xref: /openbmc/linux/drivers/crypto/padlock-aes.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Cryptographic API.
3  *
4  * Support for VIA PadLock hardware crypto engine.
5  *
6  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
7  *
8  * Key expansion routine taken from crypto/aes.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * ---------------------------------------------------------------------------
16  * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
17  * All rights reserved.
18  *
19  * LICENSE TERMS
20  *
21  * The free distribution and use of this software in both source and binary
22  * form is allowed (with or without changes) provided that:
23  *
24  *   1. distributions of this source code include the above copyright
25  *      notice, this list of conditions and the following disclaimer;
26  *
27  *   2. distributions in binary form include the above copyright
28  *      notice, this list of conditions and the following disclaimer
29  *      in the documentation and/or other associated materials;
30  *
31  *   3. the copyright holder's name is not used to endorse products
32  *      built using this software without specific written permission.
33  *
34  * ALTERNATIVELY, provided that this notice is retained in full, this product
35  * may be distributed under the terms of the GNU General Public License (GPL),
36  * in which case the provisions of the GPL apply INSTEAD OF those given above.
37  *
38  * DISCLAIMER
39  *
40  * This software is provided 'as is' with no explicit or implied warranties
41  * in respect of its properties, including, but not limited to, correctness
42  * and/or fitness for purpose.
43  * ---------------------------------------------------------------------------
44  */
45 
46 #include <linux/module.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/crypto.h>
51 #include <linux/interrupt.h>
52 #include <asm/byteorder.h>
53 #include "padlock.h"
54 
55 #define AES_MIN_KEY_SIZE	16	/* in uint8_t units */
56 #define AES_MAX_KEY_SIZE	32	/* ditto */
57 #define AES_BLOCK_SIZE		16	/* ditto */
58 #define AES_EXTENDED_KEY_SIZE	64	/* in uint32_t units */
59 #define AES_EXTENDED_KEY_SIZE_B	(AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
60 
61 struct aes_ctx {
62 	uint32_t e_data[AES_EXTENDED_KEY_SIZE+4];
63 	uint32_t d_data[AES_EXTENDED_KEY_SIZE+4];
64 	uint32_t *E;
65 	uint32_t *D;
66 	int key_length;
67 };
68 
69 /* ====== Key management routines ====== */
70 
71 static inline uint32_t
72 generic_rotr32 (const uint32_t x, const unsigned bits)
73 {
74 	const unsigned n = bits % 32;
75 	return (x >> n) | (x << (32 - n));
76 }
77 
78 static inline uint32_t
79 generic_rotl32 (const uint32_t x, const unsigned bits)
80 {
81 	const unsigned n = bits % 32;
82 	return (x << n) | (x >> (32 - n));
83 }
84 
85 #define rotl generic_rotl32
86 #define rotr generic_rotr32
87 
88 /*
89  * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
90  */
91 static inline uint8_t
92 byte(const uint32_t x, const unsigned n)
93 {
94 	return x >> (n << 3);
95 }
96 
97 #define uint32_t_in(x) le32_to_cpu(*(const uint32_t *)(x))
98 #define uint32_t_out(to, from) (*(uint32_t *)(to) = cpu_to_le32(from))
99 
100 #define E_KEY ctx->E
101 #define D_KEY ctx->D
102 
103 static uint8_t pow_tab[256];
104 static uint8_t log_tab[256];
105 static uint8_t sbx_tab[256];
106 static uint8_t isb_tab[256];
107 static uint32_t rco_tab[10];
108 static uint32_t ft_tab[4][256];
109 static uint32_t it_tab[4][256];
110 
111 static uint32_t fl_tab[4][256];
112 static uint32_t il_tab[4][256];
113 
114 static inline uint8_t
115 f_mult (uint8_t a, uint8_t b)
116 {
117 	uint8_t aa = log_tab[a], cc = aa + log_tab[b];
118 
119 	return pow_tab[cc + (cc < aa ? 1 : 0)];
120 }
121 
122 #define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
123 
124 #define f_rn(bo, bi, n, k)					\
125     bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
126              ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
127              ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
128              ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
129 
130 #define i_rn(bo, bi, n, k)					\
131     bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
132              it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
133              it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
134              it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
135 
136 #define ls_box(x)				\
137     ( fl_tab[0][byte(x, 0)] ^			\
138       fl_tab[1][byte(x, 1)] ^			\
139       fl_tab[2][byte(x, 2)] ^			\
140       fl_tab[3][byte(x, 3)] )
141 
142 #define f_rl(bo, bi, n, k)					\
143     bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
144              fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
145              fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
146              fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
147 
148 #define i_rl(bo, bi, n, k)					\
149     bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
150              il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
151              il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
152              il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
153 
154 static void
155 gen_tabs (void)
156 {
157 	uint32_t i, t;
158 	uint8_t p, q;
159 
160 	/* log and power tables for GF(2**8) finite field with
161 	   0x011b as modular polynomial - the simplest prmitive
162 	   root is 0x03, used here to generate the tables */
163 
164 	for (i = 0, p = 1; i < 256; ++i) {
165 		pow_tab[i] = (uint8_t) p;
166 		log_tab[p] = (uint8_t) i;
167 
168 		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
169 	}
170 
171 	log_tab[1] = 0;
172 
173 	for (i = 0, p = 1; i < 10; ++i) {
174 		rco_tab[i] = p;
175 
176 		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
177 	}
178 
179 	for (i = 0; i < 256; ++i) {
180 		p = (i ? pow_tab[255 - log_tab[i]] : 0);
181 		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
182 		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
183 		sbx_tab[i] = p;
184 		isb_tab[p] = (uint8_t) i;
185 	}
186 
187 	for (i = 0; i < 256; ++i) {
188 		p = sbx_tab[i];
189 
190 		t = p;
191 		fl_tab[0][i] = t;
192 		fl_tab[1][i] = rotl (t, 8);
193 		fl_tab[2][i] = rotl (t, 16);
194 		fl_tab[3][i] = rotl (t, 24);
195 
196 		t = ((uint32_t) ff_mult (2, p)) |
197 		    ((uint32_t) p << 8) |
198 		    ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
199 
200 		ft_tab[0][i] = t;
201 		ft_tab[1][i] = rotl (t, 8);
202 		ft_tab[2][i] = rotl (t, 16);
203 		ft_tab[3][i] = rotl (t, 24);
204 
205 		p = isb_tab[i];
206 
207 		t = p;
208 		il_tab[0][i] = t;
209 		il_tab[1][i] = rotl (t, 8);
210 		il_tab[2][i] = rotl (t, 16);
211 		il_tab[3][i] = rotl (t, 24);
212 
213 		t = ((uint32_t) ff_mult (14, p)) |
214 		    ((uint32_t) ff_mult (9, p) << 8) |
215 		    ((uint32_t) ff_mult (13, p) << 16) |
216 		    ((uint32_t) ff_mult (11, p) << 24);
217 
218 		it_tab[0][i] = t;
219 		it_tab[1][i] = rotl (t, 8);
220 		it_tab[2][i] = rotl (t, 16);
221 		it_tab[3][i] = rotl (t, 24);
222 	}
223 }
224 
225 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
226 
227 #define imix_col(y,x)       \
228     u   = star_x(x);        \
229     v   = star_x(u);        \
230     w   = star_x(v);        \
231     t   = w ^ (x);          \
232    (y)  = u ^ v ^ w;        \
233    (y) ^= rotr(u ^ t,  8) ^ \
234           rotr(v ^ t, 16) ^ \
235           rotr(t,24)
236 
237 /* initialise the key schedule from the user supplied key */
238 
239 #define loop4(i)                                    \
240 {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
241     t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
242     t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
243     t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
244     t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
245 }
246 
247 #define loop6(i)                                    \
248 {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
249     t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
250     t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
251     t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
252     t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
253     t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
254     t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
255 }
256 
257 #define loop8(i)                                    \
258 {   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
259     t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
260     t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
261     t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
262     t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
263     t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
264     E_KEY[8 * i + 12] = t;                \
265     t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
266     t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
267     t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
268 }
269 
270 /* Tells whether the ACE is capable to generate
271    the extended key for a given key_len. */
272 static inline int
273 aes_hw_extkey_available(uint8_t key_len)
274 {
275 	/* TODO: We should check the actual CPU model/stepping
276 	         as it's possible that the capability will be
277 	         added in the next CPU revisions. */
278 	if (key_len == 16)
279 		return 1;
280 	return 0;
281 }
282 
283 static int
284 aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags)
285 {
286 	struct aes_ctx *ctx = ctx_arg;
287 	uint32_t i, t, u, v, w;
288 	uint32_t P[AES_EXTENDED_KEY_SIZE];
289 	uint32_t rounds;
290 
291 	if (key_len != 16 && key_len != 24 && key_len != 32) {
292 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
293 		return -EINVAL;
294 	}
295 
296 	ctx->key_length = key_len;
297 
298 	ctx->E = ctx->e_data;
299 	ctx->D = ctx->d_data;
300 
301 	/* Ensure 16-Bytes alignmentation of keys for VIA PadLock. */
302 	if ((int)(ctx->e_data) & 0x0F)
303 		ctx->E += 4 - (((int)(ctx->e_data) & 0x0F) / sizeof (ctx->e_data[0]));
304 
305 	if ((int)(ctx->d_data) & 0x0F)
306 		ctx->D += 4 - (((int)(ctx->d_data) & 0x0F) / sizeof (ctx->d_data[0]));
307 
308 	E_KEY[0] = uint32_t_in (in_key);
309 	E_KEY[1] = uint32_t_in (in_key + 4);
310 	E_KEY[2] = uint32_t_in (in_key + 8);
311 	E_KEY[3] = uint32_t_in (in_key + 12);
312 
313 	/* Don't generate extended keys if the hardware can do it. */
314 	if (aes_hw_extkey_available(key_len))
315 		return 0;
316 
317 	switch (key_len) {
318 	case 16:
319 		t = E_KEY[3];
320 		for (i = 0; i < 10; ++i)
321 			loop4 (i);
322 		break;
323 
324 	case 24:
325 		E_KEY[4] = uint32_t_in (in_key + 16);
326 		t = E_KEY[5] = uint32_t_in (in_key + 20);
327 		for (i = 0; i < 8; ++i)
328 			loop6 (i);
329 		break;
330 
331 	case 32:
332 		E_KEY[4] = uint32_t_in (in_key + 16);
333 		E_KEY[5] = uint32_t_in (in_key + 20);
334 		E_KEY[6] = uint32_t_in (in_key + 24);
335 		t = E_KEY[7] = uint32_t_in (in_key + 28);
336 		for (i = 0; i < 7; ++i)
337 			loop8 (i);
338 		break;
339 	}
340 
341 	D_KEY[0] = E_KEY[0];
342 	D_KEY[1] = E_KEY[1];
343 	D_KEY[2] = E_KEY[2];
344 	D_KEY[3] = E_KEY[3];
345 
346 	for (i = 4; i < key_len + 24; ++i) {
347 		imix_col (D_KEY[i], E_KEY[i]);
348 	}
349 
350 	/* PadLock needs a different format of the decryption key. */
351 	rounds = 10 + (key_len - 16) / 4;
352 
353 	for (i = 0; i < rounds; i++) {
354 		P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
355 		P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
356 		P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
357 		P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
358 	}
359 
360 	P[0] = E_KEY[(rounds * 4) + 0];
361 	P[1] = E_KEY[(rounds * 4) + 1];
362 	P[2] = E_KEY[(rounds * 4) + 2];
363 	P[3] = E_KEY[(rounds * 4) + 3];
364 
365 	memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
366 
367 	return 0;
368 }
369 
370 /* ====== Encryption/decryption routines ====== */
371 
372 /* This is the real call to PadLock. */
373 static inline void
374 padlock_xcrypt_ecb(uint8_t *input, uint8_t *output, uint8_t *key,
375 		   void *control_word, uint32_t count)
376 {
377 	asm volatile ("pushfl; popfl");		/* enforce key reload. */
378 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
379 		      : "+S"(input), "+D"(output)
380 		      : "d"(control_word), "b"(key), "c"(count));
381 }
382 
383 static void
384 aes_padlock(void *ctx_arg, uint8_t *out_arg, const uint8_t *in_arg, int encdec)
385 {
386 	/* Don't blindly modify this structure - the items must
387 	   fit on 16-Bytes boundaries! */
388 	struct padlock_xcrypt_data {
389 		uint8_t buf[AES_BLOCK_SIZE];
390 		union cword cword;
391 	};
392 
393 	struct aes_ctx *ctx = ctx_arg;
394 	char bigbuf[sizeof(struct padlock_xcrypt_data) + 16];
395 	struct padlock_xcrypt_data *data;
396 	void *key;
397 
398 	/* Place 'data' at the first 16-Bytes aligned address in 'bigbuf'. */
399 	if (((long)bigbuf) & 0x0F)
400 		data = (void*)(bigbuf + 16 - ((long)bigbuf & 0x0F));
401 	else
402 		data = (void*)bigbuf;
403 
404 	/* Prepare Control word. */
405 	memset (data, 0, sizeof(struct padlock_xcrypt_data));
406 	data->cword.b.encdec = !encdec;	/* in the rest of cryptoapi ENC=1/DEC=0 */
407 	data->cword.b.rounds = 10 + (ctx->key_length - 16) / 4;
408 	data->cword.b.ksize = (ctx->key_length - 16) / 8;
409 
410 	/* Is the hardware capable to generate the extended key? */
411 	if (!aes_hw_extkey_available(ctx->key_length))
412 		data->cword.b.keygen = 1;
413 
414 	/* ctx->E starts with a plain key - if the hardware is capable
415 	   to generate the extended key itself we must supply
416 	   the plain key for both Encryption and Decryption. */
417 	if (encdec == CRYPTO_DIR_ENCRYPT || data->cword.b.keygen == 0)
418 		key = ctx->E;
419 	else
420 		key = ctx->D;
421 
422 	memcpy(data->buf, in_arg, AES_BLOCK_SIZE);
423 	padlock_xcrypt_ecb(data->buf, data->buf, key, &data->cword, 1);
424 	memcpy(out_arg, data->buf, AES_BLOCK_SIZE);
425 }
426 
427 static void
428 aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
429 {
430 	aes_padlock(ctx_arg, out, in, CRYPTO_DIR_ENCRYPT);
431 }
432 
433 static void
434 aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
435 {
436 	aes_padlock(ctx_arg, out, in, CRYPTO_DIR_DECRYPT);
437 }
438 
439 static struct crypto_alg aes_alg = {
440 	.cra_name		=	"aes",
441 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
442 	.cra_blocksize		=	AES_BLOCK_SIZE,
443 	.cra_ctxsize		=	sizeof(struct aes_ctx),
444 	.cra_module		=	THIS_MODULE,
445 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
446 	.cra_u			=	{
447 		.cipher = {
448 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
449 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
450 			.cia_setkey	   	= 	aes_set_key,
451 			.cia_encrypt	 	=	aes_encrypt,
452 			.cia_decrypt	  	=	aes_decrypt
453 		}
454 	}
455 };
456 
457 int __init padlock_init_aes(void)
458 {
459 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
460 
461 	gen_tabs();
462 	return crypto_register_alg(&aes_alg);
463 }
464 
465 void __exit padlock_fini_aes(void)
466 {
467 	crypto_unregister_alg(&aes_alg);
468 }
469