xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision c56f610fe9470f79c82de3ec765b3c1e66ef2c71)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/bitmap.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/idr.h>
8 #include <linux/io.h>
9 #include <linux/irqreturn.h>
10 #include <linux/log2.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/uacce.h>
15 #include <linux/uaccess.h>
16 #include <uapi/misc/uacce/hisi_qm.h>
17 #include <linux/hisi_acc_qm.h>
18 #include "qm_common.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_CMD_DATA_SHIFT		32
34 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
35 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
36 
37 /* sqc shift */
38 #define QM_SQ_HOP_NUM_SHIFT		0
39 #define QM_SQ_PAGE_SIZE_SHIFT		4
40 #define QM_SQ_BUF_SIZE_SHIFT		8
41 #define QM_SQ_SQE_SIZE_SHIFT		12
42 #define QM_SQ_PRIORITY_SHIFT		0
43 #define QM_SQ_ORDERS_SHIFT		4
44 #define QM_SQ_TYPE_SHIFT		8
45 #define QM_QC_PASID_ENABLE		0x1
46 #define QM_QC_PASID_ENABLE_SHIFT	7
47 
48 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
49 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
73 #define QM_CQ_OVERFLOW			0
74 #define QM_EQ_OVERFLOW			1
75 #define QM_CQE_ERROR			2
76 
77 #define QM_XQ_DEPTH_SHIFT		16
78 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
79 
80 #define QM_DOORBELL_CMD_SQ		0
81 #define QM_DOORBELL_CMD_CQ		1
82 #define QM_DOORBELL_CMD_EQ		2
83 #define QM_DOORBELL_CMD_AEQ		3
84 
85 #define QM_DOORBELL_BASE_V1		0x340
86 #define QM_DB_CMD_SHIFT_V1		16
87 #define QM_DB_INDEX_SHIFT_V1		32
88 #define QM_DB_PRIORITY_SHIFT_V1		48
89 #define QM_PAGE_SIZE			0x0034
90 #define QM_QP_DB_INTERVAL		0x10000
91 #define QM_DB_TIMEOUT_CFG		0x100074
92 #define QM_DB_TIMEOUT_SET		0x1fffff
93 
94 #define QM_MEM_START_INIT		0x100040
95 #define QM_MEM_INIT_DONE		0x100044
96 #define QM_VFT_CFG_RDY			0x10006c
97 #define QM_VFT_CFG_OP_WR		0x100058
98 #define QM_VFT_CFG_TYPE			0x10005c
99 #define QM_VFT_CFG			0x100060
100 #define QM_VFT_CFG_OP_ENABLE		0x100054
101 #define QM_PM_CTRL			0x100148
102 #define QM_IDLE_DISABLE			BIT(9)
103 
104 #define QM_VFT_CFG_DATA_L		0x100064
105 #define QM_VFT_CFG_DATA_H		0x100068
106 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
107 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
108 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
109 #define QM_SQC_VFT_START_SQN_SHIFT	28
110 #define QM_SQC_VFT_VALID		(1ULL << 44)
111 #define QM_SQC_VFT_SQN_SHIFT		45
112 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
113 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
114 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
115 #define QM_CQC_VFT_VALID		(1ULL << 28)
116 
117 #define QM_SQC_VFT_BASE_SHIFT_V2	28
118 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
119 #define QM_SQC_VFT_NUM_SHIFT_V2		45
120 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
121 
122 #define QM_ABNORMAL_INT_SOURCE		0x100000
123 #define QM_ABNORMAL_INT_MASK		0x100004
124 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
125 #define QM_ABNORMAL_INT_STATUS		0x100008
126 #define QM_ABNORMAL_INT_SET		0x10000c
127 #define QM_ABNORMAL_INF00		0x100010
128 #define QM_FIFO_OVERFLOW_TYPE		0xc0
129 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
130 #define QM_FIFO_OVERFLOW_VF		0x3f
131 #define QM_ABNORMAL_INF01		0x100014
132 #define QM_DB_TIMEOUT_TYPE		0xc0
133 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
134 #define QM_DB_TIMEOUT_VF		0x3f
135 #define QM_RAS_CE_ENABLE		0x1000ec
136 #define QM_RAS_FE_ENABLE		0x1000f0
137 #define QM_RAS_NFE_ENABLE		0x1000f4
138 #define QM_RAS_CE_THRESHOLD		0x1000f8
139 #define QM_RAS_CE_TIMES_PER_IRQ		1
140 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
141 #define QM_ECC_MBIT			BIT(2)
142 #define QM_DB_TIMEOUT			BIT(10)
143 #define QM_OF_FIFO_OF			BIT(11)
144 
145 #define QM_RESET_WAIT_TIMEOUT		400
146 #define QM_PEH_VENDOR_ID		0x1000d8
147 #define ACC_VENDOR_ID_VALUE		0x5a5a
148 #define QM_PEH_DFX_INFO0		0x1000fc
149 #define QM_PEH_DFX_INFO1		0x100100
150 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
151 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
152 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
153 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
154 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
155 #define ACC_MASTER_TRANS_RETURN_RW	3
156 #define ACC_MASTER_TRANS_RETURN		0x300150
157 #define ACC_MASTER_GLOBAL_CTRL		0x300000
158 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
159 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
160 #define ACC_AM_ROB_ECC_INT_STS		0x300104
161 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
162 #define QM_MSI_CAP_ENABLE		BIT(16)
163 
164 /* interfunction communication */
165 #define QM_IFC_READY_STATUS		0x100128
166 #define QM_IFC_INT_SET_P		0x100130
167 #define QM_IFC_INT_CFG			0x100134
168 #define QM_IFC_INT_SOURCE_P		0x100138
169 #define QM_IFC_INT_SOURCE_V		0x0020
170 #define QM_IFC_INT_MASK			0x0024
171 #define QM_IFC_INT_STATUS		0x0028
172 #define QM_IFC_INT_SET_V		0x002C
173 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
174 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
175 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
176 #define QM_IFC_INT_DISABLE		BIT(0)
177 #define QM_IFC_INT_STATUS_MASK		BIT(0)
178 #define QM_IFC_INT_SET_MASK		BIT(0)
179 #define QM_WAIT_DST_ACK			10
180 #define QM_MAX_PF_WAIT_COUNT		10
181 #define QM_MAX_VF_WAIT_COUNT		40
182 #define QM_VF_RESET_WAIT_US            20000
183 #define QM_VF_RESET_WAIT_CNT           3000
184 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
185 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
186 
187 #define POLL_PERIOD			10
188 #define POLL_TIMEOUT			1000
189 #define WAIT_PERIOD_US_MAX		200
190 #define WAIT_PERIOD_US_MIN		100
191 #define MAX_WAIT_COUNTS			1000
192 #define QM_CACHE_WB_START		0x204
193 #define QM_CACHE_WB_DONE		0x208
194 #define QM_FUNC_CAPS_REG		0x3100
195 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
196 
197 #define PCI_BAR_2			2
198 #define PCI_BAR_4			4
199 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
200 
201 #define QM_DBG_READ_LEN		256
202 #define QM_PCI_COMMAND_INVALID		~0
203 #define QM_RESET_STOP_TX_OFFSET		1
204 #define QM_RESET_STOP_RX_OFFSET		2
205 
206 #define WAIT_PERIOD			20
207 #define REMOVE_WAIT_DELAY		10
208 
209 #define QM_QOS_PARAM_NUM		2
210 #define QM_QOS_MAX_VAL			1000
211 #define QM_QOS_RATE			100
212 #define QM_QOS_EXPAND_RATE		1000
213 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
214 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
215 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
216 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
217 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
218 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
219 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
220 #define QM_SHAPER_CBS_B			1
221 #define QM_SHAPER_VFT_OFFSET		6
222 #define QM_QOS_MIN_ERROR_RATE		5
223 #define QM_SHAPER_MIN_CBS_S		8
224 #define QM_QOS_TICK			0x300U
225 #define QM_QOS_DIVISOR_CLK		0x1f40U
226 #define QM_QOS_MAX_CIR_B		200
227 #define QM_QOS_MIN_CIR_B		100
228 #define QM_QOS_MAX_CIR_U		6
229 #define QM_AUTOSUSPEND_DELAY		3000
230 
231 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
232 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
233 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
234 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
235 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
236 
237 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
238 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
239 
240 #define QM_MK_SQC_W13(priority, orders, alg_type) \
241 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
242 	((orders) << QM_SQ_ORDERS_SHIFT) | \
243 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
244 
245 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
246 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
247 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
248 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
249 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
250 
251 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
252 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
253 
254 #define INIT_QC_COMMON(qc, base, pasid) do {			\
255 	(qc)->head = 0;						\
256 	(qc)->tail = 0;						\
257 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
258 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
259 	(qc)->dw3 = 0;						\
260 	(qc)->w8 = 0;						\
261 	(qc)->rsvd0 = 0;					\
262 	(qc)->pasid = cpu_to_le16(pasid);			\
263 	(qc)->w11 = 0;						\
264 	(qc)->rsvd1 = 0;					\
265 } while (0)
266 
267 enum vft_type {
268 	SQC_VFT = 0,
269 	CQC_VFT,
270 	SHAPER_VFT,
271 };
272 
273 enum acc_err_result {
274 	ACC_ERR_NONE,
275 	ACC_ERR_NEED_RESET,
276 	ACC_ERR_RECOVERED,
277 };
278 
279 enum qm_alg_type {
280 	ALG_TYPE_0,
281 	ALG_TYPE_1,
282 };
283 
284 enum qm_mb_cmd {
285 	QM_PF_FLR_PREPARE = 0x01,
286 	QM_PF_SRST_PREPARE,
287 	QM_PF_RESET_DONE,
288 	QM_VF_PREPARE_DONE,
289 	QM_VF_PREPARE_FAIL,
290 	QM_VF_START_DONE,
291 	QM_VF_START_FAIL,
292 	QM_PF_SET_QOS,
293 	QM_VF_GET_QOS,
294 };
295 
296 enum qm_basic_type {
297 	QM_TOTAL_QP_NUM_CAP = 0x0,
298 	QM_FUNC_MAX_QP_CAP,
299 	QM_XEQ_DEPTH_CAP,
300 	QM_QP_DEPTH_CAP,
301 	QM_EQ_IRQ_TYPE_CAP,
302 	QM_AEQ_IRQ_TYPE_CAP,
303 	QM_ABN_IRQ_TYPE_CAP,
304 	QM_PF2VF_IRQ_TYPE_CAP,
305 	QM_PF_IRQ_NUM_CAP,
306 	QM_VF_IRQ_NUM_CAP,
307 };
308 
309 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
310 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
311 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
312 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
313 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
314 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
315 };
316 
317 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
318 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
319 };
320 
321 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
322 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
323 };
324 
325 static const struct hisi_qm_cap_info qm_basic_info[] = {
326 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
327 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
328 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
329 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
330 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
331 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
332 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
333 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
334 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
335 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
336 };
337 
338 struct qm_mailbox {
339 	__le16 w0;
340 	__le16 queue_num;
341 	__le32 base_l;
342 	__le32 base_h;
343 	__le32 rsvd;
344 };
345 
346 struct qm_doorbell {
347 	__le16 queue_num;
348 	__le16 cmd;
349 	__le16 index;
350 	__le16 priority;
351 };
352 
353 struct hisi_qm_resource {
354 	struct hisi_qm *qm;
355 	int distance;
356 	struct list_head list;
357 };
358 
359 /**
360  * struct qm_hw_err - Structure describing the device errors
361  * @list: hardware error list
362  * @timestamp: timestamp when the error occurred
363  */
364 struct qm_hw_err {
365 	struct list_head list;
366 	unsigned long long timestamp;
367 };
368 
369 struct hisi_qm_hw_ops {
370 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
371 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
372 		      u8 cmd, u16 index, u8 priority);
373 	int (*debug_init)(struct hisi_qm *qm);
374 	void (*hw_error_init)(struct hisi_qm *qm);
375 	void (*hw_error_uninit)(struct hisi_qm *qm);
376 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
377 	int (*set_msi)(struct hisi_qm *qm, bool set);
378 };
379 
380 struct hisi_qm_hw_error {
381 	u32 int_msk;
382 	const char *msg;
383 };
384 
385 static const struct hisi_qm_hw_error qm_hw_error[] = {
386 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
387 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
388 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
389 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
390 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
391 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
392 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
393 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
394 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
395 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
396 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
397 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
398 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
399 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
400 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
401 	{ /* sentinel */ }
402 };
403 
404 static const char * const qm_db_timeout[] = {
405 	"sq", "cq", "eq", "aeq",
406 };
407 
408 static const char * const qm_fifo_overflow[] = {
409 	"cq", "eq", "aeq",
410 };
411 
412 static const char * const qp_s[] = {
413 	"none", "init", "start", "stop", "close",
414 };
415 
416 struct qm_typical_qos_table {
417 	u32 start;
418 	u32 end;
419 	u32 val;
420 };
421 
422 /* the qos step is 100 */
423 static struct qm_typical_qos_table shaper_cir_s[] = {
424 	{100, 100, 4},
425 	{200, 200, 3},
426 	{300, 500, 2},
427 	{600, 1000, 1},
428 	{1100, 100000, 0},
429 };
430 
431 static struct qm_typical_qos_table shaper_cbs_s[] = {
432 	{100, 200, 9},
433 	{300, 500, 11},
434 	{600, 1000, 12},
435 	{1100, 10000, 16},
436 	{10100, 25000, 17},
437 	{25100, 50000, 18},
438 	{50100, 100000, 19}
439 };
440 
441 static void qm_irqs_unregister(struct hisi_qm *qm);
442 
443 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
444 {
445 	enum qm_state curr = atomic_read(&qm->status.flags);
446 	bool avail = false;
447 
448 	switch (curr) {
449 	case QM_INIT:
450 		if (new == QM_START || new == QM_CLOSE)
451 			avail = true;
452 		break;
453 	case QM_START:
454 		if (new == QM_STOP)
455 			avail = true;
456 		break;
457 	case QM_STOP:
458 		if (new == QM_CLOSE || new == QM_START)
459 			avail = true;
460 		break;
461 	default:
462 		break;
463 	}
464 
465 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
466 		qm_s[curr], qm_s[new]);
467 
468 	if (!avail)
469 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
470 			 qm_s[curr], qm_s[new]);
471 
472 	return avail;
473 }
474 
475 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
476 			      enum qp_state new)
477 {
478 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
479 	enum qp_state qp_curr = 0;
480 	bool avail = false;
481 
482 	if (qp)
483 		qp_curr = atomic_read(&qp->qp_status.flags);
484 
485 	switch (new) {
486 	case QP_INIT:
487 		if (qm_curr == QM_START || qm_curr == QM_INIT)
488 			avail = true;
489 		break;
490 	case QP_START:
491 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
492 		    (qm_curr == QM_START && qp_curr == QP_STOP))
493 			avail = true;
494 		break;
495 	case QP_STOP:
496 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
497 		    (qp_curr == QP_INIT))
498 			avail = true;
499 		break;
500 	case QP_CLOSE:
501 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
502 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
503 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
504 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
505 			avail = true;
506 		break;
507 	default:
508 		break;
509 	}
510 
511 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
512 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
513 
514 	if (!avail)
515 		dev_warn(&qm->pdev->dev,
516 			 "Can not change qp state from %s to %s in QM %s\n",
517 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
518 
519 	return avail;
520 }
521 
522 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
523 {
524 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
525 }
526 
527 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
528 {
529 	return qm->err_ini->get_dev_hw_err_status(qm);
530 }
531 
532 /* Check if the error causes the master ooo block */
533 static bool qm_check_dev_error(struct hisi_qm *qm)
534 {
535 	u32 val, dev_val;
536 
537 	if (qm->fun_type == QM_HW_VF)
538 		return false;
539 
540 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
541 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
542 
543 	return val || dev_val;
544 }
545 
546 static int qm_wait_reset_finish(struct hisi_qm *qm)
547 {
548 	int delay = 0;
549 
550 	/* All reset requests need to be queued for processing */
551 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
552 		msleep(++delay);
553 		if (delay > QM_RESET_WAIT_TIMEOUT)
554 			return -EBUSY;
555 	}
556 
557 	return 0;
558 }
559 
560 static int qm_reset_prepare_ready(struct hisi_qm *qm)
561 {
562 	struct pci_dev *pdev = qm->pdev;
563 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
564 
565 	/*
566 	 * PF and VF on host doesnot support resetting at the
567 	 * same time on Kunpeng920.
568 	 */
569 	if (qm->ver < QM_HW_V3)
570 		return qm_wait_reset_finish(pf_qm);
571 
572 	return qm_wait_reset_finish(qm);
573 }
574 
575 static void qm_reset_bit_clear(struct hisi_qm *qm)
576 {
577 	struct pci_dev *pdev = qm->pdev;
578 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
579 
580 	if (qm->ver < QM_HW_V3)
581 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
582 
583 	clear_bit(QM_RESETTING, &qm->misc_ctl);
584 }
585 
586 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
587 			   u64 base, u16 queue, bool op)
588 {
589 	mailbox->w0 = cpu_to_le16((cmd) |
590 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
591 		(0x1 << QM_MB_BUSY_SHIFT));
592 	mailbox->queue_num = cpu_to_le16(queue);
593 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
594 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
595 	mailbox->rsvd = 0;
596 }
597 
598 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
599 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
600 {
601 	u32 val;
602 
603 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
604 					  val, !((val >> QM_MB_BUSY_SHIFT) &
605 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
606 }
607 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
608 
609 /* 128 bit should be written to hardware at one time to trigger a mailbox */
610 static void qm_mb_write(struct hisi_qm *qm, const void *src)
611 {
612 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
613 
614 #if IS_ENABLED(CONFIG_ARM64)
615 	unsigned long tmp0 = 0, tmp1 = 0;
616 #endif
617 
618 	if (!IS_ENABLED(CONFIG_ARM64)) {
619 		memcpy_toio(fun_base, src, 16);
620 		dma_wmb();
621 		return;
622 	}
623 
624 #if IS_ENABLED(CONFIG_ARM64)
625 	asm volatile("ldp %0, %1, %3\n"
626 		     "stp %0, %1, %2\n"
627 		     "dmb oshst\n"
628 		     : "=&r" (tmp0),
629 		       "=&r" (tmp1),
630 		       "+Q" (*((char __iomem *)fun_base))
631 		     : "Q" (*((char *)src))
632 		     : "memory");
633 #endif
634 }
635 
636 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
637 {
638 	int ret;
639 	u32 val;
640 
641 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
642 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
643 		ret = -EBUSY;
644 		goto mb_busy;
645 	}
646 
647 	qm_mb_write(qm, mailbox);
648 
649 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
650 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
651 		ret = -ETIMEDOUT;
652 		goto mb_busy;
653 	}
654 
655 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
656 	if (val & QM_MB_STATUS_MASK) {
657 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
658 		ret = -EIO;
659 		goto mb_busy;
660 	}
661 
662 	return 0;
663 
664 mb_busy:
665 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
666 	return ret;
667 }
668 
669 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
670 	       bool op)
671 {
672 	struct qm_mailbox mailbox;
673 	int ret;
674 
675 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
676 		queue, cmd, (unsigned long long)dma_addr);
677 
678 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
679 
680 	mutex_lock(&qm->mailbox_lock);
681 	ret = qm_mb_nolock(qm, &mailbox);
682 	mutex_unlock(&qm->mailbox_lock);
683 
684 	return ret;
685 }
686 EXPORT_SYMBOL_GPL(hisi_qm_mb);
687 
688 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
689 {
690 	u64 doorbell;
691 
692 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
693 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
694 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
695 
696 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
697 }
698 
699 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
700 {
701 	void __iomem *io_base = qm->io_base;
702 	u16 randata = 0;
703 	u64 doorbell;
704 
705 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
706 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
707 			  QM_DOORBELL_SQ_CQ_BASE_V2;
708 	else
709 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
710 
711 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
712 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
713 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
714 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
715 
716 	writeq(doorbell, io_base);
717 }
718 
719 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
720 {
721 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
722 		qn, cmd, index);
723 
724 	qm->ops->qm_db(qm, qn, cmd, index, priority);
725 }
726 
727 static void qm_disable_clock_gate(struct hisi_qm *qm)
728 {
729 	u32 val;
730 
731 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
732 	if (qm->ver < QM_HW_V3)
733 		return;
734 
735 	val = readl(qm->io_base + QM_PM_CTRL);
736 	val |= QM_IDLE_DISABLE;
737 	writel(val, qm->io_base +  QM_PM_CTRL);
738 }
739 
740 static int qm_dev_mem_reset(struct hisi_qm *qm)
741 {
742 	u32 val;
743 
744 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
745 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
746 					  val & BIT(0), POLL_PERIOD,
747 					  POLL_TIMEOUT);
748 }
749 
750 /**
751  * hisi_qm_get_hw_info() - Get device information.
752  * @qm: The qm which want to get information.
753  * @info_table: Array for storing device information.
754  * @index: Index in info_table.
755  * @is_read: Whether read from reg, 0: not support read from reg.
756  *
757  * This function returns device information the caller needs.
758  */
759 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
760 			const struct hisi_qm_cap_info *info_table,
761 			u32 index, bool is_read)
762 {
763 	u32 val;
764 
765 	switch (qm->ver) {
766 	case QM_HW_V1:
767 		return info_table[index].v1_val;
768 	case QM_HW_V2:
769 		return info_table[index].v2_val;
770 	default:
771 		if (!is_read)
772 			return info_table[index].v3_val;
773 
774 		val = readl(qm->io_base + info_table[index].offset);
775 		return (val >> info_table[index].shift) & info_table[index].mask;
776 	}
777 }
778 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
779 
780 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
781 			     u16 *high_bits, enum qm_basic_type type)
782 {
783 	u32 depth;
784 
785 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
786 	*low_bits = depth & QM_XQ_DEPTH_MASK;
787 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
788 }
789 
790 static u32 qm_get_irq_num(struct hisi_qm *qm)
791 {
792 	if (qm->fun_type == QM_HW_PF)
793 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
794 
795 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
796 }
797 
798 static int qm_pm_get_sync(struct hisi_qm *qm)
799 {
800 	struct device *dev = &qm->pdev->dev;
801 	int ret;
802 
803 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
804 		return 0;
805 
806 	ret = pm_runtime_resume_and_get(dev);
807 	if (ret < 0) {
808 		dev_err(dev, "failed to get_sync(%d).\n", ret);
809 		return ret;
810 	}
811 
812 	return 0;
813 }
814 
815 static void qm_pm_put_sync(struct hisi_qm *qm)
816 {
817 	struct device *dev = &qm->pdev->dev;
818 
819 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
820 		return;
821 
822 	pm_runtime_mark_last_busy(dev);
823 	pm_runtime_put_autosuspend(dev);
824 }
825 
826 static void qm_cq_head_update(struct hisi_qp *qp)
827 {
828 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
829 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
830 		qp->qp_status.cq_head = 0;
831 	} else {
832 		qp->qp_status.cq_head++;
833 	}
834 }
835 
836 static void qm_poll_req_cb(struct hisi_qp *qp)
837 {
838 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
839 	struct hisi_qm *qm = qp->qm;
840 
841 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
842 		dma_rmb();
843 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
844 			   le16_to_cpu(cqe->sq_head));
845 		qm_cq_head_update(qp);
846 		cqe = qp->cqe + qp->qp_status.cq_head;
847 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
848 		      qp->qp_status.cq_head, 0);
849 		atomic_dec(&qp->qp_status.used);
850 
851 		cond_resched();
852 	}
853 
854 	/* set c_flag */
855 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
856 }
857 
858 static void qm_work_process(struct work_struct *work)
859 {
860 	struct hisi_qm_poll_data *poll_data =
861 		container_of(work, struct hisi_qm_poll_data, work);
862 	struct hisi_qm *qm = poll_data->qm;
863 	u16 eqe_num = poll_data->eqe_num;
864 	struct hisi_qp *qp;
865 	int i;
866 
867 	for (i = eqe_num - 1; i >= 0; i--) {
868 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
869 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
870 			continue;
871 
872 		if (qp->event_cb) {
873 			qp->event_cb(qp);
874 			continue;
875 		}
876 
877 		if (likely(qp->req_cb))
878 			qm_poll_req_cb(qp);
879 	}
880 }
881 
882 static void qm_get_complete_eqe_num(struct hisi_qm *qm)
883 {
884 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
885 	struct hisi_qm_poll_data *poll_data = NULL;
886 	u16 eq_depth = qm->eq_depth;
887 	u16 cqn, eqe_num = 0;
888 
889 	if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) {
890 		atomic64_inc(&qm->debug.dfx.err_irq_cnt);
891 		qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
892 		return;
893 	}
894 
895 	cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
896 	if (unlikely(cqn >= qm->qp_num))
897 		return;
898 	poll_data = &qm->poll_data[cqn];
899 
900 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
901 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
902 		poll_data->qp_finish_id[eqe_num] = cqn;
903 		eqe_num++;
904 
905 		if (qm->status.eq_head == eq_depth - 1) {
906 			qm->status.eqc_phase = !qm->status.eqc_phase;
907 			eqe = qm->eqe;
908 			qm->status.eq_head = 0;
909 		} else {
910 			eqe++;
911 			qm->status.eq_head++;
912 		}
913 
914 		if (eqe_num == (eq_depth >> 1) - 1)
915 			break;
916 	}
917 
918 	poll_data->eqe_num = eqe_num;
919 	queue_work(qm->wq, &poll_data->work);
920 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
921 }
922 
923 static irqreturn_t qm_eq_irq(int irq, void *data)
924 {
925 	struct hisi_qm *qm = data;
926 
927 	/* Get qp id of completed tasks and re-enable the interrupt */
928 	qm_get_complete_eqe_num(qm);
929 
930 	return IRQ_HANDLED;
931 }
932 
933 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
934 {
935 	struct hisi_qm *qm = data;
936 	u32 val;
937 
938 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
939 	val &= QM_IFC_INT_STATUS_MASK;
940 	if (!val)
941 		return IRQ_NONE;
942 
943 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
944 		dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
945 		return IRQ_HANDLED;
946 	}
947 
948 	schedule_work(&qm->cmd_process);
949 
950 	return IRQ_HANDLED;
951 }
952 
953 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
954 {
955 	u32 *addr;
956 
957 	if (qp->is_in_kernel)
958 		return;
959 
960 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
961 	*addr = 1;
962 
963 	/* make sure setup is completed */
964 	smp_wmb();
965 }
966 
967 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
968 {
969 	struct hisi_qp *qp = &qm->qp_array[qp_id];
970 
971 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
972 	hisi_qm_stop_qp(qp);
973 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
974 }
975 
976 static void qm_reset_function(struct hisi_qm *qm)
977 {
978 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
979 	struct device *dev = &qm->pdev->dev;
980 	int ret;
981 
982 	if (qm_check_dev_error(pf_qm))
983 		return;
984 
985 	ret = qm_reset_prepare_ready(qm);
986 	if (ret) {
987 		dev_err(dev, "reset function not ready\n");
988 		return;
989 	}
990 
991 	ret = hisi_qm_stop(qm, QM_DOWN);
992 	if (ret) {
993 		dev_err(dev, "failed to stop qm when reset function\n");
994 		goto clear_bit;
995 	}
996 
997 	ret = hisi_qm_start(qm);
998 	if (ret)
999 		dev_err(dev, "failed to start qm when reset function\n");
1000 
1001 clear_bit:
1002 	qm_reset_bit_clear(qm);
1003 }
1004 
1005 static irqreturn_t qm_aeq_thread(int irq, void *data)
1006 {
1007 	struct hisi_qm *qm = data;
1008 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1009 	u16 aeq_depth = qm->aeq_depth;
1010 	u32 type, qp_id;
1011 
1012 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1013 
1014 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1015 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
1016 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1017 
1018 		switch (type) {
1019 		case QM_EQ_OVERFLOW:
1020 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1021 			qm_reset_function(qm);
1022 			return IRQ_HANDLED;
1023 		case QM_CQ_OVERFLOW:
1024 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1025 				qp_id);
1026 			fallthrough;
1027 		case QM_CQE_ERROR:
1028 			qm_disable_qp(qm, qp_id);
1029 			break;
1030 		default:
1031 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1032 				type);
1033 			break;
1034 		}
1035 
1036 		if (qm->status.aeq_head == aeq_depth - 1) {
1037 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1038 			aeqe = qm->aeqe;
1039 			qm->status.aeq_head = 0;
1040 		} else {
1041 			aeqe++;
1042 			qm->status.aeq_head++;
1043 		}
1044 	}
1045 
1046 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1047 
1048 	return IRQ_HANDLED;
1049 }
1050 
1051 static void qm_init_qp_status(struct hisi_qp *qp)
1052 {
1053 	struct hisi_qp_status *qp_status = &qp->qp_status;
1054 
1055 	qp_status->sq_tail = 0;
1056 	qp_status->cq_head = 0;
1057 	qp_status->cqc_phase = true;
1058 	atomic_set(&qp_status->used, 0);
1059 }
1060 
1061 static void qm_init_prefetch(struct hisi_qm *qm)
1062 {
1063 	struct device *dev = &qm->pdev->dev;
1064 	u32 page_type = 0x0;
1065 
1066 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1067 		return;
1068 
1069 	switch (PAGE_SIZE) {
1070 	case SZ_4K:
1071 		page_type = 0x0;
1072 		break;
1073 	case SZ_16K:
1074 		page_type = 0x1;
1075 		break;
1076 	case SZ_64K:
1077 		page_type = 0x2;
1078 		break;
1079 	default:
1080 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1081 			PAGE_SIZE);
1082 	}
1083 
1084 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1085 }
1086 
1087 /*
1088  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1089  * is the expected qos calculated.
1090  * the formula:
1091  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1092  *
1093  *		IR_b * (2 ^ IR_u) * 8000
1094  * IR(Mbps) = -------------------------
1095  *		  Tick * (2 ^ IR_s)
1096  */
1097 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1098 {
1099 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1100 					(QM_QOS_TICK * (1 << cir_s));
1101 }
1102 
1103 static u32 acc_shaper_calc_cbs_s(u32 ir)
1104 {
1105 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1106 	int i;
1107 
1108 	for (i = 0; i < table_size; i++) {
1109 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1110 			return shaper_cbs_s[i].val;
1111 	}
1112 
1113 	return QM_SHAPER_MIN_CBS_S;
1114 }
1115 
1116 static u32 acc_shaper_calc_cir_s(u32 ir)
1117 {
1118 	int table_size = ARRAY_SIZE(shaper_cir_s);
1119 	int i;
1120 
1121 	for (i = 0; i < table_size; i++) {
1122 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1123 			return shaper_cir_s[i].val;
1124 	}
1125 
1126 	return 0;
1127 }
1128 
1129 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1130 {
1131 	u32 cir_b, cir_u, cir_s, ir_calc;
1132 	u32 error_rate;
1133 
1134 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1135 	cir_s = acc_shaper_calc_cir_s(ir);
1136 
1137 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1138 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1139 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1140 
1141 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1142 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1143 				factor->cir_b = cir_b;
1144 				factor->cir_u = cir_u;
1145 				factor->cir_s = cir_s;
1146 				return 0;
1147 			}
1148 		}
1149 	}
1150 
1151 	return -EINVAL;
1152 }
1153 
1154 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1155 			    u32 number, struct qm_shaper_factor *factor)
1156 {
1157 	u64 tmp = 0;
1158 
1159 	if (number > 0) {
1160 		switch (type) {
1161 		case SQC_VFT:
1162 			if (qm->ver == QM_HW_V1) {
1163 				tmp = QM_SQC_VFT_BUF_SIZE	|
1164 				      QM_SQC_VFT_SQC_SIZE	|
1165 				      QM_SQC_VFT_INDEX_NUMBER	|
1166 				      QM_SQC_VFT_VALID		|
1167 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1168 			} else {
1169 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1170 				      QM_SQC_VFT_VALID |
1171 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1172 			}
1173 			break;
1174 		case CQC_VFT:
1175 			if (qm->ver == QM_HW_V1) {
1176 				tmp = QM_CQC_VFT_BUF_SIZE	|
1177 				      QM_CQC_VFT_SQC_SIZE	|
1178 				      QM_CQC_VFT_INDEX_NUMBER	|
1179 				      QM_CQC_VFT_VALID;
1180 			} else {
1181 				tmp = QM_CQC_VFT_VALID;
1182 			}
1183 			break;
1184 		case SHAPER_VFT:
1185 			if (factor) {
1186 				tmp = factor->cir_b |
1187 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1188 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1189 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1190 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1191 			}
1192 			break;
1193 		}
1194 	}
1195 
1196 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1197 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1198 }
1199 
1200 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1201 			     u32 fun_num, u32 base, u32 number)
1202 {
1203 	struct qm_shaper_factor *factor = NULL;
1204 	unsigned int val;
1205 	int ret;
1206 
1207 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1208 		factor = &qm->factor[fun_num];
1209 
1210 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1211 					 val & BIT(0), POLL_PERIOD,
1212 					 POLL_TIMEOUT);
1213 	if (ret)
1214 		return ret;
1215 
1216 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1217 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1218 	if (type == SHAPER_VFT)
1219 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1220 
1221 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1222 
1223 	qm_vft_data_cfg(qm, type, base, number, factor);
1224 
1225 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1226 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1227 
1228 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1229 					  val & BIT(0), POLL_PERIOD,
1230 					  POLL_TIMEOUT);
1231 }
1232 
1233 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1234 {
1235 	u32 qos = qm->factor[fun_num].func_qos;
1236 	int ret, i;
1237 
1238 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1239 	if (ret) {
1240 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1241 		return ret;
1242 	}
1243 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1244 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1245 		/* The base number of queue reuse for different alg type */
1246 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1247 		if (ret)
1248 			return ret;
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 /* The config should be conducted after qm_dev_mem_reset() */
1255 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1256 			      u32 number)
1257 {
1258 	int ret, i;
1259 
1260 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1261 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1262 		if (ret)
1263 			return ret;
1264 	}
1265 
1266 	/* init default shaper qos val */
1267 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1268 		ret = qm_shaper_init_vft(qm, fun_num);
1269 		if (ret)
1270 			goto back_sqc_cqc;
1271 	}
1272 
1273 	return 0;
1274 back_sqc_cqc:
1275 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1276 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1277 
1278 	return ret;
1279 }
1280 
1281 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1282 {
1283 	u64 sqc_vft;
1284 	int ret;
1285 
1286 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1287 	if (ret)
1288 		return ret;
1289 
1290 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1291 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1292 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1293 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1294 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1295 
1296 	return 0;
1297 }
1298 
1299 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1300 			  dma_addr_t *dma_addr)
1301 {
1302 	struct device *dev = &qm->pdev->dev;
1303 	void *ctx_addr;
1304 
1305 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1306 	if (!ctx_addr)
1307 		return ERR_PTR(-ENOMEM);
1308 
1309 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1310 	if (dma_mapping_error(dev, *dma_addr)) {
1311 		dev_err(dev, "DMA mapping error!\n");
1312 		kfree(ctx_addr);
1313 		return ERR_PTR(-ENOMEM);
1314 	}
1315 
1316 	return ctx_addr;
1317 }
1318 
1319 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1320 			const void *ctx_addr, dma_addr_t *dma_addr)
1321 {
1322 	struct device *dev = &qm->pdev->dev;
1323 
1324 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1325 	kfree(ctx_addr);
1326 }
1327 
1328 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1329 {
1330 	return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1331 }
1332 
1333 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1334 {
1335 	return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1336 }
1337 
1338 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1339 {
1340 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1341 }
1342 
1343 static void qm_hw_error_cfg(struct hisi_qm *qm)
1344 {
1345 	struct hisi_qm_err_info *err_info = &qm->err_info;
1346 
1347 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1348 	/* clear QM hw residual error source */
1349 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1350 
1351 	/* configure error type */
1352 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1353 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1354 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1355 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1356 }
1357 
1358 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1359 {
1360 	u32 irq_unmask;
1361 
1362 	qm_hw_error_cfg(qm);
1363 
1364 	irq_unmask = ~qm->error_mask;
1365 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1366 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1367 }
1368 
1369 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1370 {
1371 	u32 irq_mask = qm->error_mask;
1372 
1373 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1374 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1375 }
1376 
1377 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1378 {
1379 	u32 irq_unmask;
1380 
1381 	qm_hw_error_cfg(qm);
1382 
1383 	/* enable close master ooo when hardware error happened */
1384 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1385 
1386 	irq_unmask = ~qm->error_mask;
1387 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1388 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1389 }
1390 
1391 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1392 {
1393 	u32 irq_mask = qm->error_mask;
1394 
1395 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1396 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1397 
1398 	/* disable close master ooo when hardware error happened */
1399 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1400 }
1401 
1402 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1403 {
1404 	const struct hisi_qm_hw_error *err;
1405 	struct device *dev = &qm->pdev->dev;
1406 	u32 reg_val, type, vf_num;
1407 	int i;
1408 
1409 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1410 		err = &qm_hw_error[i];
1411 		if (!(err->int_msk & error_status))
1412 			continue;
1413 
1414 		dev_err(dev, "%s [error status=0x%x] found\n",
1415 			err->msg, err->int_msk);
1416 
1417 		if (err->int_msk & QM_DB_TIMEOUT) {
1418 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1419 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1420 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1421 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1422 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1423 				qm_db_timeout[type], vf_num);
1424 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1425 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1426 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1427 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1428 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1429 
1430 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1431 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1432 					qm_fifo_overflow[type], vf_num);
1433 			else
1434 				dev_err(dev, "unknown error type\n");
1435 		}
1436 	}
1437 }
1438 
1439 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1440 {
1441 	u32 error_status, tmp;
1442 
1443 	/* read err sts */
1444 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1445 	error_status = qm->error_mask & tmp;
1446 
1447 	if (error_status) {
1448 		if (error_status & QM_ECC_MBIT)
1449 			qm->err_status.is_qm_ecc_mbit = true;
1450 
1451 		qm_log_hw_error(qm, error_status);
1452 		if (error_status & qm->err_info.qm_reset_mask)
1453 			return ACC_ERR_NEED_RESET;
1454 
1455 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1456 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1457 	}
1458 
1459 	return ACC_ERR_RECOVERED;
1460 }
1461 
1462 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1463 {
1464 	struct qm_mailbox mailbox;
1465 	int ret;
1466 
1467 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1468 	mutex_lock(&qm->mailbox_lock);
1469 	ret = qm_mb_nolock(qm, &mailbox);
1470 	if (ret)
1471 		goto err_unlock;
1472 
1473 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1474 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1475 
1476 err_unlock:
1477 	mutex_unlock(&qm->mailbox_lock);
1478 	return ret;
1479 }
1480 
1481 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1482 {
1483 	u32 val;
1484 
1485 	if (qm->fun_type == QM_HW_PF)
1486 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1487 
1488 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1489 	val |= QM_IFC_INT_SOURCE_MASK;
1490 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1491 }
1492 
1493 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1494 {
1495 	struct device *dev = &qm->pdev->dev;
1496 	u32 cmd;
1497 	u64 msg;
1498 	int ret;
1499 
1500 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1501 	if (ret) {
1502 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1503 		return;
1504 	}
1505 
1506 	cmd = msg & QM_MB_CMD_DATA_MASK;
1507 	switch (cmd) {
1508 	case QM_VF_PREPARE_FAIL:
1509 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1510 		break;
1511 	case QM_VF_START_FAIL:
1512 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1513 		break;
1514 	case QM_VF_PREPARE_DONE:
1515 	case QM_VF_START_DONE:
1516 		break;
1517 	default:
1518 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1519 		break;
1520 	}
1521 }
1522 
1523 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1524 {
1525 	struct device *dev = &qm->pdev->dev;
1526 	u32 vfs_num = qm->vfs_num;
1527 	int cnt = 0;
1528 	int ret = 0;
1529 	u64 val;
1530 	u32 i;
1531 
1532 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1533 		return 0;
1534 
1535 	while (true) {
1536 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1537 		/* All VFs send command to PF, break */
1538 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1539 			break;
1540 
1541 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1542 			ret = -EBUSY;
1543 			break;
1544 		}
1545 
1546 		msleep(QM_WAIT_DST_ACK);
1547 	}
1548 
1549 	/* PF check VFs msg */
1550 	for (i = 1; i <= vfs_num; i++) {
1551 		if (val & BIT(i))
1552 			qm_handle_vf_msg(qm, i);
1553 		else
1554 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1555 	}
1556 
1557 	/* PF clear interrupt to ack VFs */
1558 	qm_clear_cmd_interrupt(qm, val);
1559 
1560 	return ret;
1561 }
1562 
1563 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1564 {
1565 	u32 val;
1566 
1567 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1568 	val &= ~QM_IFC_SEND_ALL_VFS;
1569 	val |= fun_num;
1570 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1571 
1572 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1573 	val |= QM_IFC_INT_SET_MASK;
1574 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1575 }
1576 
1577 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1578 {
1579 	u32 val;
1580 
1581 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1582 	val |= QM_IFC_INT_SET_MASK;
1583 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1584 }
1585 
1586 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1587 {
1588 	struct device *dev = &qm->pdev->dev;
1589 	struct qm_mailbox mailbox;
1590 	int cnt = 0;
1591 	u64 val;
1592 	int ret;
1593 
1594 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1595 	mutex_lock(&qm->mailbox_lock);
1596 	ret = qm_mb_nolock(qm, &mailbox);
1597 	if (ret) {
1598 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1599 		goto err_unlock;
1600 	}
1601 
1602 	qm_trigger_vf_interrupt(qm, fun_num);
1603 	while (true) {
1604 		msleep(QM_WAIT_DST_ACK);
1605 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1606 		/* if VF respond, PF notifies VF successfully. */
1607 		if (!(val & BIT(fun_num)))
1608 			goto err_unlock;
1609 
1610 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1611 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1612 			ret = -ETIMEDOUT;
1613 			break;
1614 		}
1615 	}
1616 
1617 err_unlock:
1618 	mutex_unlock(&qm->mailbox_lock);
1619 	return ret;
1620 }
1621 
1622 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1623 {
1624 	struct device *dev = &qm->pdev->dev;
1625 	u32 vfs_num = qm->vfs_num;
1626 	struct qm_mailbox mailbox;
1627 	u64 val = 0;
1628 	int cnt = 0;
1629 	int ret;
1630 	u32 i;
1631 
1632 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1633 	mutex_lock(&qm->mailbox_lock);
1634 	/* PF sends command to all VFs by mailbox */
1635 	ret = qm_mb_nolock(qm, &mailbox);
1636 	if (ret) {
1637 		dev_err(dev, "failed to send command to VFs!\n");
1638 		mutex_unlock(&qm->mailbox_lock);
1639 		return ret;
1640 	}
1641 
1642 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1643 	while (true) {
1644 		msleep(QM_WAIT_DST_ACK);
1645 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1646 		/* If all VFs acked, PF notifies VFs successfully. */
1647 		if (!(val & GENMASK(vfs_num, 1))) {
1648 			mutex_unlock(&qm->mailbox_lock);
1649 			return 0;
1650 		}
1651 
1652 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1653 			break;
1654 	}
1655 
1656 	mutex_unlock(&qm->mailbox_lock);
1657 
1658 	/* Check which vf respond timeout. */
1659 	for (i = 1; i <= vfs_num; i++) {
1660 		if (val & BIT(i))
1661 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1662 	}
1663 
1664 	return -ETIMEDOUT;
1665 }
1666 
1667 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1668 {
1669 	struct qm_mailbox mailbox;
1670 	int cnt = 0;
1671 	u32 val;
1672 	int ret;
1673 
1674 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1675 	mutex_lock(&qm->mailbox_lock);
1676 	ret = qm_mb_nolock(qm, &mailbox);
1677 	if (ret) {
1678 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1679 		goto unlock;
1680 	}
1681 
1682 	qm_trigger_pf_interrupt(qm);
1683 	/* Waiting for PF response */
1684 	while (true) {
1685 		msleep(QM_WAIT_DST_ACK);
1686 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1687 		if (!(val & QM_IFC_INT_STATUS_MASK))
1688 			break;
1689 
1690 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1691 			ret = -ETIMEDOUT;
1692 			break;
1693 		}
1694 	}
1695 
1696 unlock:
1697 	mutex_unlock(&qm->mailbox_lock);
1698 	return ret;
1699 }
1700 
1701 static int qm_stop_qp(struct hisi_qp *qp)
1702 {
1703 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1704 }
1705 
1706 static int qm_set_msi(struct hisi_qm *qm, bool set)
1707 {
1708 	struct pci_dev *pdev = qm->pdev;
1709 
1710 	if (set) {
1711 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1712 				       0);
1713 	} else {
1714 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1715 				       ACC_PEH_MSI_DISABLE);
1716 		if (qm->err_status.is_qm_ecc_mbit ||
1717 		    qm->err_status.is_dev_ecc_mbit)
1718 			return 0;
1719 
1720 		mdelay(1);
1721 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1722 			return -EFAULT;
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 static void qm_wait_msi_finish(struct hisi_qm *qm)
1729 {
1730 	struct pci_dev *pdev = qm->pdev;
1731 	u32 cmd = ~0;
1732 	int cnt = 0;
1733 	u32 val;
1734 	int ret;
1735 
1736 	while (true) {
1737 		pci_read_config_dword(pdev, pdev->msi_cap +
1738 				      PCI_MSI_PENDING_64, &cmd);
1739 		if (!cmd)
1740 			break;
1741 
1742 		if (++cnt > MAX_WAIT_COUNTS) {
1743 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1744 			break;
1745 		}
1746 
1747 		udelay(1);
1748 	}
1749 
1750 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1751 					 val, !(val & QM_PEH_DFX_MASK),
1752 					 POLL_PERIOD, POLL_TIMEOUT);
1753 	if (ret)
1754 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1755 
1756 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1757 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1758 					 POLL_PERIOD, POLL_TIMEOUT);
1759 	if (ret)
1760 		pci_warn(pdev, "failed to finish MSI operation!\n");
1761 }
1762 
1763 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1764 {
1765 	struct pci_dev *pdev = qm->pdev;
1766 	int ret = -ETIMEDOUT;
1767 	u32 cmd, i;
1768 
1769 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1770 	if (set)
1771 		cmd |= QM_MSI_CAP_ENABLE;
1772 	else
1773 		cmd &= ~QM_MSI_CAP_ENABLE;
1774 
1775 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1776 	if (set) {
1777 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1778 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1779 			if (cmd & QM_MSI_CAP_ENABLE)
1780 				return 0;
1781 
1782 			udelay(1);
1783 		}
1784 	} else {
1785 		udelay(WAIT_PERIOD_US_MIN);
1786 		qm_wait_msi_finish(qm);
1787 		ret = 0;
1788 	}
1789 
1790 	return ret;
1791 }
1792 
1793 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1794 	.qm_db = qm_db_v1,
1795 	.hw_error_init = qm_hw_error_init_v1,
1796 	.set_msi = qm_set_msi,
1797 };
1798 
1799 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1800 	.get_vft = qm_get_vft_v2,
1801 	.qm_db = qm_db_v2,
1802 	.hw_error_init = qm_hw_error_init_v2,
1803 	.hw_error_uninit = qm_hw_error_uninit_v2,
1804 	.hw_error_handle = qm_hw_error_handle_v2,
1805 	.set_msi = qm_set_msi,
1806 };
1807 
1808 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1809 	.get_vft = qm_get_vft_v2,
1810 	.qm_db = qm_db_v2,
1811 	.hw_error_init = qm_hw_error_init_v3,
1812 	.hw_error_uninit = qm_hw_error_uninit_v3,
1813 	.hw_error_handle = qm_hw_error_handle_v2,
1814 	.set_msi = qm_set_msi_v3,
1815 };
1816 
1817 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1818 {
1819 	struct hisi_qp_status *qp_status = &qp->qp_status;
1820 	u16 sq_tail = qp_status->sq_tail;
1821 
1822 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1823 		return NULL;
1824 
1825 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1826 }
1827 
1828 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1829 {
1830 	u64 *addr;
1831 
1832 	/* Use last 64 bits of DUS to reset status. */
1833 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1834 	*addr = 0;
1835 }
1836 
1837 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1838 {
1839 	struct device *dev = &qm->pdev->dev;
1840 	struct hisi_qp *qp;
1841 	int qp_id;
1842 
1843 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1844 		return ERR_PTR(-EPERM);
1845 
1846 	if (qm->qp_in_used == qm->qp_num) {
1847 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1848 				     qm->qp_num);
1849 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1850 		return ERR_PTR(-EBUSY);
1851 	}
1852 
1853 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1854 	if (qp_id < 0) {
1855 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1856 				    qm->qp_num);
1857 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1858 		return ERR_PTR(-EBUSY);
1859 	}
1860 
1861 	qp = &qm->qp_array[qp_id];
1862 	hisi_qm_unset_hw_reset(qp);
1863 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1864 
1865 	qp->event_cb = NULL;
1866 	qp->req_cb = NULL;
1867 	qp->qp_id = qp_id;
1868 	qp->alg_type = alg_type;
1869 	qp->is_in_kernel = true;
1870 	qm->qp_in_used++;
1871 	atomic_set(&qp->qp_status.flags, QP_INIT);
1872 
1873 	return qp;
1874 }
1875 
1876 /**
1877  * hisi_qm_create_qp() - Create a queue pair from qm.
1878  * @qm: The qm we create a qp from.
1879  * @alg_type: Accelerator specific algorithm type in sqc.
1880  *
1881  * Return created qp, negative error code if failed.
1882  */
1883 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1884 {
1885 	struct hisi_qp *qp;
1886 	int ret;
1887 
1888 	ret = qm_pm_get_sync(qm);
1889 	if (ret)
1890 		return ERR_PTR(ret);
1891 
1892 	down_write(&qm->qps_lock);
1893 	qp = qm_create_qp_nolock(qm, alg_type);
1894 	up_write(&qm->qps_lock);
1895 
1896 	if (IS_ERR(qp))
1897 		qm_pm_put_sync(qm);
1898 
1899 	return qp;
1900 }
1901 
1902 /**
1903  * hisi_qm_release_qp() - Release a qp back to its qm.
1904  * @qp: The qp we want to release.
1905  *
1906  * This function releases the resource of a qp.
1907  */
1908 static void hisi_qm_release_qp(struct hisi_qp *qp)
1909 {
1910 	struct hisi_qm *qm = qp->qm;
1911 
1912 	down_write(&qm->qps_lock);
1913 
1914 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1915 		up_write(&qm->qps_lock);
1916 		return;
1917 	}
1918 
1919 	qm->qp_in_used--;
1920 	idr_remove(&qm->qp_idr, qp->qp_id);
1921 
1922 	up_write(&qm->qps_lock);
1923 
1924 	qm_pm_put_sync(qm);
1925 }
1926 
1927 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1928 {
1929 	struct hisi_qm *qm = qp->qm;
1930 	struct device *dev = &qm->pdev->dev;
1931 	enum qm_hw_ver ver = qm->ver;
1932 	struct qm_sqc *sqc;
1933 	dma_addr_t sqc_dma;
1934 	int ret;
1935 
1936 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1937 	if (!sqc)
1938 		return -ENOMEM;
1939 
1940 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1941 	if (ver == QM_HW_V1) {
1942 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1943 		sqc->w8 = cpu_to_le16(qp->sq_depth - 1);
1944 	} else {
1945 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1946 		sqc->w8 = 0; /* rand_qc */
1947 	}
1948 	sqc->cq_num = cpu_to_le16(qp_id);
1949 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1950 
1951 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1952 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1953 				       QM_QC_PASID_ENABLE_SHIFT);
1954 
1955 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1956 				 DMA_TO_DEVICE);
1957 	if (dma_mapping_error(dev, sqc_dma)) {
1958 		kfree(sqc);
1959 		return -ENOMEM;
1960 	}
1961 
1962 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1963 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1964 	kfree(sqc);
1965 
1966 	return ret;
1967 }
1968 
1969 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1970 {
1971 	struct hisi_qm *qm = qp->qm;
1972 	struct device *dev = &qm->pdev->dev;
1973 	enum qm_hw_ver ver = qm->ver;
1974 	struct qm_cqc *cqc;
1975 	dma_addr_t cqc_dma;
1976 	int ret;
1977 
1978 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
1979 	if (!cqc)
1980 		return -ENOMEM;
1981 
1982 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
1983 	if (ver == QM_HW_V1) {
1984 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
1985 							QM_QC_CQE_SIZE));
1986 		cqc->w8 = cpu_to_le16(qp->cq_depth - 1);
1987 	} else {
1988 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
1989 		cqc->w8 = 0; /* rand_qc */
1990 	}
1991 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1992 
1993 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1994 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
1995 
1996 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
1997 				 DMA_TO_DEVICE);
1998 	if (dma_mapping_error(dev, cqc_dma)) {
1999 		kfree(cqc);
2000 		return -ENOMEM;
2001 	}
2002 
2003 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2004 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2005 	kfree(cqc);
2006 
2007 	return ret;
2008 }
2009 
2010 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2011 {
2012 	int ret;
2013 
2014 	qm_init_qp_status(qp);
2015 
2016 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2017 	if (ret)
2018 		return ret;
2019 
2020 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2021 }
2022 
2023 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2024 {
2025 	struct hisi_qm *qm = qp->qm;
2026 	struct device *dev = &qm->pdev->dev;
2027 	int qp_id = qp->qp_id;
2028 	u32 pasid = arg;
2029 	int ret;
2030 
2031 	if (!qm_qp_avail_state(qm, qp, QP_START))
2032 		return -EPERM;
2033 
2034 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2035 	if (ret)
2036 		return ret;
2037 
2038 	atomic_set(&qp->qp_status.flags, QP_START);
2039 	dev_dbg(dev, "queue %d started\n", qp_id);
2040 
2041 	return 0;
2042 }
2043 
2044 /**
2045  * hisi_qm_start_qp() - Start a qp into running.
2046  * @qp: The qp we want to start to run.
2047  * @arg: Accelerator specific argument.
2048  *
2049  * After this function, qp can receive request from user. Return 0 if
2050  * successful, negative error code if failed.
2051  */
2052 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2053 {
2054 	struct hisi_qm *qm = qp->qm;
2055 	int ret;
2056 
2057 	down_write(&qm->qps_lock);
2058 	ret = qm_start_qp_nolock(qp, arg);
2059 	up_write(&qm->qps_lock);
2060 
2061 	return ret;
2062 }
2063 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2064 
2065 /**
2066  * qp_stop_fail_cb() - call request cb.
2067  * @qp: stopped failed qp.
2068  *
2069  * Callback function should be called whether task completed or not.
2070  */
2071 static void qp_stop_fail_cb(struct hisi_qp *qp)
2072 {
2073 	int qp_used = atomic_read(&qp->qp_status.used);
2074 	u16 cur_tail = qp->qp_status.sq_tail;
2075 	u16 sq_depth = qp->sq_depth;
2076 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2077 	struct hisi_qm *qm = qp->qm;
2078 	u16 pos;
2079 	int i;
2080 
2081 	for (i = 0; i < qp_used; i++) {
2082 		pos = (i + cur_head) % sq_depth;
2083 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2084 		atomic_dec(&qp->qp_status.used);
2085 	}
2086 }
2087 
2088 /**
2089  * qm_drain_qp() - Drain a qp.
2090  * @qp: The qp we want to drain.
2091  *
2092  * Determine whether the queue is cleared by judging the tail pointers of
2093  * sq and cq.
2094  */
2095 static int qm_drain_qp(struct hisi_qp *qp)
2096 {
2097 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
2098 	struct hisi_qm *qm = qp->qm;
2099 	struct device *dev = &qm->pdev->dev;
2100 	struct qm_sqc *sqc;
2101 	struct qm_cqc *cqc;
2102 	dma_addr_t dma_addr;
2103 	int ret = 0, i = 0;
2104 	void *addr;
2105 
2106 	/* No need to judge if master OOO is blocked. */
2107 	if (qm_check_dev_error(qm))
2108 		return 0;
2109 
2110 	/* Kunpeng930 supports drain qp by device */
2111 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2112 		ret = qm_stop_qp(qp);
2113 		if (ret)
2114 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2115 		return ret;
2116 	}
2117 
2118 	addr = hisi_qm_ctx_alloc(qm, size, &dma_addr);
2119 	if (IS_ERR(addr)) {
2120 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
2121 		return -ENOMEM;
2122 	}
2123 
2124 	while (++i) {
2125 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
2126 		if (ret) {
2127 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2128 			break;
2129 		}
2130 		sqc = addr;
2131 
2132 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
2133 				      qp->qp_id);
2134 		if (ret) {
2135 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2136 			break;
2137 		}
2138 		cqc = addr + sizeof(struct qm_sqc);
2139 
2140 		if ((sqc->tail == cqc->tail) &&
2141 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2142 			break;
2143 
2144 		if (i == MAX_WAIT_COUNTS) {
2145 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2146 			ret = -EBUSY;
2147 			break;
2148 		}
2149 
2150 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2151 	}
2152 
2153 	hisi_qm_ctx_free(qm, size, addr, &dma_addr);
2154 
2155 	return ret;
2156 }
2157 
2158 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2159 {
2160 	struct device *dev = &qp->qm->pdev->dev;
2161 	int ret;
2162 
2163 	/*
2164 	 * It is allowed to stop and release qp when reset, If the qp is
2165 	 * stopped when reset but still want to be released then, the
2166 	 * is_resetting flag should be set negative so that this qp will not
2167 	 * be restarted after reset.
2168 	 */
2169 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2170 		qp->is_resetting = false;
2171 		return 0;
2172 	}
2173 
2174 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2175 		return -EPERM;
2176 
2177 	atomic_set(&qp->qp_status.flags, QP_STOP);
2178 
2179 	ret = qm_drain_qp(qp);
2180 	if (ret)
2181 		dev_err(dev, "Failed to drain out data for stopping!\n");
2182 
2183 
2184 	flush_workqueue(qp->qm->wq);
2185 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2186 		qp_stop_fail_cb(qp);
2187 
2188 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2189 
2190 	return 0;
2191 }
2192 
2193 /**
2194  * hisi_qm_stop_qp() - Stop a qp in qm.
2195  * @qp: The qp we want to stop.
2196  *
2197  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2198  */
2199 int hisi_qm_stop_qp(struct hisi_qp *qp)
2200 {
2201 	int ret;
2202 
2203 	down_write(&qp->qm->qps_lock);
2204 	ret = qm_stop_qp_nolock(qp);
2205 	up_write(&qp->qm->qps_lock);
2206 
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2210 
2211 /**
2212  * hisi_qp_send() - Queue up a task in the hardware queue.
2213  * @qp: The qp in which to put the message.
2214  * @msg: The message.
2215  *
2216  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2217  * if qp related qm is resetting.
2218  *
2219  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2220  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2221  *       reset may happen, we have no lock here considering performance. This
2222  *       causes current qm_db sending fail or can not receive sended sqe. QM
2223  *       sync/async receive function should handle the error sqe. ACC reset
2224  *       done function should clear used sqe to 0.
2225  */
2226 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2227 {
2228 	struct hisi_qp_status *qp_status = &qp->qp_status;
2229 	u16 sq_tail = qp_status->sq_tail;
2230 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2231 	void *sqe = qm_get_avail_sqe(qp);
2232 
2233 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2234 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2235 		     qp->is_resetting)) {
2236 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2237 		return -EAGAIN;
2238 	}
2239 
2240 	if (!sqe)
2241 		return -EBUSY;
2242 
2243 	memcpy(sqe, msg, qp->qm->sqe_size);
2244 
2245 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2246 	atomic_inc(&qp->qp_status.used);
2247 	qp_status->sq_tail = sq_tail_next;
2248 
2249 	return 0;
2250 }
2251 EXPORT_SYMBOL_GPL(hisi_qp_send);
2252 
2253 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2254 {
2255 	unsigned int val;
2256 
2257 	if (qm->ver == QM_HW_V1)
2258 		return;
2259 
2260 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2261 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2262 				       val, val & BIT(0), POLL_PERIOD,
2263 				       POLL_TIMEOUT))
2264 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2265 }
2266 
2267 static void qm_qp_event_notifier(struct hisi_qp *qp)
2268 {
2269 	wake_up_interruptible(&qp->uacce_q->wait);
2270 }
2271 
2272  /* This function returns free number of qp in qm. */
2273 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2274 {
2275 	struct hisi_qm *qm = uacce->priv;
2276 	int ret;
2277 
2278 	down_read(&qm->qps_lock);
2279 	ret = qm->qp_num - qm->qp_in_used;
2280 	up_read(&qm->qps_lock);
2281 
2282 	return ret;
2283 }
2284 
2285 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2286 {
2287 	int i;
2288 
2289 	for (i = 0; i < qm->qp_num; i++)
2290 		qm_set_qp_disable(&qm->qp_array[i], offset);
2291 }
2292 
2293 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2294 				   unsigned long arg,
2295 				   struct uacce_queue *q)
2296 {
2297 	struct hisi_qm *qm = uacce->priv;
2298 	struct hisi_qp *qp;
2299 	u8 alg_type = 0;
2300 
2301 	qp = hisi_qm_create_qp(qm, alg_type);
2302 	if (IS_ERR(qp))
2303 		return PTR_ERR(qp);
2304 
2305 	q->priv = qp;
2306 	q->uacce = uacce;
2307 	qp->uacce_q = q;
2308 	qp->event_cb = qm_qp_event_notifier;
2309 	qp->pasid = arg;
2310 	qp->is_in_kernel = false;
2311 
2312 	return 0;
2313 }
2314 
2315 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2316 {
2317 	struct hisi_qp *qp = q->priv;
2318 
2319 	hisi_qm_release_qp(qp);
2320 }
2321 
2322 /* map sq/cq/doorbell to user space */
2323 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2324 			      struct vm_area_struct *vma,
2325 			      struct uacce_qfile_region *qfr)
2326 {
2327 	struct hisi_qp *qp = q->priv;
2328 	struct hisi_qm *qm = qp->qm;
2329 	resource_size_t phys_base = qm->db_phys_base +
2330 				    qp->qp_id * qm->db_interval;
2331 	size_t sz = vma->vm_end - vma->vm_start;
2332 	struct pci_dev *pdev = qm->pdev;
2333 	struct device *dev = &pdev->dev;
2334 	unsigned long vm_pgoff;
2335 	int ret;
2336 
2337 	switch (qfr->type) {
2338 	case UACCE_QFRT_MMIO:
2339 		if (qm->ver == QM_HW_V1) {
2340 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2341 				return -EINVAL;
2342 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2343 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2344 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2345 				return -EINVAL;
2346 		} else {
2347 			if (sz > qm->db_interval)
2348 				return -EINVAL;
2349 		}
2350 
2351 		vm_flags_set(vma, VM_IO);
2352 
2353 		return remap_pfn_range(vma, vma->vm_start,
2354 				       phys_base >> PAGE_SHIFT,
2355 				       sz, pgprot_noncached(vma->vm_page_prot));
2356 	case UACCE_QFRT_DUS:
2357 		if (sz != qp->qdma.size)
2358 			return -EINVAL;
2359 
2360 		/*
2361 		 * dma_mmap_coherent() requires vm_pgoff as 0
2362 		 * restore vm_pfoff to initial value for mmap()
2363 		 */
2364 		vm_pgoff = vma->vm_pgoff;
2365 		vma->vm_pgoff = 0;
2366 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2367 					qp->qdma.dma, sz);
2368 		vma->vm_pgoff = vm_pgoff;
2369 		return ret;
2370 
2371 	default:
2372 		return -EINVAL;
2373 	}
2374 }
2375 
2376 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2377 {
2378 	struct hisi_qp *qp = q->priv;
2379 
2380 	return hisi_qm_start_qp(qp, qp->pasid);
2381 }
2382 
2383 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2384 {
2385 	hisi_qm_stop_qp(q->priv);
2386 }
2387 
2388 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2389 {
2390 	struct hisi_qp *qp = q->priv;
2391 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2392 	int updated = 0;
2393 
2394 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2395 		/* make sure to read data from memory */
2396 		dma_rmb();
2397 		qm_cq_head_update(qp);
2398 		cqe = qp->cqe + qp->qp_status.cq_head;
2399 		updated = 1;
2400 	}
2401 
2402 	return updated;
2403 }
2404 
2405 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2406 {
2407 	struct hisi_qm *qm = q->uacce->priv;
2408 	struct hisi_qp *qp = q->priv;
2409 
2410 	down_write(&qm->qps_lock);
2411 	qp->alg_type = type;
2412 	up_write(&qm->qps_lock);
2413 }
2414 
2415 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2416 				unsigned long arg)
2417 {
2418 	struct hisi_qp *qp = q->priv;
2419 	struct hisi_qp_info qp_info;
2420 	struct hisi_qp_ctx qp_ctx;
2421 
2422 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2423 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2424 				   sizeof(struct hisi_qp_ctx)))
2425 			return -EFAULT;
2426 
2427 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2428 			return -EINVAL;
2429 
2430 		qm_set_sqctype(q, qp_ctx.qc_type);
2431 		qp_ctx.id = qp->qp_id;
2432 
2433 		if (copy_to_user((void __user *)arg, &qp_ctx,
2434 				 sizeof(struct hisi_qp_ctx)))
2435 			return -EFAULT;
2436 
2437 		return 0;
2438 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2439 		if (copy_from_user(&qp_info, (void __user *)arg,
2440 				   sizeof(struct hisi_qp_info)))
2441 			return -EFAULT;
2442 
2443 		qp_info.sqe_size = qp->qm->sqe_size;
2444 		qp_info.sq_depth = qp->sq_depth;
2445 		qp_info.cq_depth = qp->cq_depth;
2446 
2447 		if (copy_to_user((void __user *)arg, &qp_info,
2448 				  sizeof(struct hisi_qp_info)))
2449 			return -EFAULT;
2450 
2451 		return 0;
2452 	}
2453 
2454 	return -EINVAL;
2455 }
2456 
2457 /**
2458  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2459  * according to user's configuration of error threshold.
2460  * @qm: the uacce device
2461  */
2462 static int qm_hw_err_isolate(struct hisi_qm *qm)
2463 {
2464 	struct qm_hw_err *err, *tmp, *hw_err;
2465 	struct qm_err_isolate *isolate;
2466 	u32 count = 0;
2467 
2468 	isolate = &qm->isolate_data;
2469 
2470 #define SECONDS_PER_HOUR	3600
2471 
2472 	/* All the hw errs are processed by PF driver */
2473 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2474 		return 0;
2475 
2476 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2477 	if (!hw_err)
2478 		return -ENOMEM;
2479 
2480 	/*
2481 	 * Time-stamp every slot AER error. Then check the AER error log when the
2482 	 * next device AER error occurred. if the device slot AER error count exceeds
2483 	 * the setting error threshold in one hour, the isolated state will be set
2484 	 * to true. And the AER error logs that exceed one hour will be cleared.
2485 	 */
2486 	mutex_lock(&isolate->isolate_lock);
2487 	hw_err->timestamp = jiffies;
2488 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2489 		if ((hw_err->timestamp - err->timestamp) / HZ >
2490 		    SECONDS_PER_HOUR) {
2491 			list_del(&err->list);
2492 			kfree(err);
2493 		} else {
2494 			count++;
2495 		}
2496 	}
2497 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2498 	mutex_unlock(&isolate->isolate_lock);
2499 
2500 	if (count >= isolate->err_threshold)
2501 		isolate->is_isolate = true;
2502 
2503 	return 0;
2504 }
2505 
2506 static void qm_hw_err_destroy(struct hisi_qm *qm)
2507 {
2508 	struct qm_hw_err *err, *tmp;
2509 
2510 	mutex_lock(&qm->isolate_data.isolate_lock);
2511 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2512 		list_del(&err->list);
2513 		kfree(err);
2514 	}
2515 	mutex_unlock(&qm->isolate_data.isolate_lock);
2516 }
2517 
2518 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2519 {
2520 	struct hisi_qm *qm = uacce->priv;
2521 	struct hisi_qm *pf_qm;
2522 
2523 	if (uacce->is_vf)
2524 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2525 	else
2526 		pf_qm = qm;
2527 
2528 	return pf_qm->isolate_data.is_isolate ?
2529 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2530 }
2531 
2532 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2533 {
2534 	struct hisi_qm *qm = uacce->priv;
2535 
2536 	/* Must be set by PF */
2537 	if (uacce->is_vf)
2538 		return -EPERM;
2539 
2540 	if (qm->isolate_data.is_isolate)
2541 		return -EPERM;
2542 
2543 	qm->isolate_data.err_threshold = num;
2544 
2545 	/* After the policy is updated, need to reset the hardware err list */
2546 	qm_hw_err_destroy(qm);
2547 
2548 	return 0;
2549 }
2550 
2551 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2552 {
2553 	struct hisi_qm *qm = uacce->priv;
2554 	struct hisi_qm *pf_qm;
2555 
2556 	if (uacce->is_vf) {
2557 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2558 		return pf_qm->isolate_data.err_threshold;
2559 	}
2560 
2561 	return qm->isolate_data.err_threshold;
2562 }
2563 
2564 static const struct uacce_ops uacce_qm_ops = {
2565 	.get_available_instances = hisi_qm_get_available_instances,
2566 	.get_queue = hisi_qm_uacce_get_queue,
2567 	.put_queue = hisi_qm_uacce_put_queue,
2568 	.start_queue = hisi_qm_uacce_start_queue,
2569 	.stop_queue = hisi_qm_uacce_stop_queue,
2570 	.mmap = hisi_qm_uacce_mmap,
2571 	.ioctl = hisi_qm_uacce_ioctl,
2572 	.is_q_updated = hisi_qm_is_q_updated,
2573 	.get_isolate_state = hisi_qm_get_isolate_state,
2574 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2575 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2576 };
2577 
2578 static void qm_remove_uacce(struct hisi_qm *qm)
2579 {
2580 	struct uacce_device *uacce = qm->uacce;
2581 
2582 	if (qm->use_sva) {
2583 		qm_hw_err_destroy(qm);
2584 		uacce_remove(uacce);
2585 		qm->uacce = NULL;
2586 	}
2587 }
2588 
2589 static int qm_alloc_uacce(struct hisi_qm *qm)
2590 {
2591 	struct pci_dev *pdev = qm->pdev;
2592 	struct uacce_device *uacce;
2593 	unsigned long mmio_page_nr;
2594 	unsigned long dus_page_nr;
2595 	u16 sq_depth, cq_depth;
2596 	struct uacce_interface interface = {
2597 		.flags = UACCE_DEV_SVA,
2598 		.ops = &uacce_qm_ops,
2599 	};
2600 	int ret;
2601 
2602 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2603 		      sizeof(interface.name));
2604 	if (ret < 0)
2605 		return -ENAMETOOLONG;
2606 
2607 	uacce = uacce_alloc(&pdev->dev, &interface);
2608 	if (IS_ERR(uacce))
2609 		return PTR_ERR(uacce);
2610 
2611 	if (uacce->flags & UACCE_DEV_SVA) {
2612 		qm->use_sva = true;
2613 	} else {
2614 		/* only consider sva case */
2615 		qm_remove_uacce(qm);
2616 		return -EINVAL;
2617 	}
2618 
2619 	uacce->is_vf = pdev->is_virtfn;
2620 	uacce->priv = qm;
2621 
2622 	if (qm->ver == QM_HW_V1)
2623 		uacce->api_ver = HISI_QM_API_VER_BASE;
2624 	else if (qm->ver == QM_HW_V2)
2625 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2626 	else
2627 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2628 
2629 	if (qm->ver == QM_HW_V1)
2630 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2631 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2632 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2633 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2634 	else
2635 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2636 
2637 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2638 
2639 	/* Add one more page for device or qp status */
2640 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2641 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2642 					 PAGE_SHIFT;
2643 
2644 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2645 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2646 
2647 	qm->uacce = uacce;
2648 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2649 	mutex_init(&qm->isolate_data.isolate_lock);
2650 
2651 	return 0;
2652 }
2653 
2654 /**
2655  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2656  * there is user on the QM, return failure without doing anything.
2657  * @qm: The qm needed to be fronzen.
2658  *
2659  * This function frozes QM, then we can do SRIOV disabling.
2660  */
2661 static int qm_frozen(struct hisi_qm *qm)
2662 {
2663 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2664 		return 0;
2665 
2666 	down_write(&qm->qps_lock);
2667 
2668 	if (!qm->qp_in_used) {
2669 		qm->qp_in_used = qm->qp_num;
2670 		up_write(&qm->qps_lock);
2671 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2672 		return 0;
2673 	}
2674 
2675 	up_write(&qm->qps_lock);
2676 
2677 	return -EBUSY;
2678 }
2679 
2680 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2681 			     struct hisi_qm_list *qm_list)
2682 {
2683 	struct hisi_qm *qm, *vf_qm;
2684 	struct pci_dev *dev;
2685 	int ret = 0;
2686 
2687 	if (!qm_list || !pdev)
2688 		return -EINVAL;
2689 
2690 	/* Try to frozen all the VFs as disable SRIOV */
2691 	mutex_lock(&qm_list->lock);
2692 	list_for_each_entry(qm, &qm_list->list, list) {
2693 		dev = qm->pdev;
2694 		if (dev == pdev)
2695 			continue;
2696 		if (pci_physfn(dev) == pdev) {
2697 			vf_qm = pci_get_drvdata(dev);
2698 			ret = qm_frozen(vf_qm);
2699 			if (ret)
2700 				goto frozen_fail;
2701 		}
2702 	}
2703 
2704 frozen_fail:
2705 	mutex_unlock(&qm_list->lock);
2706 
2707 	return ret;
2708 }
2709 
2710 /**
2711  * hisi_qm_wait_task_finish() - Wait until the task is finished
2712  * when removing the driver.
2713  * @qm: The qm needed to wait for the task to finish.
2714  * @qm_list: The list of all available devices.
2715  */
2716 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2717 {
2718 	while (qm_frozen(qm) ||
2719 	       ((qm->fun_type == QM_HW_PF) &&
2720 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2721 		msleep(WAIT_PERIOD);
2722 	}
2723 
2724 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2725 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2726 		msleep(WAIT_PERIOD);
2727 
2728 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2729 		flush_work(&qm->cmd_process);
2730 
2731 	udelay(REMOVE_WAIT_DELAY);
2732 }
2733 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2734 
2735 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2736 {
2737 	struct device *dev = &qm->pdev->dev;
2738 	struct qm_dma *qdma;
2739 	int i;
2740 
2741 	for (i = num - 1; i >= 0; i--) {
2742 		qdma = &qm->qp_array[i].qdma;
2743 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2744 		kfree(qm->poll_data[i].qp_finish_id);
2745 	}
2746 
2747 	kfree(qm->poll_data);
2748 	kfree(qm->qp_array);
2749 }
2750 
2751 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2752 			       u16 sq_depth, u16 cq_depth)
2753 {
2754 	struct device *dev = &qm->pdev->dev;
2755 	size_t off = qm->sqe_size * sq_depth;
2756 	struct hisi_qp *qp;
2757 	int ret = -ENOMEM;
2758 
2759 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2760 						 GFP_KERNEL);
2761 	if (!qm->poll_data[id].qp_finish_id)
2762 		return -ENOMEM;
2763 
2764 	qp = &qm->qp_array[id];
2765 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2766 					 GFP_KERNEL);
2767 	if (!qp->qdma.va)
2768 		goto err_free_qp_finish_id;
2769 
2770 	qp->sqe = qp->qdma.va;
2771 	qp->sqe_dma = qp->qdma.dma;
2772 	qp->cqe = qp->qdma.va + off;
2773 	qp->cqe_dma = qp->qdma.dma + off;
2774 	qp->qdma.size = dma_size;
2775 	qp->sq_depth = sq_depth;
2776 	qp->cq_depth = cq_depth;
2777 	qp->qm = qm;
2778 	qp->qp_id = id;
2779 
2780 	return 0;
2781 
2782 err_free_qp_finish_id:
2783 	kfree(qm->poll_data[id].qp_finish_id);
2784 	return ret;
2785 }
2786 
2787 static void hisi_qm_pre_init(struct hisi_qm *qm)
2788 {
2789 	struct pci_dev *pdev = qm->pdev;
2790 
2791 	if (qm->ver == QM_HW_V1)
2792 		qm->ops = &qm_hw_ops_v1;
2793 	else if (qm->ver == QM_HW_V2)
2794 		qm->ops = &qm_hw_ops_v2;
2795 	else
2796 		qm->ops = &qm_hw_ops_v3;
2797 
2798 	pci_set_drvdata(pdev, qm);
2799 	mutex_init(&qm->mailbox_lock);
2800 	init_rwsem(&qm->qps_lock);
2801 	qm->qp_in_used = 0;
2802 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2803 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2804 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2805 	}
2806 }
2807 
2808 static void qm_cmd_uninit(struct hisi_qm *qm)
2809 {
2810 	u32 val;
2811 
2812 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2813 		return;
2814 
2815 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2816 	val |= QM_IFC_INT_DISABLE;
2817 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2818 }
2819 
2820 static void qm_cmd_init(struct hisi_qm *qm)
2821 {
2822 	u32 val;
2823 
2824 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2825 		return;
2826 
2827 	/* Clear communication interrupt source */
2828 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2829 
2830 	/* Enable pf to vf communication reg. */
2831 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2832 	val &= ~QM_IFC_INT_DISABLE;
2833 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2834 }
2835 
2836 static void qm_put_pci_res(struct hisi_qm *qm)
2837 {
2838 	struct pci_dev *pdev = qm->pdev;
2839 
2840 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2841 		iounmap(qm->db_io_base);
2842 
2843 	iounmap(qm->io_base);
2844 	pci_release_mem_regions(pdev);
2845 }
2846 
2847 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2848 {
2849 	struct pci_dev *pdev = qm->pdev;
2850 
2851 	pci_free_irq_vectors(pdev);
2852 	qm_put_pci_res(qm);
2853 	pci_disable_device(pdev);
2854 }
2855 
2856 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2857 {
2858 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2859 		writel(state, qm->io_base + QM_VF_STATE);
2860 }
2861 
2862 static void hisi_qm_unint_work(struct hisi_qm *qm)
2863 {
2864 	destroy_workqueue(qm->wq);
2865 }
2866 
2867 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2868 {
2869 	struct device *dev = &qm->pdev->dev;
2870 
2871 	hisi_qp_memory_uninit(qm, qm->qp_num);
2872 	if (qm->qdma.va) {
2873 		hisi_qm_cache_wb(qm);
2874 		dma_free_coherent(dev, qm->qdma.size,
2875 				  qm->qdma.va, qm->qdma.dma);
2876 	}
2877 
2878 	idr_destroy(&qm->qp_idr);
2879 
2880 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2881 		kfree(qm->factor);
2882 }
2883 
2884 /**
2885  * hisi_qm_uninit() - Uninitialize qm.
2886  * @qm: The qm needed uninit.
2887  *
2888  * This function uninits qm related device resources.
2889  */
2890 void hisi_qm_uninit(struct hisi_qm *qm)
2891 {
2892 	qm_cmd_uninit(qm);
2893 	hisi_qm_unint_work(qm);
2894 	down_write(&qm->qps_lock);
2895 
2896 	if (!qm_avail_state(qm, QM_CLOSE)) {
2897 		up_write(&qm->qps_lock);
2898 		return;
2899 	}
2900 
2901 	hisi_qm_memory_uninit(qm);
2902 	hisi_qm_set_state(qm, QM_NOT_READY);
2903 	up_write(&qm->qps_lock);
2904 
2905 	qm_irqs_unregister(qm);
2906 	hisi_qm_pci_uninit(qm);
2907 	if (qm->use_sva) {
2908 		uacce_remove(qm->uacce);
2909 		qm->uacce = NULL;
2910 	}
2911 }
2912 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2913 
2914 /**
2915  * hisi_qm_get_vft() - Get vft from a qm.
2916  * @qm: The qm we want to get its vft.
2917  * @base: The base number of queue in vft.
2918  * @number: The number of queues in vft.
2919  *
2920  * We can allocate multiple queues to a qm by configuring virtual function
2921  * table. We get related configures by this function. Normally, we call this
2922  * function in VF driver to get the queue information.
2923  *
2924  * qm hw v1 does not support this interface.
2925  */
2926 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2927 {
2928 	if (!base || !number)
2929 		return -EINVAL;
2930 
2931 	if (!qm->ops->get_vft) {
2932 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2933 		return -EINVAL;
2934 	}
2935 
2936 	return qm->ops->get_vft(qm, base, number);
2937 }
2938 
2939 /**
2940  * hisi_qm_set_vft() - Set vft to a qm.
2941  * @qm: The qm we want to set its vft.
2942  * @fun_num: The function number.
2943  * @base: The base number of queue in vft.
2944  * @number: The number of queues in vft.
2945  *
2946  * This function is alway called in PF driver, it is used to assign queues
2947  * among PF and VFs.
2948  *
2949  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2950  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2951  * (VF function number 0x2)
2952  */
2953 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2954 		    u32 number)
2955 {
2956 	u32 max_q_num = qm->ctrl_qp_num;
2957 
2958 	if (base >= max_q_num || number > max_q_num ||
2959 	    (base + number) > max_q_num)
2960 		return -EINVAL;
2961 
2962 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2963 }
2964 
2965 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2966 {
2967 	struct hisi_qm_status *status = &qm->status;
2968 
2969 	status->eq_head = 0;
2970 	status->aeq_head = 0;
2971 	status->eqc_phase = true;
2972 	status->aeqc_phase = true;
2973 }
2974 
2975 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
2976 {
2977 	/* Clear eq/aeq interrupt source */
2978 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
2979 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
2980 
2981 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2982 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2983 }
2984 
2985 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
2986 {
2987 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2988 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2989 }
2990 
2991 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2992 {
2993 	struct device *dev = &qm->pdev->dev;
2994 	struct qm_eqc *eqc;
2995 	dma_addr_t eqc_dma;
2996 	int ret;
2997 
2998 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
2999 	if (!eqc)
3000 		return -ENOMEM;
3001 
3002 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3003 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3004 	if (qm->ver == QM_HW_V1)
3005 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3006 	eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3007 
3008 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
3009 				 DMA_TO_DEVICE);
3010 	if (dma_mapping_error(dev, eqc_dma)) {
3011 		kfree(eqc);
3012 		return -ENOMEM;
3013 	}
3014 
3015 	ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
3016 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
3017 	kfree(eqc);
3018 
3019 	return ret;
3020 }
3021 
3022 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3023 {
3024 	struct device *dev = &qm->pdev->dev;
3025 	struct qm_aeqc *aeqc;
3026 	dma_addr_t aeqc_dma;
3027 	int ret;
3028 
3029 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
3030 	if (!aeqc)
3031 		return -ENOMEM;
3032 
3033 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3034 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3035 	aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3036 
3037 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
3038 				  DMA_TO_DEVICE);
3039 	if (dma_mapping_error(dev, aeqc_dma)) {
3040 		kfree(aeqc);
3041 		return -ENOMEM;
3042 	}
3043 
3044 	ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
3045 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
3046 	kfree(aeqc);
3047 
3048 	return ret;
3049 }
3050 
3051 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3052 {
3053 	struct device *dev = &qm->pdev->dev;
3054 	int ret;
3055 
3056 	qm_init_eq_aeq_status(qm);
3057 
3058 	ret = qm_eq_ctx_cfg(qm);
3059 	if (ret) {
3060 		dev_err(dev, "Set eqc failed!\n");
3061 		return ret;
3062 	}
3063 
3064 	return qm_aeq_ctx_cfg(qm);
3065 }
3066 
3067 static int __hisi_qm_start(struct hisi_qm *qm)
3068 {
3069 	int ret;
3070 
3071 	WARN_ON(!qm->qdma.va);
3072 
3073 	if (qm->fun_type == QM_HW_PF) {
3074 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3075 		if (ret)
3076 			return ret;
3077 	}
3078 
3079 	ret = qm_eq_aeq_ctx_cfg(qm);
3080 	if (ret)
3081 		return ret;
3082 
3083 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3084 	if (ret)
3085 		return ret;
3086 
3087 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3088 	if (ret)
3089 		return ret;
3090 
3091 	qm_init_prefetch(qm);
3092 	qm_enable_eq_aeq_interrupts(qm);
3093 
3094 	return 0;
3095 }
3096 
3097 /**
3098  * hisi_qm_start() - start qm
3099  * @qm: The qm to be started.
3100  *
3101  * This function starts a qm, then we can allocate qp from this qm.
3102  */
3103 int hisi_qm_start(struct hisi_qm *qm)
3104 {
3105 	struct device *dev = &qm->pdev->dev;
3106 	int ret = 0;
3107 
3108 	down_write(&qm->qps_lock);
3109 
3110 	if (!qm_avail_state(qm, QM_START)) {
3111 		up_write(&qm->qps_lock);
3112 		return -EPERM;
3113 	}
3114 
3115 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3116 
3117 	if (!qm->qp_num) {
3118 		dev_err(dev, "qp_num should not be 0\n");
3119 		ret = -EINVAL;
3120 		goto err_unlock;
3121 	}
3122 
3123 	ret = __hisi_qm_start(qm);
3124 	if (!ret)
3125 		atomic_set(&qm->status.flags, QM_START);
3126 
3127 	hisi_qm_set_state(qm, QM_READY);
3128 err_unlock:
3129 	up_write(&qm->qps_lock);
3130 	return ret;
3131 }
3132 EXPORT_SYMBOL_GPL(hisi_qm_start);
3133 
3134 static int qm_restart(struct hisi_qm *qm)
3135 {
3136 	struct device *dev = &qm->pdev->dev;
3137 	struct hisi_qp *qp;
3138 	int ret, i;
3139 
3140 	ret = hisi_qm_start(qm);
3141 	if (ret < 0)
3142 		return ret;
3143 
3144 	down_write(&qm->qps_lock);
3145 	for (i = 0; i < qm->qp_num; i++) {
3146 		qp = &qm->qp_array[i];
3147 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3148 		    qp->is_resetting == true) {
3149 			ret = qm_start_qp_nolock(qp, 0);
3150 			if (ret < 0) {
3151 				dev_err(dev, "Failed to start qp%d!\n", i);
3152 
3153 				up_write(&qm->qps_lock);
3154 				return ret;
3155 			}
3156 			qp->is_resetting = false;
3157 		}
3158 	}
3159 	up_write(&qm->qps_lock);
3160 
3161 	return 0;
3162 }
3163 
3164 /* Stop started qps in reset flow */
3165 static int qm_stop_started_qp(struct hisi_qm *qm)
3166 {
3167 	struct device *dev = &qm->pdev->dev;
3168 	struct hisi_qp *qp;
3169 	int i, ret;
3170 
3171 	for (i = 0; i < qm->qp_num; i++) {
3172 		qp = &qm->qp_array[i];
3173 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3174 			qp->is_resetting = true;
3175 			ret = qm_stop_qp_nolock(qp);
3176 			if (ret < 0) {
3177 				dev_err(dev, "Failed to stop qp%d!\n", i);
3178 				return ret;
3179 			}
3180 		}
3181 	}
3182 
3183 	return 0;
3184 }
3185 
3186 /**
3187  * qm_clear_queues() - Clear all queues memory in a qm.
3188  * @qm: The qm in which the queues will be cleared.
3189  *
3190  * This function clears all queues memory in a qm. Reset of accelerator can
3191  * use this to clear queues.
3192  */
3193 static void qm_clear_queues(struct hisi_qm *qm)
3194 {
3195 	struct hisi_qp *qp;
3196 	int i;
3197 
3198 	for (i = 0; i < qm->qp_num; i++) {
3199 		qp = &qm->qp_array[i];
3200 		if (qp->is_in_kernel && qp->is_resetting)
3201 			memset(qp->qdma.va, 0, qp->qdma.size);
3202 	}
3203 
3204 	memset(qm->qdma.va, 0, qm->qdma.size);
3205 }
3206 
3207 /**
3208  * hisi_qm_stop() - Stop a qm.
3209  * @qm: The qm which will be stopped.
3210  * @r: The reason to stop qm.
3211  *
3212  * This function stops qm and its qps, then qm can not accept request.
3213  * Related resources are not released at this state, we can use hisi_qm_start
3214  * to let qm start again.
3215  */
3216 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3217 {
3218 	struct device *dev = &qm->pdev->dev;
3219 	int ret = 0;
3220 
3221 	down_write(&qm->qps_lock);
3222 
3223 	qm->status.stop_reason = r;
3224 	if (!qm_avail_state(qm, QM_STOP)) {
3225 		ret = -EPERM;
3226 		goto err_unlock;
3227 	}
3228 
3229 	if (qm->status.stop_reason == QM_SOFT_RESET ||
3230 	    qm->status.stop_reason == QM_DOWN) {
3231 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3232 		ret = qm_stop_started_qp(qm);
3233 		if (ret < 0) {
3234 			dev_err(dev, "Failed to stop started qp!\n");
3235 			goto err_unlock;
3236 		}
3237 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3238 	}
3239 
3240 	qm_disable_eq_aeq_interrupts(qm);
3241 	if (qm->fun_type == QM_HW_PF) {
3242 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3243 		if (ret < 0) {
3244 			dev_err(dev, "Failed to set vft!\n");
3245 			ret = -EBUSY;
3246 			goto err_unlock;
3247 		}
3248 	}
3249 
3250 	qm_clear_queues(qm);
3251 	atomic_set(&qm->status.flags, QM_STOP);
3252 
3253 err_unlock:
3254 	up_write(&qm->qps_lock);
3255 	return ret;
3256 }
3257 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3258 
3259 static void qm_hw_error_init(struct hisi_qm *qm)
3260 {
3261 	if (!qm->ops->hw_error_init) {
3262 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3263 		return;
3264 	}
3265 
3266 	qm->ops->hw_error_init(qm);
3267 }
3268 
3269 static void qm_hw_error_uninit(struct hisi_qm *qm)
3270 {
3271 	if (!qm->ops->hw_error_uninit) {
3272 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3273 		return;
3274 	}
3275 
3276 	qm->ops->hw_error_uninit(qm);
3277 }
3278 
3279 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3280 {
3281 	if (!qm->ops->hw_error_handle) {
3282 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3283 		return ACC_ERR_NONE;
3284 	}
3285 
3286 	return qm->ops->hw_error_handle(qm);
3287 }
3288 
3289 /**
3290  * hisi_qm_dev_err_init() - Initialize device error configuration.
3291  * @qm: The qm for which we want to do error initialization.
3292  *
3293  * Initialize QM and device error related configuration.
3294  */
3295 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3296 {
3297 	if (qm->fun_type == QM_HW_VF)
3298 		return;
3299 
3300 	qm_hw_error_init(qm);
3301 
3302 	if (!qm->err_ini->hw_err_enable) {
3303 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3304 		return;
3305 	}
3306 	qm->err_ini->hw_err_enable(qm);
3307 }
3308 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3309 
3310 /**
3311  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3312  * @qm: The qm for which we want to do error uninitialization.
3313  *
3314  * Uninitialize QM and device error related configuration.
3315  */
3316 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3317 {
3318 	if (qm->fun_type == QM_HW_VF)
3319 		return;
3320 
3321 	qm_hw_error_uninit(qm);
3322 
3323 	if (!qm->err_ini->hw_err_disable) {
3324 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3325 		return;
3326 	}
3327 	qm->err_ini->hw_err_disable(qm);
3328 }
3329 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3330 
3331 /**
3332  * hisi_qm_free_qps() - free multiple queue pairs.
3333  * @qps: The queue pairs need to be freed.
3334  * @qp_num: The num of queue pairs.
3335  */
3336 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3337 {
3338 	int i;
3339 
3340 	if (!qps || qp_num <= 0)
3341 		return;
3342 
3343 	for (i = qp_num - 1; i >= 0; i--)
3344 		hisi_qm_release_qp(qps[i]);
3345 }
3346 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3347 
3348 static void free_list(struct list_head *head)
3349 {
3350 	struct hisi_qm_resource *res, *tmp;
3351 
3352 	list_for_each_entry_safe(res, tmp, head, list) {
3353 		list_del(&res->list);
3354 		kfree(res);
3355 	}
3356 }
3357 
3358 static int hisi_qm_sort_devices(int node, struct list_head *head,
3359 				struct hisi_qm_list *qm_list)
3360 {
3361 	struct hisi_qm_resource *res, *tmp;
3362 	struct hisi_qm *qm;
3363 	struct list_head *n;
3364 	struct device *dev;
3365 	int dev_node;
3366 
3367 	list_for_each_entry(qm, &qm_list->list, list) {
3368 		dev = &qm->pdev->dev;
3369 
3370 		dev_node = dev_to_node(dev);
3371 		if (dev_node < 0)
3372 			dev_node = 0;
3373 
3374 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3375 		if (!res)
3376 			return -ENOMEM;
3377 
3378 		res->qm = qm;
3379 		res->distance = node_distance(dev_node, node);
3380 		n = head;
3381 		list_for_each_entry(tmp, head, list) {
3382 			if (res->distance < tmp->distance) {
3383 				n = &tmp->list;
3384 				break;
3385 			}
3386 		}
3387 		list_add_tail(&res->list, n);
3388 	}
3389 
3390 	return 0;
3391 }
3392 
3393 /**
3394  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3395  * @qm_list: The list of all available devices.
3396  * @qp_num: The number of queue pairs need created.
3397  * @alg_type: The algorithm type.
3398  * @node: The numa node.
3399  * @qps: The queue pairs need created.
3400  *
3401  * This function will sort all available device according to numa distance.
3402  * Then try to create all queue pairs from one device, if all devices do
3403  * not meet the requirements will return error.
3404  */
3405 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3406 			   u8 alg_type, int node, struct hisi_qp **qps)
3407 {
3408 	struct hisi_qm_resource *tmp;
3409 	int ret = -ENODEV;
3410 	LIST_HEAD(head);
3411 	int i;
3412 
3413 	if (!qps || !qm_list || qp_num <= 0)
3414 		return -EINVAL;
3415 
3416 	mutex_lock(&qm_list->lock);
3417 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3418 		mutex_unlock(&qm_list->lock);
3419 		goto err;
3420 	}
3421 
3422 	list_for_each_entry(tmp, &head, list) {
3423 		for (i = 0; i < qp_num; i++) {
3424 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3425 			if (IS_ERR(qps[i])) {
3426 				hisi_qm_free_qps(qps, i);
3427 				break;
3428 			}
3429 		}
3430 
3431 		if (i == qp_num) {
3432 			ret = 0;
3433 			break;
3434 		}
3435 	}
3436 
3437 	mutex_unlock(&qm_list->lock);
3438 	if (ret)
3439 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3440 			node, alg_type, qp_num);
3441 
3442 err:
3443 	free_list(&head);
3444 	return ret;
3445 }
3446 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3447 
3448 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3449 {
3450 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3451 	u32 max_qp_num = qm->max_qp_num;
3452 	u32 q_base = qm->qp_num;
3453 	int ret;
3454 
3455 	if (!num_vfs)
3456 		return -EINVAL;
3457 
3458 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3459 
3460 	/* If vfs_q_num is less than num_vfs, return error. */
3461 	if (vfs_q_num < num_vfs)
3462 		return -EINVAL;
3463 
3464 	q_num = vfs_q_num / num_vfs;
3465 	remain_q_num = vfs_q_num % num_vfs;
3466 
3467 	for (i = num_vfs; i > 0; i--) {
3468 		/*
3469 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3470 		 * remaining queues equally.
3471 		 */
3472 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3473 			act_q_num = q_num + remain_q_num;
3474 			remain_q_num = 0;
3475 		} else if (remain_q_num > 0) {
3476 			act_q_num = q_num + 1;
3477 			remain_q_num--;
3478 		} else {
3479 			act_q_num = q_num;
3480 		}
3481 
3482 		act_q_num = min(act_q_num, max_qp_num);
3483 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3484 		if (ret) {
3485 			for (j = num_vfs; j > i; j--)
3486 				hisi_qm_set_vft(qm, j, 0, 0);
3487 			return ret;
3488 		}
3489 		q_base += act_q_num;
3490 	}
3491 
3492 	return 0;
3493 }
3494 
3495 static int qm_clear_vft_config(struct hisi_qm *qm)
3496 {
3497 	int ret;
3498 	u32 i;
3499 
3500 	for (i = 1; i <= qm->vfs_num; i++) {
3501 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3502 		if (ret)
3503 			return ret;
3504 	}
3505 	qm->vfs_num = 0;
3506 
3507 	return 0;
3508 }
3509 
3510 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3511 {
3512 	struct device *dev = &qm->pdev->dev;
3513 	u32 ir = qos * QM_QOS_RATE;
3514 	int ret, total_vfs, i;
3515 
3516 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3517 	if (fun_index > total_vfs)
3518 		return -EINVAL;
3519 
3520 	qm->factor[fun_index].func_qos = qos;
3521 
3522 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3523 	if (ret) {
3524 		dev_err(dev, "failed to calculate shaper parameter!\n");
3525 		return -EINVAL;
3526 	}
3527 
3528 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3529 		/* The base number of queue reuse for different alg type */
3530 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3531 		if (ret) {
3532 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3533 			return -EINVAL;
3534 		}
3535 	}
3536 
3537 	return 0;
3538 }
3539 
3540 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3541 {
3542 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3543 	u64 shaper_vft, ir_calc, ir;
3544 	unsigned int val;
3545 	u32 error_rate;
3546 	int ret;
3547 
3548 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3549 					 val & BIT(0), POLL_PERIOD,
3550 					 POLL_TIMEOUT);
3551 	if (ret)
3552 		return 0;
3553 
3554 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3555 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3556 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3557 
3558 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3559 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3560 
3561 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3562 					 val & BIT(0), POLL_PERIOD,
3563 					 POLL_TIMEOUT);
3564 	if (ret)
3565 		return 0;
3566 
3567 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3568 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3569 
3570 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3571 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3572 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3573 
3574 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3575 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3576 
3577 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3578 
3579 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3580 
3581 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3582 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3583 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3584 		return 0;
3585 	}
3586 
3587 	return ir;
3588 }
3589 
3590 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3591 {
3592 	struct device *dev = &qm->pdev->dev;
3593 	u64 mb_cmd;
3594 	u32 qos;
3595 	int ret;
3596 
3597 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3598 	if (!qos) {
3599 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3600 		return;
3601 	}
3602 
3603 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3604 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3605 	if (ret)
3606 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3607 }
3608 
3609 static int qm_vf_read_qos(struct hisi_qm *qm)
3610 {
3611 	int cnt = 0;
3612 	int ret = -EINVAL;
3613 
3614 	/* reset mailbox qos val */
3615 	qm->mb_qos = 0;
3616 
3617 	/* vf ping pf to get function qos */
3618 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3619 	if (ret) {
3620 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3621 		return ret;
3622 	}
3623 
3624 	while (true) {
3625 		msleep(QM_WAIT_DST_ACK);
3626 		if (qm->mb_qos)
3627 			break;
3628 
3629 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3630 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3631 			return  -ETIMEDOUT;
3632 		}
3633 	}
3634 
3635 	return ret;
3636 }
3637 
3638 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3639 			       size_t count, loff_t *pos)
3640 {
3641 	struct hisi_qm *qm = filp->private_data;
3642 	char tbuf[QM_DBG_READ_LEN];
3643 	u32 qos_val, ir;
3644 	int ret;
3645 
3646 	ret = hisi_qm_get_dfx_access(qm);
3647 	if (ret)
3648 		return ret;
3649 
3650 	/* Mailbox and reset cannot be operated at the same time */
3651 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3652 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3653 		ret = -EAGAIN;
3654 		goto err_put_dfx_access;
3655 	}
3656 
3657 	if (qm->fun_type == QM_HW_PF) {
3658 		ir = qm_get_shaper_vft_qos(qm, 0);
3659 	} else {
3660 		ret = qm_vf_read_qos(qm);
3661 		if (ret)
3662 			goto err_get_status;
3663 		ir = qm->mb_qos;
3664 	}
3665 
3666 	qos_val = ir / QM_QOS_RATE;
3667 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3668 
3669 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3670 
3671 err_get_status:
3672 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3673 err_put_dfx_access:
3674 	hisi_qm_put_dfx_access(qm);
3675 	return ret;
3676 }
3677 
3678 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3679 			       unsigned long *val,
3680 			       unsigned int *fun_index)
3681 {
3682 	const struct bus_type *bus_type = qm->pdev->dev.bus;
3683 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3684 	char val_buf[QM_DBG_READ_LEN] = {0};
3685 	struct pci_dev *pdev;
3686 	struct device *dev;
3687 	int ret;
3688 
3689 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3690 	if (ret != QM_QOS_PARAM_NUM)
3691 		return -EINVAL;
3692 
3693 	ret = kstrtoul(val_buf, 10, val);
3694 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3695 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3696 		return -EINVAL;
3697 	}
3698 
3699 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3700 	if (!dev) {
3701 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3702 		return -ENODEV;
3703 	}
3704 
3705 	pdev = container_of(dev, struct pci_dev, dev);
3706 
3707 	*fun_index = pdev->devfn;
3708 
3709 	return 0;
3710 }
3711 
3712 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3713 			       size_t count, loff_t *pos)
3714 {
3715 	struct hisi_qm *qm = filp->private_data;
3716 	char tbuf[QM_DBG_READ_LEN];
3717 	unsigned int fun_index;
3718 	unsigned long val;
3719 	int len, ret;
3720 
3721 	if (*pos != 0)
3722 		return 0;
3723 
3724 	if (count >= QM_DBG_READ_LEN)
3725 		return -ENOSPC;
3726 
3727 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3728 	if (len < 0)
3729 		return len;
3730 
3731 	tbuf[len] = '\0';
3732 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3733 	if (ret)
3734 		return ret;
3735 
3736 	/* Mailbox and reset cannot be operated at the same time */
3737 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3738 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3739 		return -EAGAIN;
3740 	}
3741 
3742 	ret = qm_pm_get_sync(qm);
3743 	if (ret) {
3744 		ret = -EINVAL;
3745 		goto err_get_status;
3746 	}
3747 
3748 	ret = qm_func_shaper_enable(qm, fun_index, val);
3749 	if (ret) {
3750 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3751 		ret = -EINVAL;
3752 		goto err_put_sync;
3753 	}
3754 
3755 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3756 		 fun_index, val);
3757 	ret = count;
3758 
3759 err_put_sync:
3760 	qm_pm_put_sync(qm);
3761 err_get_status:
3762 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3763 	return ret;
3764 }
3765 
3766 static const struct file_operations qm_algqos_fops = {
3767 	.owner = THIS_MODULE,
3768 	.open = simple_open,
3769 	.read = qm_algqos_read,
3770 	.write = qm_algqos_write,
3771 };
3772 
3773 /**
3774  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3775  * @qm: The qm for which we want to add debugfs files.
3776  *
3777  * Create function qos debugfs files, VF ping PF to get function qos.
3778  */
3779 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3780 {
3781 	if (qm->fun_type == QM_HW_PF)
3782 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3783 				    qm, &qm_algqos_fops);
3784 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3785 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3786 				    qm, &qm_algqos_fops);
3787 }
3788 
3789 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3790 {
3791 	int i;
3792 
3793 	for (i = 1; i <= total_func; i++)
3794 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3795 }
3796 
3797 /**
3798  * hisi_qm_sriov_enable() - enable virtual functions
3799  * @pdev: the PCIe device
3800  * @max_vfs: the number of virtual functions to enable
3801  *
3802  * Returns the number of enabled VFs. If there are VFs enabled already or
3803  * max_vfs is more than the total number of device can be enabled, returns
3804  * failure.
3805  */
3806 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3807 {
3808 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3809 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3810 
3811 	ret = qm_pm_get_sync(qm);
3812 	if (ret)
3813 		return ret;
3814 
3815 	total_vfs = pci_sriov_get_totalvfs(pdev);
3816 	pre_existing_vfs = pci_num_vf(pdev);
3817 	if (pre_existing_vfs) {
3818 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3819 			pre_existing_vfs);
3820 		goto err_put_sync;
3821 	}
3822 
3823 	if (max_vfs > total_vfs) {
3824 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3825 		ret = -ERANGE;
3826 		goto err_put_sync;
3827 	}
3828 
3829 	num_vfs = max_vfs;
3830 
3831 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3832 		hisi_qm_init_vf_qos(qm, num_vfs);
3833 
3834 	ret = qm_vf_q_assign(qm, num_vfs);
3835 	if (ret) {
3836 		pci_err(pdev, "Can't assign queues for VF!\n");
3837 		goto err_put_sync;
3838 	}
3839 
3840 	qm->vfs_num = num_vfs;
3841 
3842 	ret = pci_enable_sriov(pdev, num_vfs);
3843 	if (ret) {
3844 		pci_err(pdev, "Can't enable VF!\n");
3845 		qm_clear_vft_config(qm);
3846 		goto err_put_sync;
3847 	}
3848 
3849 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3850 
3851 	return num_vfs;
3852 
3853 err_put_sync:
3854 	qm_pm_put_sync(qm);
3855 	return ret;
3856 }
3857 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3858 
3859 /**
3860  * hisi_qm_sriov_disable - disable virtual functions
3861  * @pdev: the PCI device.
3862  * @is_frozen: true when all the VFs are frozen.
3863  *
3864  * Return failure if there are VFs assigned already or VF is in used.
3865  */
3866 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3867 {
3868 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3869 	int ret;
3870 
3871 	if (pci_vfs_assigned(pdev)) {
3872 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3873 		return -EPERM;
3874 	}
3875 
3876 	/* While VF is in used, SRIOV cannot be disabled. */
3877 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3878 		pci_err(pdev, "Task is using its VF!\n");
3879 		return -EBUSY;
3880 	}
3881 
3882 	pci_disable_sriov(pdev);
3883 
3884 	ret = qm_clear_vft_config(qm);
3885 	if (ret)
3886 		return ret;
3887 
3888 	qm_pm_put_sync(qm);
3889 
3890 	return 0;
3891 }
3892 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3893 
3894 /**
3895  * hisi_qm_sriov_configure - configure the number of VFs
3896  * @pdev: The PCI device
3897  * @num_vfs: The number of VFs need enabled
3898  *
3899  * Enable SR-IOV according to num_vfs, 0 means disable.
3900  */
3901 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3902 {
3903 	if (num_vfs == 0)
3904 		return hisi_qm_sriov_disable(pdev, false);
3905 	else
3906 		return hisi_qm_sriov_enable(pdev, num_vfs);
3907 }
3908 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3909 
3910 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3911 {
3912 	u32 err_sts;
3913 
3914 	if (!qm->err_ini->get_dev_hw_err_status) {
3915 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3916 		return ACC_ERR_NONE;
3917 	}
3918 
3919 	/* get device hardware error status */
3920 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3921 	if (err_sts) {
3922 		if (err_sts & qm->err_info.ecc_2bits_mask)
3923 			qm->err_status.is_dev_ecc_mbit = true;
3924 
3925 		if (qm->err_ini->log_dev_hw_err)
3926 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3927 
3928 		if (err_sts & qm->err_info.dev_reset_mask)
3929 			return ACC_ERR_NEED_RESET;
3930 
3931 		if (qm->err_ini->clear_dev_hw_err_status)
3932 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
3933 	}
3934 
3935 	return ACC_ERR_RECOVERED;
3936 }
3937 
3938 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3939 {
3940 	enum acc_err_result qm_ret, dev_ret;
3941 
3942 	/* log qm error */
3943 	qm_ret = qm_hw_error_handle(qm);
3944 
3945 	/* log device error */
3946 	dev_ret = qm_dev_err_handle(qm);
3947 
3948 	return (qm_ret == ACC_ERR_NEED_RESET ||
3949 		dev_ret == ACC_ERR_NEED_RESET) ?
3950 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3951 }
3952 
3953 /**
3954  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3955  * @pdev: The PCI device which need report error.
3956  * @state: The connectivity between CPU and device.
3957  *
3958  * We register this function into PCIe AER handlers, It will report device or
3959  * qm hardware error status when error occur.
3960  */
3961 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3962 					  pci_channel_state_t state)
3963 {
3964 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3965 	enum acc_err_result ret;
3966 
3967 	if (pdev->is_virtfn)
3968 		return PCI_ERS_RESULT_NONE;
3969 
3970 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3971 	if (state == pci_channel_io_perm_failure)
3972 		return PCI_ERS_RESULT_DISCONNECT;
3973 
3974 	ret = qm_process_dev_error(qm);
3975 	if (ret == ACC_ERR_NEED_RESET)
3976 		return PCI_ERS_RESULT_NEED_RESET;
3977 
3978 	return PCI_ERS_RESULT_RECOVERED;
3979 }
3980 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3981 
3982 static int qm_check_req_recv(struct hisi_qm *qm)
3983 {
3984 	struct pci_dev *pdev = qm->pdev;
3985 	int ret;
3986 	u32 val;
3987 
3988 	if (qm->ver >= QM_HW_V3)
3989 		return 0;
3990 
3991 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3992 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3993 					 (val == ACC_VENDOR_ID_VALUE),
3994 					 POLL_PERIOD, POLL_TIMEOUT);
3995 	if (ret) {
3996 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3997 		return ret;
3998 	}
3999 
4000 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4001 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4002 					 (val == PCI_VENDOR_ID_HUAWEI),
4003 					 POLL_PERIOD, POLL_TIMEOUT);
4004 	if (ret)
4005 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4006 
4007 	return ret;
4008 }
4009 
4010 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4011 {
4012 	struct pci_dev *pdev = qm->pdev;
4013 	u16 cmd;
4014 	int i;
4015 
4016 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4017 	if (set)
4018 		cmd |= PCI_COMMAND_MEMORY;
4019 	else
4020 		cmd &= ~PCI_COMMAND_MEMORY;
4021 
4022 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4023 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4024 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4025 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4026 			return 0;
4027 
4028 		udelay(1);
4029 	}
4030 
4031 	return -ETIMEDOUT;
4032 }
4033 
4034 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4035 {
4036 	struct pci_dev *pdev = qm->pdev;
4037 	u16 sriov_ctrl;
4038 	int pos;
4039 	int i;
4040 
4041 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4042 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4043 	if (set)
4044 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4045 	else
4046 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4047 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4048 
4049 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4050 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4051 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4052 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4053 			return 0;
4054 
4055 		udelay(1);
4056 	}
4057 
4058 	return -ETIMEDOUT;
4059 }
4060 
4061 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4062 			       enum qm_stop_reason stop_reason)
4063 {
4064 	struct hisi_qm_list *qm_list = qm->qm_list;
4065 	struct pci_dev *pdev = qm->pdev;
4066 	struct pci_dev *virtfn;
4067 	struct hisi_qm *vf_qm;
4068 	int ret = 0;
4069 
4070 	mutex_lock(&qm_list->lock);
4071 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4072 		virtfn = vf_qm->pdev;
4073 		if (virtfn == pdev)
4074 			continue;
4075 
4076 		if (pci_physfn(virtfn) == pdev) {
4077 			/* save VFs PCIE BAR configuration */
4078 			pci_save_state(virtfn);
4079 
4080 			ret = hisi_qm_stop(vf_qm, stop_reason);
4081 			if (ret)
4082 				goto stop_fail;
4083 		}
4084 	}
4085 
4086 stop_fail:
4087 	mutex_unlock(&qm_list->lock);
4088 	return ret;
4089 }
4090 
4091 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4092 			   enum qm_stop_reason stop_reason)
4093 {
4094 	struct pci_dev *pdev = qm->pdev;
4095 	int ret;
4096 
4097 	if (!qm->vfs_num)
4098 		return 0;
4099 
4100 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4101 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4102 		ret = qm_ping_all_vfs(qm, cmd);
4103 		if (ret)
4104 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4105 	} else {
4106 		ret = qm_vf_reset_prepare(qm, stop_reason);
4107 		if (ret)
4108 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4109 	}
4110 
4111 	return ret;
4112 }
4113 
4114 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4115 {
4116 	struct pci_dev *pdev = qm->pdev;
4117 	int ret;
4118 
4119 	ret = qm_reset_prepare_ready(qm);
4120 	if (ret) {
4121 		pci_err(pdev, "Controller reset not ready!\n");
4122 		return ret;
4123 	}
4124 
4125 	/* PF obtains the information of VF by querying the register. */
4126 	qm_cmd_uninit(qm);
4127 
4128 	/* Whether VFs stop successfully, soft reset will continue. */
4129 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4130 	if (ret)
4131 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4132 
4133 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4134 	if (ret) {
4135 		pci_err(pdev, "Fails to stop QM!\n");
4136 		qm_reset_bit_clear(qm);
4137 		return ret;
4138 	}
4139 
4140 	if (qm->use_sva) {
4141 		ret = qm_hw_err_isolate(qm);
4142 		if (ret)
4143 			pci_err(pdev, "failed to isolate hw err!\n");
4144 	}
4145 
4146 	ret = qm_wait_vf_prepare_finish(qm);
4147 	if (ret)
4148 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4149 
4150 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4151 
4152 	return 0;
4153 }
4154 
4155 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4156 {
4157 	u32 nfe_enb = 0;
4158 
4159 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4160 	if (qm->ver >= QM_HW_V3)
4161 		return;
4162 
4163 	if (!qm->err_status.is_dev_ecc_mbit &&
4164 	    qm->err_status.is_qm_ecc_mbit &&
4165 	    qm->err_ini->close_axi_master_ooo) {
4166 		qm->err_ini->close_axi_master_ooo(qm);
4167 	} else if (qm->err_status.is_dev_ecc_mbit &&
4168 		   !qm->err_status.is_qm_ecc_mbit &&
4169 		   !qm->err_ini->close_axi_master_ooo) {
4170 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4171 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4172 		       qm->io_base + QM_RAS_NFE_ENABLE);
4173 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4174 	}
4175 }
4176 
4177 static int qm_soft_reset(struct hisi_qm *qm)
4178 {
4179 	struct pci_dev *pdev = qm->pdev;
4180 	int ret;
4181 	u32 val;
4182 
4183 	/* Ensure all doorbells and mailboxes received by QM */
4184 	ret = qm_check_req_recv(qm);
4185 	if (ret)
4186 		return ret;
4187 
4188 	if (qm->vfs_num) {
4189 		ret = qm_set_vf_mse(qm, false);
4190 		if (ret) {
4191 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4192 			return ret;
4193 		}
4194 	}
4195 
4196 	ret = qm->ops->set_msi(qm, false);
4197 	if (ret) {
4198 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4199 		return ret;
4200 	}
4201 
4202 	qm_dev_ecc_mbit_handle(qm);
4203 
4204 	/* OOO register set and check */
4205 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
4206 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4207 
4208 	/* If bus lock, reset chip */
4209 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4210 					 val,
4211 					 (val == ACC_MASTER_TRANS_RETURN_RW),
4212 					 POLL_PERIOD, POLL_TIMEOUT);
4213 	if (ret) {
4214 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
4215 		return ret;
4216 	}
4217 
4218 	if (qm->err_ini->close_sva_prefetch)
4219 		qm->err_ini->close_sva_prefetch(qm);
4220 
4221 	ret = qm_set_pf_mse(qm, false);
4222 	if (ret) {
4223 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4224 		return ret;
4225 	}
4226 
4227 	/* The reset related sub-control registers are not in PCI BAR */
4228 	if (ACPI_HANDLE(&pdev->dev)) {
4229 		unsigned long long value = 0;
4230 		acpi_status s;
4231 
4232 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4233 					  qm->err_info.acpi_rst,
4234 					  NULL, &value);
4235 		if (ACPI_FAILURE(s)) {
4236 			pci_err(pdev, "NO controller reset method!\n");
4237 			return -EIO;
4238 		}
4239 
4240 		if (value) {
4241 			pci_err(pdev, "Reset step %llu failed!\n", value);
4242 			return -EIO;
4243 		}
4244 	} else {
4245 		pci_err(pdev, "No reset method!\n");
4246 		return -EINVAL;
4247 	}
4248 
4249 	return 0;
4250 }
4251 
4252 static int qm_vf_reset_done(struct hisi_qm *qm)
4253 {
4254 	struct hisi_qm_list *qm_list = qm->qm_list;
4255 	struct pci_dev *pdev = qm->pdev;
4256 	struct pci_dev *virtfn;
4257 	struct hisi_qm *vf_qm;
4258 	int ret = 0;
4259 
4260 	mutex_lock(&qm_list->lock);
4261 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4262 		virtfn = vf_qm->pdev;
4263 		if (virtfn == pdev)
4264 			continue;
4265 
4266 		if (pci_physfn(virtfn) == pdev) {
4267 			/* enable VFs PCIE BAR configuration */
4268 			pci_restore_state(virtfn);
4269 
4270 			ret = qm_restart(vf_qm);
4271 			if (ret)
4272 				goto restart_fail;
4273 		}
4274 	}
4275 
4276 restart_fail:
4277 	mutex_unlock(&qm_list->lock);
4278 	return ret;
4279 }
4280 
4281 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4282 {
4283 	struct pci_dev *pdev = qm->pdev;
4284 	int ret;
4285 
4286 	if (!qm->vfs_num)
4287 		return 0;
4288 
4289 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4290 	if (ret) {
4291 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4292 		return ret;
4293 	}
4294 
4295 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4296 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4297 		ret = qm_ping_all_vfs(qm, cmd);
4298 		if (ret)
4299 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4300 	} else {
4301 		ret = qm_vf_reset_done(qm);
4302 		if (ret)
4303 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4304 	}
4305 
4306 	return ret;
4307 }
4308 
4309 static int qm_dev_hw_init(struct hisi_qm *qm)
4310 {
4311 	return qm->err_ini->hw_init(qm);
4312 }
4313 
4314 static void qm_restart_prepare(struct hisi_qm *qm)
4315 {
4316 	u32 value;
4317 
4318 	if (qm->err_ini->open_sva_prefetch)
4319 		qm->err_ini->open_sva_prefetch(qm);
4320 
4321 	if (qm->ver >= QM_HW_V3)
4322 		return;
4323 
4324 	if (!qm->err_status.is_qm_ecc_mbit &&
4325 	    !qm->err_status.is_dev_ecc_mbit)
4326 		return;
4327 
4328 	/* temporarily close the OOO port used for PEH to write out MSI */
4329 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4330 	writel(value & ~qm->err_info.msi_wr_port,
4331 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4332 
4333 	/* clear dev ecc 2bit error source if having */
4334 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4335 	if (value && qm->err_ini->clear_dev_hw_err_status)
4336 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4337 
4338 	/* clear QM ecc mbit error source */
4339 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4340 
4341 	/* clear AM Reorder Buffer ecc mbit source */
4342 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4343 }
4344 
4345 static void qm_restart_done(struct hisi_qm *qm)
4346 {
4347 	u32 value;
4348 
4349 	if (qm->ver >= QM_HW_V3)
4350 		goto clear_flags;
4351 
4352 	if (!qm->err_status.is_qm_ecc_mbit &&
4353 	    !qm->err_status.is_dev_ecc_mbit)
4354 		return;
4355 
4356 	/* open the OOO port for PEH to write out MSI */
4357 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4358 	value |= qm->err_info.msi_wr_port;
4359 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4360 
4361 clear_flags:
4362 	qm->err_status.is_qm_ecc_mbit = false;
4363 	qm->err_status.is_dev_ecc_mbit = false;
4364 }
4365 
4366 static int qm_controller_reset_done(struct hisi_qm *qm)
4367 {
4368 	struct pci_dev *pdev = qm->pdev;
4369 	int ret;
4370 
4371 	ret = qm->ops->set_msi(qm, true);
4372 	if (ret) {
4373 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4374 		return ret;
4375 	}
4376 
4377 	ret = qm_set_pf_mse(qm, true);
4378 	if (ret) {
4379 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4380 		return ret;
4381 	}
4382 
4383 	if (qm->vfs_num) {
4384 		ret = qm_set_vf_mse(qm, true);
4385 		if (ret) {
4386 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4387 			return ret;
4388 		}
4389 	}
4390 
4391 	ret = qm_dev_hw_init(qm);
4392 	if (ret) {
4393 		pci_err(pdev, "Failed to init device\n");
4394 		return ret;
4395 	}
4396 
4397 	qm_restart_prepare(qm);
4398 	hisi_qm_dev_err_init(qm);
4399 	if (qm->err_ini->open_axi_master_ooo)
4400 		qm->err_ini->open_axi_master_ooo(qm);
4401 
4402 	ret = qm_dev_mem_reset(qm);
4403 	if (ret) {
4404 		pci_err(pdev, "failed to reset device memory\n");
4405 		return ret;
4406 	}
4407 
4408 	ret = qm_restart(qm);
4409 	if (ret) {
4410 		pci_err(pdev, "Failed to start QM!\n");
4411 		return ret;
4412 	}
4413 
4414 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4415 	if (ret)
4416 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4417 
4418 	ret = qm_wait_vf_prepare_finish(qm);
4419 	if (ret)
4420 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4421 
4422 	qm_cmd_init(qm);
4423 	qm_restart_done(qm);
4424 
4425 	qm_reset_bit_clear(qm);
4426 
4427 	return 0;
4428 }
4429 
4430 static int qm_controller_reset(struct hisi_qm *qm)
4431 {
4432 	struct pci_dev *pdev = qm->pdev;
4433 	int ret;
4434 
4435 	pci_info(pdev, "Controller resetting...\n");
4436 
4437 	ret = qm_controller_reset_prepare(qm);
4438 	if (ret) {
4439 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4440 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4441 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4442 		return ret;
4443 	}
4444 
4445 	hisi_qm_show_last_dfx_regs(qm);
4446 	if (qm->err_ini->show_last_dfx_regs)
4447 		qm->err_ini->show_last_dfx_regs(qm);
4448 
4449 	ret = qm_soft_reset(qm);
4450 	if (ret)
4451 		goto err_reset;
4452 
4453 	ret = qm_controller_reset_done(qm);
4454 	if (ret)
4455 		goto err_reset;
4456 
4457 	pci_info(pdev, "Controller reset complete\n");
4458 
4459 	return 0;
4460 
4461 err_reset:
4462 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4463 	qm_reset_bit_clear(qm);
4464 
4465 	/* if resetting fails, isolate the device */
4466 	if (qm->use_sva)
4467 		qm->isolate_data.is_isolate = true;
4468 	return ret;
4469 }
4470 
4471 /**
4472  * hisi_qm_dev_slot_reset() - slot reset
4473  * @pdev: the PCIe device
4474  *
4475  * This function offers QM relate PCIe device reset interface. Drivers which
4476  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4477  */
4478 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4479 {
4480 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4481 	int ret;
4482 
4483 	if (pdev->is_virtfn)
4484 		return PCI_ERS_RESULT_RECOVERED;
4485 
4486 	/* reset pcie device controller */
4487 	ret = qm_controller_reset(qm);
4488 	if (ret) {
4489 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4490 		return PCI_ERS_RESULT_DISCONNECT;
4491 	}
4492 
4493 	return PCI_ERS_RESULT_RECOVERED;
4494 }
4495 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4496 
4497 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4498 {
4499 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4500 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4501 	u32 delay = 0;
4502 	int ret;
4503 
4504 	hisi_qm_dev_err_uninit(pf_qm);
4505 
4506 	/*
4507 	 * Check whether there is an ECC mbit error, If it occurs, need to
4508 	 * wait for soft reset to fix it.
4509 	 */
4510 	while (qm_check_dev_error(pf_qm)) {
4511 		msleep(++delay);
4512 		if (delay > QM_RESET_WAIT_TIMEOUT)
4513 			return;
4514 	}
4515 
4516 	ret = qm_reset_prepare_ready(qm);
4517 	if (ret) {
4518 		pci_err(pdev, "FLR not ready!\n");
4519 		return;
4520 	}
4521 
4522 	/* PF obtains the information of VF by querying the register. */
4523 	if (qm->fun_type == QM_HW_PF)
4524 		qm_cmd_uninit(qm);
4525 
4526 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4527 	if (ret)
4528 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4529 
4530 	ret = hisi_qm_stop(qm, QM_DOWN);
4531 	if (ret) {
4532 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4533 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4534 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4535 		return;
4536 	}
4537 
4538 	ret = qm_wait_vf_prepare_finish(qm);
4539 	if (ret)
4540 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4541 
4542 	pci_info(pdev, "FLR resetting...\n");
4543 }
4544 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4545 
4546 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4547 {
4548 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4549 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4550 	u32 id;
4551 
4552 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4553 	if (id == QM_PCI_COMMAND_INVALID) {
4554 		pci_err(pdev, "Device can not be used!\n");
4555 		return false;
4556 	}
4557 
4558 	return true;
4559 }
4560 
4561 void hisi_qm_reset_done(struct pci_dev *pdev)
4562 {
4563 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4564 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4565 	int ret;
4566 
4567 	if (qm->fun_type == QM_HW_PF) {
4568 		ret = qm_dev_hw_init(qm);
4569 		if (ret) {
4570 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4571 			goto flr_done;
4572 		}
4573 	}
4574 
4575 	hisi_qm_dev_err_init(pf_qm);
4576 
4577 	ret = qm_restart(qm);
4578 	if (ret) {
4579 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4580 		goto flr_done;
4581 	}
4582 
4583 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4584 	if (ret)
4585 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4586 
4587 	ret = qm_wait_vf_prepare_finish(qm);
4588 	if (ret)
4589 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4590 
4591 flr_done:
4592 	if (qm->fun_type == QM_HW_PF)
4593 		qm_cmd_init(qm);
4594 
4595 	if (qm_flr_reset_complete(pdev))
4596 		pci_info(pdev, "FLR reset complete\n");
4597 
4598 	qm_reset_bit_clear(qm);
4599 }
4600 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4601 
4602 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4603 {
4604 	struct hisi_qm *qm = data;
4605 	enum acc_err_result ret;
4606 
4607 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4608 	ret = qm_process_dev_error(qm);
4609 	if (ret == ACC_ERR_NEED_RESET &&
4610 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4611 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4612 		schedule_work(&qm->rst_work);
4613 
4614 	return IRQ_HANDLED;
4615 }
4616 
4617 /**
4618  * hisi_qm_dev_shutdown() - Shutdown device.
4619  * @pdev: The device will be shutdown.
4620  *
4621  * This function will stop qm when OS shutdown or rebooting.
4622  */
4623 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4624 {
4625 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4626 	int ret;
4627 
4628 	ret = hisi_qm_stop(qm, QM_DOWN);
4629 	if (ret)
4630 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4631 
4632 	hisi_qm_cache_wb(qm);
4633 }
4634 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4635 
4636 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4637 {
4638 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4639 	int ret;
4640 
4641 	ret = qm_pm_get_sync(qm);
4642 	if (ret) {
4643 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4644 		return;
4645 	}
4646 
4647 	/* reset pcie device controller */
4648 	ret = qm_controller_reset(qm);
4649 	if (ret)
4650 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4651 
4652 	qm_pm_put_sync(qm);
4653 }
4654 
4655 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4656 				   enum qm_stop_reason stop_reason)
4657 {
4658 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4659 	struct pci_dev *pdev = qm->pdev;
4660 	int ret;
4661 
4662 	ret = qm_reset_prepare_ready(qm);
4663 	if (ret) {
4664 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4665 		atomic_set(&qm->status.flags, QM_STOP);
4666 		cmd = QM_VF_PREPARE_FAIL;
4667 		goto err_prepare;
4668 	}
4669 
4670 	ret = hisi_qm_stop(qm, stop_reason);
4671 	if (ret) {
4672 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4673 		atomic_set(&qm->status.flags, QM_STOP);
4674 		cmd = QM_VF_PREPARE_FAIL;
4675 		goto err_prepare;
4676 	} else {
4677 		goto out;
4678 	}
4679 
4680 err_prepare:
4681 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4682 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4683 out:
4684 	pci_save_state(pdev);
4685 	ret = qm_ping_pf(qm, cmd);
4686 	if (ret)
4687 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4688 }
4689 
4690 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4691 {
4692 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4693 	struct pci_dev *pdev = qm->pdev;
4694 	int ret;
4695 
4696 	pci_restore_state(pdev);
4697 	ret = hisi_qm_start(qm);
4698 	if (ret) {
4699 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4700 		cmd = QM_VF_START_FAIL;
4701 	}
4702 
4703 	qm_cmd_init(qm);
4704 	ret = qm_ping_pf(qm, cmd);
4705 	if (ret)
4706 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4707 
4708 	qm_reset_bit_clear(qm);
4709 }
4710 
4711 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4712 {
4713 	struct device *dev = &qm->pdev->dev;
4714 	u32 val, cmd;
4715 	u64 msg;
4716 	int ret;
4717 
4718 	/* Wait for reset to finish */
4719 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4720 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4721 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4722 	/* hardware completion status should be available by this time */
4723 	if (ret) {
4724 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4725 		return -ETIMEDOUT;
4726 	}
4727 
4728 	/*
4729 	 * Whether message is got successfully,
4730 	 * VF needs to ack PF by clearing the interrupt.
4731 	 */
4732 	ret = qm_get_mb_cmd(qm, &msg, 0);
4733 	qm_clear_cmd_interrupt(qm, 0);
4734 	if (ret) {
4735 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4736 		return ret;
4737 	}
4738 
4739 	cmd = msg & QM_MB_CMD_DATA_MASK;
4740 	if (cmd != QM_PF_RESET_DONE) {
4741 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4742 		ret = -EINVAL;
4743 	}
4744 
4745 	return ret;
4746 }
4747 
4748 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4749 				   enum qm_stop_reason stop_reason)
4750 {
4751 	struct device *dev = &qm->pdev->dev;
4752 	int ret;
4753 
4754 	dev_info(dev, "device reset start...\n");
4755 
4756 	/* The message is obtained by querying the register during resetting */
4757 	qm_cmd_uninit(qm);
4758 	qm_pf_reset_vf_prepare(qm, stop_reason);
4759 
4760 	ret = qm_wait_pf_reset_finish(qm);
4761 	if (ret)
4762 		goto err_get_status;
4763 
4764 	qm_pf_reset_vf_done(qm);
4765 
4766 	dev_info(dev, "device reset done.\n");
4767 
4768 	return;
4769 
4770 err_get_status:
4771 	qm_cmd_init(qm);
4772 	qm_reset_bit_clear(qm);
4773 }
4774 
4775 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4776 {
4777 	struct device *dev = &qm->pdev->dev;
4778 	u64 msg;
4779 	u32 cmd;
4780 	int ret;
4781 
4782 	/*
4783 	 * Get the msg from source by sending mailbox. Whether message is got
4784 	 * successfully, destination needs to ack source by clearing the interrupt.
4785 	 */
4786 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4787 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4788 	if (ret) {
4789 		dev_err(dev, "failed to get msg from source!\n");
4790 		return;
4791 	}
4792 
4793 	cmd = msg & QM_MB_CMD_DATA_MASK;
4794 	switch (cmd) {
4795 	case QM_PF_FLR_PREPARE:
4796 		qm_pf_reset_vf_process(qm, QM_DOWN);
4797 		break;
4798 	case QM_PF_SRST_PREPARE:
4799 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4800 		break;
4801 	case QM_VF_GET_QOS:
4802 		qm_vf_get_qos(qm, fun_num);
4803 		break;
4804 	case QM_PF_SET_QOS:
4805 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4806 		break;
4807 	default:
4808 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4809 		break;
4810 	}
4811 }
4812 
4813 static void qm_cmd_process(struct work_struct *cmd_process)
4814 {
4815 	struct hisi_qm *qm = container_of(cmd_process,
4816 					struct hisi_qm, cmd_process);
4817 	u32 vfs_num = qm->vfs_num;
4818 	u64 val;
4819 	u32 i;
4820 
4821 	if (qm->fun_type == QM_HW_PF) {
4822 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4823 		if (!val)
4824 			return;
4825 
4826 		for (i = 1; i <= vfs_num; i++) {
4827 			if (val & BIT(i))
4828 				qm_handle_cmd_msg(qm, i);
4829 		}
4830 
4831 		return;
4832 	}
4833 
4834 	qm_handle_cmd_msg(qm, 0);
4835 }
4836 
4837 /**
4838  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
4839  * @qm: The qm needs add.
4840  * @qm_list: The qm list.
4841  *
4842  * This function adds qm to qm list, and will register algorithm to
4843  * crypto when the qm list is empty.
4844  */
4845 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4846 {
4847 	struct device *dev = &qm->pdev->dev;
4848 	int flag = 0;
4849 	int ret = 0;
4850 
4851 	mutex_lock(&qm_list->lock);
4852 	if (list_empty(&qm_list->list))
4853 		flag = 1;
4854 	list_add_tail(&qm->list, &qm_list->list);
4855 	mutex_unlock(&qm_list->lock);
4856 
4857 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4858 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4859 		return 0;
4860 	}
4861 
4862 	if (flag) {
4863 		ret = qm_list->register_to_crypto(qm);
4864 		if (ret) {
4865 			mutex_lock(&qm_list->lock);
4866 			list_del(&qm->list);
4867 			mutex_unlock(&qm_list->lock);
4868 		}
4869 	}
4870 
4871 	return ret;
4872 }
4873 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4874 
4875 /**
4876  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
4877  * qm list.
4878  * @qm: The qm needs delete.
4879  * @qm_list: The qm list.
4880  *
4881  * This function deletes qm from qm list, and will unregister algorithm
4882  * from crypto when the qm list is empty.
4883  */
4884 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4885 {
4886 	mutex_lock(&qm_list->lock);
4887 	list_del(&qm->list);
4888 	mutex_unlock(&qm_list->lock);
4889 
4890 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4891 		return;
4892 
4893 	if (list_empty(&qm_list->list))
4894 		qm_list->unregister_from_crypto(qm);
4895 }
4896 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4897 
4898 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4899 {
4900 	struct pci_dev *pdev = qm->pdev;
4901 	u32 irq_vector, val;
4902 
4903 	if (qm->fun_type == QM_HW_VF)
4904 		return;
4905 
4906 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4907 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4908 		return;
4909 
4910 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4911 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4912 }
4913 
4914 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4915 {
4916 	struct pci_dev *pdev = qm->pdev;
4917 	u32 irq_vector, val;
4918 	int ret;
4919 
4920 	if (qm->fun_type == QM_HW_VF)
4921 		return 0;
4922 
4923 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4924 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4925 		return 0;
4926 
4927 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4928 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4929 	if (ret)
4930 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4931 
4932 	return ret;
4933 }
4934 
4935 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4936 {
4937 	struct pci_dev *pdev = qm->pdev;
4938 	u32 irq_vector, val;
4939 
4940 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4941 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4942 		return;
4943 
4944 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4945 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4946 }
4947 
4948 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4949 {
4950 	struct pci_dev *pdev = qm->pdev;
4951 	u32 irq_vector, val;
4952 	int ret;
4953 
4954 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4955 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4956 		return 0;
4957 
4958 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4959 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
4960 	if (ret)
4961 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
4962 
4963 	return ret;
4964 }
4965 
4966 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
4967 {
4968 	struct pci_dev *pdev = qm->pdev;
4969 	u32 irq_vector, val;
4970 
4971 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4972 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4973 		return;
4974 
4975 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4976 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4977 }
4978 
4979 static int qm_register_aeq_irq(struct hisi_qm *qm)
4980 {
4981 	struct pci_dev *pdev = qm->pdev;
4982 	u32 irq_vector, val;
4983 	int ret;
4984 
4985 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4986 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4987 		return 0;
4988 
4989 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4990 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
4991 						   qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
4992 	if (ret)
4993 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4994 
4995 	return ret;
4996 }
4997 
4998 static void qm_unregister_eq_irq(struct hisi_qm *qm)
4999 {
5000 	struct pci_dev *pdev = qm->pdev;
5001 	u32 irq_vector, val;
5002 
5003 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
5004 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5005 		return;
5006 
5007 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5008 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5009 }
5010 
5011 static int qm_register_eq_irq(struct hisi_qm *qm)
5012 {
5013 	struct pci_dev *pdev = qm->pdev;
5014 	u32 irq_vector, val;
5015 	int ret;
5016 
5017 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
5018 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5019 		return 0;
5020 
5021 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5022 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
5023 	if (ret)
5024 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5025 
5026 	return ret;
5027 }
5028 
5029 static void qm_irqs_unregister(struct hisi_qm *qm)
5030 {
5031 	qm_unregister_mb_cmd_irq(qm);
5032 	qm_unregister_abnormal_irq(qm);
5033 	qm_unregister_aeq_irq(qm);
5034 	qm_unregister_eq_irq(qm);
5035 }
5036 
5037 static int qm_irqs_register(struct hisi_qm *qm)
5038 {
5039 	int ret;
5040 
5041 	ret = qm_register_eq_irq(qm);
5042 	if (ret)
5043 		return ret;
5044 
5045 	ret = qm_register_aeq_irq(qm);
5046 	if (ret)
5047 		goto free_eq_irq;
5048 
5049 	ret = qm_register_abnormal_irq(qm);
5050 	if (ret)
5051 		goto free_aeq_irq;
5052 
5053 	ret = qm_register_mb_cmd_irq(qm);
5054 	if (ret)
5055 		goto free_abnormal_irq;
5056 
5057 	return 0;
5058 
5059 free_abnormal_irq:
5060 	qm_unregister_abnormal_irq(qm);
5061 free_aeq_irq:
5062 	qm_unregister_aeq_irq(qm);
5063 free_eq_irq:
5064 	qm_unregister_eq_irq(qm);
5065 	return ret;
5066 }
5067 
5068 static int qm_get_qp_num(struct hisi_qm *qm)
5069 {
5070 	struct device *dev = &qm->pdev->dev;
5071 	bool is_db_isolation;
5072 
5073 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5074 	if (qm->fun_type == QM_HW_VF) {
5075 		if (qm->ver != QM_HW_V1)
5076 			/* v2 starts to support get vft by mailbox */
5077 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5078 
5079 		return 0;
5080 	}
5081 
5082 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5083 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5084 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5085 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
5086 
5087 	if (qm->qp_num <= qm->max_qp_num)
5088 		return 0;
5089 
5090 	if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
5091 		/* Check whether the set qp number is valid */
5092 		dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
5093 			qm->qp_num, qm->max_qp_num);
5094 		return -EINVAL;
5095 	}
5096 
5097 	dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
5098 		 qm->qp_num, qm->max_qp_num);
5099 	qm->qp_num = qm->max_qp_num;
5100 	qm->debug.curr_qm_qp_num = qm->qp_num;
5101 
5102 	return 0;
5103 }
5104 
5105 static void qm_get_hw_caps(struct hisi_qm *qm)
5106 {
5107 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5108 						  qm_cap_info_pf : qm_cap_info_vf;
5109 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5110 				   ARRAY_SIZE(qm_cap_info_vf);
5111 	u32 val, i;
5112 
5113 	/* Doorbell isolate register is a independent register. */
5114 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5115 	if (val)
5116 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5117 
5118 	if (qm->ver >= QM_HW_V3) {
5119 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5120 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5121 	}
5122 
5123 	/* Get PF/VF common capbility */
5124 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5125 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5126 		if (val)
5127 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5128 	}
5129 
5130 	/* Get PF/VF different capbility */
5131 	for (i = 0; i < size; i++) {
5132 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5133 		if (val)
5134 			set_bit(cap_info[i].type, &qm->caps);
5135 	}
5136 }
5137 
5138 static int qm_get_pci_res(struct hisi_qm *qm)
5139 {
5140 	struct pci_dev *pdev = qm->pdev;
5141 	struct device *dev = &pdev->dev;
5142 	int ret;
5143 
5144 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5145 	if (ret < 0) {
5146 		dev_err(dev, "Failed to request mem regions!\n");
5147 		return ret;
5148 	}
5149 
5150 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5151 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5152 	if (!qm->io_base) {
5153 		ret = -EIO;
5154 		goto err_request_mem_regions;
5155 	}
5156 
5157 	qm_get_hw_caps(qm);
5158 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5159 		qm->db_interval = QM_QP_DB_INTERVAL;
5160 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5161 		qm->db_io_base = ioremap(qm->db_phys_base,
5162 					 pci_resource_len(pdev, PCI_BAR_4));
5163 		if (!qm->db_io_base) {
5164 			ret = -EIO;
5165 			goto err_ioremap;
5166 		}
5167 	} else {
5168 		qm->db_phys_base = qm->phys_base;
5169 		qm->db_io_base = qm->io_base;
5170 		qm->db_interval = 0;
5171 	}
5172 
5173 	ret = qm_get_qp_num(qm);
5174 	if (ret)
5175 		goto err_db_ioremap;
5176 
5177 	return 0;
5178 
5179 err_db_ioremap:
5180 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5181 		iounmap(qm->db_io_base);
5182 err_ioremap:
5183 	iounmap(qm->io_base);
5184 err_request_mem_regions:
5185 	pci_release_mem_regions(pdev);
5186 	return ret;
5187 }
5188 
5189 static int hisi_qm_pci_init(struct hisi_qm *qm)
5190 {
5191 	struct pci_dev *pdev = qm->pdev;
5192 	struct device *dev = &pdev->dev;
5193 	unsigned int num_vec;
5194 	int ret;
5195 
5196 	ret = pci_enable_device_mem(pdev);
5197 	if (ret < 0) {
5198 		dev_err(dev, "Failed to enable device mem!\n");
5199 		return ret;
5200 	}
5201 
5202 	ret = qm_get_pci_res(qm);
5203 	if (ret)
5204 		goto err_disable_pcidev;
5205 
5206 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5207 	if (ret < 0)
5208 		goto err_get_pci_res;
5209 	pci_set_master(pdev);
5210 
5211 	num_vec = qm_get_irq_num(qm);
5212 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5213 	if (ret < 0) {
5214 		dev_err(dev, "Failed to enable MSI vectors!\n");
5215 		goto err_get_pci_res;
5216 	}
5217 
5218 	return 0;
5219 
5220 err_get_pci_res:
5221 	qm_put_pci_res(qm);
5222 err_disable_pcidev:
5223 	pci_disable_device(pdev);
5224 	return ret;
5225 }
5226 
5227 static int hisi_qm_init_work(struct hisi_qm *qm)
5228 {
5229 	int i;
5230 
5231 	for (i = 0; i < qm->qp_num; i++)
5232 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5233 
5234 	if (qm->fun_type == QM_HW_PF)
5235 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5236 
5237 	if (qm->ver > QM_HW_V2)
5238 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5239 
5240 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5241 				 WQ_UNBOUND, num_online_cpus(),
5242 				 pci_name(qm->pdev));
5243 	if (!qm->wq) {
5244 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5245 		return -ENOMEM;
5246 	}
5247 
5248 	return 0;
5249 }
5250 
5251 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5252 {
5253 	struct device *dev = &qm->pdev->dev;
5254 	u16 sq_depth, cq_depth;
5255 	size_t qp_dma_size;
5256 	int i, ret;
5257 
5258 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5259 	if (!qm->qp_array)
5260 		return -ENOMEM;
5261 
5262 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5263 	if (!qm->poll_data) {
5264 		kfree(qm->qp_array);
5265 		return -ENOMEM;
5266 	}
5267 
5268 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5269 
5270 	/* one more page for device or qp statuses */
5271 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5272 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5273 	for (i = 0; i < qm->qp_num; i++) {
5274 		qm->poll_data[i].qm = qm;
5275 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5276 		if (ret)
5277 			goto err_init_qp_mem;
5278 
5279 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5280 	}
5281 
5282 	return 0;
5283 err_init_qp_mem:
5284 	hisi_qp_memory_uninit(qm, i);
5285 
5286 	return ret;
5287 }
5288 
5289 static int hisi_qm_memory_init(struct hisi_qm *qm)
5290 {
5291 	struct device *dev = &qm->pdev->dev;
5292 	int ret, total_func;
5293 	size_t off = 0;
5294 
5295 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5296 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5297 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5298 		if (!qm->factor)
5299 			return -ENOMEM;
5300 
5301 		/* Only the PF value needs to be initialized */
5302 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5303 	}
5304 
5305 #define QM_INIT_BUF(qm, type, num) do { \
5306 	(qm)->type = ((qm)->qdma.va + (off)); \
5307 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5308 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5309 } while (0)
5310 
5311 	idr_init(&qm->qp_idr);
5312 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5313 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5314 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5315 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5316 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5317 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5318 					 GFP_ATOMIC);
5319 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5320 	if (!qm->qdma.va) {
5321 		ret = -ENOMEM;
5322 		goto err_destroy_idr;
5323 	}
5324 
5325 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5326 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5327 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5328 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5329 
5330 	ret = hisi_qp_alloc_memory(qm);
5331 	if (ret)
5332 		goto err_alloc_qp_array;
5333 
5334 	return 0;
5335 
5336 err_alloc_qp_array:
5337 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5338 err_destroy_idr:
5339 	idr_destroy(&qm->qp_idr);
5340 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5341 		kfree(qm->factor);
5342 
5343 	return ret;
5344 }
5345 
5346 /**
5347  * hisi_qm_init() - Initialize configures about qm.
5348  * @qm: The qm needing init.
5349  *
5350  * This function init qm, then we can call hisi_qm_start to put qm into work.
5351  */
5352 int hisi_qm_init(struct hisi_qm *qm)
5353 {
5354 	struct pci_dev *pdev = qm->pdev;
5355 	struct device *dev = &pdev->dev;
5356 	int ret;
5357 
5358 	hisi_qm_pre_init(qm);
5359 
5360 	ret = hisi_qm_pci_init(qm);
5361 	if (ret)
5362 		return ret;
5363 
5364 	ret = qm_irqs_register(qm);
5365 	if (ret)
5366 		goto err_pci_init;
5367 
5368 	if (qm->fun_type == QM_HW_PF) {
5369 		/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5370 		writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5371 		qm_disable_clock_gate(qm);
5372 		ret = qm_dev_mem_reset(qm);
5373 		if (ret) {
5374 			dev_err(dev, "failed to reset device memory\n");
5375 			goto err_irq_register;
5376 		}
5377 	}
5378 
5379 	if (qm->mode == UACCE_MODE_SVA) {
5380 		ret = qm_alloc_uacce(qm);
5381 		if (ret < 0)
5382 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5383 	}
5384 
5385 	ret = hisi_qm_memory_init(qm);
5386 	if (ret)
5387 		goto err_alloc_uacce;
5388 
5389 	ret = hisi_qm_init_work(qm);
5390 	if (ret)
5391 		goto err_free_qm_memory;
5392 
5393 	qm_cmd_init(qm);
5394 	atomic_set(&qm->status.flags, QM_INIT);
5395 
5396 	return 0;
5397 
5398 err_free_qm_memory:
5399 	hisi_qm_memory_uninit(qm);
5400 err_alloc_uacce:
5401 	qm_remove_uacce(qm);
5402 err_irq_register:
5403 	qm_irqs_unregister(qm);
5404 err_pci_init:
5405 	hisi_qm_pci_uninit(qm);
5406 	return ret;
5407 }
5408 EXPORT_SYMBOL_GPL(hisi_qm_init);
5409 
5410 /**
5411  * hisi_qm_get_dfx_access() - Try to get dfx access.
5412  * @qm: pointer to accelerator device.
5413  *
5414  * Try to get dfx access, then user can get message.
5415  *
5416  * If device is in suspended, return failure, otherwise
5417  * bump up the runtime PM usage counter.
5418  */
5419 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5420 {
5421 	struct device *dev = &qm->pdev->dev;
5422 
5423 	if (pm_runtime_suspended(dev)) {
5424 		dev_info(dev, "can not read/write - device in suspended.\n");
5425 		return -EAGAIN;
5426 	}
5427 
5428 	return qm_pm_get_sync(qm);
5429 }
5430 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5431 
5432 /**
5433  * hisi_qm_put_dfx_access() - Put dfx access.
5434  * @qm: pointer to accelerator device.
5435  *
5436  * Put dfx access, drop runtime PM usage counter.
5437  */
5438 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5439 {
5440 	qm_pm_put_sync(qm);
5441 }
5442 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5443 
5444 /**
5445  * hisi_qm_pm_init() - Initialize qm runtime PM.
5446  * @qm: pointer to accelerator device.
5447  *
5448  * Function that initialize qm runtime PM.
5449  */
5450 void hisi_qm_pm_init(struct hisi_qm *qm)
5451 {
5452 	struct device *dev = &qm->pdev->dev;
5453 
5454 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5455 		return;
5456 
5457 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5458 	pm_runtime_use_autosuspend(dev);
5459 	pm_runtime_put_noidle(dev);
5460 }
5461 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5462 
5463 /**
5464  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5465  * @qm: pointer to accelerator device.
5466  *
5467  * Function that uninitialize qm runtime PM.
5468  */
5469 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5470 {
5471 	struct device *dev = &qm->pdev->dev;
5472 
5473 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5474 		return;
5475 
5476 	pm_runtime_get_noresume(dev);
5477 	pm_runtime_dont_use_autosuspend(dev);
5478 }
5479 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5480 
5481 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5482 {
5483 	struct pci_dev *pdev = qm->pdev;
5484 	int ret;
5485 	u32 val;
5486 
5487 	ret = qm->ops->set_msi(qm, false);
5488 	if (ret) {
5489 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5490 		return ret;
5491 	}
5492 
5493 	/* shutdown OOO register */
5494 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5495 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5496 
5497 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5498 					 val,
5499 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5500 					 POLL_PERIOD, POLL_TIMEOUT);
5501 	if (ret) {
5502 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5503 		return ret;
5504 	}
5505 
5506 	ret = qm_set_pf_mse(qm, false);
5507 	if (ret)
5508 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5509 
5510 	return ret;
5511 }
5512 
5513 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5514 {
5515 	struct pci_dev *pdev = qm->pdev;
5516 	int ret;
5517 
5518 	ret = qm_set_pf_mse(qm, true);
5519 	if (ret) {
5520 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5521 		return ret;
5522 	}
5523 
5524 	ret = qm->ops->set_msi(qm, true);
5525 	if (ret) {
5526 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5527 		return ret;
5528 	}
5529 
5530 	ret = qm_dev_hw_init(qm);
5531 	if (ret) {
5532 		pci_err(pdev, "failed to init device after resuming\n");
5533 		return ret;
5534 	}
5535 
5536 	qm_cmd_init(qm);
5537 	hisi_qm_dev_err_init(qm);
5538 	/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5539 	writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5540 	qm_disable_clock_gate(qm);
5541 	ret = qm_dev_mem_reset(qm);
5542 	if (ret)
5543 		pci_err(pdev, "failed to reset device memory\n");
5544 
5545 	return ret;
5546 }
5547 
5548 /**
5549  * hisi_qm_suspend() - Runtime suspend of given device.
5550  * @dev: device to suspend.
5551  *
5552  * Function that suspend the device.
5553  */
5554 int hisi_qm_suspend(struct device *dev)
5555 {
5556 	struct pci_dev *pdev = to_pci_dev(dev);
5557 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5558 	int ret;
5559 
5560 	pci_info(pdev, "entering suspended state\n");
5561 
5562 	ret = hisi_qm_stop(qm, QM_NORMAL);
5563 	if (ret) {
5564 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5565 		return ret;
5566 	}
5567 
5568 	ret = qm_prepare_for_suspend(qm);
5569 	if (ret)
5570 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5571 
5572 	return ret;
5573 }
5574 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5575 
5576 /**
5577  * hisi_qm_resume() - Runtime resume of given device.
5578  * @dev: device to resume.
5579  *
5580  * Function that resume the device.
5581  */
5582 int hisi_qm_resume(struct device *dev)
5583 {
5584 	struct pci_dev *pdev = to_pci_dev(dev);
5585 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5586 	int ret;
5587 
5588 	pci_info(pdev, "resuming from suspend state\n");
5589 
5590 	ret = qm_rebuild_for_resume(qm);
5591 	if (ret) {
5592 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5593 		return ret;
5594 	}
5595 
5596 	ret = hisi_qm_start(qm);
5597 	if (ret) {
5598 		if (qm_check_dev_error(qm)) {
5599 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5600 			return 0;
5601 		}
5602 
5603 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5604 	}
5605 
5606 	return ret;
5607 }
5608 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5609 
5610 MODULE_LICENSE("GPL v2");
5611 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5612 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5613