} else {
759 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
760 	}
761 
762 	ret = sdma_load_context(sdmac);
763 
764 	return ret;
765 }
766 
767 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
768 		unsigned int priority)
769 {
770 	struct sdma_engine *sdma = sdmac->sdma;
771 	int channel = sdmac->channel;
772 
773 	if (priority < MXC_SDMA_MIN_PRIORITY
774 	    || priority > MXC_SDMA_MAX_PRIORITY) {
775 		return -EINVAL;
776 	}
777 
778 	__raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
779 
780 	return 0;
781 }
782 
783 static int sdma_request_channel(struct sdma_channel *sdmac)
784 {
785 	struct sdma_engine *sdma = sdmac->sdma;
786 	int channel = sdmac->channel;
787 	int ret = -EBUSY;
788 
789 	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
790 	if (!sdmac->bd) {
791 		ret = -ENOMEM;
792 		goto out;
793 	}
794 
795 	memset(sdmac->bd, 0, PAGE_SIZE);
796 
797 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
798 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
799 
800 	clk_enable(sdma->clk);
801 
802 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
803 
804 	init_completion(&sdmac->done);
805 
806 	sdmac->buf_tail = 0;
807 
808 	return 0;
809 out:
810 
811 	return ret;
812 }
813 
814 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
815 {
816 	__raw_writel(1 << channel, sdma->regs + SDMA_H_START);
817 }
818 
819 static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
820 {
821 	dma_cookie_t cookie = sdmac->chan.cookie;
822 
823 	if (++cookie < 0)
824 		cookie = 1;
825 
826 	sdmac->chan.cookie = cookie;
827 	sdmac->desc.cookie = cookie;
828 
829 	return cookie;
830 }
831 
832 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
833 {
834 	return container_of(chan, struct sdma_channel, chan);
835 }
836 
837 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
838 {
839 	unsigned long flags;
840 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
841 	struct sdma_engine *sdma = sdmac->sdma;
842 	dma_cookie_t cookie;
843 
844 	spin_lock_irqsave(&sdmac->lock, flags);
845 
846 	cookie = sdma_assign_cookie(sdmac);
847 
848 	sdma_enable_channel(sdma, sdmac->channel);
849 
850 	spin_unlock_irqrestore(&sdmac->lock, flags);
851 
852 	return cookie;
853 }
854 
855 static int sdma_alloc_chan_resources(struct dma_chan *chan)
856 {
857 	struct sdma_channel *sdmac = to_sdma_chan(chan);
858 	struct imx_dma_data *data = chan->private;
859 	int prio, ret;
860 
861 	if (!data)
862 		return -EINVAL;
863 
864 	switch (data->priority) {
865 	case DMA_PRIO_HIGH:
866 		prio = 3;
867 		break;
868 	case DMA_PRIO_MEDIUM:
869 		prio = 2;
870 		break;
871 	case DMA_PRIO_LOW:
872 	default:
873 		prio = 1;
874 		break;
875 	}
876 
877 	sdmac->peripheral_type = data->peripheral_type;
878 	sdmac->event_id0 = data->dma_request;
879 	ret = sdma_set_channel_priority(sdmac, prio);
880 	if (ret)
881 		return ret;
882 
883 	ret = sdma_request_channel(sdmac);
884 	if (ret)
885 		return ret;
886 
887 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
888 	sdmac->desc.tx_submit = sdma_tx_submit;
889 	/* txd.flags will be overwritten in prep funcs */
890 	sdmac->desc.flags = DMA_CTRL_ACK;
891 
892 	return 0;
893 }
894 
895 static void sdma_free_chan_resources(struct dma_chan *chan)
896 {
897 	struct sdma_channel *sdmac = to_sdma_chan(chan);
898 	struct sdma_engine *sdma = sdmac->sdma;
899 
900 	sdma_disable_channel(sdmac);
901 
902 	if (sdmac->event_id0)
903 		sdma_event_disable(sdmac, sdmac->event_id0);
904 	if (sdmac->event_id1)
905 		sdma_event_disable(sdmac, sdmac->event_id1);
906 
907 	sdmac->event_id0 = 0;
908 	sdmac->event_id1 = 0;
909 
910 	sdma_set_channel_priority(sdmac, 0);
911 
912 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
913 
914 	clk_disable(sdma->clk);
915 }
916 
917 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
918 		struct dma_chan *chan, struct scatterlist *sgl,
919 		unsigned int sg_len, enum dma_transfer_direction direction,
920 		unsigned long flags)
921 {
922 	struct sdma_channel *sdmac = to_sdma_chan(chan);
923 	struct sdma_engine *sdma = sdmac->sdma;
924 	int ret, i, count;
925 	int channel = sdmac->channel;
926 	struct scatterlist *sg;
927 
928 	if (sdmac->status == DMA_IN_PROGRESS)
929 		return NULL;
930 	sdmac->status = DMA_IN_PROGRESS;
931 
932 	sdmac->flags = 0;
933 
934 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
935 			sg_len, channel);
936 
937 	sdmac->direction = direction;
938 	ret = sdma_load_context(sdmac);
939 	if (ret)
940 		goto err_out;
941 
942 	if (sg_len > NUM_BD) {
943 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
944 				channel, sg_len, NUM_BD);
945 		ret = -EINVAL;
946 		goto err_out;
947 	}
948 
949 	sdmac->chn_count = 0;
950 	for_each_sg(sgl, sg, sg_len, i) {
951 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
952 		int param;
953 
954 		bd->buffer_addr = sg->dma_address;
955 
956 		count = sg->length;
957 
958 		if (count > 0xffff) {
959 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
960 					channel, count, 0xffff);
961 			ret = -EINVAL;
962 			goto err_out;
963 		}
964 
965 		bd->mode.count = count;
966 		sdmac->chn_count += count;
967 
968 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
969 			ret =  -EINVAL;
970 			goto err_out;
971 		}
972 
973 		switch (sdmac->word_size) {
974 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
975 			bd->mode.command = 0;
976 			if (count & 3 || sg->dma_address & 3)
977 				return NULL;
978 			break;
979 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
980 			bd->mode.command = 2;
981 			if (count & 1 || sg->dma_address & 1)
982 				return NULL;
983 			break;
984 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
985 			bd->mode.command = 1;
986 			break;
987 		default:
988 			return NULL;
989 		}
990 
991 		param = BD_DONE | BD_EXTD | BD_CONT;
992 
993 		if (i + 1 == sg_len) {
994 			param |= BD_INTR;
995 			param |= BD_LAST;
996 			param &= ~BD_CONT;
997 		}
998 
999 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1000 				i, count, sg->dma_address,
1001 				param & BD_WRAP ? "wrap" : "",
1002 				param & BD_INTR ? " intr" : "");
1003 
1004 		bd->mode.status = param;
1005 	}
1006 
1007 	sdmac->num_bd = sg_len;
1008 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1009 
1010 	return &sdmac->desc;
1011 err_out:
1012 	sdmac->status = DMA_ERROR;
1013 	return NULL;
1014 }
1015 
1016 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1017 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1018 		size_t period_len, enum dma_transfer_direction direction)
1019 {
1020 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1021 	struct sdma_engine *sdma = sdmac->sdma;
1022 	int num_periods = buf_len / period_len;
1023 	int channel = sdmac->channel;
1024 	int ret, i = 0, buf = 0;
1025 
1026 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1027 
1028 	if (sdmac->status == DMA_IN_PROGRESS)
1029 		return NULL;
1030 
1031 	sdmac->status = DMA_IN_PROGRESS;
1032 
1033 	sdmac->flags |= IMX_DMA_SG_LOOP;
1034 	sdmac->direction = direction;
1035 	ret = sdma_load_context(sdmac);
1036 	if (ret)
1037 		goto err_out;
1038 
1039 	if (num_periods > NUM_BD) {
1040 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1041 				channel, num_periods, NUM_BD);
1042 		goto err_out;
1043 	}
1044 
1045 	if (period_len > 0xffff) {
1046 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1047 				channel, period_len, 0xffff);
1048 		goto err_out;
1049 	}
1050 
1051 	while (buf < buf_len) {
1052 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1053 		int param;
1054 
1055 		bd->buffer_addr = dma_addr;
1056 
1057 		bd->mode.count = period_len;
1058 
1059 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1060 			goto err_out;
1061 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1062 			bd->mode.command = 0;
1063 		else
1064 			bd->mode.command = sdmac->word_size;
1065 
1066 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1067 		if (i + 1 == num_periods)
1068 			param |= BD_WRAP;
1069 
1070 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1071 				i, period_len, dma_addr,
1072 				param & BD_WRAP ? "wrap" : "",
1073 				param & BD_INTR ? " intr" : "");
1074 
1075 		bd->mode.status = param;
1076 
1077 		dma_addr += period_len;
1078 		buf += period_len;
1079 
1080 		i++;
1081 	}
1082 
1083 	sdmac->num_bd = num_periods;
1084 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1085 
1086 	return &sdmac->desc;
1087 err_out:
1088 	sdmac->status = DMA_ERROR;
1089 	return NULL;
1090 }
1091 
1092 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1093 		unsigned long arg)
1094 {
1095 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1096 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1097 
1098 	switch (cmd) {
1099 	case DMA_TERMINATE_ALL:
1100 		sdma_disable_channel(sdmac);
1101 		return 0;
1102 	case DMA_SLAVE_CONFIG:
1103 		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1104 			sdmac->per_address = dmaengine_cfg->src_addr;
1105 			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1106 						dmaengine_cfg->src_addr_width;
1107 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1108 		} else {
1109 			sdmac->per_address = dmaengine_cfg->dst_addr;
1110 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1111 						dmaengine_cfg->dst_addr_width;
1112 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1113 		}
1114 		sdmac->direction = dmaengine_cfg->direction;
1115 		return sdma_config_channel(sdmac);
1116 	default:
1117 		return -ENOSYS;
1118 	}
1119 
1120 	return -EINVAL;
1121 }
1122 
1123 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1124 					    dma_cookie_t cookie,
1125 					    struct dma_tx_state *txstate)
1126 {
1127 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1128 	dma_cookie_t last_used;
1129 
1130 	last_used = chan->cookie;
1131 
1132 	dma_set_tx_state(txstate, sdmac->last_completed, last_used,
1133 			sdmac->chn_count - sdmac->chn_real_count);
1134 
1135 	return sdmac->status;
1136 }
1137 
1138 static void sdma_issue_pending(struct dma_chan *chan)
1139 {
1140 	/*
1141 	 * Nothing to do. We only have a single descriptor
1142 	 */
1143 }
1144 
1145 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1146 
1147 static void sdma_add_scripts(struct sdma_engine *sdma,
1148 		const struct sdma_script_start_addrs *addr)
1149 {
1150 	s32 *addr_arr = (u32 *)addr;
1151 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1152 	int i;
1153 
1154 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1155 		if (addr_arr[i] > 0)
1156 			saddr_arr[i] = addr_arr[i];
1157 }
1158 
1159 static void sdma_load_firmware(const struct firmware *fw, void *context)
1160 {
1161 	struct sdma_engine *sdma = context;
1162 	const struct sdma_firmware_header *header;
1163 	const struct sdma_script_start_addrs *addr;
1164 	unsigned short *ram_code;
1165 
1166 	if (!fw) {
1167 		dev_err(sdma->dev, "firmware not found\n");
1168 		return;
1169 	}
1170 
1171 	if (fw->size < sizeof(*header))
1172 		goto err_firmware;
1173 
1174 	header = (struct sdma_firmware_header *)fw->data;
1175 
1176 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1177 		goto err_firmware;
1178 	if (header->ram_code_start + header->ram_code_size > fw->size)
1179 		goto err_firmware;
1180 
1181 	addr = (void *)header + header->script_addrs_start;
1182 	ram_code = (void *)header + header->ram_code_start;
1183 
1184 	clk_enable(sdma->clk);
1185 	/* download the RAM image for SDMA */
1186 	sdma_load_script(sdma, ram_code,
1187 			header->ram_code_size,
1188 			addr->ram_code_start_addr);
1189 	clk_disable(sdma->clk);
1190 
1191 	sdma_add_scripts(sdma, addr);
1192 
1193 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1194 			header->version_major,
1195 			header->version_minor);
1196 
1197 err_firmware:
1198 	release_firmware(fw);
1199 }
1200 
1201 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1202 		const char *fw_name)
1203 {
1204 	int ret;
1205 
1206 	ret = request_firmware_nowait(THIS_MODULE,
1207 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1208 			GFP_KERNEL, sdma, sdma_load_firmware);
1209 
1210 	return ret;
1211 }
1212 
1213 static int __init sdma_init(struct sdma_engine *sdma)
1214 {
1215 	int i, ret;
1216 	dma_addr_t ccb_phys;
1217 
1218 	switch (sdma->devtype) {
1219 	case IMX31_SDMA:
1220 		sdma->num_events = 32;
1221 		break;
1222 	case IMX35_SDMA:
1223 		sdma->num_events = 48;
1224 		break;
1225 	default:
1226 		dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1227 			sdma->devtype);
1228 		return -ENODEV;
1229 	}
1230 
1231 	clk_enable(sdma->clk);
1232 
1233 	/* Be sure SDMA has not started yet */
1234 	__raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1235 
1236 	sdma->channel_control = dma_alloc_coherent(NULL,
1237 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1238 			sizeof(struct sdma_context_data),
1239 			&ccb_phys, GFP_KERNEL);
1240 
1241 	if (!sdma->channel_control) {
1242 		ret = -ENOMEM;
1243 		goto err_dma_alloc;
1244 	}
1245 
1246 	sdma->context = (void *)sdma->channel_control +
1247 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1248 	sdma->context_phys = ccb_phys +
1249 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1250 
1251 	/* Zero-out the CCB structures array just allocated */
1252 	memset(sdma->channel_control, 0,
1253 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1254 
1255 	/* disable all channels */
1256 	for (i = 0; i < sdma->num_events; i++)
1257 		__raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1258 
1259 	/* All channels have priority 0 */
1260 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1261 		__raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1262 
1263 	ret = sdma_request_channel(&sdma->channel[0]);
1264 	if (ret)
1265 		goto err_dma_alloc;
1266 
1267 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1268 
1269 	/* Set Command Channel (Channel Zero) */
1270 	__raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1271 
1272 	/* Set bits of CONFIG register but with static context switching */
1273 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1274 	__raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1275 
1276 	__raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1277 
1278 	/* Set bits of CONFIG register with given context switching mode */
1279 	__raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1280 
1281 	/* Initializes channel's priorities */
1282 	sdma_set_channel_priority(&sdma->channel[0], 7);
1283 
1284 	clk_disable(sdma->clk);
1285 
1286 	return 0;
1287 
1288 err_dma_alloc:
1289 	clk_disable(sdma->clk);
1290 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1291 	return ret;
1292 }
1293 
1294 static int __init sdma_probe(struct platform_device *pdev)
1295 {
1296 	const struct of_device_id *of_id =
1297 			of_match_device(sdma_dt_ids, &pdev->dev);
1298 	struct device_node *np = pdev->dev.of_node;
1299 	const char *fw_name;
1300 	int ret;
1301 	int irq;
1302 	struct resource *iores;
1303 	struct sdma_platform_data *pdata = pdev->dev.platform_data;
1304 	int i;
1305 	struct sdma_engine *sdma;
1306 	s32 *saddr_arr;
1307 
1308 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1309 	if (!sdma)
1310 		return -ENOMEM;
1311 
1312 	mutex_init(&sdma->channel_0_lock);
1313 
1314 	sdma->dev = &pdev->dev;
1315 
1316 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1317 	irq = platform_get_irq(pdev, 0);
1318 	if (!iores || irq < 0) {
1319 		ret = -EINVAL;
1320 		goto err_irq;
1321 	}
1322 
1323 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1324 		ret = -EBUSY;
1325 		goto err_request_region;
1326 	}
1327 
1328 	sdma->clk = clk_get(&pdev->dev, NULL);
1329 	if (IS_ERR(sdma->clk)) {
1330 		ret = PTR_ERR(sdma->clk);
1331 		goto err_clk;
1332 	}
1333 
1334 	sdma->regs = ioremap(iores->start, resource_size(iores));
1335 	if (!sdma->regs) {
1336 		ret = -ENOMEM;
1337 		goto err_ioremap;
1338 	}
1339 
1340 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1341 	if (ret)
1342 		goto err_request_irq;
1343 
1344 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1345 	if (!sdma->script_addrs) {
1346 		ret = -ENOMEM;
1347 		goto err_alloc;
1348 	}
1349 
1350 	/* initially no scripts available */
1351 	saddr_arr = (s32 *)sdma->script_addrs;
1352 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1353 		saddr_arr[i] = -EINVAL;
1354 
1355 	if (of_id)
1356 		pdev->id_entry = of_id->data;
1357 	sdma->devtype = pdev->id_entry->driver_data;
1358 
1359 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1360 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1361 
1362 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1363 	/* Initialize channel parameters */
1364 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1365 		struct sdma_channel *sdmac = &sdma->channel[i];
1366 
1367 		sdmac->sdma = sdma;
1368 		spin_lock_init(&sdmac->lock);
1369 
1370 		sdmac->chan.device = &sdma->dma_device;
1371 		sdmac->channel = i;
1372 
1373 		/*
1374 		 * Add the channel to the DMAC list. Do not add channel 0 though
1375 		 * because we need it internally in the SDMA driver. This also means
1376 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1377 		 */
1378 		if (i)
1379 			list_add_tail(&sdmac->chan.device_node,
1380 					&sdma->dma_device.channels);
1381 	}
1382 
1383 	ret = sdma_init(sdma);
1384 	if (ret)
1385 		goto err_init;
1386 
1387 	if (pdata && pdata->script_addrs)
1388 		sdma_add_scripts(sdma, pdata->script_addrs);
1389 
1390 	if (pdata) {
1391 		sdma_get_firmware(sdma, pdata->fw_name);
1392 	} else {
1393 		/*
1394 		 * Because that device tree does not encode ROM script address,
1395 		 * the RAM script in firmware is mandatory for device tree
1396 		 * probe, otherwise it fails.
1397 		 */
1398 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1399 					      &fw_name);
1400 		if (ret) {
1401 			dev_err(&pdev->dev, "failed to get firmware name\n");
1402 			goto err_init;
1403 		}
1404 
1405 		ret = sdma_get_firmware(sdma, fw_name);
1406 		if (ret) {
1407 			dev_err(&pdev->dev, "failed to get firmware\n");
1408 			goto err_init;
1409 		}
1410 	}
1411 
1412 	sdma->dma_device.dev = &pdev->dev;
1413 
1414 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1415 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1416 	sdma->dma_device.device_tx_status = sdma_tx_status;
1417 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1418 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1419 	sdma->dma_device.device_control = sdma_control;
1420 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1421 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1422 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1423 
1424 	ret = dma_async_device_register(&sdma->dma_device);
1425 	if (ret) {
1426 		dev_err(&pdev->dev, "unable to register\n");
1427 		goto err_init;
1428 	}
1429 
1430 	dev_info(sdma->dev, "initialized\n");
1431 
1432 	return 0;
1433 
1434 err_init:
1435 	kfree(sdma->script_addrs);
1436 err_alloc:
1437 	free_irq(irq, sdma);
1438 err_request_irq:
1439 	iounmap(sdma->regs);
1440 err_ioremap:
1441 	clk_put(sdma->clk);
1442 err_clk:
1443 	release_mem_region(iores->start, resource_size(iores));
1444 err_request_region:
1445 err_irq:
1446 	kfree(sdma);
1447 	return ret;
1448 }
1449 
1450 static int __exit sdma_remove(struct platform_device *pdev)
1451 {
1452 	return -EBUSY;
1453 }
1454 
1455 static struct platform_driver sdma_driver = {
1456 	.driver		= {
1457 		.name	= "imx-sdma",
1458 		.of_match_table = sdma_dt_ids,
1459 	},
1460 	.id_table	= sdma_devtypes,
1461 	.remove		= __exit_p(sdma_remove),
1462 };
1463 
1464 static int __init sdma_module_init(void)
1465 {
1466 	return platform_driver_probe(&sdma_driver, sdma_probe);
1467 }
1468 module_init(sdma_module_init);
1469 
1470 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1471 MODULE_DESCRIPTION("i.MX SDMA driver");
1472 MODULE_LICENSE("GPL");
1473