xref: /openbmc/linux/drivers/dma/idxd/irq.c (revision 4548a6ad3d50c398aa12fa3ad45dd0611328f13b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include <linux/io-64-nonatomic-lo-hi.h>
8 #include <linux/dmaengine.h>
9 #include <uapi/linux/idxd.h>
10 #include "../dmaengine.h"
11 #include "idxd.h"
12 #include "registers.h"
13 
14 void idxd_device_wqs_clear_state(struct idxd_device *idxd)
15 {
16 	int i;
17 
18 	lockdep_assert_held(&idxd->dev_lock);
19 	for (i = 0; i < idxd->max_wqs; i++) {
20 		struct idxd_wq *wq = &idxd->wqs[i];
21 
22 		wq->state = IDXD_WQ_DISABLED;
23 	}
24 }
25 
26 static void idxd_device_reinit(struct work_struct *work)
27 {
28 	struct idxd_device *idxd = container_of(work, struct idxd_device, work);
29 	struct device *dev = &idxd->pdev->dev;
30 	int rc, i;
31 
32 	idxd_device_reset(idxd);
33 	rc = idxd_device_config(idxd);
34 	if (rc < 0)
35 		goto out;
36 
37 	rc = idxd_device_enable(idxd);
38 	if (rc < 0)
39 		goto out;
40 
41 	for (i = 0; i < idxd->max_wqs; i++) {
42 		struct idxd_wq *wq = &idxd->wqs[i];
43 
44 		if (wq->state == IDXD_WQ_ENABLED) {
45 			rc = idxd_wq_enable(wq);
46 			if (rc < 0) {
47 				dev_warn(dev, "Unable to re-enable wq %s\n",
48 					 dev_name(&wq->conf_dev));
49 			}
50 		}
51 	}
52 
53 	return;
54 
55  out:
56 	idxd_device_wqs_clear_state(idxd);
57 }
58 
59 irqreturn_t idxd_irq_handler(int vec, void *data)
60 {
61 	struct idxd_irq_entry *irq_entry = data;
62 	struct idxd_device *idxd = irq_entry->idxd;
63 
64 	idxd_mask_msix_vector(idxd, irq_entry->id);
65 	return IRQ_WAKE_THREAD;
66 }
67 
68 irqreturn_t idxd_misc_thread(int vec, void *data)
69 {
70 	struct idxd_irq_entry *irq_entry = data;
71 	struct idxd_device *idxd = irq_entry->idxd;
72 	struct device *dev = &idxd->pdev->dev;
73 	union gensts_reg gensts;
74 	u32 cause, val = 0;
75 	int i;
76 	bool err = false;
77 
78 	cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET);
79 
80 	if (cause & IDXD_INTC_ERR) {
81 		spin_lock_bh(&idxd->dev_lock);
82 		for (i = 0; i < 4; i++)
83 			idxd->sw_err.bits[i] = ioread64(idxd->reg_base +
84 					IDXD_SWERR_OFFSET + i * sizeof(u64));
85 		iowrite64(IDXD_SWERR_ACK, idxd->reg_base + IDXD_SWERR_OFFSET);
86 
87 		if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) {
88 			int id = idxd->sw_err.wq_idx;
89 			struct idxd_wq *wq = &idxd->wqs[id];
90 
91 			if (wq->type == IDXD_WQT_USER)
92 				wake_up_interruptible(&wq->idxd_cdev.err_queue);
93 		} else {
94 			int i;
95 
96 			for (i = 0; i < idxd->max_wqs; i++) {
97 				struct idxd_wq *wq = &idxd->wqs[i];
98 
99 				if (wq->type == IDXD_WQT_USER)
100 					wake_up_interruptible(&wq->idxd_cdev.err_queue);
101 			}
102 		}
103 
104 		spin_unlock_bh(&idxd->dev_lock);
105 		val |= IDXD_INTC_ERR;
106 
107 		for (i = 0; i < 4; i++)
108 			dev_warn(dev, "err[%d]: %#16.16llx\n",
109 				 i, idxd->sw_err.bits[i]);
110 		err = true;
111 	}
112 
113 	if (cause & IDXD_INTC_CMD) {
114 		val |= IDXD_INTC_CMD;
115 		complete(idxd->cmd_done);
116 	}
117 
118 	if (cause & IDXD_INTC_OCCUPY) {
119 		/* Driver does not utilize occupancy interrupt */
120 		val |= IDXD_INTC_OCCUPY;
121 	}
122 
123 	if (cause & IDXD_INTC_PERFMON_OVFL) {
124 		/*
125 		 * Driver does not utilize perfmon counter overflow interrupt
126 		 * yet.
127 		 */
128 		val |= IDXD_INTC_PERFMON_OVFL;
129 	}
130 
131 	val ^= cause;
132 	if (val)
133 		dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n",
134 			      val);
135 
136 	iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET);
137 	if (!err)
138 		return IRQ_HANDLED;
139 
140 	gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET);
141 	if (gensts.state == IDXD_DEVICE_STATE_HALT) {
142 		idxd->state = IDXD_DEV_HALTED;
143 		if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) {
144 			/*
145 			 * If we need a software reset, we will throw the work
146 			 * on a system workqueue in order to allow interrupts
147 			 * for the device command completions.
148 			 */
149 			INIT_WORK(&idxd->work, idxd_device_reinit);
150 			queue_work(idxd->wq, &idxd->work);
151 		} else {
152 			spin_lock_bh(&idxd->dev_lock);
153 			idxd_device_wqs_clear_state(idxd);
154 			dev_err(&idxd->pdev->dev,
155 				"idxd halted, need %s.\n",
156 				gensts.reset_type == IDXD_DEVICE_RESET_FLR ?
157 				"FLR" : "system reset");
158 			spin_unlock_bh(&idxd->dev_lock);
159 		}
160 	}
161 
162 	idxd_unmask_msix_vector(idxd, irq_entry->id);
163 	return IRQ_HANDLED;
164 }
165 
166 static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry,
167 				     int *processed)
168 {
169 	struct idxd_desc *desc, *t;
170 	struct llist_node *head;
171 	int queued = 0;
172 
173 	*processed = 0;
174 	head = llist_del_all(&irq_entry->pending_llist);
175 	if (!head)
176 		return 0;
177 
178 	llist_for_each_entry_safe(desc, t, head, llnode) {
179 		if (desc->completion->status) {
180 			idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL);
181 			idxd_free_desc(desc->wq, desc);
182 			(*processed)++;
183 		} else {
184 			list_add_tail(&desc->list, &irq_entry->work_list);
185 			queued++;
186 		}
187 	}
188 
189 	return queued;
190 }
191 
192 static int irq_process_work_list(struct idxd_irq_entry *irq_entry,
193 				 int *processed)
194 {
195 	struct list_head *node, *next;
196 	int queued = 0;
197 
198 	*processed = 0;
199 	if (list_empty(&irq_entry->work_list))
200 		return 0;
201 
202 	list_for_each_safe(node, next, &irq_entry->work_list) {
203 		struct idxd_desc *desc =
204 			container_of(node, struct idxd_desc, list);
205 
206 		if (desc->completion->status) {
207 			list_del(&desc->list);
208 			/* process and callback */
209 			idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL);
210 			idxd_free_desc(desc->wq, desc);
211 			(*processed)++;
212 		} else {
213 			queued++;
214 		}
215 	}
216 
217 	return queued;
218 }
219 
220 static int idxd_desc_process(struct idxd_irq_entry *irq_entry)
221 {
222 	int rc, processed, total = 0;
223 
224 	/*
225 	 * There are two lists we are processing. The pending_llist is where
226 	 * submmiter adds all the submitted descriptor after sending it to
227 	 * the workqueue. It's a lockless singly linked list. The work_list
228 	 * is the common linux double linked list. We are in a scenario of
229 	 * multiple producers and a single consumer. The producers are all
230 	 * the kernel submitters of descriptors, and the consumer is the
231 	 * kernel irq handler thread for the msix vector when using threaded
232 	 * irq. To work with the restrictions of llist to remain lockless,
233 	 * we are doing the following steps:
234 	 * 1. Iterate through the work_list and process any completed
235 	 *    descriptor. Delete the completed entries during iteration.
236 	 * 2. llist_del_all() from the pending list.
237 	 * 3. Iterate through the llist that was deleted from the pending list
238 	 *    and process the completed entries.
239 	 * 4. If the entry is still waiting on hardware, list_add_tail() to
240 	 *    the work_list.
241 	 * 5. Repeat until no more descriptors.
242 	 */
243 	do {
244 		rc = irq_process_work_list(irq_entry, &processed);
245 		total += processed;
246 		if (rc != 0)
247 			continue;
248 
249 		rc = irq_process_pending_llist(irq_entry, &processed);
250 		total += processed;
251 	} while (rc != 0);
252 
253 	return total;
254 }
255 
256 irqreturn_t idxd_wq_thread(int irq, void *data)
257 {
258 	struct idxd_irq_entry *irq_entry = data;
259 	int processed;
260 
261 	processed = idxd_desc_process(irq_entry);
262 	idxd_unmask_msix_vector(irq_entry->idxd, irq_entry->id);
263 
264 	if (processed == 0)
265 		return IRQ_NONE;
266 
267 	return IRQ_HANDLED;
268 }
269