xref: /openbmc/linux/drivers/dma/dma-axi-dmac.c (revision 7a26019fdecdb45ff784ae4e3b7e0cc9045100ca)
1 /*
2  * Driver for the Analog Devices AXI-DMAC core
3  *
4  * Copyright 2013-2015 Analog Devices Inc.
5  *  Author: Lars-Peter Clausen <lars@metafoo.de>
6  *
7  * Licensed under the GPL-2.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 
24 #include <dt-bindings/dma/axi-dmac.h>
25 
26 #include "dmaengine.h"
27 #include "virt-dma.h"
28 
29 /*
30  * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
31  * various instantiation parameters which decided the exact feature set support
32  * by the core.
33  *
34  * Each channel of the core has a source interface and a destination interface.
35  * The number of channels and the type of the channel interfaces is selected at
36  * configuration time. A interface can either be a connected to a central memory
37  * interconnect, which allows access to system memory, or it can be connected to
38  * a dedicated bus which is directly connected to a data port on a peripheral.
39  * Given that those are configuration options of the core that are selected when
40  * it is instantiated this means that they can not be changed by software at
41  * runtime. By extension this means that each channel is uni-directional. It can
42  * either be device to memory or memory to device, but not both. Also since the
43  * device side is a dedicated data bus only connected to a single peripheral
44  * there is no address than can or needs to be configured for the device side.
45  */
46 
47 #define AXI_DMAC_REG_IRQ_MASK		0x80
48 #define AXI_DMAC_REG_IRQ_PENDING	0x84
49 #define AXI_DMAC_REG_IRQ_SOURCE		0x88
50 
51 #define AXI_DMAC_REG_CTRL		0x400
52 #define AXI_DMAC_REG_TRANSFER_ID	0x404
53 #define AXI_DMAC_REG_START_TRANSFER	0x408
54 #define AXI_DMAC_REG_FLAGS		0x40c
55 #define AXI_DMAC_REG_DEST_ADDRESS	0x410
56 #define AXI_DMAC_REG_SRC_ADDRESS	0x414
57 #define AXI_DMAC_REG_X_LENGTH		0x418
58 #define AXI_DMAC_REG_Y_LENGTH		0x41c
59 #define AXI_DMAC_REG_DEST_STRIDE	0x420
60 #define AXI_DMAC_REG_SRC_STRIDE		0x424
61 #define AXI_DMAC_REG_TRANSFER_DONE	0x428
62 #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
63 #define AXI_DMAC_REG_STATUS		0x430
64 #define AXI_DMAC_REG_CURRENT_SRC_ADDR	0x434
65 #define AXI_DMAC_REG_CURRENT_DEST_ADDR	0x438
66 
67 #define AXI_DMAC_CTRL_ENABLE		BIT(0)
68 #define AXI_DMAC_CTRL_PAUSE		BIT(1)
69 
70 #define AXI_DMAC_IRQ_SOT		BIT(0)
71 #define AXI_DMAC_IRQ_EOT		BIT(1)
72 
73 #define AXI_DMAC_FLAG_CYCLIC		BIT(0)
74 
75 struct axi_dmac_sg {
76 	dma_addr_t src_addr;
77 	dma_addr_t dest_addr;
78 	unsigned int x_len;
79 	unsigned int y_len;
80 	unsigned int dest_stride;
81 	unsigned int src_stride;
82 	unsigned int id;
83 };
84 
85 struct axi_dmac_desc {
86 	struct virt_dma_desc vdesc;
87 	bool cyclic;
88 
89 	unsigned int num_submitted;
90 	unsigned int num_completed;
91 	unsigned int num_sgs;
92 	struct axi_dmac_sg sg[];
93 };
94 
95 struct axi_dmac_chan {
96 	struct virt_dma_chan vchan;
97 
98 	struct axi_dmac_desc *next_desc;
99 	struct list_head active_descs;
100 	enum dma_transfer_direction direction;
101 
102 	unsigned int src_width;
103 	unsigned int dest_width;
104 	unsigned int src_type;
105 	unsigned int dest_type;
106 
107 	unsigned int max_length;
108 	unsigned int align_mask;
109 
110 	bool hw_cyclic;
111 	bool hw_2d;
112 };
113 
114 struct axi_dmac {
115 	void __iomem *base;
116 	int irq;
117 
118 	struct clk *clk;
119 
120 	struct dma_device dma_dev;
121 	struct axi_dmac_chan chan;
122 
123 	struct device_dma_parameters dma_parms;
124 };
125 
126 static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
127 {
128 	return container_of(chan->vchan.chan.device, struct axi_dmac,
129 		dma_dev);
130 }
131 
132 static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
133 {
134 	return container_of(c, struct axi_dmac_chan, vchan.chan);
135 }
136 
137 static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
138 {
139 	return container_of(vdesc, struct axi_dmac_desc, vdesc);
140 }
141 
142 static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
143 	unsigned int val)
144 {
145 	writel(val, axi_dmac->base + reg);
146 }
147 
148 static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
149 {
150 	return readl(axi_dmac->base + reg);
151 }
152 
153 static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
154 {
155 	return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
156 }
157 
158 static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
159 {
160 	return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
161 }
162 
163 static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
164 {
165 	if (len == 0 || len > chan->max_length)
166 		return false;
167 	if ((len & chan->align_mask) != 0) /* Not aligned */
168 		return false;
169 	return true;
170 }
171 
172 static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
173 {
174 	if ((addr & chan->align_mask) != 0) /* Not aligned */
175 		return false;
176 	return true;
177 }
178 
179 static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
180 {
181 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
182 	struct virt_dma_desc *vdesc;
183 	struct axi_dmac_desc *desc;
184 	struct axi_dmac_sg *sg;
185 	unsigned int flags = 0;
186 	unsigned int val;
187 
188 	val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
189 	if (val) /* Queue is full, wait for the next SOT IRQ */
190 		return;
191 
192 	desc = chan->next_desc;
193 
194 	if (!desc) {
195 		vdesc = vchan_next_desc(&chan->vchan);
196 		if (!vdesc)
197 			return;
198 		list_move_tail(&vdesc->node, &chan->active_descs);
199 		desc = to_axi_dmac_desc(vdesc);
200 	}
201 	sg = &desc->sg[desc->num_submitted];
202 
203 	desc->num_submitted++;
204 	if (desc->num_submitted == desc->num_sgs)
205 		chan->next_desc = NULL;
206 	else
207 		chan->next_desc = desc;
208 
209 	sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
210 
211 	if (axi_dmac_dest_is_mem(chan)) {
212 		axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr);
213 		axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride);
214 	}
215 
216 	if (axi_dmac_src_is_mem(chan)) {
217 		axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr);
218 		axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride);
219 	}
220 
221 	/*
222 	 * If the hardware supports cyclic transfers and there is no callback to
223 	 * call, enable hw cyclic mode to avoid unnecessary interrupts.
224 	 */
225 	if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback)
226 		flags |= AXI_DMAC_FLAG_CYCLIC;
227 
228 	axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1);
229 	axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1);
230 	axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
231 	axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
232 }
233 
234 static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
235 {
236 	return list_first_entry_or_null(&chan->active_descs,
237 		struct axi_dmac_desc, vdesc.node);
238 }
239 
240 static void axi_dmac_transfer_done(struct axi_dmac_chan *chan,
241 	unsigned int completed_transfers)
242 {
243 	struct axi_dmac_desc *active;
244 	struct axi_dmac_sg *sg;
245 
246 	active = axi_dmac_active_desc(chan);
247 	if (!active)
248 		return;
249 
250 	if (active->cyclic) {
251 		vchan_cyclic_callback(&active->vdesc);
252 	} else {
253 		do {
254 			sg = &active->sg[active->num_completed];
255 			if (!(BIT(sg->id) & completed_transfers))
256 				break;
257 			active->num_completed++;
258 			if (active->num_completed == active->num_sgs) {
259 				list_del(&active->vdesc.node);
260 				vchan_cookie_complete(&active->vdesc);
261 				active = axi_dmac_active_desc(chan);
262 			}
263 		} while (active);
264 	}
265 }
266 
267 static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
268 {
269 	struct axi_dmac *dmac = devid;
270 	unsigned int pending;
271 
272 	pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
273 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
274 
275 	spin_lock(&dmac->chan.vchan.lock);
276 	/* One or more transfers have finished */
277 	if (pending & AXI_DMAC_IRQ_EOT) {
278 		unsigned int completed;
279 
280 		completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
281 		axi_dmac_transfer_done(&dmac->chan, completed);
282 	}
283 	/* Space has become available in the descriptor queue */
284 	if (pending & AXI_DMAC_IRQ_SOT)
285 		axi_dmac_start_transfer(&dmac->chan);
286 	spin_unlock(&dmac->chan.vchan.lock);
287 
288 	return IRQ_HANDLED;
289 }
290 
291 static int axi_dmac_terminate_all(struct dma_chan *c)
292 {
293 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
294 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
295 	unsigned long flags;
296 	LIST_HEAD(head);
297 
298 	spin_lock_irqsave(&chan->vchan.lock, flags);
299 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
300 	chan->next_desc = NULL;
301 	vchan_get_all_descriptors(&chan->vchan, &head);
302 	list_splice_tail_init(&chan->active_descs, &head);
303 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
304 
305 	vchan_dma_desc_free_list(&chan->vchan, &head);
306 
307 	return 0;
308 }
309 
310 static void axi_dmac_synchronize(struct dma_chan *c)
311 {
312 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
313 
314 	vchan_synchronize(&chan->vchan);
315 }
316 
317 static void axi_dmac_issue_pending(struct dma_chan *c)
318 {
319 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
320 	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
321 	unsigned long flags;
322 
323 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE);
324 
325 	spin_lock_irqsave(&chan->vchan.lock, flags);
326 	if (vchan_issue_pending(&chan->vchan))
327 		axi_dmac_start_transfer(chan);
328 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
329 }
330 
331 static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
332 {
333 	struct axi_dmac_desc *desc;
334 
335 	desc = kzalloc(sizeof(struct axi_dmac_desc) +
336 		sizeof(struct axi_dmac_sg) * num_sgs, GFP_NOWAIT);
337 	if (!desc)
338 		return NULL;
339 
340 	desc->num_sgs = num_sgs;
341 
342 	return desc;
343 }
344 
345 static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
346 	struct dma_chan *c, struct scatterlist *sgl,
347 	unsigned int sg_len, enum dma_transfer_direction direction,
348 	unsigned long flags, void *context)
349 {
350 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
351 	struct axi_dmac_desc *desc;
352 	struct scatterlist *sg;
353 	unsigned int i;
354 
355 	if (direction != chan->direction)
356 		return NULL;
357 
358 	desc = axi_dmac_alloc_desc(sg_len);
359 	if (!desc)
360 		return NULL;
361 
362 	for_each_sg(sgl, sg, sg_len, i) {
363 		if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
364 		    !axi_dmac_check_len(chan, sg_dma_len(sg))) {
365 			kfree(desc);
366 			return NULL;
367 		}
368 
369 		if (direction == DMA_DEV_TO_MEM)
370 			desc->sg[i].dest_addr = sg_dma_address(sg);
371 		else
372 			desc->sg[i].src_addr = sg_dma_address(sg);
373 		desc->sg[i].x_len = sg_dma_len(sg);
374 		desc->sg[i].y_len = 1;
375 	}
376 
377 	desc->cyclic = false;
378 
379 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
380 }
381 
382 static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
383 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
384 	size_t period_len, enum dma_transfer_direction direction,
385 	unsigned long flags)
386 {
387 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
388 	struct axi_dmac_desc *desc;
389 	unsigned int num_periods, i;
390 
391 	if (direction != chan->direction)
392 		return NULL;
393 
394 	if (!axi_dmac_check_len(chan, buf_len) ||
395 	    !axi_dmac_check_addr(chan, buf_addr))
396 		return NULL;
397 
398 	if (period_len == 0 || buf_len % period_len)
399 		return NULL;
400 
401 	num_periods = buf_len / period_len;
402 
403 	desc = axi_dmac_alloc_desc(num_periods);
404 	if (!desc)
405 		return NULL;
406 
407 	for (i = 0; i < num_periods; i++) {
408 		if (direction == DMA_DEV_TO_MEM)
409 			desc->sg[i].dest_addr = buf_addr;
410 		else
411 			desc->sg[i].src_addr = buf_addr;
412 		desc->sg[i].x_len = period_len;
413 		desc->sg[i].y_len = 1;
414 		buf_addr += period_len;
415 	}
416 
417 	desc->cyclic = true;
418 
419 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
420 }
421 
422 static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
423 	struct dma_chan *c, struct dma_interleaved_template *xt,
424 	unsigned long flags)
425 {
426 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
427 	struct axi_dmac_desc *desc;
428 	size_t dst_icg, src_icg;
429 
430 	if (xt->frame_size != 1)
431 		return NULL;
432 
433 	if (xt->dir != chan->direction)
434 		return NULL;
435 
436 	if (axi_dmac_src_is_mem(chan)) {
437 		if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
438 			return NULL;
439 	}
440 
441 	if (axi_dmac_dest_is_mem(chan)) {
442 		if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
443 			return NULL;
444 	}
445 
446 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
447 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
448 
449 	if (chan->hw_2d) {
450 		if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
451 		    !axi_dmac_check_len(chan, xt->numf))
452 			return NULL;
453 		if (xt->sgl[0].size + dst_icg > chan->max_length ||
454 		    xt->sgl[0].size + src_icg > chan->max_length)
455 			return NULL;
456 	} else {
457 		if (dst_icg != 0 || src_icg != 0)
458 			return NULL;
459 		if (chan->max_length / xt->sgl[0].size < xt->numf)
460 			return NULL;
461 		if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
462 			return NULL;
463 	}
464 
465 	desc = axi_dmac_alloc_desc(1);
466 	if (!desc)
467 		return NULL;
468 
469 	if (axi_dmac_src_is_mem(chan)) {
470 		desc->sg[0].src_addr = xt->src_start;
471 		desc->sg[0].src_stride = xt->sgl[0].size + src_icg;
472 	}
473 
474 	if (axi_dmac_dest_is_mem(chan)) {
475 		desc->sg[0].dest_addr = xt->dst_start;
476 		desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg;
477 	}
478 
479 	if (chan->hw_2d) {
480 		desc->sg[0].x_len = xt->sgl[0].size;
481 		desc->sg[0].y_len = xt->numf;
482 	} else {
483 		desc->sg[0].x_len = xt->sgl[0].size * xt->numf;
484 		desc->sg[0].y_len = 1;
485 	}
486 
487 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
488 }
489 
490 static void axi_dmac_free_chan_resources(struct dma_chan *c)
491 {
492 	vchan_free_chan_resources(to_virt_chan(c));
493 }
494 
495 static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
496 {
497 	kfree(container_of(vdesc, struct axi_dmac_desc, vdesc));
498 }
499 
500 /*
501  * The configuration stored in the devicetree matches the configuration
502  * parameters of the peripheral instance and allows the driver to know which
503  * features are implemented and how it should behave.
504  */
505 static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
506 	struct axi_dmac_chan *chan)
507 {
508 	u32 val;
509 	int ret;
510 
511 	ret = of_property_read_u32(of_chan, "reg", &val);
512 	if (ret)
513 		return ret;
514 
515 	/* We only support 1 channel for now */
516 	if (val != 0)
517 		return -EINVAL;
518 
519 	ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
520 	if (ret)
521 		return ret;
522 	if (val > AXI_DMAC_BUS_TYPE_FIFO)
523 		return -EINVAL;
524 	chan->src_type = val;
525 
526 	ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
527 	if (ret)
528 		return ret;
529 	if (val > AXI_DMAC_BUS_TYPE_FIFO)
530 		return -EINVAL;
531 	chan->dest_type = val;
532 
533 	ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
534 	if (ret)
535 		return ret;
536 	chan->src_width = val / 8;
537 
538 	ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
539 	if (ret)
540 		return ret;
541 	chan->dest_width = val / 8;
542 
543 	ret = of_property_read_u32(of_chan, "adi,length-width", &val);
544 	if (ret)
545 		return ret;
546 
547 	if (val >= 32)
548 		chan->max_length = UINT_MAX;
549 	else
550 		chan->max_length = (1ULL << val) - 1;
551 
552 	chan->align_mask = max(chan->dest_width, chan->src_width) - 1;
553 
554 	if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
555 		chan->direction = DMA_MEM_TO_MEM;
556 	else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
557 		chan->direction = DMA_MEM_TO_DEV;
558 	else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
559 		chan->direction = DMA_DEV_TO_MEM;
560 	else
561 		chan->direction = DMA_DEV_TO_DEV;
562 
563 	chan->hw_cyclic = of_property_read_bool(of_chan, "adi,cyclic");
564 	chan->hw_2d = of_property_read_bool(of_chan, "adi,2d");
565 
566 	return 0;
567 }
568 
569 static int axi_dmac_probe(struct platform_device *pdev)
570 {
571 	struct device_node *of_channels, *of_chan;
572 	struct dma_device *dma_dev;
573 	struct axi_dmac *dmac;
574 	struct resource *res;
575 	int ret;
576 
577 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
578 	if (!dmac)
579 		return -ENOMEM;
580 
581 	dmac->irq = platform_get_irq(pdev, 0);
582 	if (dmac->irq <= 0)
583 		return -EINVAL;
584 
585 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
586 	dmac->base = devm_ioremap_resource(&pdev->dev, res);
587 	if (IS_ERR(dmac->base))
588 		return PTR_ERR(dmac->base);
589 
590 	dmac->clk = devm_clk_get(&pdev->dev, NULL);
591 	if (IS_ERR(dmac->clk))
592 		return PTR_ERR(dmac->clk);
593 
594 	INIT_LIST_HEAD(&dmac->chan.active_descs);
595 
596 	of_channels = of_get_child_by_name(pdev->dev.of_node, "adi,channels");
597 	if (of_channels == NULL)
598 		return -ENODEV;
599 
600 	for_each_child_of_node(of_channels, of_chan) {
601 		ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
602 		if (ret) {
603 			of_node_put(of_chan);
604 			of_node_put(of_channels);
605 			return -EINVAL;
606 		}
607 	}
608 	of_node_put(of_channels);
609 
610 	pdev->dev.dma_parms = &dmac->dma_parms;
611 	dma_set_max_seg_size(&pdev->dev, dmac->chan.max_length);
612 
613 	dma_dev = &dmac->dma_dev;
614 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
615 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
616 	dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
617 	dma_dev->device_tx_status = dma_cookie_status;
618 	dma_dev->device_issue_pending = axi_dmac_issue_pending;
619 	dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
620 	dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
621 	dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
622 	dma_dev->device_terminate_all = axi_dmac_terminate_all;
623 	dma_dev->device_synchronize = axi_dmac_synchronize;
624 	dma_dev->dev = &pdev->dev;
625 	dma_dev->chancnt = 1;
626 	dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
627 	dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
628 	dma_dev->directions = BIT(dmac->chan.direction);
629 	dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
630 	INIT_LIST_HEAD(&dma_dev->channels);
631 
632 	dmac->chan.vchan.desc_free = axi_dmac_desc_free;
633 	vchan_init(&dmac->chan.vchan, dma_dev);
634 
635 	ret = clk_prepare_enable(dmac->clk);
636 	if (ret < 0)
637 		return ret;
638 
639 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00);
640 
641 	ret = dma_async_device_register(dma_dev);
642 	if (ret)
643 		goto err_clk_disable;
644 
645 	ret = of_dma_controller_register(pdev->dev.of_node,
646 		of_dma_xlate_by_chan_id, dma_dev);
647 	if (ret)
648 		goto err_unregister_device;
649 
650 	ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, 0,
651 		dev_name(&pdev->dev), dmac);
652 	if (ret)
653 		goto err_unregister_of;
654 
655 	platform_set_drvdata(pdev, dmac);
656 
657 	return 0;
658 
659 err_unregister_of:
660 	of_dma_controller_free(pdev->dev.of_node);
661 err_unregister_device:
662 	dma_async_device_unregister(&dmac->dma_dev);
663 err_clk_disable:
664 	clk_disable_unprepare(dmac->clk);
665 
666 	return ret;
667 }
668 
669 static int axi_dmac_remove(struct platform_device *pdev)
670 {
671 	struct axi_dmac *dmac = platform_get_drvdata(pdev);
672 
673 	of_dma_controller_free(pdev->dev.of_node);
674 	free_irq(dmac->irq, dmac);
675 	tasklet_kill(&dmac->chan.vchan.task);
676 	dma_async_device_unregister(&dmac->dma_dev);
677 	clk_disable_unprepare(dmac->clk);
678 
679 	return 0;
680 }
681 
682 static const struct of_device_id axi_dmac_of_match_table[] = {
683 	{ .compatible = "adi,axi-dmac-1.00.a" },
684 	{ },
685 };
686 
687 static struct platform_driver axi_dmac_driver = {
688 	.driver = {
689 		.name = "dma-axi-dmac",
690 		.of_match_table = axi_dmac_of_match_table,
691 	},
692 	.probe = axi_dmac_probe,
693 	.remove = axi_dmac_remove,
694 };
695 module_platform_driver(axi_dmac_driver);
696 
697 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
698 MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
699 MODULE_LICENSE("GPL v2");
700