xref: /openbmc/linux/drivers/dma-buf/dma-fence.c (revision bf3608f338e928e5d26b620feb7d8afcdfff50e3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Fence mechanism for dma-buf and to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/atomic.h>
16 #include <linux/dma-fence.h>
17 #include <linux/sched/signal.h>
18 #include <linux/seq_file.h>
19 
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/dma_fence.h>
22 
23 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
24 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
25 EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
26 
27 static DEFINE_SPINLOCK(dma_fence_stub_lock);
28 static struct dma_fence dma_fence_stub;
29 
30 /*
31  * fence context counter: each execution context should have its own
32  * fence context, this allows checking if fences belong to the same
33  * context or not. One device can have multiple separate contexts,
34  * and they're used if some engine can run independently of another.
35  */
36 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
37 
38 /**
39  * DOC: DMA fences overview
40  *
41  * DMA fences, represented by &struct dma_fence, are the kernel internal
42  * synchronization primitive for DMA operations like GPU rendering, video
43  * encoding/decoding, or displaying buffers on a screen.
44  *
45  * A fence is initialized using dma_fence_init() and completed using
46  * dma_fence_signal(). Fences are associated with a context, allocated through
47  * dma_fence_context_alloc(), and all fences on the same context are
48  * fully ordered.
49  *
50  * Since the purposes of fences is to facilitate cross-device and
51  * cross-application synchronization, there's multiple ways to use one:
52  *
53  * - Individual fences can be exposed as a &sync_file, accessed as a file
54  *   descriptor from userspace, created by calling sync_file_create(). This is
55  *   called explicit fencing, since userspace passes around explicit
56  *   synchronization points.
57  *
58  * - Some subsystems also have their own explicit fencing primitives, like
59  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
60  *   fence to be updated.
61  *
62  * - Then there's also implicit fencing, where the synchronization points are
63  *   implicitly passed around as part of shared &dma_buf instances. Such
64  *   implicit fences are stored in &struct dma_resv through the
65  *   &dma_buf.resv pointer.
66  */
67 
68 /**
69  * DOC: fence cross-driver contract
70  *
71  * Since &dma_fence provide a cross driver contract, all drivers must follow the
72  * same rules:
73  *
74  * * Fences must complete in a reasonable time. Fences which represent kernels
75  *   and shaders submitted by userspace, which could run forever, must be backed
76  *   up by timeout and gpu hang recovery code. Minimally that code must prevent
77  *   further command submission and force complete all in-flight fences, e.g.
78  *   when the driver or hardware do not support gpu reset, or if the gpu reset
79  *   failed for some reason. Ideally the driver supports gpu recovery which only
80  *   affects the offending userspace context, and no other userspace
81  *   submissions.
82  *
83  * * Drivers may have different ideas of what completion within a reasonable
84  *   time means. Some hang recovery code uses a fixed timeout, others a mix
85  *   between observing forward progress and increasingly strict timeouts.
86  *   Drivers should not try to second guess timeout handling of fences from
87  *   other drivers.
88  *
89  * * To ensure there's no deadlocks of dma_fence_wait() against other locks
90  *   drivers should annotate all code required to reach dma_fence_signal(),
91  *   which completes the fences, with dma_fence_begin_signalling() and
92  *   dma_fence_end_signalling().
93  *
94  * * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock().
95  *   This means any code required for fence completion cannot acquire a
96  *   &dma_resv lock. Note that this also pulls in the entire established
97  *   locking hierarchy around dma_resv_lock() and dma_resv_unlock().
98  *
99  * * Drivers are allowed to call dma_fence_wait() from their &shrinker
100  *   callbacks. This means any code required for fence completion cannot
101  *   allocate memory with GFP_KERNEL.
102  *
103  * * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier
104  *   respectively &mmu_interval_notifier callbacks. This means any code required
105  *   for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO.
106  *   Only GFP_ATOMIC is permissible, which might fail.
107  *
108  * Note that only GPU drivers have a reasonable excuse for both requiring
109  * &mmu_interval_notifier and &shrinker callbacks at the same time as having to
110  * track asynchronous compute work using &dma_fence. No driver outside of
111  * drivers/gpu should ever call dma_fence_wait() in such contexts.
112  */
113 
114 static const char *dma_fence_stub_get_name(struct dma_fence *fence)
115 {
116         return "stub";
117 }
118 
119 static const struct dma_fence_ops dma_fence_stub_ops = {
120 	.get_driver_name = dma_fence_stub_get_name,
121 	.get_timeline_name = dma_fence_stub_get_name,
122 };
123 
124 /**
125  * dma_fence_get_stub - return a signaled fence
126  *
127  * Return a stub fence which is already signaled. The fence's
128  * timestamp corresponds to the first time after boot this
129  * function is called.
130  */
131 struct dma_fence *dma_fence_get_stub(void)
132 {
133 	spin_lock(&dma_fence_stub_lock);
134 	if (!dma_fence_stub.ops) {
135 		dma_fence_init(&dma_fence_stub,
136 			       &dma_fence_stub_ops,
137 			       &dma_fence_stub_lock,
138 			       0, 0);
139 		dma_fence_signal_locked(&dma_fence_stub);
140 	}
141 	spin_unlock(&dma_fence_stub_lock);
142 
143 	return dma_fence_get(&dma_fence_stub);
144 }
145 EXPORT_SYMBOL(dma_fence_get_stub);
146 
147 /**
148  * dma_fence_allocate_private_stub - return a private, signaled fence
149  *
150  * Return a newly allocated and signaled stub fence.
151  */
152 struct dma_fence *dma_fence_allocate_private_stub(void)
153 {
154 	struct dma_fence *fence;
155 
156 	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
157 	if (fence == NULL)
158 		return ERR_PTR(-ENOMEM);
159 
160 	dma_fence_init(fence,
161 		       &dma_fence_stub_ops,
162 		       &dma_fence_stub_lock,
163 		       0, 0);
164 	dma_fence_signal(fence);
165 
166 	return fence;
167 }
168 EXPORT_SYMBOL(dma_fence_allocate_private_stub);
169 
170 /**
171  * dma_fence_context_alloc - allocate an array of fence contexts
172  * @num: amount of contexts to allocate
173  *
174  * This function will return the first index of the number of fence contexts
175  * allocated.  The fence context is used for setting &dma_fence.context to a
176  * unique number by passing the context to dma_fence_init().
177  */
178 u64 dma_fence_context_alloc(unsigned num)
179 {
180 	WARN_ON(!num);
181 	return atomic64_fetch_add(num, &dma_fence_context_counter);
182 }
183 EXPORT_SYMBOL(dma_fence_context_alloc);
184 
185 /**
186  * DOC: fence signalling annotation
187  *
188  * Proving correctness of all the kernel code around &dma_fence through code
189  * review and testing is tricky for a few reasons:
190  *
191  * * It is a cross-driver contract, and therefore all drivers must follow the
192  *   same rules for lock nesting order, calling contexts for various functions
193  *   and anything else significant for in-kernel interfaces. But it is also
194  *   impossible to test all drivers in a single machine, hence brute-force N vs.
195  *   N testing of all combinations is impossible. Even just limiting to the
196  *   possible combinations is infeasible.
197  *
198  * * There is an enormous amount of driver code involved. For render drivers
199  *   there's the tail of command submission, after fences are published,
200  *   scheduler code, interrupt and workers to process job completion,
201  *   and timeout, gpu reset and gpu hang recovery code. Plus for integration
202  *   with core mm with have &mmu_notifier, respectively &mmu_interval_notifier,
203  *   and &shrinker. For modesetting drivers there's the commit tail functions
204  *   between when fences for an atomic modeset are published, and when the
205  *   corresponding vblank completes, including any interrupt processing and
206  *   related workers. Auditing all that code, across all drivers, is not
207  *   feasible.
208  *
209  * * Due to how many other subsystems are involved and the locking hierarchies
210  *   this pulls in there is extremely thin wiggle-room for driver-specific
211  *   differences. &dma_fence interacts with almost all of the core memory
212  *   handling through page fault handlers via &dma_resv, dma_resv_lock() and
213  *   dma_resv_unlock(). On the other side it also interacts through all
214  *   allocation sites through &mmu_notifier and &shrinker.
215  *
216  * Furthermore lockdep does not handle cross-release dependencies, which means
217  * any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught
218  * at runtime with some quick testing. The simplest example is one thread
219  * waiting on a &dma_fence while holding a lock::
220  *
221  *     lock(A);
222  *     dma_fence_wait(B);
223  *     unlock(A);
224  *
225  * while the other thread is stuck trying to acquire the same lock, which
226  * prevents it from signalling the fence the previous thread is stuck waiting
227  * on::
228  *
229  *     lock(A);
230  *     unlock(A);
231  *     dma_fence_signal(B);
232  *
233  * By manually annotating all code relevant to signalling a &dma_fence we can
234  * teach lockdep about these dependencies, which also helps with the validation
235  * headache since now lockdep can check all the rules for us::
236  *
237  *    cookie = dma_fence_begin_signalling();
238  *    lock(A);
239  *    unlock(A);
240  *    dma_fence_signal(B);
241  *    dma_fence_end_signalling(cookie);
242  *
243  * For using dma_fence_begin_signalling() and dma_fence_end_signalling() to
244  * annotate critical sections the following rules need to be observed:
245  *
246  * * All code necessary to complete a &dma_fence must be annotated, from the
247  *   point where a fence is accessible to other threads, to the point where
248  *   dma_fence_signal() is called. Un-annotated code can contain deadlock issues,
249  *   and due to the very strict rules and many corner cases it is infeasible to
250  *   catch these just with review or normal stress testing.
251  *
252  * * &struct dma_resv deserves a special note, since the readers are only
253  *   protected by rcu. This means the signalling critical section starts as soon
254  *   as the new fences are installed, even before dma_resv_unlock() is called.
255  *
256  * * The only exception are fast paths and opportunistic signalling code, which
257  *   calls dma_fence_signal() purely as an optimization, but is not required to
258  *   guarantee completion of a &dma_fence. The usual example is a wait IOCTL
259  *   which calls dma_fence_signal(), while the mandatory completion path goes
260  *   through a hardware interrupt and possible job completion worker.
261  *
262  * * To aid composability of code, the annotations can be freely nested, as long
263  *   as the overall locking hierarchy is consistent. The annotations also work
264  *   both in interrupt and process context. Due to implementation details this
265  *   requires that callers pass an opaque cookie from
266  *   dma_fence_begin_signalling() to dma_fence_end_signalling().
267  *
268  * * Validation against the cross driver contract is implemented by priming
269  *   lockdep with the relevant hierarchy at boot-up. This means even just
270  *   testing with a single device is enough to validate a driver, at least as
271  *   far as deadlocks with dma_fence_wait() against dma_fence_signal() are
272  *   concerned.
273  */
274 #ifdef CONFIG_LOCKDEP
275 static struct lockdep_map dma_fence_lockdep_map = {
276 	.name = "dma_fence_map"
277 };
278 
279 /**
280  * dma_fence_begin_signalling - begin a critical DMA fence signalling section
281  *
282  * Drivers should use this to annotate the beginning of any code section
283  * required to eventually complete &dma_fence by calling dma_fence_signal().
284  *
285  * The end of these critical sections are annotated with
286  * dma_fence_end_signalling().
287  *
288  * Returns:
289  *
290  * Opaque cookie needed by the implementation, which needs to be passed to
291  * dma_fence_end_signalling().
292  */
293 bool dma_fence_begin_signalling(void)
294 {
295 	/* explicitly nesting ... */
296 	if (lock_is_held_type(&dma_fence_lockdep_map, 1))
297 		return true;
298 
299 	/* rely on might_sleep check for soft/hardirq locks */
300 	if (in_atomic())
301 		return true;
302 
303 	/* ... and non-recursive readlock */
304 	lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_);
305 
306 	return false;
307 }
308 EXPORT_SYMBOL(dma_fence_begin_signalling);
309 
310 /**
311  * dma_fence_end_signalling - end a critical DMA fence signalling section
312  * @cookie: opaque cookie from dma_fence_begin_signalling()
313  *
314  * Closes a critical section annotation opened by dma_fence_begin_signalling().
315  */
316 void dma_fence_end_signalling(bool cookie)
317 {
318 	if (cookie)
319 		return;
320 
321 	lock_release(&dma_fence_lockdep_map, _RET_IP_);
322 }
323 EXPORT_SYMBOL(dma_fence_end_signalling);
324 
325 void __dma_fence_might_wait(void)
326 {
327 	bool tmp;
328 
329 	tmp = lock_is_held_type(&dma_fence_lockdep_map, 1);
330 	if (tmp)
331 		lock_release(&dma_fence_lockdep_map, _THIS_IP_);
332 	lock_map_acquire(&dma_fence_lockdep_map);
333 	lock_map_release(&dma_fence_lockdep_map);
334 	if (tmp)
335 		lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_);
336 }
337 #endif
338 
339 
340 /**
341  * dma_fence_signal_timestamp_locked - signal completion of a fence
342  * @fence: the fence to signal
343  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
344  *
345  * Signal completion for software callbacks on a fence, this will unblock
346  * dma_fence_wait() calls and run all the callbacks added with
347  * dma_fence_add_callback(). Can be called multiple times, but since a fence
348  * can only go from the unsignaled to the signaled state and not back, it will
349  * only be effective the first time. Set the timestamp provided as the fence
350  * signal timestamp.
351  *
352  * Unlike dma_fence_signal_timestamp(), this function must be called with
353  * &dma_fence.lock held.
354  *
355  * Returns 0 on success and a negative error value when @fence has been
356  * signalled already.
357  */
358 int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
359 				      ktime_t timestamp)
360 {
361 	struct dma_fence_cb *cur, *tmp;
362 	struct list_head cb_list;
363 
364 	lockdep_assert_held(fence->lock);
365 
366 	if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
367 				      &fence->flags)))
368 		return -EINVAL;
369 
370 	/* Stash the cb_list before replacing it with the timestamp */
371 	list_replace(&fence->cb_list, &cb_list);
372 
373 	fence->timestamp = timestamp;
374 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
375 	trace_dma_fence_signaled(fence);
376 
377 	list_for_each_entry_safe(cur, tmp, &cb_list, node) {
378 		INIT_LIST_HEAD(&cur->node);
379 		cur->func(fence, cur);
380 	}
381 
382 	return 0;
383 }
384 EXPORT_SYMBOL(dma_fence_signal_timestamp_locked);
385 
386 /**
387  * dma_fence_signal_timestamp - signal completion of a fence
388  * @fence: the fence to signal
389  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
390  *
391  * Signal completion for software callbacks on a fence, this will unblock
392  * dma_fence_wait() calls and run all the callbacks added with
393  * dma_fence_add_callback(). Can be called multiple times, but since a fence
394  * can only go from the unsignaled to the signaled state and not back, it will
395  * only be effective the first time. Set the timestamp provided as the fence
396  * signal timestamp.
397  *
398  * Returns 0 on success and a negative error value when @fence has been
399  * signalled already.
400  */
401 int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
402 {
403 	unsigned long flags;
404 	int ret;
405 
406 	if (!fence)
407 		return -EINVAL;
408 
409 	spin_lock_irqsave(fence->lock, flags);
410 	ret = dma_fence_signal_timestamp_locked(fence, timestamp);
411 	spin_unlock_irqrestore(fence->lock, flags);
412 
413 	return ret;
414 }
415 EXPORT_SYMBOL(dma_fence_signal_timestamp);
416 
417 /**
418  * dma_fence_signal_locked - signal completion of a fence
419  * @fence: the fence to signal
420  *
421  * Signal completion for software callbacks on a fence, this will unblock
422  * dma_fence_wait() calls and run all the callbacks added with
423  * dma_fence_add_callback(). Can be called multiple times, but since a fence
424  * can only go from the unsignaled to the signaled state and not back, it will
425  * only be effective the first time.
426  *
427  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
428  * held.
429  *
430  * Returns 0 on success and a negative error value when @fence has been
431  * signalled already.
432  */
433 int dma_fence_signal_locked(struct dma_fence *fence)
434 {
435 	return dma_fence_signal_timestamp_locked(fence, ktime_get());
436 }
437 EXPORT_SYMBOL(dma_fence_signal_locked);
438 
439 /**
440  * dma_fence_signal - signal completion of a fence
441  * @fence: the fence to signal
442  *
443  * Signal completion for software callbacks on a fence, this will unblock
444  * dma_fence_wait() calls and run all the callbacks added with
445  * dma_fence_add_callback(). Can be called multiple times, but since a fence
446  * can only go from the unsignaled to the signaled state and not back, it will
447  * only be effective the first time.
448  *
449  * Returns 0 on success and a negative error value when @fence has been
450  * signalled already.
451  */
452 int dma_fence_signal(struct dma_fence *fence)
453 {
454 	unsigned long flags;
455 	int ret;
456 	bool tmp;
457 
458 	if (!fence)
459 		return -EINVAL;
460 
461 	tmp = dma_fence_begin_signalling();
462 
463 	spin_lock_irqsave(fence->lock, flags);
464 	ret = dma_fence_signal_timestamp_locked(fence, ktime_get());
465 	spin_unlock_irqrestore(fence->lock, flags);
466 
467 	dma_fence_end_signalling(tmp);
468 
469 	return ret;
470 }
471 EXPORT_SYMBOL(dma_fence_signal);
472 
473 /**
474  * dma_fence_wait_timeout - sleep until the fence gets signaled
475  * or until timeout elapses
476  * @fence: the fence to wait on
477  * @intr: if true, do an interruptible wait
478  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
479  *
480  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
481  * remaining timeout in jiffies on success. Other error values may be
482  * returned on custom implementations.
483  *
484  * Performs a synchronous wait on this fence. It is assumed the caller
485  * directly or indirectly (buf-mgr between reservation and committing)
486  * holds a reference to the fence, otherwise the fence might be
487  * freed before return, resulting in undefined behavior.
488  *
489  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
490  */
491 signed long
492 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
493 {
494 	signed long ret;
495 
496 	if (WARN_ON(timeout < 0))
497 		return -EINVAL;
498 
499 	might_sleep();
500 
501 	__dma_fence_might_wait();
502 
503 	trace_dma_fence_wait_start(fence);
504 	if (fence->ops->wait)
505 		ret = fence->ops->wait(fence, intr, timeout);
506 	else
507 		ret = dma_fence_default_wait(fence, intr, timeout);
508 	trace_dma_fence_wait_end(fence);
509 	return ret;
510 }
511 EXPORT_SYMBOL(dma_fence_wait_timeout);
512 
513 /**
514  * dma_fence_release - default relese function for fences
515  * @kref: &dma_fence.recfount
516  *
517  * This is the default release functions for &dma_fence. Drivers shouldn't call
518  * this directly, but instead call dma_fence_put().
519  */
520 void dma_fence_release(struct kref *kref)
521 {
522 	struct dma_fence *fence =
523 		container_of(kref, struct dma_fence, refcount);
524 
525 	trace_dma_fence_destroy(fence);
526 
527 	if (WARN(!list_empty(&fence->cb_list) &&
528 		 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
529 		 "Fence %s:%s:%llx:%llx released with pending signals!\n",
530 		 fence->ops->get_driver_name(fence),
531 		 fence->ops->get_timeline_name(fence),
532 		 fence->context, fence->seqno)) {
533 		unsigned long flags;
534 
535 		/*
536 		 * Failed to signal before release, likely a refcounting issue.
537 		 *
538 		 * This should never happen, but if it does make sure that we
539 		 * don't leave chains dangling. We set the error flag first
540 		 * so that the callbacks know this signal is due to an error.
541 		 */
542 		spin_lock_irqsave(fence->lock, flags);
543 		fence->error = -EDEADLK;
544 		dma_fence_signal_locked(fence);
545 		spin_unlock_irqrestore(fence->lock, flags);
546 	}
547 
548 	if (fence->ops->release)
549 		fence->ops->release(fence);
550 	else
551 		dma_fence_free(fence);
552 }
553 EXPORT_SYMBOL(dma_fence_release);
554 
555 /**
556  * dma_fence_free - default release function for &dma_fence.
557  * @fence: fence to release
558  *
559  * This is the default implementation for &dma_fence_ops.release. It calls
560  * kfree_rcu() on @fence.
561  */
562 void dma_fence_free(struct dma_fence *fence)
563 {
564 	kfree_rcu(fence, rcu);
565 }
566 EXPORT_SYMBOL(dma_fence_free);
567 
568 static bool __dma_fence_enable_signaling(struct dma_fence *fence)
569 {
570 	bool was_set;
571 
572 	lockdep_assert_held(fence->lock);
573 
574 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
575 				   &fence->flags);
576 
577 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
578 		return false;
579 
580 	if (!was_set && fence->ops->enable_signaling) {
581 		trace_dma_fence_enable_signal(fence);
582 
583 		if (!fence->ops->enable_signaling(fence)) {
584 			dma_fence_signal_locked(fence);
585 			return false;
586 		}
587 	}
588 
589 	return true;
590 }
591 
592 /**
593  * dma_fence_enable_sw_signaling - enable signaling on fence
594  * @fence: the fence to enable
595  *
596  * This will request for sw signaling to be enabled, to make the fence
597  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
598  * internally.
599  */
600 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
601 {
602 	unsigned long flags;
603 
604 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
605 		return;
606 
607 	spin_lock_irqsave(fence->lock, flags);
608 	__dma_fence_enable_signaling(fence);
609 	spin_unlock_irqrestore(fence->lock, flags);
610 }
611 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
612 
613 /**
614  * dma_fence_add_callback - add a callback to be called when the fence
615  * is signaled
616  * @fence: the fence to wait on
617  * @cb: the callback to register
618  * @func: the function to call
619  *
620  * Add a software callback to the fence. The caller should keep a reference to
621  * the fence.
622  *
623  * @cb will be initialized by dma_fence_add_callback(), no initialization
624  * by the caller is required. Any number of callbacks can be registered
625  * to a fence, but a callback can only be registered to one fence at a time.
626  *
627  * If fence is already signaled, this function will return -ENOENT (and
628  * *not* call the callback).
629  *
630  * Note that the callback can be called from an atomic context or irq context.
631  *
632  * Returns 0 in case of success, -ENOENT if the fence is already signaled
633  * and -EINVAL in case of error.
634  */
635 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
636 			   dma_fence_func_t func)
637 {
638 	unsigned long flags;
639 	int ret = 0;
640 
641 	if (WARN_ON(!fence || !func))
642 		return -EINVAL;
643 
644 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
645 		INIT_LIST_HEAD(&cb->node);
646 		return -ENOENT;
647 	}
648 
649 	spin_lock_irqsave(fence->lock, flags);
650 
651 	if (__dma_fence_enable_signaling(fence)) {
652 		cb->func = func;
653 		list_add_tail(&cb->node, &fence->cb_list);
654 	} else {
655 		INIT_LIST_HEAD(&cb->node);
656 		ret = -ENOENT;
657 	}
658 
659 	spin_unlock_irqrestore(fence->lock, flags);
660 
661 	return ret;
662 }
663 EXPORT_SYMBOL(dma_fence_add_callback);
664 
665 /**
666  * dma_fence_get_status - returns the status upon completion
667  * @fence: the dma_fence to query
668  *
669  * This wraps dma_fence_get_status_locked() to return the error status
670  * condition on a signaled fence. See dma_fence_get_status_locked() for more
671  * details.
672  *
673  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
674  * been signaled without an error condition, or a negative error code
675  * if the fence has been completed in err.
676  */
677 int dma_fence_get_status(struct dma_fence *fence)
678 {
679 	unsigned long flags;
680 	int status;
681 
682 	spin_lock_irqsave(fence->lock, flags);
683 	status = dma_fence_get_status_locked(fence);
684 	spin_unlock_irqrestore(fence->lock, flags);
685 
686 	return status;
687 }
688 EXPORT_SYMBOL(dma_fence_get_status);
689 
690 /**
691  * dma_fence_remove_callback - remove a callback from the signaling list
692  * @fence: the fence to wait on
693  * @cb: the callback to remove
694  *
695  * Remove a previously queued callback from the fence. This function returns
696  * true if the callback is successfully removed, or false if the fence has
697  * already been signaled.
698  *
699  * *WARNING*:
700  * Cancelling a callback should only be done if you really know what you're
701  * doing, since deadlocks and race conditions could occur all too easily. For
702  * this reason, it should only ever be done on hardware lockup recovery,
703  * with a reference held to the fence.
704  *
705  * Behaviour is undefined if @cb has not been added to @fence using
706  * dma_fence_add_callback() beforehand.
707  */
708 bool
709 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
710 {
711 	unsigned long flags;
712 	bool ret;
713 
714 	spin_lock_irqsave(fence->lock, flags);
715 
716 	ret = !list_empty(&cb->node);
717 	if (ret)
718 		list_del_init(&cb->node);
719 
720 	spin_unlock_irqrestore(fence->lock, flags);
721 
722 	return ret;
723 }
724 EXPORT_SYMBOL(dma_fence_remove_callback);
725 
726 struct default_wait_cb {
727 	struct dma_fence_cb base;
728 	struct task_struct *task;
729 };
730 
731 static void
732 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
733 {
734 	struct default_wait_cb *wait =
735 		container_of(cb, struct default_wait_cb, base);
736 
737 	wake_up_state(wait->task, TASK_NORMAL);
738 }
739 
740 /**
741  * dma_fence_default_wait - default sleep until the fence gets signaled
742  * or until timeout elapses
743  * @fence: the fence to wait on
744  * @intr: if true, do an interruptible wait
745  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
746  *
747  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
748  * remaining timeout in jiffies on success. If timeout is zero the value one is
749  * returned if the fence is already signaled for consistency with other
750  * functions taking a jiffies timeout.
751  */
752 signed long
753 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
754 {
755 	struct default_wait_cb cb;
756 	unsigned long flags;
757 	signed long ret = timeout ? timeout : 1;
758 
759 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
760 		return ret;
761 
762 	spin_lock_irqsave(fence->lock, flags);
763 
764 	if (intr && signal_pending(current)) {
765 		ret = -ERESTARTSYS;
766 		goto out;
767 	}
768 
769 	if (!__dma_fence_enable_signaling(fence))
770 		goto out;
771 
772 	if (!timeout) {
773 		ret = 0;
774 		goto out;
775 	}
776 
777 	cb.base.func = dma_fence_default_wait_cb;
778 	cb.task = current;
779 	list_add(&cb.base.node, &fence->cb_list);
780 
781 	while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
782 		if (intr)
783 			__set_current_state(TASK_INTERRUPTIBLE);
784 		else
785 			__set_current_state(TASK_UNINTERRUPTIBLE);
786 		spin_unlock_irqrestore(fence->lock, flags);
787 
788 		ret = schedule_timeout(ret);
789 
790 		spin_lock_irqsave(fence->lock, flags);
791 		if (ret > 0 && intr && signal_pending(current))
792 			ret = -ERESTARTSYS;
793 	}
794 
795 	if (!list_empty(&cb.base.node))
796 		list_del(&cb.base.node);
797 	__set_current_state(TASK_RUNNING);
798 
799 out:
800 	spin_unlock_irqrestore(fence->lock, flags);
801 	return ret;
802 }
803 EXPORT_SYMBOL(dma_fence_default_wait);
804 
805 static bool
806 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
807 			    uint32_t *idx)
808 {
809 	int i;
810 
811 	for (i = 0; i < count; ++i) {
812 		struct dma_fence *fence = fences[i];
813 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
814 			if (idx)
815 				*idx = i;
816 			return true;
817 		}
818 	}
819 	return false;
820 }
821 
822 /**
823  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
824  * or until timeout elapses
825  * @fences: array of fences to wait on
826  * @count: number of fences to wait on
827  * @intr: if true, do an interruptible wait
828  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
829  * @idx: used to store the first signaled fence index, meaningful only on
830  *	positive return
831  *
832  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
833  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
834  * on success.
835  *
836  * Synchronous waits for the first fence in the array to be signaled. The
837  * caller needs to hold a reference to all fences in the array, otherwise a
838  * fence might be freed before return, resulting in undefined behavior.
839  *
840  * See also dma_fence_wait() and dma_fence_wait_timeout().
841  */
842 signed long
843 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
844 			   bool intr, signed long timeout, uint32_t *idx)
845 {
846 	struct default_wait_cb *cb;
847 	signed long ret = timeout;
848 	unsigned i;
849 
850 	if (WARN_ON(!fences || !count || timeout < 0))
851 		return -EINVAL;
852 
853 	if (timeout == 0) {
854 		for (i = 0; i < count; ++i)
855 			if (dma_fence_is_signaled(fences[i])) {
856 				if (idx)
857 					*idx = i;
858 				return 1;
859 			}
860 
861 		return 0;
862 	}
863 
864 	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
865 	if (cb == NULL) {
866 		ret = -ENOMEM;
867 		goto err_free_cb;
868 	}
869 
870 	for (i = 0; i < count; ++i) {
871 		struct dma_fence *fence = fences[i];
872 
873 		cb[i].task = current;
874 		if (dma_fence_add_callback(fence, &cb[i].base,
875 					   dma_fence_default_wait_cb)) {
876 			/* This fence is already signaled */
877 			if (idx)
878 				*idx = i;
879 			goto fence_rm_cb;
880 		}
881 	}
882 
883 	while (ret > 0) {
884 		if (intr)
885 			set_current_state(TASK_INTERRUPTIBLE);
886 		else
887 			set_current_state(TASK_UNINTERRUPTIBLE);
888 
889 		if (dma_fence_test_signaled_any(fences, count, idx))
890 			break;
891 
892 		ret = schedule_timeout(ret);
893 
894 		if (ret > 0 && intr && signal_pending(current))
895 			ret = -ERESTARTSYS;
896 	}
897 
898 	__set_current_state(TASK_RUNNING);
899 
900 fence_rm_cb:
901 	while (i-- > 0)
902 		dma_fence_remove_callback(fences[i], &cb[i].base);
903 
904 err_free_cb:
905 	kfree(cb);
906 
907 	return ret;
908 }
909 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
910 
911 /**
912  * dma_fence_describe - Dump fence describtion into seq_file
913  * @fence: the 6fence to describe
914  * @seq: the seq_file to put the textual description into
915  *
916  * Dump a textual description of the fence and it's state into the seq_file.
917  */
918 void dma_fence_describe(struct dma_fence *fence, struct seq_file *seq)
919 {
920 	seq_printf(seq, "%s %s seq %llu %ssignalled\n",
921 		   fence->ops->get_driver_name(fence),
922 		   fence->ops->get_timeline_name(fence), fence->seqno,
923 		   dma_fence_is_signaled(fence) ? "" : "un");
924 }
925 EXPORT_SYMBOL(dma_fence_describe);
926 
927 /**
928  * dma_fence_init - Initialize a custom fence.
929  * @fence: the fence to initialize
930  * @ops: the dma_fence_ops for operations on this fence
931  * @lock: the irqsafe spinlock to use for locking this fence
932  * @context: the execution context this fence is run on
933  * @seqno: a linear increasing sequence number for this context
934  *
935  * Initializes an allocated fence, the caller doesn't have to keep its
936  * refcount after committing with this fence, but it will need to hold a
937  * refcount again if &dma_fence_ops.enable_signaling gets called.
938  *
939  * context and seqno are used for easy comparison between fences, allowing
940  * to check which fence is later by simply using dma_fence_later().
941  */
942 void
943 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
944 	       spinlock_t *lock, u64 context, u64 seqno)
945 {
946 	BUG_ON(!lock);
947 	BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
948 
949 	kref_init(&fence->refcount);
950 	fence->ops = ops;
951 	INIT_LIST_HEAD(&fence->cb_list);
952 	fence->lock = lock;
953 	fence->context = context;
954 	fence->seqno = seqno;
955 	fence->flags = 0UL;
956 	fence->error = 0;
957 
958 	trace_dma_fence_init(fence);
959 }
960 EXPORT_SYMBOL(dma_fence_init);
961