1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */ 3 #include <linux/init.h> 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/pci.h> 7 #include <linux/io-64-nonatomic-lo-hi.h> 8 #include <linux/dmaengine.h> 9 #include <linux/delay.h> 10 #include <linux/iommu.h> 11 #include <linux/sched/mm.h> 12 #include <uapi/linux/idxd.h> 13 #include "../dmaengine.h" 14 #include "idxd.h" 15 #include "registers.h" 16 17 enum irq_work_type { 18 IRQ_WORK_NORMAL = 0, 19 IRQ_WORK_PROCESS_FAULT, 20 }; 21 22 struct idxd_resubmit { 23 struct work_struct work; 24 struct idxd_desc *desc; 25 }; 26 27 struct idxd_int_handle_revoke { 28 struct work_struct work; 29 struct idxd_device *idxd; 30 }; 31 32 static void idxd_device_reinit(struct work_struct *work) 33 { 34 struct idxd_device *idxd = container_of(work, struct idxd_device, work); 35 struct device *dev = &idxd->pdev->dev; 36 int rc, i; 37 38 idxd_device_reset(idxd); 39 rc = idxd_device_config(idxd); 40 if (rc < 0) 41 goto out; 42 43 rc = idxd_device_enable(idxd); 44 if (rc < 0) 45 goto out; 46 47 for (i = 0; i < idxd->max_wqs; i++) { 48 if (test_bit(i, idxd->wq_enable_map)) { 49 struct idxd_wq *wq = idxd->wqs[i]; 50 51 rc = idxd_wq_enable(wq); 52 if (rc < 0) { 53 clear_bit(i, idxd->wq_enable_map); 54 dev_warn(dev, "Unable to re-enable wq %s\n", 55 dev_name(wq_confdev(wq))); 56 } 57 } 58 } 59 60 return; 61 62 out: 63 idxd_device_clear_state(idxd); 64 } 65 66 /* 67 * The function sends a drain descriptor for the interrupt handle. The drain ensures 68 * all descriptors with this interrupt handle is flushed and the interrupt 69 * will allow the cleanup of the outstanding descriptors. 70 */ 71 static void idxd_int_handle_revoke_drain(struct idxd_irq_entry *ie) 72 { 73 struct idxd_wq *wq = ie_to_wq(ie); 74 struct idxd_device *idxd = wq->idxd; 75 struct device *dev = &idxd->pdev->dev; 76 struct dsa_hw_desc desc = {}; 77 void __iomem *portal; 78 int rc; 79 80 /* Issue a simple drain operation with interrupt but no completion record */ 81 desc.flags = IDXD_OP_FLAG_RCI; 82 desc.opcode = DSA_OPCODE_DRAIN; 83 desc.priv = 1; 84 85 if (ie->pasid != INVALID_IOASID) 86 desc.pasid = ie->pasid; 87 desc.int_handle = ie->int_handle; 88 portal = idxd_wq_portal_addr(wq); 89 90 /* 91 * The wmb() makes sure that the descriptor is all there before we 92 * issue. 93 */ 94 wmb(); 95 if (wq_dedicated(wq)) { 96 iosubmit_cmds512(portal, &desc, 1); 97 } else { 98 rc = idxd_enqcmds(wq, portal, &desc); 99 /* This should not fail unless hardware failed. */ 100 if (rc < 0) 101 dev_warn(dev, "Failed to submit drain desc on wq %d\n", wq->id); 102 } 103 } 104 105 static void idxd_abort_invalid_int_handle_descs(struct idxd_irq_entry *ie) 106 { 107 LIST_HEAD(flist); 108 struct idxd_desc *d, *t; 109 struct llist_node *head; 110 111 spin_lock(&ie->list_lock); 112 head = llist_del_all(&ie->pending_llist); 113 if (head) { 114 llist_for_each_entry_safe(d, t, head, llnode) 115 list_add_tail(&d->list, &ie->work_list); 116 } 117 118 list_for_each_entry_safe(d, t, &ie->work_list, list) { 119 if (d->completion->status == DSA_COMP_INT_HANDLE_INVAL) 120 list_move_tail(&d->list, &flist); 121 } 122 spin_unlock(&ie->list_lock); 123 124 list_for_each_entry_safe(d, t, &flist, list) { 125 list_del(&d->list); 126 idxd_dma_complete_txd(d, IDXD_COMPLETE_ABORT, true); 127 } 128 } 129 130 static void idxd_int_handle_revoke(struct work_struct *work) 131 { 132 struct idxd_int_handle_revoke *revoke = 133 container_of(work, struct idxd_int_handle_revoke, work); 134 struct idxd_device *idxd = revoke->idxd; 135 struct pci_dev *pdev = idxd->pdev; 136 struct device *dev = &pdev->dev; 137 int i, new_handle, rc; 138 139 if (!idxd->request_int_handles) { 140 kfree(revoke); 141 dev_warn(dev, "Unexpected int handle refresh interrupt.\n"); 142 return; 143 } 144 145 /* 146 * The loop attempts to acquire new interrupt handle for all interrupt 147 * vectors that supports a handle. If a new interrupt handle is acquired and the 148 * wq is kernel type, the driver will kill the percpu_ref to pause all 149 * ongoing descriptor submissions. The interrupt handle is then changed. 150 * After change, the percpu_ref is revived and all the pending submissions 151 * are woken to try again. A drain is sent to for the interrupt handle 152 * at the end to make sure all invalid int handle descriptors are processed. 153 */ 154 for (i = 1; i < idxd->irq_cnt; i++) { 155 struct idxd_irq_entry *ie = idxd_get_ie(idxd, i); 156 struct idxd_wq *wq = ie_to_wq(ie); 157 158 if (ie->int_handle == INVALID_INT_HANDLE) 159 continue; 160 161 rc = idxd_device_request_int_handle(idxd, i, &new_handle, IDXD_IRQ_MSIX); 162 if (rc < 0) { 163 dev_warn(dev, "get int handle %d failed: %d\n", i, rc); 164 /* 165 * Failed to acquire new interrupt handle. Kill the WQ 166 * and release all the pending submitters. The submitters will 167 * get error return code and handle appropriately. 168 */ 169 ie->int_handle = INVALID_INT_HANDLE; 170 idxd_wq_quiesce(wq); 171 idxd_abort_invalid_int_handle_descs(ie); 172 continue; 173 } 174 175 /* No change in interrupt handle, nothing needs to be done */ 176 if (ie->int_handle == new_handle) 177 continue; 178 179 if (wq->state != IDXD_WQ_ENABLED || wq->type != IDXD_WQT_KERNEL) { 180 /* 181 * All the MSIX interrupts are allocated at once during probe. 182 * Therefore we need to update all interrupts even if the WQ 183 * isn't supporting interrupt operations. 184 */ 185 ie->int_handle = new_handle; 186 continue; 187 } 188 189 mutex_lock(&wq->wq_lock); 190 reinit_completion(&wq->wq_resurrect); 191 192 /* Kill percpu_ref to pause additional descriptor submissions */ 193 percpu_ref_kill(&wq->wq_active); 194 195 /* Wait for all submitters quiesce before we change interrupt handle */ 196 wait_for_completion(&wq->wq_dead); 197 198 ie->int_handle = new_handle; 199 200 /* Revive percpu ref and wake up all the waiting submitters */ 201 percpu_ref_reinit(&wq->wq_active); 202 complete_all(&wq->wq_resurrect); 203 mutex_unlock(&wq->wq_lock); 204 205 /* 206 * The delay here is to wait for all possible MOVDIR64B that 207 * are issued before percpu_ref_kill() has happened to have 208 * reached the PCIe domain before the drain is issued. The driver 209 * needs to ensure that the drain descriptor issued does not pass 210 * all the other issued descriptors that contain the invalid 211 * interrupt handle in order to ensure that the drain descriptor 212 * interrupt will allow the cleanup of all the descriptors with 213 * invalid interrupt handle. 214 */ 215 if (wq_dedicated(wq)) 216 udelay(100); 217 idxd_int_handle_revoke_drain(ie); 218 } 219 kfree(revoke); 220 } 221 222 static void idxd_evl_fault_work(struct work_struct *work) 223 { 224 struct idxd_evl_fault *fault = container_of(work, struct idxd_evl_fault, work); 225 struct idxd_wq *wq = fault->wq; 226 struct idxd_device *idxd = wq->idxd; 227 struct device *dev = &idxd->pdev->dev; 228 struct idxd_evl *evl = idxd->evl; 229 struct __evl_entry *entry_head = fault->entry; 230 void *cr = (void *)entry_head + idxd->data->evl_cr_off; 231 int cr_size = idxd->data->compl_size; 232 u8 *status = (u8 *)cr + idxd->data->cr_status_off; 233 u8 *result = (u8 *)cr + idxd->data->cr_result_off; 234 int copied, copy_size; 235 bool *bf; 236 237 switch (fault->status) { 238 case DSA_COMP_CRA_XLAT: 239 if (entry_head->batch && entry_head->first_err_in_batch) 240 evl->batch_fail[entry_head->batch_id] = false; 241 242 copy_size = cr_size; 243 break; 244 case DSA_COMP_BATCH_EVL_ERR: 245 bf = &evl->batch_fail[entry_head->batch_id]; 246 247 copy_size = entry_head->rcr || *bf ? cr_size : 0; 248 if (*bf) { 249 if (*status == DSA_COMP_SUCCESS) 250 *status = DSA_COMP_BATCH_FAIL; 251 *result = 1; 252 *bf = false; 253 } 254 break; 255 case DSA_COMP_DRAIN_EVL: 256 copy_size = cr_size; 257 break; 258 default: 259 copy_size = 0; 260 dev_dbg_ratelimited(dev, "Unrecognized error code: %#x\n", fault->status); 261 break; 262 } 263 264 if (copy_size == 0) 265 return; 266 267 /* 268 * Copy completion record to fault_addr in user address space 269 * that is found by wq and PASID. 270 */ 271 copied = idxd_copy_cr(wq, entry_head->pasid, entry_head->fault_addr, 272 cr, copy_size); 273 /* 274 * The task that triggered the page fault is unknown currently 275 * because multiple threads may share the user address 276 * space or the task exits already before this fault. 277 * So if the copy fails, SIGSEGV can not be sent to the task. 278 * Just print an error for the failure. The user application 279 * waiting for the completion record will time out on this 280 * failure. 281 */ 282 switch (fault->status) { 283 case DSA_COMP_CRA_XLAT: 284 if (copied != copy_size) { 285 dev_dbg_ratelimited(dev, "Failed to write to completion record: (%d:%d)\n", 286 copy_size, copied); 287 if (entry_head->batch) 288 evl->batch_fail[entry_head->batch_id] = true; 289 } 290 break; 291 case DSA_COMP_BATCH_EVL_ERR: 292 if (copied != copy_size) { 293 dev_dbg_ratelimited(dev, "Failed to write to batch completion record: (%d:%d)\n", 294 copy_size, copied); 295 } 296 break; 297 case DSA_COMP_DRAIN_EVL: 298 if (copied != copy_size) 299 dev_dbg_ratelimited(dev, "Failed to write to drain completion record: (%d:%d)\n", 300 copy_size, copied); 301 break; 302 } 303 304 kmem_cache_free(idxd->evl_cache, fault); 305 } 306 307 static void process_evl_entry(struct idxd_device *idxd, 308 struct __evl_entry *entry_head, unsigned int index) 309 { 310 struct device *dev = &idxd->pdev->dev; 311 struct idxd_evl *evl = idxd->evl; 312 u8 status; 313 314 if (test_bit(index, evl->bmap)) { 315 clear_bit(index, evl->bmap); 316 } else { 317 status = DSA_COMP_STATUS(entry_head->error); 318 319 if (status == DSA_COMP_CRA_XLAT || status == DSA_COMP_DRAIN_EVL || 320 status == DSA_COMP_BATCH_EVL_ERR) { 321 struct idxd_evl_fault *fault; 322 int ent_size = evl_ent_size(idxd); 323 324 if (entry_head->rci) 325 dev_dbg(dev, "Completion Int Req set, ignoring!\n"); 326 327 if (!entry_head->rcr && status == DSA_COMP_DRAIN_EVL) 328 return; 329 330 fault = kmem_cache_alloc(idxd->evl_cache, GFP_ATOMIC); 331 if (fault) { 332 struct idxd_wq *wq = idxd->wqs[entry_head->wq_idx]; 333 334 fault->wq = wq; 335 fault->status = status; 336 memcpy(&fault->entry, entry_head, ent_size); 337 INIT_WORK(&fault->work, idxd_evl_fault_work); 338 queue_work(wq->wq, &fault->work); 339 } else { 340 dev_warn(dev, "Failed to service fault work.\n"); 341 } 342 } else { 343 dev_warn_ratelimited(dev, "Device error %#x operation: %#x fault addr: %#llx\n", 344 status, entry_head->operation, 345 entry_head->fault_addr); 346 } 347 } 348 } 349 350 static void process_evl_entries(struct idxd_device *idxd) 351 { 352 union evl_status_reg evl_status; 353 unsigned int h, t; 354 struct idxd_evl *evl = idxd->evl; 355 struct __evl_entry *entry_head; 356 unsigned int ent_size = evl_ent_size(idxd); 357 u32 size; 358 359 evl_status.bits = 0; 360 evl_status.int_pending = 1; 361 362 spin_lock(&evl->lock); 363 /* Clear interrupt pending bit */ 364 iowrite32(evl_status.bits_upper32, 365 idxd->reg_base + IDXD_EVLSTATUS_OFFSET + sizeof(u32)); 366 h = evl->head; 367 evl_status.bits = ioread64(idxd->reg_base + IDXD_EVLSTATUS_OFFSET); 368 t = evl_status.tail; 369 size = idxd->evl->size; 370 371 while (h != t) { 372 entry_head = (struct __evl_entry *)(evl->log + (h * ent_size)); 373 process_evl_entry(idxd, entry_head, h); 374 h = (h + 1) % size; 375 } 376 377 evl->head = h; 378 evl_status.head = h; 379 iowrite32(evl_status.bits_lower32, idxd->reg_base + IDXD_EVLSTATUS_OFFSET); 380 spin_unlock(&evl->lock); 381 } 382 383 irqreturn_t idxd_misc_thread(int vec, void *data) 384 { 385 struct idxd_irq_entry *irq_entry = data; 386 struct idxd_device *idxd = ie_to_idxd(irq_entry); 387 struct device *dev = &idxd->pdev->dev; 388 union gensts_reg gensts; 389 u32 val = 0; 390 int i; 391 bool err = false; 392 u32 cause; 393 394 cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET); 395 if (!cause) 396 return IRQ_NONE; 397 398 iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET); 399 400 if (cause & IDXD_INTC_HALT_STATE) 401 goto halt; 402 403 if (cause & IDXD_INTC_ERR) { 404 spin_lock(&idxd->dev_lock); 405 for (i = 0; i < 4; i++) 406 idxd->sw_err.bits[i] = ioread64(idxd->reg_base + 407 IDXD_SWERR_OFFSET + i * sizeof(u64)); 408 409 iowrite64(idxd->sw_err.bits[0] & IDXD_SWERR_ACK, 410 idxd->reg_base + IDXD_SWERR_OFFSET); 411 412 if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) { 413 int id = idxd->sw_err.wq_idx; 414 struct idxd_wq *wq = idxd->wqs[id]; 415 416 if (wq->type == IDXD_WQT_USER) 417 wake_up_interruptible(&wq->err_queue); 418 } else { 419 int i; 420 421 for (i = 0; i < idxd->max_wqs; i++) { 422 struct idxd_wq *wq = idxd->wqs[i]; 423 424 if (wq->type == IDXD_WQT_USER) 425 wake_up_interruptible(&wq->err_queue); 426 } 427 } 428 429 spin_unlock(&idxd->dev_lock); 430 val |= IDXD_INTC_ERR; 431 432 for (i = 0; i < 4; i++) 433 dev_warn(dev, "err[%d]: %#16.16llx\n", 434 i, idxd->sw_err.bits[i]); 435 err = true; 436 } 437 438 if (cause & IDXD_INTC_INT_HANDLE_REVOKED) { 439 struct idxd_int_handle_revoke *revoke; 440 441 val |= IDXD_INTC_INT_HANDLE_REVOKED; 442 443 revoke = kzalloc(sizeof(*revoke), GFP_ATOMIC); 444 if (revoke) { 445 revoke->idxd = idxd; 446 INIT_WORK(&revoke->work, idxd_int_handle_revoke); 447 queue_work(idxd->wq, &revoke->work); 448 449 } else { 450 dev_err(dev, "Failed to allocate work for int handle revoke\n"); 451 idxd_wqs_quiesce(idxd); 452 } 453 } 454 455 if (cause & IDXD_INTC_CMD) { 456 val |= IDXD_INTC_CMD; 457 complete(idxd->cmd_done); 458 } 459 460 if (cause & IDXD_INTC_OCCUPY) { 461 /* Driver does not utilize occupancy interrupt */ 462 val |= IDXD_INTC_OCCUPY; 463 } 464 465 if (cause & IDXD_INTC_PERFMON_OVFL) { 466 val |= IDXD_INTC_PERFMON_OVFL; 467 perfmon_counter_overflow(idxd); 468 } 469 470 if (cause & IDXD_INTC_EVL) { 471 val |= IDXD_INTC_EVL; 472 process_evl_entries(idxd); 473 } 474 475 val ^= cause; 476 if (val) 477 dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n", 478 val); 479 480 if (!err) 481 goto out; 482 483 halt: 484 gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET); 485 if (gensts.state == IDXD_DEVICE_STATE_HALT) { 486 idxd->state = IDXD_DEV_HALTED; 487 if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) { 488 /* 489 * If we need a software reset, we will throw the work 490 * on a system workqueue in order to allow interrupts 491 * for the device command completions. 492 */ 493 INIT_WORK(&idxd->work, idxd_device_reinit); 494 queue_work(idxd->wq, &idxd->work); 495 } else { 496 idxd->state = IDXD_DEV_HALTED; 497 idxd_wqs_quiesce(idxd); 498 idxd_wqs_unmap_portal(idxd); 499 idxd_device_clear_state(idxd); 500 dev_err(&idxd->pdev->dev, 501 "idxd halted, need %s.\n", 502 gensts.reset_type == IDXD_DEVICE_RESET_FLR ? 503 "FLR" : "system reset"); 504 } 505 } 506 507 out: 508 return IRQ_HANDLED; 509 } 510 511 static void idxd_int_handle_resubmit_work(struct work_struct *work) 512 { 513 struct idxd_resubmit *irw = container_of(work, struct idxd_resubmit, work); 514 struct idxd_desc *desc = irw->desc; 515 struct idxd_wq *wq = desc->wq; 516 int rc; 517 518 desc->completion->status = 0; 519 rc = idxd_submit_desc(wq, desc); 520 if (rc < 0) { 521 dev_dbg(&wq->idxd->pdev->dev, "Failed to resubmit desc %d to wq %d.\n", 522 desc->id, wq->id); 523 /* 524 * If the error is not -EAGAIN, it means the submission failed due to wq 525 * has been killed instead of ENQCMDS failure. Here the driver needs to 526 * notify the submitter of the failure by reporting abort status. 527 * 528 * -EAGAIN comes from ENQCMDS failure. idxd_submit_desc() will handle the 529 * abort. 530 */ 531 if (rc != -EAGAIN) { 532 desc->completion->status = IDXD_COMP_DESC_ABORT; 533 idxd_dma_complete_txd(desc, IDXD_COMPLETE_ABORT, false); 534 } 535 idxd_free_desc(wq, desc); 536 } 537 kfree(irw); 538 } 539 540 bool idxd_queue_int_handle_resubmit(struct idxd_desc *desc) 541 { 542 struct idxd_wq *wq = desc->wq; 543 struct idxd_device *idxd = wq->idxd; 544 struct idxd_resubmit *irw; 545 546 irw = kzalloc(sizeof(*irw), GFP_KERNEL); 547 if (!irw) 548 return false; 549 550 irw->desc = desc; 551 INIT_WORK(&irw->work, idxd_int_handle_resubmit_work); 552 queue_work(idxd->wq, &irw->work); 553 return true; 554 } 555 556 static void irq_process_pending_llist(struct idxd_irq_entry *irq_entry) 557 { 558 struct idxd_desc *desc, *t; 559 struct llist_node *head; 560 561 head = llist_del_all(&irq_entry->pending_llist); 562 if (!head) 563 return; 564 565 llist_for_each_entry_safe(desc, t, head, llnode) { 566 u8 status = desc->completion->status & DSA_COMP_STATUS_MASK; 567 568 if (status) { 569 /* 570 * Check against the original status as ABORT is software defined 571 * and 0xff, which DSA_COMP_STATUS_MASK can mask out. 572 */ 573 if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) { 574 idxd_dma_complete_txd(desc, IDXD_COMPLETE_ABORT, true); 575 continue; 576 } 577 578 idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL, true); 579 } else { 580 spin_lock(&irq_entry->list_lock); 581 list_add_tail(&desc->list, 582 &irq_entry->work_list); 583 spin_unlock(&irq_entry->list_lock); 584 } 585 } 586 } 587 588 static void irq_process_work_list(struct idxd_irq_entry *irq_entry) 589 { 590 LIST_HEAD(flist); 591 struct idxd_desc *desc, *n; 592 593 /* 594 * This lock protects list corruption from access of list outside of the irq handler 595 * thread. 596 */ 597 spin_lock(&irq_entry->list_lock); 598 if (list_empty(&irq_entry->work_list)) { 599 spin_unlock(&irq_entry->list_lock); 600 return; 601 } 602 603 list_for_each_entry_safe(desc, n, &irq_entry->work_list, list) { 604 if (desc->completion->status) { 605 list_move_tail(&desc->list, &flist); 606 } 607 } 608 609 spin_unlock(&irq_entry->list_lock); 610 611 list_for_each_entry(desc, &flist, list) { 612 /* 613 * Check against the original status as ABORT is software defined 614 * and 0xff, which DSA_COMP_STATUS_MASK can mask out. 615 */ 616 if (unlikely(desc->completion->status == IDXD_COMP_DESC_ABORT)) { 617 idxd_dma_complete_txd(desc, IDXD_COMPLETE_ABORT, true); 618 continue; 619 } 620 621 idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL, true); 622 } 623 } 624 625 irqreturn_t idxd_wq_thread(int irq, void *data) 626 { 627 struct idxd_irq_entry *irq_entry = data; 628 629 /* 630 * There are two lists we are processing. The pending_llist is where 631 * submmiter adds all the submitted descriptor after sending it to 632 * the workqueue. It's a lockless singly linked list. The work_list 633 * is the common linux double linked list. We are in a scenario of 634 * multiple producers and a single consumer. The producers are all 635 * the kernel submitters of descriptors, and the consumer is the 636 * kernel irq handler thread for the msix vector when using threaded 637 * irq. To work with the restrictions of llist to remain lockless, 638 * we are doing the following steps: 639 * 1. Iterate through the work_list and process any completed 640 * descriptor. Delete the completed entries during iteration. 641 * 2. llist_del_all() from the pending list. 642 * 3. Iterate through the llist that was deleted from the pending list 643 * and process the completed entries. 644 * 4. If the entry is still waiting on hardware, list_add_tail() to 645 * the work_list. 646 */ 647 irq_process_work_list(irq_entry); 648 irq_process_pending_llist(irq_entry); 649 650 return IRQ_HANDLED; 651 } 652