1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 73 #define QM_CQ_OVERFLOW 0 74 #define QM_EQ_OVERFLOW 1 75 #define QM_CQE_ERROR 2 76 77 #define QM_XQ_DEPTH_SHIFT 16 78 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 79 80 #define QM_DOORBELL_CMD_SQ 0 81 #define QM_DOORBELL_CMD_CQ 1 82 #define QM_DOORBELL_CMD_EQ 2 83 #define QM_DOORBELL_CMD_AEQ 3 84 85 #define QM_DOORBELL_BASE_V1 0x340 86 #define QM_DB_CMD_SHIFT_V1 16 87 #define QM_DB_INDEX_SHIFT_V1 32 88 #define QM_DB_PRIORITY_SHIFT_V1 48 89 #define QM_PAGE_SIZE 0x0034 90 #define QM_QP_DB_INTERVAL 0x10000 91 #define QM_DB_TIMEOUT_CFG 0x100074 92 #define QM_DB_TIMEOUT_SET 0x1fffff 93 94 #define QM_MEM_START_INIT 0x100040 95 #define QM_MEM_INIT_DONE 0x100044 96 #define QM_VFT_CFG_RDY 0x10006c 97 #define QM_VFT_CFG_OP_WR 0x100058 98 #define QM_VFT_CFG_TYPE 0x10005c 99 #define QM_VFT_CFG 0x100060 100 #define QM_VFT_CFG_OP_ENABLE 0x100054 101 #define QM_PM_CTRL 0x100148 102 #define QM_IDLE_DISABLE BIT(9) 103 104 #define QM_VFT_CFG_DATA_L 0x100064 105 #define QM_VFT_CFG_DATA_H 0x100068 106 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 107 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 108 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 109 #define QM_SQC_VFT_START_SQN_SHIFT 28 110 #define QM_SQC_VFT_VALID (1ULL << 44) 111 #define QM_SQC_VFT_SQN_SHIFT 45 112 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 113 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 114 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 115 #define QM_CQC_VFT_VALID (1ULL << 28) 116 117 #define QM_SQC_VFT_BASE_SHIFT_V2 28 118 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 119 #define QM_SQC_VFT_NUM_SHIFT_V2 45 120 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 121 122 #define QM_ABNORMAL_INT_SOURCE 0x100000 123 #define QM_ABNORMAL_INT_MASK 0x100004 124 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 125 #define QM_ABNORMAL_INT_STATUS 0x100008 126 #define QM_ABNORMAL_INT_SET 0x10000c 127 #define QM_ABNORMAL_INF00 0x100010 128 #define QM_FIFO_OVERFLOW_TYPE 0xc0 129 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 130 #define QM_FIFO_OVERFLOW_VF 0x3f 131 #define QM_ABNORMAL_INF01 0x100014 132 #define QM_DB_TIMEOUT_TYPE 0xc0 133 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 134 #define QM_DB_TIMEOUT_VF 0x3f 135 #define QM_RAS_CE_ENABLE 0x1000ec 136 #define QM_RAS_FE_ENABLE 0x1000f0 137 #define QM_RAS_NFE_ENABLE 0x1000f4 138 #define QM_RAS_CE_THRESHOLD 0x1000f8 139 #define QM_RAS_CE_TIMES_PER_IRQ 1 140 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 141 #define QM_ECC_MBIT BIT(2) 142 #define QM_DB_TIMEOUT BIT(10) 143 #define QM_OF_FIFO_OF BIT(11) 144 145 #define QM_RESET_WAIT_TIMEOUT 400 146 #define QM_PEH_VENDOR_ID 0x1000d8 147 #define ACC_VENDOR_ID_VALUE 0x5a5a 148 #define QM_PEH_DFX_INFO0 0x1000fc 149 #define QM_PEH_DFX_INFO1 0x100100 150 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 151 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 152 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 153 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 154 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 155 #define ACC_MASTER_TRANS_RETURN_RW 3 156 #define ACC_MASTER_TRANS_RETURN 0x300150 157 #define ACC_MASTER_GLOBAL_CTRL 0x300000 158 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 159 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 160 #define ACC_AM_ROB_ECC_INT_STS 0x300104 161 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 162 #define QM_MSI_CAP_ENABLE BIT(16) 163 164 /* interfunction communication */ 165 #define QM_IFC_READY_STATUS 0x100128 166 #define QM_IFC_INT_SET_P 0x100130 167 #define QM_IFC_INT_CFG 0x100134 168 #define QM_IFC_INT_SOURCE_P 0x100138 169 #define QM_IFC_INT_SOURCE_V 0x0020 170 #define QM_IFC_INT_MASK 0x0024 171 #define QM_IFC_INT_STATUS 0x0028 172 #define QM_IFC_INT_SET_V 0x002C 173 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 174 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 175 #define QM_IFC_INT_SOURCE_MASK BIT(0) 176 #define QM_IFC_INT_DISABLE BIT(0) 177 #define QM_IFC_INT_STATUS_MASK BIT(0) 178 #define QM_IFC_INT_SET_MASK BIT(0) 179 #define QM_WAIT_DST_ACK 10 180 #define QM_MAX_PF_WAIT_COUNT 10 181 #define QM_MAX_VF_WAIT_COUNT 40 182 #define QM_VF_RESET_WAIT_US 20000 183 #define QM_VF_RESET_WAIT_CNT 3000 184 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 185 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 186 187 #define POLL_PERIOD 10 188 #define POLL_TIMEOUT 1000 189 #define WAIT_PERIOD_US_MAX 200 190 #define WAIT_PERIOD_US_MIN 100 191 #define MAX_WAIT_COUNTS 1000 192 #define QM_CACHE_WB_START 0x204 193 #define QM_CACHE_WB_DONE 0x208 194 #define QM_FUNC_CAPS_REG 0x3100 195 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 196 197 #define PCI_BAR_2 2 198 #define PCI_BAR_4 4 199 #define QMC_ALIGN(sz) ALIGN(sz, 32) 200 201 #define QM_DBG_READ_LEN 256 202 #define QM_PCI_COMMAND_INVALID ~0 203 #define QM_RESET_STOP_TX_OFFSET 1 204 #define QM_RESET_STOP_RX_OFFSET 2 205 206 #define WAIT_PERIOD 20 207 #define REMOVE_WAIT_DELAY 10 208 209 #define QM_QOS_PARAM_NUM 2 210 #define QM_QOS_MAX_VAL 1000 211 #define QM_QOS_RATE 100 212 #define QM_QOS_EXPAND_RATE 1000 213 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 214 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 215 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 216 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 217 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 218 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 219 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 220 #define QM_SHAPER_CBS_B 1 221 #define QM_SHAPER_VFT_OFFSET 6 222 #define QM_QOS_MIN_ERROR_RATE 5 223 #define QM_SHAPER_MIN_CBS_S 8 224 #define QM_QOS_TICK 0x300U 225 #define QM_QOS_DIVISOR_CLK 0x1f40U 226 #define QM_QOS_MAX_CIR_B 200 227 #define QM_QOS_MIN_CIR_B 100 228 #define QM_QOS_MAX_CIR_U 6 229 #define QM_AUTOSUSPEND_DELAY 3000 230 231 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 232 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 233 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 234 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 235 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 236 237 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 238 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 239 240 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 241 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 242 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 243 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 244 245 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 246 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 247 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 248 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 249 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 250 251 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 252 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 253 254 #define INIT_QC_COMMON(qc, base, pasid) do { \ 255 (qc)->head = 0; \ 256 (qc)->tail = 0; \ 257 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 258 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 259 (qc)->dw3 = 0; \ 260 (qc)->w8 = 0; \ 261 (qc)->rsvd0 = 0; \ 262 (qc)->pasid = cpu_to_le16(pasid); \ 263 (qc)->w11 = 0; \ 264 (qc)->rsvd1 = 0; \ 265 } while (0) 266 267 enum vft_type { 268 SQC_VFT = 0, 269 CQC_VFT, 270 SHAPER_VFT, 271 }; 272 273 enum acc_err_result { 274 ACC_ERR_NONE, 275 ACC_ERR_NEED_RESET, 276 ACC_ERR_RECOVERED, 277 }; 278 279 enum qm_alg_type { 280 ALG_TYPE_0, 281 ALG_TYPE_1, 282 }; 283 284 enum qm_mb_cmd { 285 QM_PF_FLR_PREPARE = 0x01, 286 QM_PF_SRST_PREPARE, 287 QM_PF_RESET_DONE, 288 QM_VF_PREPARE_DONE, 289 QM_VF_PREPARE_FAIL, 290 QM_VF_START_DONE, 291 QM_VF_START_FAIL, 292 QM_PF_SET_QOS, 293 QM_VF_GET_QOS, 294 }; 295 296 enum qm_basic_type { 297 QM_TOTAL_QP_NUM_CAP = 0x0, 298 QM_FUNC_MAX_QP_CAP, 299 QM_XEQ_DEPTH_CAP, 300 QM_QP_DEPTH_CAP, 301 QM_EQ_IRQ_TYPE_CAP, 302 QM_AEQ_IRQ_TYPE_CAP, 303 QM_ABN_IRQ_TYPE_CAP, 304 QM_PF2VF_IRQ_TYPE_CAP, 305 QM_PF_IRQ_NUM_CAP, 306 QM_VF_IRQ_NUM_CAP, 307 }; 308 309 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 310 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 311 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 312 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 313 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 314 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 315 }; 316 317 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 318 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 319 }; 320 321 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 322 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 323 }; 324 325 static const struct hisi_qm_cap_info qm_basic_info[] = { 326 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 327 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 328 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 329 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 330 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 331 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 332 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 333 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 334 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 335 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 336 }; 337 338 struct qm_mailbox { 339 __le16 w0; 340 __le16 queue_num; 341 __le32 base_l; 342 __le32 base_h; 343 __le32 rsvd; 344 }; 345 346 struct qm_doorbell { 347 __le16 queue_num; 348 __le16 cmd; 349 __le16 index; 350 __le16 priority; 351 }; 352 353 struct hisi_qm_resource { 354 struct hisi_qm *qm; 355 int distance; 356 struct list_head list; 357 }; 358 359 /** 360 * struct qm_hw_err - Structure describing the device errors 361 * @list: hardware error list 362 * @timestamp: timestamp when the error occurred 363 */ 364 struct qm_hw_err { 365 struct list_head list; 366 unsigned long long timestamp; 367 }; 368 369 struct hisi_qm_hw_ops { 370 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 371 void (*qm_db)(struct hisi_qm *qm, u16 qn, 372 u8 cmd, u16 index, u8 priority); 373 int (*debug_init)(struct hisi_qm *qm); 374 void (*hw_error_init)(struct hisi_qm *qm); 375 void (*hw_error_uninit)(struct hisi_qm *qm); 376 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 377 int (*set_msi)(struct hisi_qm *qm, bool set); 378 }; 379 380 struct hisi_qm_hw_error { 381 u32 int_msk; 382 const char *msg; 383 }; 384 385 static const struct hisi_qm_hw_error qm_hw_error[] = { 386 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 387 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 388 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 389 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 390 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 391 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 392 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 393 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 394 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 395 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 396 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 397 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 398 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 399 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 400 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 401 { /* sentinel */ } 402 }; 403 404 static const char * const qm_db_timeout[] = { 405 "sq", "cq", "eq", "aeq", 406 }; 407 408 static const char * const qm_fifo_overflow[] = { 409 "cq", "eq", "aeq", 410 }; 411 412 static const char * const qp_s[] = { 413 "none", "init", "start", "stop", "close", 414 }; 415 416 struct qm_typical_qos_table { 417 u32 start; 418 u32 end; 419 u32 val; 420 }; 421 422 /* the qos step is 100 */ 423 static struct qm_typical_qos_table shaper_cir_s[] = { 424 {100, 100, 4}, 425 {200, 200, 3}, 426 {300, 500, 2}, 427 {600, 1000, 1}, 428 {1100, 100000, 0}, 429 }; 430 431 static struct qm_typical_qos_table shaper_cbs_s[] = { 432 {100, 200, 9}, 433 {300, 500, 11}, 434 {600, 1000, 12}, 435 {1100, 10000, 16}, 436 {10100, 25000, 17}, 437 {25100, 50000, 18}, 438 {50100, 100000, 19} 439 }; 440 441 static void qm_irqs_unregister(struct hisi_qm *qm); 442 443 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 444 { 445 enum qm_state curr = atomic_read(&qm->status.flags); 446 bool avail = false; 447 448 switch (curr) { 449 case QM_INIT: 450 if (new == QM_START || new == QM_CLOSE) 451 avail = true; 452 break; 453 case QM_START: 454 if (new == QM_STOP) 455 avail = true; 456 break; 457 case QM_STOP: 458 if (new == QM_CLOSE || new == QM_START) 459 avail = true; 460 break; 461 default: 462 break; 463 } 464 465 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 466 qm_s[curr], qm_s[new]); 467 468 if (!avail) 469 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 470 qm_s[curr], qm_s[new]); 471 472 return avail; 473 } 474 475 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 476 enum qp_state new) 477 { 478 enum qm_state qm_curr = atomic_read(&qm->status.flags); 479 enum qp_state qp_curr = 0; 480 bool avail = false; 481 482 if (qp) 483 qp_curr = atomic_read(&qp->qp_status.flags); 484 485 switch (new) { 486 case QP_INIT: 487 if (qm_curr == QM_START || qm_curr == QM_INIT) 488 avail = true; 489 break; 490 case QP_START: 491 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 492 (qm_curr == QM_START && qp_curr == QP_STOP)) 493 avail = true; 494 break; 495 case QP_STOP: 496 if ((qm_curr == QM_START && qp_curr == QP_START) || 497 (qp_curr == QP_INIT)) 498 avail = true; 499 break; 500 case QP_CLOSE: 501 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 502 (qm_curr == QM_START && qp_curr == QP_STOP) || 503 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 504 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 505 avail = true; 506 break; 507 default: 508 break; 509 } 510 511 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 512 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 513 514 if (!avail) 515 dev_warn(&qm->pdev->dev, 516 "Can not change qp state from %s to %s in QM %s\n", 517 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 518 519 return avail; 520 } 521 522 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 523 { 524 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 525 } 526 527 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 528 { 529 return qm->err_ini->get_dev_hw_err_status(qm); 530 } 531 532 /* Check if the error causes the master ooo block */ 533 static bool qm_check_dev_error(struct hisi_qm *qm) 534 { 535 u32 val, dev_val; 536 537 if (qm->fun_type == QM_HW_VF) 538 return false; 539 540 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 541 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 542 543 return val || dev_val; 544 } 545 546 static int qm_wait_reset_finish(struct hisi_qm *qm) 547 { 548 int delay = 0; 549 550 /* All reset requests need to be queued for processing */ 551 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 552 msleep(++delay); 553 if (delay > QM_RESET_WAIT_TIMEOUT) 554 return -EBUSY; 555 } 556 557 return 0; 558 } 559 560 static int qm_reset_prepare_ready(struct hisi_qm *qm) 561 { 562 struct pci_dev *pdev = qm->pdev; 563 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 564 565 /* 566 * PF and VF on host doesnot support resetting at the 567 * same time on Kunpeng920. 568 */ 569 if (qm->ver < QM_HW_V3) 570 return qm_wait_reset_finish(pf_qm); 571 572 return qm_wait_reset_finish(qm); 573 } 574 575 static void qm_reset_bit_clear(struct hisi_qm *qm) 576 { 577 struct pci_dev *pdev = qm->pdev; 578 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 579 580 if (qm->ver < QM_HW_V3) 581 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 582 583 clear_bit(QM_RESETTING, &qm->misc_ctl); 584 } 585 586 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 587 u64 base, u16 queue, bool op) 588 { 589 mailbox->w0 = cpu_to_le16((cmd) | 590 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 591 (0x1 << QM_MB_BUSY_SHIFT)); 592 mailbox->queue_num = cpu_to_le16(queue); 593 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 594 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 595 mailbox->rsvd = 0; 596 } 597 598 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 599 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 600 { 601 u32 val; 602 603 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 604 val, !((val >> QM_MB_BUSY_SHIFT) & 605 0x1), POLL_PERIOD, POLL_TIMEOUT); 606 } 607 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 608 609 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 610 static void qm_mb_write(struct hisi_qm *qm, const void *src) 611 { 612 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 613 614 #if IS_ENABLED(CONFIG_ARM64) 615 unsigned long tmp0 = 0, tmp1 = 0; 616 #endif 617 618 if (!IS_ENABLED(CONFIG_ARM64)) { 619 memcpy_toio(fun_base, src, 16); 620 dma_wmb(); 621 return; 622 } 623 624 #if IS_ENABLED(CONFIG_ARM64) 625 asm volatile("ldp %0, %1, %3\n" 626 "stp %0, %1, %2\n" 627 "dmb oshst\n" 628 : "=&r" (tmp0), 629 "=&r" (tmp1), 630 "+Q" (*((char __iomem *)fun_base)) 631 : "Q" (*((char *)src)) 632 : "memory"); 633 #endif 634 } 635 636 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 637 { 638 int ret; 639 u32 val; 640 641 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 642 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 643 ret = -EBUSY; 644 goto mb_busy; 645 } 646 647 qm_mb_write(qm, mailbox); 648 649 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 650 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 651 ret = -ETIMEDOUT; 652 goto mb_busy; 653 } 654 655 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 656 if (val & QM_MB_STATUS_MASK) { 657 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 658 ret = -EIO; 659 goto mb_busy; 660 } 661 662 return 0; 663 664 mb_busy: 665 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 666 return ret; 667 } 668 669 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 670 bool op) 671 { 672 struct qm_mailbox mailbox; 673 int ret; 674 675 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 676 queue, cmd, (unsigned long long)dma_addr); 677 678 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 679 680 mutex_lock(&qm->mailbox_lock); 681 ret = qm_mb_nolock(qm, &mailbox); 682 mutex_unlock(&qm->mailbox_lock); 683 684 return ret; 685 } 686 EXPORT_SYMBOL_GPL(hisi_qm_mb); 687 688 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 689 { 690 u64 doorbell; 691 692 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 693 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 694 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 695 696 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 697 } 698 699 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 700 { 701 void __iomem *io_base = qm->io_base; 702 u16 randata = 0; 703 u64 doorbell; 704 705 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 706 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 707 QM_DOORBELL_SQ_CQ_BASE_V2; 708 else 709 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 710 711 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 712 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 713 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 714 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 715 716 writeq(doorbell, io_base); 717 } 718 719 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 720 { 721 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 722 qn, cmd, index); 723 724 qm->ops->qm_db(qm, qn, cmd, index, priority); 725 } 726 727 static void qm_disable_clock_gate(struct hisi_qm *qm) 728 { 729 u32 val; 730 731 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 732 if (qm->ver < QM_HW_V3) 733 return; 734 735 val = readl(qm->io_base + QM_PM_CTRL); 736 val |= QM_IDLE_DISABLE; 737 writel(val, qm->io_base + QM_PM_CTRL); 738 } 739 740 static int qm_dev_mem_reset(struct hisi_qm *qm) 741 { 742 u32 val; 743 744 writel(0x1, qm->io_base + QM_MEM_START_INIT); 745 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 746 val & BIT(0), POLL_PERIOD, 747 POLL_TIMEOUT); 748 } 749 750 /** 751 * hisi_qm_get_hw_info() - Get device information. 752 * @qm: The qm which want to get information. 753 * @info_table: Array for storing device information. 754 * @index: Index in info_table. 755 * @is_read: Whether read from reg, 0: not support read from reg. 756 * 757 * This function returns device information the caller needs. 758 */ 759 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 760 const struct hisi_qm_cap_info *info_table, 761 u32 index, bool is_read) 762 { 763 u32 val; 764 765 switch (qm->ver) { 766 case QM_HW_V1: 767 return info_table[index].v1_val; 768 case QM_HW_V2: 769 return info_table[index].v2_val; 770 default: 771 if (!is_read) 772 return info_table[index].v3_val; 773 774 val = readl(qm->io_base + info_table[index].offset); 775 return (val >> info_table[index].shift) & info_table[index].mask; 776 } 777 } 778 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 779 780 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 781 u16 *high_bits, enum qm_basic_type type) 782 { 783 u32 depth; 784 785 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 786 *low_bits = depth & QM_XQ_DEPTH_MASK; 787 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 788 } 789 790 static u32 qm_get_irq_num(struct hisi_qm *qm) 791 { 792 if (qm->fun_type == QM_HW_PF) 793 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 794 795 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 796 } 797 798 static int qm_pm_get_sync(struct hisi_qm *qm) 799 { 800 struct device *dev = &qm->pdev->dev; 801 int ret; 802 803 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 804 return 0; 805 806 ret = pm_runtime_resume_and_get(dev); 807 if (ret < 0) { 808 dev_err(dev, "failed to get_sync(%d).\n", ret); 809 return ret; 810 } 811 812 return 0; 813 } 814 815 static void qm_pm_put_sync(struct hisi_qm *qm) 816 { 817 struct device *dev = &qm->pdev->dev; 818 819 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 820 return; 821 822 pm_runtime_mark_last_busy(dev); 823 pm_runtime_put_autosuspend(dev); 824 } 825 826 static void qm_cq_head_update(struct hisi_qp *qp) 827 { 828 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 829 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 830 qp->qp_status.cq_head = 0; 831 } else { 832 qp->qp_status.cq_head++; 833 } 834 } 835 836 static void qm_poll_req_cb(struct hisi_qp *qp) 837 { 838 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 839 struct hisi_qm *qm = qp->qm; 840 841 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 842 dma_rmb(); 843 qp->req_cb(qp, qp->sqe + qm->sqe_size * 844 le16_to_cpu(cqe->sq_head)); 845 qm_cq_head_update(qp); 846 cqe = qp->cqe + qp->qp_status.cq_head; 847 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 848 qp->qp_status.cq_head, 0); 849 atomic_dec(&qp->qp_status.used); 850 851 cond_resched(); 852 } 853 854 /* set c_flag */ 855 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 856 } 857 858 static void qm_work_process(struct work_struct *work) 859 { 860 struct hisi_qm_poll_data *poll_data = 861 container_of(work, struct hisi_qm_poll_data, work); 862 struct hisi_qm *qm = poll_data->qm; 863 u16 eqe_num = poll_data->eqe_num; 864 struct hisi_qp *qp; 865 int i; 866 867 for (i = eqe_num - 1; i >= 0; i--) { 868 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 869 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 870 continue; 871 872 if (qp->event_cb) { 873 qp->event_cb(qp); 874 continue; 875 } 876 877 if (likely(qp->req_cb)) 878 qm_poll_req_cb(qp); 879 } 880 } 881 882 static void qm_get_complete_eqe_num(struct hisi_qm *qm) 883 { 884 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 885 struct hisi_qm_poll_data *poll_data = NULL; 886 u16 eq_depth = qm->eq_depth; 887 u16 cqn, eqe_num = 0; 888 889 if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { 890 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 891 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 892 return; 893 } 894 895 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 896 if (unlikely(cqn >= qm->qp_num)) 897 return; 898 poll_data = &qm->poll_data[cqn]; 899 900 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 901 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 902 poll_data->qp_finish_id[eqe_num] = cqn; 903 eqe_num++; 904 905 if (qm->status.eq_head == eq_depth - 1) { 906 qm->status.eqc_phase = !qm->status.eqc_phase; 907 eqe = qm->eqe; 908 qm->status.eq_head = 0; 909 } else { 910 eqe++; 911 qm->status.eq_head++; 912 } 913 914 if (eqe_num == (eq_depth >> 1) - 1) 915 break; 916 } 917 918 poll_data->eqe_num = eqe_num; 919 queue_work(qm->wq, &poll_data->work); 920 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 921 } 922 923 static irqreturn_t qm_eq_irq(int irq, void *data) 924 { 925 struct hisi_qm *qm = data; 926 927 /* Get qp id of completed tasks and re-enable the interrupt */ 928 qm_get_complete_eqe_num(qm); 929 930 return IRQ_HANDLED; 931 } 932 933 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 934 { 935 struct hisi_qm *qm = data; 936 u32 val; 937 938 val = readl(qm->io_base + QM_IFC_INT_STATUS); 939 val &= QM_IFC_INT_STATUS_MASK; 940 if (!val) 941 return IRQ_NONE; 942 943 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 944 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 945 return IRQ_HANDLED; 946 } 947 948 schedule_work(&qm->cmd_process); 949 950 return IRQ_HANDLED; 951 } 952 953 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 954 { 955 u32 *addr; 956 957 if (qp->is_in_kernel) 958 return; 959 960 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 961 *addr = 1; 962 963 /* make sure setup is completed */ 964 smp_wmb(); 965 } 966 967 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 968 { 969 struct hisi_qp *qp = &qm->qp_array[qp_id]; 970 971 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 972 hisi_qm_stop_qp(qp); 973 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 974 } 975 976 static void qm_reset_function(struct hisi_qm *qm) 977 { 978 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 979 struct device *dev = &qm->pdev->dev; 980 int ret; 981 982 if (qm_check_dev_error(pf_qm)) 983 return; 984 985 ret = qm_reset_prepare_ready(qm); 986 if (ret) { 987 dev_err(dev, "reset function not ready\n"); 988 return; 989 } 990 991 ret = hisi_qm_stop(qm, QM_DOWN); 992 if (ret) { 993 dev_err(dev, "failed to stop qm when reset function\n"); 994 goto clear_bit; 995 } 996 997 ret = hisi_qm_start(qm); 998 if (ret) 999 dev_err(dev, "failed to start qm when reset function\n"); 1000 1001 clear_bit: 1002 qm_reset_bit_clear(qm); 1003 } 1004 1005 static irqreturn_t qm_aeq_thread(int irq, void *data) 1006 { 1007 struct hisi_qm *qm = data; 1008 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1009 u16 aeq_depth = qm->aeq_depth; 1010 u32 type, qp_id; 1011 1012 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1013 1014 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1015 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1016 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1017 1018 switch (type) { 1019 case QM_EQ_OVERFLOW: 1020 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1021 qm_reset_function(qm); 1022 return IRQ_HANDLED; 1023 case QM_CQ_OVERFLOW: 1024 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1025 qp_id); 1026 fallthrough; 1027 case QM_CQE_ERROR: 1028 qm_disable_qp(qm, qp_id); 1029 break; 1030 default: 1031 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1032 type); 1033 break; 1034 } 1035 1036 if (qm->status.aeq_head == aeq_depth - 1) { 1037 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1038 aeqe = qm->aeqe; 1039 qm->status.aeq_head = 0; 1040 } else { 1041 aeqe++; 1042 qm->status.aeq_head++; 1043 } 1044 } 1045 1046 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1047 1048 return IRQ_HANDLED; 1049 } 1050 1051 static void qm_init_qp_status(struct hisi_qp *qp) 1052 { 1053 struct hisi_qp_status *qp_status = &qp->qp_status; 1054 1055 qp_status->sq_tail = 0; 1056 qp_status->cq_head = 0; 1057 qp_status->cqc_phase = true; 1058 atomic_set(&qp_status->used, 0); 1059 } 1060 1061 static void qm_init_prefetch(struct hisi_qm *qm) 1062 { 1063 struct device *dev = &qm->pdev->dev; 1064 u32 page_type = 0x0; 1065 1066 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1067 return; 1068 1069 switch (PAGE_SIZE) { 1070 case SZ_4K: 1071 page_type = 0x0; 1072 break; 1073 case SZ_16K: 1074 page_type = 0x1; 1075 break; 1076 case SZ_64K: 1077 page_type = 0x2; 1078 break; 1079 default: 1080 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1081 PAGE_SIZE); 1082 } 1083 1084 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1085 } 1086 1087 /* 1088 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1089 * is the expected qos calculated. 1090 * the formula: 1091 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1092 * 1093 * IR_b * (2 ^ IR_u) * 8000 1094 * IR(Mbps) = ------------------------- 1095 * Tick * (2 ^ IR_s) 1096 */ 1097 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1098 { 1099 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1100 (QM_QOS_TICK * (1 << cir_s)); 1101 } 1102 1103 static u32 acc_shaper_calc_cbs_s(u32 ir) 1104 { 1105 int table_size = ARRAY_SIZE(shaper_cbs_s); 1106 int i; 1107 1108 for (i = 0; i < table_size; i++) { 1109 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1110 return shaper_cbs_s[i].val; 1111 } 1112 1113 return QM_SHAPER_MIN_CBS_S; 1114 } 1115 1116 static u32 acc_shaper_calc_cir_s(u32 ir) 1117 { 1118 int table_size = ARRAY_SIZE(shaper_cir_s); 1119 int i; 1120 1121 for (i = 0; i < table_size; i++) { 1122 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1123 return shaper_cir_s[i].val; 1124 } 1125 1126 return 0; 1127 } 1128 1129 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1130 { 1131 u32 cir_b, cir_u, cir_s, ir_calc; 1132 u32 error_rate; 1133 1134 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1135 cir_s = acc_shaper_calc_cir_s(ir); 1136 1137 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1138 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1139 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1140 1141 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1142 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1143 factor->cir_b = cir_b; 1144 factor->cir_u = cir_u; 1145 factor->cir_s = cir_s; 1146 return 0; 1147 } 1148 } 1149 } 1150 1151 return -EINVAL; 1152 } 1153 1154 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1155 u32 number, struct qm_shaper_factor *factor) 1156 { 1157 u64 tmp = 0; 1158 1159 if (number > 0) { 1160 switch (type) { 1161 case SQC_VFT: 1162 if (qm->ver == QM_HW_V1) { 1163 tmp = QM_SQC_VFT_BUF_SIZE | 1164 QM_SQC_VFT_SQC_SIZE | 1165 QM_SQC_VFT_INDEX_NUMBER | 1166 QM_SQC_VFT_VALID | 1167 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1168 } else { 1169 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1170 QM_SQC_VFT_VALID | 1171 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1172 } 1173 break; 1174 case CQC_VFT: 1175 if (qm->ver == QM_HW_V1) { 1176 tmp = QM_CQC_VFT_BUF_SIZE | 1177 QM_CQC_VFT_SQC_SIZE | 1178 QM_CQC_VFT_INDEX_NUMBER | 1179 QM_CQC_VFT_VALID; 1180 } else { 1181 tmp = QM_CQC_VFT_VALID; 1182 } 1183 break; 1184 case SHAPER_VFT: 1185 if (factor) { 1186 tmp = factor->cir_b | 1187 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1188 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1189 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1190 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1191 } 1192 break; 1193 } 1194 } 1195 1196 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1197 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1198 } 1199 1200 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1201 u32 fun_num, u32 base, u32 number) 1202 { 1203 struct qm_shaper_factor *factor = NULL; 1204 unsigned int val; 1205 int ret; 1206 1207 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1208 factor = &qm->factor[fun_num]; 1209 1210 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1211 val & BIT(0), POLL_PERIOD, 1212 POLL_TIMEOUT); 1213 if (ret) 1214 return ret; 1215 1216 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1217 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1218 if (type == SHAPER_VFT) 1219 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1220 1221 writel(fun_num, qm->io_base + QM_VFT_CFG); 1222 1223 qm_vft_data_cfg(qm, type, base, number, factor); 1224 1225 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1226 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1227 1228 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1229 val & BIT(0), POLL_PERIOD, 1230 POLL_TIMEOUT); 1231 } 1232 1233 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1234 { 1235 u32 qos = qm->factor[fun_num].func_qos; 1236 int ret, i; 1237 1238 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1239 if (ret) { 1240 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1241 return ret; 1242 } 1243 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1244 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1245 /* The base number of queue reuse for different alg type */ 1246 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1247 if (ret) 1248 return ret; 1249 } 1250 1251 return 0; 1252 } 1253 1254 /* The config should be conducted after qm_dev_mem_reset() */ 1255 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1256 u32 number) 1257 { 1258 int ret, i; 1259 1260 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1261 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1262 if (ret) 1263 return ret; 1264 } 1265 1266 /* init default shaper qos val */ 1267 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1268 ret = qm_shaper_init_vft(qm, fun_num); 1269 if (ret) 1270 goto back_sqc_cqc; 1271 } 1272 1273 return 0; 1274 back_sqc_cqc: 1275 for (i = SQC_VFT; i <= CQC_VFT; i++) 1276 qm_set_vft_common(qm, i, fun_num, 0, 0); 1277 1278 return ret; 1279 } 1280 1281 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1282 { 1283 u64 sqc_vft; 1284 int ret; 1285 1286 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1287 if (ret) 1288 return ret; 1289 1290 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1291 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1292 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1293 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1294 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1295 1296 return 0; 1297 } 1298 1299 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1300 dma_addr_t *dma_addr) 1301 { 1302 struct device *dev = &qm->pdev->dev; 1303 void *ctx_addr; 1304 1305 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1306 if (!ctx_addr) 1307 return ERR_PTR(-ENOMEM); 1308 1309 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1310 if (dma_mapping_error(dev, *dma_addr)) { 1311 dev_err(dev, "DMA mapping error!\n"); 1312 kfree(ctx_addr); 1313 return ERR_PTR(-ENOMEM); 1314 } 1315 1316 return ctx_addr; 1317 } 1318 1319 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1320 const void *ctx_addr, dma_addr_t *dma_addr) 1321 { 1322 struct device *dev = &qm->pdev->dev; 1323 1324 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1325 kfree(ctx_addr); 1326 } 1327 1328 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1329 { 1330 return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1331 } 1332 1333 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1334 { 1335 return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1336 } 1337 1338 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1339 { 1340 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1341 } 1342 1343 static void qm_hw_error_cfg(struct hisi_qm *qm) 1344 { 1345 struct hisi_qm_err_info *err_info = &qm->err_info; 1346 1347 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1348 /* clear QM hw residual error source */ 1349 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1350 1351 /* configure error type */ 1352 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1353 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1354 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1355 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1356 } 1357 1358 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1359 { 1360 u32 irq_unmask; 1361 1362 qm_hw_error_cfg(qm); 1363 1364 irq_unmask = ~qm->error_mask; 1365 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1366 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1367 } 1368 1369 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1370 { 1371 u32 irq_mask = qm->error_mask; 1372 1373 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1374 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1375 } 1376 1377 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1378 { 1379 u32 irq_unmask; 1380 1381 qm_hw_error_cfg(qm); 1382 1383 /* enable close master ooo when hardware error happened */ 1384 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1385 1386 irq_unmask = ~qm->error_mask; 1387 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1388 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1389 } 1390 1391 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1392 { 1393 u32 irq_mask = qm->error_mask; 1394 1395 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1396 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1397 1398 /* disable close master ooo when hardware error happened */ 1399 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1400 } 1401 1402 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1403 { 1404 const struct hisi_qm_hw_error *err; 1405 struct device *dev = &qm->pdev->dev; 1406 u32 reg_val, type, vf_num; 1407 int i; 1408 1409 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1410 err = &qm_hw_error[i]; 1411 if (!(err->int_msk & error_status)) 1412 continue; 1413 1414 dev_err(dev, "%s [error status=0x%x] found\n", 1415 err->msg, err->int_msk); 1416 1417 if (err->int_msk & QM_DB_TIMEOUT) { 1418 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1419 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1420 QM_DB_TIMEOUT_TYPE_SHIFT; 1421 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1422 dev_err(dev, "qm %s doorbell timeout in function %u\n", 1423 qm_db_timeout[type], vf_num); 1424 } else if (err->int_msk & QM_OF_FIFO_OF) { 1425 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1426 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1427 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1428 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1429 1430 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1431 dev_err(dev, "qm %s fifo overflow in function %u\n", 1432 qm_fifo_overflow[type], vf_num); 1433 else 1434 dev_err(dev, "unknown error type\n"); 1435 } 1436 } 1437 } 1438 1439 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1440 { 1441 u32 error_status, tmp; 1442 1443 /* read err sts */ 1444 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1445 error_status = qm->error_mask & tmp; 1446 1447 if (error_status) { 1448 if (error_status & QM_ECC_MBIT) 1449 qm->err_status.is_qm_ecc_mbit = true; 1450 1451 qm_log_hw_error(qm, error_status); 1452 if (error_status & qm->err_info.qm_reset_mask) 1453 return ACC_ERR_NEED_RESET; 1454 1455 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1456 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1457 } 1458 1459 return ACC_ERR_RECOVERED; 1460 } 1461 1462 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1463 { 1464 struct qm_mailbox mailbox; 1465 int ret; 1466 1467 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1468 mutex_lock(&qm->mailbox_lock); 1469 ret = qm_mb_nolock(qm, &mailbox); 1470 if (ret) 1471 goto err_unlock; 1472 1473 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1474 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1475 1476 err_unlock: 1477 mutex_unlock(&qm->mailbox_lock); 1478 return ret; 1479 } 1480 1481 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1482 { 1483 u32 val; 1484 1485 if (qm->fun_type == QM_HW_PF) 1486 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1487 1488 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1489 val |= QM_IFC_INT_SOURCE_MASK; 1490 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1491 } 1492 1493 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1494 { 1495 struct device *dev = &qm->pdev->dev; 1496 u32 cmd; 1497 u64 msg; 1498 int ret; 1499 1500 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1501 if (ret) { 1502 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1503 return; 1504 } 1505 1506 cmd = msg & QM_MB_CMD_DATA_MASK; 1507 switch (cmd) { 1508 case QM_VF_PREPARE_FAIL: 1509 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1510 break; 1511 case QM_VF_START_FAIL: 1512 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1513 break; 1514 case QM_VF_PREPARE_DONE: 1515 case QM_VF_START_DONE: 1516 break; 1517 default: 1518 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1519 break; 1520 } 1521 } 1522 1523 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1524 { 1525 struct device *dev = &qm->pdev->dev; 1526 u32 vfs_num = qm->vfs_num; 1527 int cnt = 0; 1528 int ret = 0; 1529 u64 val; 1530 u32 i; 1531 1532 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1533 return 0; 1534 1535 while (true) { 1536 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1537 /* All VFs send command to PF, break */ 1538 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1539 break; 1540 1541 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1542 ret = -EBUSY; 1543 break; 1544 } 1545 1546 msleep(QM_WAIT_DST_ACK); 1547 } 1548 1549 /* PF check VFs msg */ 1550 for (i = 1; i <= vfs_num; i++) { 1551 if (val & BIT(i)) 1552 qm_handle_vf_msg(qm, i); 1553 else 1554 dev_err(dev, "VF(%u) not ping PF!\n", i); 1555 } 1556 1557 /* PF clear interrupt to ack VFs */ 1558 qm_clear_cmd_interrupt(qm, val); 1559 1560 return ret; 1561 } 1562 1563 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1564 { 1565 u32 val; 1566 1567 val = readl(qm->io_base + QM_IFC_INT_CFG); 1568 val &= ~QM_IFC_SEND_ALL_VFS; 1569 val |= fun_num; 1570 writel(val, qm->io_base + QM_IFC_INT_CFG); 1571 1572 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1573 val |= QM_IFC_INT_SET_MASK; 1574 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1575 } 1576 1577 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1578 { 1579 u32 val; 1580 1581 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1582 val |= QM_IFC_INT_SET_MASK; 1583 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1584 } 1585 1586 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1587 { 1588 struct device *dev = &qm->pdev->dev; 1589 struct qm_mailbox mailbox; 1590 int cnt = 0; 1591 u64 val; 1592 int ret; 1593 1594 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1595 mutex_lock(&qm->mailbox_lock); 1596 ret = qm_mb_nolock(qm, &mailbox); 1597 if (ret) { 1598 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1599 goto err_unlock; 1600 } 1601 1602 qm_trigger_vf_interrupt(qm, fun_num); 1603 while (true) { 1604 msleep(QM_WAIT_DST_ACK); 1605 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1606 /* if VF respond, PF notifies VF successfully. */ 1607 if (!(val & BIT(fun_num))) 1608 goto err_unlock; 1609 1610 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1611 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1612 ret = -ETIMEDOUT; 1613 break; 1614 } 1615 } 1616 1617 err_unlock: 1618 mutex_unlock(&qm->mailbox_lock); 1619 return ret; 1620 } 1621 1622 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1623 { 1624 struct device *dev = &qm->pdev->dev; 1625 u32 vfs_num = qm->vfs_num; 1626 struct qm_mailbox mailbox; 1627 u64 val = 0; 1628 int cnt = 0; 1629 int ret; 1630 u32 i; 1631 1632 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1633 mutex_lock(&qm->mailbox_lock); 1634 /* PF sends command to all VFs by mailbox */ 1635 ret = qm_mb_nolock(qm, &mailbox); 1636 if (ret) { 1637 dev_err(dev, "failed to send command to VFs!\n"); 1638 mutex_unlock(&qm->mailbox_lock); 1639 return ret; 1640 } 1641 1642 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1643 while (true) { 1644 msleep(QM_WAIT_DST_ACK); 1645 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1646 /* If all VFs acked, PF notifies VFs successfully. */ 1647 if (!(val & GENMASK(vfs_num, 1))) { 1648 mutex_unlock(&qm->mailbox_lock); 1649 return 0; 1650 } 1651 1652 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1653 break; 1654 } 1655 1656 mutex_unlock(&qm->mailbox_lock); 1657 1658 /* Check which vf respond timeout. */ 1659 for (i = 1; i <= vfs_num; i++) { 1660 if (val & BIT(i)) 1661 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1662 } 1663 1664 return -ETIMEDOUT; 1665 } 1666 1667 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1668 { 1669 struct qm_mailbox mailbox; 1670 int cnt = 0; 1671 u32 val; 1672 int ret; 1673 1674 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1675 mutex_lock(&qm->mailbox_lock); 1676 ret = qm_mb_nolock(qm, &mailbox); 1677 if (ret) { 1678 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1679 goto unlock; 1680 } 1681 1682 qm_trigger_pf_interrupt(qm); 1683 /* Waiting for PF response */ 1684 while (true) { 1685 msleep(QM_WAIT_DST_ACK); 1686 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1687 if (!(val & QM_IFC_INT_STATUS_MASK)) 1688 break; 1689 1690 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1691 ret = -ETIMEDOUT; 1692 break; 1693 } 1694 } 1695 1696 unlock: 1697 mutex_unlock(&qm->mailbox_lock); 1698 return ret; 1699 } 1700 1701 static int qm_stop_qp(struct hisi_qp *qp) 1702 { 1703 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1704 } 1705 1706 static int qm_set_msi(struct hisi_qm *qm, bool set) 1707 { 1708 struct pci_dev *pdev = qm->pdev; 1709 1710 if (set) { 1711 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1712 0); 1713 } else { 1714 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1715 ACC_PEH_MSI_DISABLE); 1716 if (qm->err_status.is_qm_ecc_mbit || 1717 qm->err_status.is_dev_ecc_mbit) 1718 return 0; 1719 1720 mdelay(1); 1721 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1722 return -EFAULT; 1723 } 1724 1725 return 0; 1726 } 1727 1728 static void qm_wait_msi_finish(struct hisi_qm *qm) 1729 { 1730 struct pci_dev *pdev = qm->pdev; 1731 u32 cmd = ~0; 1732 int cnt = 0; 1733 u32 val; 1734 int ret; 1735 1736 while (true) { 1737 pci_read_config_dword(pdev, pdev->msi_cap + 1738 PCI_MSI_PENDING_64, &cmd); 1739 if (!cmd) 1740 break; 1741 1742 if (++cnt > MAX_WAIT_COUNTS) { 1743 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1744 break; 1745 } 1746 1747 udelay(1); 1748 } 1749 1750 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1751 val, !(val & QM_PEH_DFX_MASK), 1752 POLL_PERIOD, POLL_TIMEOUT); 1753 if (ret) 1754 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1755 1756 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1757 val, !(val & QM_PEH_MSI_FINISH_MASK), 1758 POLL_PERIOD, POLL_TIMEOUT); 1759 if (ret) 1760 pci_warn(pdev, "failed to finish MSI operation!\n"); 1761 } 1762 1763 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1764 { 1765 struct pci_dev *pdev = qm->pdev; 1766 int ret = -ETIMEDOUT; 1767 u32 cmd, i; 1768 1769 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1770 if (set) 1771 cmd |= QM_MSI_CAP_ENABLE; 1772 else 1773 cmd &= ~QM_MSI_CAP_ENABLE; 1774 1775 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1776 if (set) { 1777 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1778 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1779 if (cmd & QM_MSI_CAP_ENABLE) 1780 return 0; 1781 1782 udelay(1); 1783 } 1784 } else { 1785 udelay(WAIT_PERIOD_US_MIN); 1786 qm_wait_msi_finish(qm); 1787 ret = 0; 1788 } 1789 1790 return ret; 1791 } 1792 1793 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1794 .qm_db = qm_db_v1, 1795 .hw_error_init = qm_hw_error_init_v1, 1796 .set_msi = qm_set_msi, 1797 }; 1798 1799 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1800 .get_vft = qm_get_vft_v2, 1801 .qm_db = qm_db_v2, 1802 .hw_error_init = qm_hw_error_init_v2, 1803 .hw_error_uninit = qm_hw_error_uninit_v2, 1804 .hw_error_handle = qm_hw_error_handle_v2, 1805 .set_msi = qm_set_msi, 1806 }; 1807 1808 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1809 .get_vft = qm_get_vft_v2, 1810 .qm_db = qm_db_v2, 1811 .hw_error_init = qm_hw_error_init_v3, 1812 .hw_error_uninit = qm_hw_error_uninit_v3, 1813 .hw_error_handle = qm_hw_error_handle_v2, 1814 .set_msi = qm_set_msi_v3, 1815 }; 1816 1817 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1818 { 1819 struct hisi_qp_status *qp_status = &qp->qp_status; 1820 u16 sq_tail = qp_status->sq_tail; 1821 1822 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1823 return NULL; 1824 1825 return qp->sqe + sq_tail * qp->qm->sqe_size; 1826 } 1827 1828 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1829 { 1830 u64 *addr; 1831 1832 /* Use last 64 bits of DUS to reset status. */ 1833 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1834 *addr = 0; 1835 } 1836 1837 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1838 { 1839 struct device *dev = &qm->pdev->dev; 1840 struct hisi_qp *qp; 1841 int qp_id; 1842 1843 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 1844 return ERR_PTR(-EPERM); 1845 1846 if (qm->qp_in_used == qm->qp_num) { 1847 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1848 qm->qp_num); 1849 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1850 return ERR_PTR(-EBUSY); 1851 } 1852 1853 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1854 if (qp_id < 0) { 1855 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1856 qm->qp_num); 1857 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1858 return ERR_PTR(-EBUSY); 1859 } 1860 1861 qp = &qm->qp_array[qp_id]; 1862 hisi_qm_unset_hw_reset(qp); 1863 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1864 1865 qp->event_cb = NULL; 1866 qp->req_cb = NULL; 1867 qp->qp_id = qp_id; 1868 qp->alg_type = alg_type; 1869 qp->is_in_kernel = true; 1870 qm->qp_in_used++; 1871 atomic_set(&qp->qp_status.flags, QP_INIT); 1872 1873 return qp; 1874 } 1875 1876 /** 1877 * hisi_qm_create_qp() - Create a queue pair from qm. 1878 * @qm: The qm we create a qp from. 1879 * @alg_type: Accelerator specific algorithm type in sqc. 1880 * 1881 * Return created qp, negative error code if failed. 1882 */ 1883 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1884 { 1885 struct hisi_qp *qp; 1886 int ret; 1887 1888 ret = qm_pm_get_sync(qm); 1889 if (ret) 1890 return ERR_PTR(ret); 1891 1892 down_write(&qm->qps_lock); 1893 qp = qm_create_qp_nolock(qm, alg_type); 1894 up_write(&qm->qps_lock); 1895 1896 if (IS_ERR(qp)) 1897 qm_pm_put_sync(qm); 1898 1899 return qp; 1900 } 1901 1902 /** 1903 * hisi_qm_release_qp() - Release a qp back to its qm. 1904 * @qp: The qp we want to release. 1905 * 1906 * This function releases the resource of a qp. 1907 */ 1908 static void hisi_qm_release_qp(struct hisi_qp *qp) 1909 { 1910 struct hisi_qm *qm = qp->qm; 1911 1912 down_write(&qm->qps_lock); 1913 1914 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 1915 up_write(&qm->qps_lock); 1916 return; 1917 } 1918 1919 qm->qp_in_used--; 1920 idr_remove(&qm->qp_idr, qp->qp_id); 1921 1922 up_write(&qm->qps_lock); 1923 1924 qm_pm_put_sync(qm); 1925 } 1926 1927 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1928 { 1929 struct hisi_qm *qm = qp->qm; 1930 struct device *dev = &qm->pdev->dev; 1931 enum qm_hw_ver ver = qm->ver; 1932 struct qm_sqc *sqc; 1933 dma_addr_t sqc_dma; 1934 int ret; 1935 1936 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 1937 if (!sqc) 1938 return -ENOMEM; 1939 1940 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 1941 if (ver == QM_HW_V1) { 1942 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1943 sqc->w8 = cpu_to_le16(qp->sq_depth - 1); 1944 } else { 1945 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1946 sqc->w8 = 0; /* rand_qc */ 1947 } 1948 sqc->cq_num = cpu_to_le16(qp_id); 1949 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 1950 1951 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1952 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 1953 QM_QC_PASID_ENABLE_SHIFT); 1954 1955 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 1956 DMA_TO_DEVICE); 1957 if (dma_mapping_error(dev, sqc_dma)) { 1958 kfree(sqc); 1959 return -ENOMEM; 1960 } 1961 1962 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 1963 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 1964 kfree(sqc); 1965 1966 return ret; 1967 } 1968 1969 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1970 { 1971 struct hisi_qm *qm = qp->qm; 1972 struct device *dev = &qm->pdev->dev; 1973 enum qm_hw_ver ver = qm->ver; 1974 struct qm_cqc *cqc; 1975 dma_addr_t cqc_dma; 1976 int ret; 1977 1978 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 1979 if (!cqc) 1980 return -ENOMEM; 1981 1982 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 1983 if (ver == QM_HW_V1) { 1984 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 1985 QM_QC_CQE_SIZE)); 1986 cqc->w8 = cpu_to_le16(qp->cq_depth - 1); 1987 } else { 1988 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 1989 cqc->w8 = 0; /* rand_qc */ 1990 } 1991 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 1992 1993 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1994 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 1995 1996 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 1997 DMA_TO_DEVICE); 1998 if (dma_mapping_error(dev, cqc_dma)) { 1999 kfree(cqc); 2000 return -ENOMEM; 2001 } 2002 2003 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2004 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2005 kfree(cqc); 2006 2007 return ret; 2008 } 2009 2010 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2011 { 2012 int ret; 2013 2014 qm_init_qp_status(qp); 2015 2016 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2017 if (ret) 2018 return ret; 2019 2020 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2021 } 2022 2023 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2024 { 2025 struct hisi_qm *qm = qp->qm; 2026 struct device *dev = &qm->pdev->dev; 2027 int qp_id = qp->qp_id; 2028 u32 pasid = arg; 2029 int ret; 2030 2031 if (!qm_qp_avail_state(qm, qp, QP_START)) 2032 return -EPERM; 2033 2034 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2035 if (ret) 2036 return ret; 2037 2038 atomic_set(&qp->qp_status.flags, QP_START); 2039 dev_dbg(dev, "queue %d started\n", qp_id); 2040 2041 return 0; 2042 } 2043 2044 /** 2045 * hisi_qm_start_qp() - Start a qp into running. 2046 * @qp: The qp we want to start to run. 2047 * @arg: Accelerator specific argument. 2048 * 2049 * After this function, qp can receive request from user. Return 0 if 2050 * successful, negative error code if failed. 2051 */ 2052 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2053 { 2054 struct hisi_qm *qm = qp->qm; 2055 int ret; 2056 2057 down_write(&qm->qps_lock); 2058 ret = qm_start_qp_nolock(qp, arg); 2059 up_write(&qm->qps_lock); 2060 2061 return ret; 2062 } 2063 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2064 2065 /** 2066 * qp_stop_fail_cb() - call request cb. 2067 * @qp: stopped failed qp. 2068 * 2069 * Callback function should be called whether task completed or not. 2070 */ 2071 static void qp_stop_fail_cb(struct hisi_qp *qp) 2072 { 2073 int qp_used = atomic_read(&qp->qp_status.used); 2074 u16 cur_tail = qp->qp_status.sq_tail; 2075 u16 sq_depth = qp->sq_depth; 2076 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2077 struct hisi_qm *qm = qp->qm; 2078 u16 pos; 2079 int i; 2080 2081 for (i = 0; i < qp_used; i++) { 2082 pos = (i + cur_head) % sq_depth; 2083 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2084 atomic_dec(&qp->qp_status.used); 2085 } 2086 } 2087 2088 /** 2089 * qm_drain_qp() - Drain a qp. 2090 * @qp: The qp we want to drain. 2091 * 2092 * Determine whether the queue is cleared by judging the tail pointers of 2093 * sq and cq. 2094 */ 2095 static int qm_drain_qp(struct hisi_qp *qp) 2096 { 2097 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 2098 struct hisi_qm *qm = qp->qm; 2099 struct device *dev = &qm->pdev->dev; 2100 struct qm_sqc *sqc; 2101 struct qm_cqc *cqc; 2102 dma_addr_t dma_addr; 2103 int ret = 0, i = 0; 2104 void *addr; 2105 2106 /* No need to judge if master OOO is blocked. */ 2107 if (qm_check_dev_error(qm)) 2108 return 0; 2109 2110 /* Kunpeng930 supports drain qp by device */ 2111 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2112 ret = qm_stop_qp(qp); 2113 if (ret) 2114 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2115 return ret; 2116 } 2117 2118 addr = hisi_qm_ctx_alloc(qm, size, &dma_addr); 2119 if (IS_ERR(addr)) { 2120 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 2121 return -ENOMEM; 2122 } 2123 2124 while (++i) { 2125 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 2126 if (ret) { 2127 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2128 break; 2129 } 2130 sqc = addr; 2131 2132 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 2133 qp->qp_id); 2134 if (ret) { 2135 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2136 break; 2137 } 2138 cqc = addr + sizeof(struct qm_sqc); 2139 2140 if ((sqc->tail == cqc->tail) && 2141 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2142 break; 2143 2144 if (i == MAX_WAIT_COUNTS) { 2145 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2146 ret = -EBUSY; 2147 break; 2148 } 2149 2150 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2151 } 2152 2153 hisi_qm_ctx_free(qm, size, addr, &dma_addr); 2154 2155 return ret; 2156 } 2157 2158 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2159 { 2160 struct device *dev = &qp->qm->pdev->dev; 2161 int ret; 2162 2163 /* 2164 * It is allowed to stop and release qp when reset, If the qp is 2165 * stopped when reset but still want to be released then, the 2166 * is_resetting flag should be set negative so that this qp will not 2167 * be restarted after reset. 2168 */ 2169 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2170 qp->is_resetting = false; 2171 return 0; 2172 } 2173 2174 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2175 return -EPERM; 2176 2177 atomic_set(&qp->qp_status.flags, QP_STOP); 2178 2179 ret = qm_drain_qp(qp); 2180 if (ret) 2181 dev_err(dev, "Failed to drain out data for stopping!\n"); 2182 2183 2184 flush_workqueue(qp->qm->wq); 2185 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2186 qp_stop_fail_cb(qp); 2187 2188 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2189 2190 return 0; 2191 } 2192 2193 /** 2194 * hisi_qm_stop_qp() - Stop a qp in qm. 2195 * @qp: The qp we want to stop. 2196 * 2197 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 2198 */ 2199 int hisi_qm_stop_qp(struct hisi_qp *qp) 2200 { 2201 int ret; 2202 2203 down_write(&qp->qm->qps_lock); 2204 ret = qm_stop_qp_nolock(qp); 2205 up_write(&qp->qm->qps_lock); 2206 2207 return ret; 2208 } 2209 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2210 2211 /** 2212 * hisi_qp_send() - Queue up a task in the hardware queue. 2213 * @qp: The qp in which to put the message. 2214 * @msg: The message. 2215 * 2216 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2217 * if qp related qm is resetting. 2218 * 2219 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2220 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2221 * reset may happen, we have no lock here considering performance. This 2222 * causes current qm_db sending fail or can not receive sended sqe. QM 2223 * sync/async receive function should handle the error sqe. ACC reset 2224 * done function should clear used sqe to 0. 2225 */ 2226 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2227 { 2228 struct hisi_qp_status *qp_status = &qp->qp_status; 2229 u16 sq_tail = qp_status->sq_tail; 2230 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2231 void *sqe = qm_get_avail_sqe(qp); 2232 2233 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2234 atomic_read(&qp->qm->status.flags) == QM_STOP || 2235 qp->is_resetting)) { 2236 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2237 return -EAGAIN; 2238 } 2239 2240 if (!sqe) 2241 return -EBUSY; 2242 2243 memcpy(sqe, msg, qp->qm->sqe_size); 2244 2245 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2246 atomic_inc(&qp->qp_status.used); 2247 qp_status->sq_tail = sq_tail_next; 2248 2249 return 0; 2250 } 2251 EXPORT_SYMBOL_GPL(hisi_qp_send); 2252 2253 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2254 { 2255 unsigned int val; 2256 2257 if (qm->ver == QM_HW_V1) 2258 return; 2259 2260 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2261 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2262 val, val & BIT(0), POLL_PERIOD, 2263 POLL_TIMEOUT)) 2264 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2265 } 2266 2267 static void qm_qp_event_notifier(struct hisi_qp *qp) 2268 { 2269 wake_up_interruptible(&qp->uacce_q->wait); 2270 } 2271 2272 /* This function returns free number of qp in qm. */ 2273 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2274 { 2275 struct hisi_qm *qm = uacce->priv; 2276 int ret; 2277 2278 down_read(&qm->qps_lock); 2279 ret = qm->qp_num - qm->qp_in_used; 2280 up_read(&qm->qps_lock); 2281 2282 return ret; 2283 } 2284 2285 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2286 { 2287 int i; 2288 2289 for (i = 0; i < qm->qp_num; i++) 2290 qm_set_qp_disable(&qm->qp_array[i], offset); 2291 } 2292 2293 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2294 unsigned long arg, 2295 struct uacce_queue *q) 2296 { 2297 struct hisi_qm *qm = uacce->priv; 2298 struct hisi_qp *qp; 2299 u8 alg_type = 0; 2300 2301 qp = hisi_qm_create_qp(qm, alg_type); 2302 if (IS_ERR(qp)) 2303 return PTR_ERR(qp); 2304 2305 q->priv = qp; 2306 q->uacce = uacce; 2307 qp->uacce_q = q; 2308 qp->event_cb = qm_qp_event_notifier; 2309 qp->pasid = arg; 2310 qp->is_in_kernel = false; 2311 2312 return 0; 2313 } 2314 2315 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2316 { 2317 struct hisi_qp *qp = q->priv; 2318 2319 hisi_qm_release_qp(qp); 2320 } 2321 2322 /* map sq/cq/doorbell to user space */ 2323 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2324 struct vm_area_struct *vma, 2325 struct uacce_qfile_region *qfr) 2326 { 2327 struct hisi_qp *qp = q->priv; 2328 struct hisi_qm *qm = qp->qm; 2329 resource_size_t phys_base = qm->db_phys_base + 2330 qp->qp_id * qm->db_interval; 2331 size_t sz = vma->vm_end - vma->vm_start; 2332 struct pci_dev *pdev = qm->pdev; 2333 struct device *dev = &pdev->dev; 2334 unsigned long vm_pgoff; 2335 int ret; 2336 2337 switch (qfr->type) { 2338 case UACCE_QFRT_MMIO: 2339 if (qm->ver == QM_HW_V1) { 2340 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2341 return -EINVAL; 2342 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2343 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2344 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2345 return -EINVAL; 2346 } else { 2347 if (sz > qm->db_interval) 2348 return -EINVAL; 2349 } 2350 2351 vm_flags_set(vma, VM_IO); 2352 2353 return remap_pfn_range(vma, vma->vm_start, 2354 phys_base >> PAGE_SHIFT, 2355 sz, pgprot_noncached(vma->vm_page_prot)); 2356 case UACCE_QFRT_DUS: 2357 if (sz != qp->qdma.size) 2358 return -EINVAL; 2359 2360 /* 2361 * dma_mmap_coherent() requires vm_pgoff as 0 2362 * restore vm_pfoff to initial value for mmap() 2363 */ 2364 vm_pgoff = vma->vm_pgoff; 2365 vma->vm_pgoff = 0; 2366 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2367 qp->qdma.dma, sz); 2368 vma->vm_pgoff = vm_pgoff; 2369 return ret; 2370 2371 default: 2372 return -EINVAL; 2373 } 2374 } 2375 2376 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2377 { 2378 struct hisi_qp *qp = q->priv; 2379 2380 return hisi_qm_start_qp(qp, qp->pasid); 2381 } 2382 2383 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2384 { 2385 hisi_qm_stop_qp(q->priv); 2386 } 2387 2388 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2389 { 2390 struct hisi_qp *qp = q->priv; 2391 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2392 int updated = 0; 2393 2394 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2395 /* make sure to read data from memory */ 2396 dma_rmb(); 2397 qm_cq_head_update(qp); 2398 cqe = qp->cqe + qp->qp_status.cq_head; 2399 updated = 1; 2400 } 2401 2402 return updated; 2403 } 2404 2405 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2406 { 2407 struct hisi_qm *qm = q->uacce->priv; 2408 struct hisi_qp *qp = q->priv; 2409 2410 down_write(&qm->qps_lock); 2411 qp->alg_type = type; 2412 up_write(&qm->qps_lock); 2413 } 2414 2415 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2416 unsigned long arg) 2417 { 2418 struct hisi_qp *qp = q->priv; 2419 struct hisi_qp_info qp_info; 2420 struct hisi_qp_ctx qp_ctx; 2421 2422 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2423 if (copy_from_user(&qp_ctx, (void __user *)arg, 2424 sizeof(struct hisi_qp_ctx))) 2425 return -EFAULT; 2426 2427 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2428 return -EINVAL; 2429 2430 qm_set_sqctype(q, qp_ctx.qc_type); 2431 qp_ctx.id = qp->qp_id; 2432 2433 if (copy_to_user((void __user *)arg, &qp_ctx, 2434 sizeof(struct hisi_qp_ctx))) 2435 return -EFAULT; 2436 2437 return 0; 2438 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2439 if (copy_from_user(&qp_info, (void __user *)arg, 2440 sizeof(struct hisi_qp_info))) 2441 return -EFAULT; 2442 2443 qp_info.sqe_size = qp->qm->sqe_size; 2444 qp_info.sq_depth = qp->sq_depth; 2445 qp_info.cq_depth = qp->cq_depth; 2446 2447 if (copy_to_user((void __user *)arg, &qp_info, 2448 sizeof(struct hisi_qp_info))) 2449 return -EFAULT; 2450 2451 return 0; 2452 } 2453 2454 return -EINVAL; 2455 } 2456 2457 /** 2458 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2459 * according to user's configuration of error threshold. 2460 * @qm: the uacce device 2461 */ 2462 static int qm_hw_err_isolate(struct hisi_qm *qm) 2463 { 2464 struct qm_hw_err *err, *tmp, *hw_err; 2465 struct qm_err_isolate *isolate; 2466 u32 count = 0; 2467 2468 isolate = &qm->isolate_data; 2469 2470 #define SECONDS_PER_HOUR 3600 2471 2472 /* All the hw errs are processed by PF driver */ 2473 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2474 return 0; 2475 2476 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2477 if (!hw_err) 2478 return -ENOMEM; 2479 2480 /* 2481 * Time-stamp every slot AER error. Then check the AER error log when the 2482 * next device AER error occurred. if the device slot AER error count exceeds 2483 * the setting error threshold in one hour, the isolated state will be set 2484 * to true. And the AER error logs that exceed one hour will be cleared. 2485 */ 2486 mutex_lock(&isolate->isolate_lock); 2487 hw_err->timestamp = jiffies; 2488 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2489 if ((hw_err->timestamp - err->timestamp) / HZ > 2490 SECONDS_PER_HOUR) { 2491 list_del(&err->list); 2492 kfree(err); 2493 } else { 2494 count++; 2495 } 2496 } 2497 list_add(&hw_err->list, &isolate->qm_hw_errs); 2498 mutex_unlock(&isolate->isolate_lock); 2499 2500 if (count >= isolate->err_threshold) 2501 isolate->is_isolate = true; 2502 2503 return 0; 2504 } 2505 2506 static void qm_hw_err_destroy(struct hisi_qm *qm) 2507 { 2508 struct qm_hw_err *err, *tmp; 2509 2510 mutex_lock(&qm->isolate_data.isolate_lock); 2511 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2512 list_del(&err->list); 2513 kfree(err); 2514 } 2515 mutex_unlock(&qm->isolate_data.isolate_lock); 2516 } 2517 2518 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2519 { 2520 struct hisi_qm *qm = uacce->priv; 2521 struct hisi_qm *pf_qm; 2522 2523 if (uacce->is_vf) 2524 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2525 else 2526 pf_qm = qm; 2527 2528 return pf_qm->isolate_data.is_isolate ? 2529 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2530 } 2531 2532 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2533 { 2534 struct hisi_qm *qm = uacce->priv; 2535 2536 /* Must be set by PF */ 2537 if (uacce->is_vf) 2538 return -EPERM; 2539 2540 if (qm->isolate_data.is_isolate) 2541 return -EPERM; 2542 2543 qm->isolate_data.err_threshold = num; 2544 2545 /* After the policy is updated, need to reset the hardware err list */ 2546 qm_hw_err_destroy(qm); 2547 2548 return 0; 2549 } 2550 2551 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2552 { 2553 struct hisi_qm *qm = uacce->priv; 2554 struct hisi_qm *pf_qm; 2555 2556 if (uacce->is_vf) { 2557 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2558 return pf_qm->isolate_data.err_threshold; 2559 } 2560 2561 return qm->isolate_data.err_threshold; 2562 } 2563 2564 static const struct uacce_ops uacce_qm_ops = { 2565 .get_available_instances = hisi_qm_get_available_instances, 2566 .get_queue = hisi_qm_uacce_get_queue, 2567 .put_queue = hisi_qm_uacce_put_queue, 2568 .start_queue = hisi_qm_uacce_start_queue, 2569 .stop_queue = hisi_qm_uacce_stop_queue, 2570 .mmap = hisi_qm_uacce_mmap, 2571 .ioctl = hisi_qm_uacce_ioctl, 2572 .is_q_updated = hisi_qm_is_q_updated, 2573 .get_isolate_state = hisi_qm_get_isolate_state, 2574 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2575 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2576 }; 2577 2578 static void qm_remove_uacce(struct hisi_qm *qm) 2579 { 2580 struct uacce_device *uacce = qm->uacce; 2581 2582 if (qm->use_sva) { 2583 qm_hw_err_destroy(qm); 2584 uacce_remove(uacce); 2585 qm->uacce = NULL; 2586 } 2587 } 2588 2589 static int qm_alloc_uacce(struct hisi_qm *qm) 2590 { 2591 struct pci_dev *pdev = qm->pdev; 2592 struct uacce_device *uacce; 2593 unsigned long mmio_page_nr; 2594 unsigned long dus_page_nr; 2595 u16 sq_depth, cq_depth; 2596 struct uacce_interface interface = { 2597 .flags = UACCE_DEV_SVA, 2598 .ops = &uacce_qm_ops, 2599 }; 2600 int ret; 2601 2602 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2603 sizeof(interface.name)); 2604 if (ret < 0) 2605 return -ENAMETOOLONG; 2606 2607 uacce = uacce_alloc(&pdev->dev, &interface); 2608 if (IS_ERR(uacce)) 2609 return PTR_ERR(uacce); 2610 2611 if (uacce->flags & UACCE_DEV_SVA) { 2612 qm->use_sva = true; 2613 } else { 2614 /* only consider sva case */ 2615 qm_remove_uacce(qm); 2616 return -EINVAL; 2617 } 2618 2619 uacce->is_vf = pdev->is_virtfn; 2620 uacce->priv = qm; 2621 2622 if (qm->ver == QM_HW_V1) 2623 uacce->api_ver = HISI_QM_API_VER_BASE; 2624 else if (qm->ver == QM_HW_V2) 2625 uacce->api_ver = HISI_QM_API_VER2_BASE; 2626 else 2627 uacce->api_ver = HISI_QM_API_VER3_BASE; 2628 2629 if (qm->ver == QM_HW_V1) 2630 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2631 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2632 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2633 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2634 else 2635 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2636 2637 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2638 2639 /* Add one more page for device or qp status */ 2640 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2641 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2642 PAGE_SHIFT; 2643 2644 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2645 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2646 2647 qm->uacce = uacce; 2648 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2649 mutex_init(&qm->isolate_data.isolate_lock); 2650 2651 return 0; 2652 } 2653 2654 /** 2655 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2656 * there is user on the QM, return failure without doing anything. 2657 * @qm: The qm needed to be fronzen. 2658 * 2659 * This function frozes QM, then we can do SRIOV disabling. 2660 */ 2661 static int qm_frozen(struct hisi_qm *qm) 2662 { 2663 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2664 return 0; 2665 2666 down_write(&qm->qps_lock); 2667 2668 if (!qm->qp_in_used) { 2669 qm->qp_in_used = qm->qp_num; 2670 up_write(&qm->qps_lock); 2671 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2672 return 0; 2673 } 2674 2675 up_write(&qm->qps_lock); 2676 2677 return -EBUSY; 2678 } 2679 2680 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2681 struct hisi_qm_list *qm_list) 2682 { 2683 struct hisi_qm *qm, *vf_qm; 2684 struct pci_dev *dev; 2685 int ret = 0; 2686 2687 if (!qm_list || !pdev) 2688 return -EINVAL; 2689 2690 /* Try to frozen all the VFs as disable SRIOV */ 2691 mutex_lock(&qm_list->lock); 2692 list_for_each_entry(qm, &qm_list->list, list) { 2693 dev = qm->pdev; 2694 if (dev == pdev) 2695 continue; 2696 if (pci_physfn(dev) == pdev) { 2697 vf_qm = pci_get_drvdata(dev); 2698 ret = qm_frozen(vf_qm); 2699 if (ret) 2700 goto frozen_fail; 2701 } 2702 } 2703 2704 frozen_fail: 2705 mutex_unlock(&qm_list->lock); 2706 2707 return ret; 2708 } 2709 2710 /** 2711 * hisi_qm_wait_task_finish() - Wait until the task is finished 2712 * when removing the driver. 2713 * @qm: The qm needed to wait for the task to finish. 2714 * @qm_list: The list of all available devices. 2715 */ 2716 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2717 { 2718 while (qm_frozen(qm) || 2719 ((qm->fun_type == QM_HW_PF) && 2720 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2721 msleep(WAIT_PERIOD); 2722 } 2723 2724 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2725 test_bit(QM_RESETTING, &qm->misc_ctl)) 2726 msleep(WAIT_PERIOD); 2727 2728 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2729 flush_work(&qm->cmd_process); 2730 2731 udelay(REMOVE_WAIT_DELAY); 2732 } 2733 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2734 2735 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2736 { 2737 struct device *dev = &qm->pdev->dev; 2738 struct qm_dma *qdma; 2739 int i; 2740 2741 for (i = num - 1; i >= 0; i--) { 2742 qdma = &qm->qp_array[i].qdma; 2743 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2744 kfree(qm->poll_data[i].qp_finish_id); 2745 } 2746 2747 kfree(qm->poll_data); 2748 kfree(qm->qp_array); 2749 } 2750 2751 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2752 u16 sq_depth, u16 cq_depth) 2753 { 2754 struct device *dev = &qm->pdev->dev; 2755 size_t off = qm->sqe_size * sq_depth; 2756 struct hisi_qp *qp; 2757 int ret = -ENOMEM; 2758 2759 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2760 GFP_KERNEL); 2761 if (!qm->poll_data[id].qp_finish_id) 2762 return -ENOMEM; 2763 2764 qp = &qm->qp_array[id]; 2765 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2766 GFP_KERNEL); 2767 if (!qp->qdma.va) 2768 goto err_free_qp_finish_id; 2769 2770 qp->sqe = qp->qdma.va; 2771 qp->sqe_dma = qp->qdma.dma; 2772 qp->cqe = qp->qdma.va + off; 2773 qp->cqe_dma = qp->qdma.dma + off; 2774 qp->qdma.size = dma_size; 2775 qp->sq_depth = sq_depth; 2776 qp->cq_depth = cq_depth; 2777 qp->qm = qm; 2778 qp->qp_id = id; 2779 2780 return 0; 2781 2782 err_free_qp_finish_id: 2783 kfree(qm->poll_data[id].qp_finish_id); 2784 return ret; 2785 } 2786 2787 static void hisi_qm_pre_init(struct hisi_qm *qm) 2788 { 2789 struct pci_dev *pdev = qm->pdev; 2790 2791 if (qm->ver == QM_HW_V1) 2792 qm->ops = &qm_hw_ops_v1; 2793 else if (qm->ver == QM_HW_V2) 2794 qm->ops = &qm_hw_ops_v2; 2795 else 2796 qm->ops = &qm_hw_ops_v3; 2797 2798 pci_set_drvdata(pdev, qm); 2799 mutex_init(&qm->mailbox_lock); 2800 init_rwsem(&qm->qps_lock); 2801 qm->qp_in_used = 0; 2802 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2803 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2804 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2805 } 2806 } 2807 2808 static void qm_cmd_uninit(struct hisi_qm *qm) 2809 { 2810 u32 val; 2811 2812 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2813 return; 2814 2815 val = readl(qm->io_base + QM_IFC_INT_MASK); 2816 val |= QM_IFC_INT_DISABLE; 2817 writel(val, qm->io_base + QM_IFC_INT_MASK); 2818 } 2819 2820 static void qm_cmd_init(struct hisi_qm *qm) 2821 { 2822 u32 val; 2823 2824 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2825 return; 2826 2827 /* Clear communication interrupt source */ 2828 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2829 2830 /* Enable pf to vf communication reg. */ 2831 val = readl(qm->io_base + QM_IFC_INT_MASK); 2832 val &= ~QM_IFC_INT_DISABLE; 2833 writel(val, qm->io_base + QM_IFC_INT_MASK); 2834 } 2835 2836 static void qm_put_pci_res(struct hisi_qm *qm) 2837 { 2838 struct pci_dev *pdev = qm->pdev; 2839 2840 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2841 iounmap(qm->db_io_base); 2842 2843 iounmap(qm->io_base); 2844 pci_release_mem_regions(pdev); 2845 } 2846 2847 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2848 { 2849 struct pci_dev *pdev = qm->pdev; 2850 2851 pci_free_irq_vectors(pdev); 2852 qm_put_pci_res(qm); 2853 pci_disable_device(pdev); 2854 } 2855 2856 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2857 { 2858 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2859 writel(state, qm->io_base + QM_VF_STATE); 2860 } 2861 2862 static void hisi_qm_unint_work(struct hisi_qm *qm) 2863 { 2864 destroy_workqueue(qm->wq); 2865 } 2866 2867 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2868 { 2869 struct device *dev = &qm->pdev->dev; 2870 2871 hisi_qp_memory_uninit(qm, qm->qp_num); 2872 if (qm->qdma.va) { 2873 hisi_qm_cache_wb(qm); 2874 dma_free_coherent(dev, qm->qdma.size, 2875 qm->qdma.va, qm->qdma.dma); 2876 } 2877 2878 idr_destroy(&qm->qp_idr); 2879 2880 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2881 kfree(qm->factor); 2882 } 2883 2884 /** 2885 * hisi_qm_uninit() - Uninitialize qm. 2886 * @qm: The qm needed uninit. 2887 * 2888 * This function uninits qm related device resources. 2889 */ 2890 void hisi_qm_uninit(struct hisi_qm *qm) 2891 { 2892 qm_cmd_uninit(qm); 2893 hisi_qm_unint_work(qm); 2894 down_write(&qm->qps_lock); 2895 2896 if (!qm_avail_state(qm, QM_CLOSE)) { 2897 up_write(&qm->qps_lock); 2898 return; 2899 } 2900 2901 hisi_qm_memory_uninit(qm); 2902 hisi_qm_set_state(qm, QM_NOT_READY); 2903 up_write(&qm->qps_lock); 2904 2905 qm_irqs_unregister(qm); 2906 hisi_qm_pci_uninit(qm); 2907 if (qm->use_sva) { 2908 uacce_remove(qm->uacce); 2909 qm->uacce = NULL; 2910 } 2911 } 2912 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2913 2914 /** 2915 * hisi_qm_get_vft() - Get vft from a qm. 2916 * @qm: The qm we want to get its vft. 2917 * @base: The base number of queue in vft. 2918 * @number: The number of queues in vft. 2919 * 2920 * We can allocate multiple queues to a qm by configuring virtual function 2921 * table. We get related configures by this function. Normally, we call this 2922 * function in VF driver to get the queue information. 2923 * 2924 * qm hw v1 does not support this interface. 2925 */ 2926 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2927 { 2928 if (!base || !number) 2929 return -EINVAL; 2930 2931 if (!qm->ops->get_vft) { 2932 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2933 return -EINVAL; 2934 } 2935 2936 return qm->ops->get_vft(qm, base, number); 2937 } 2938 2939 /** 2940 * hisi_qm_set_vft() - Set vft to a qm. 2941 * @qm: The qm we want to set its vft. 2942 * @fun_num: The function number. 2943 * @base: The base number of queue in vft. 2944 * @number: The number of queues in vft. 2945 * 2946 * This function is alway called in PF driver, it is used to assign queues 2947 * among PF and VFs. 2948 * 2949 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2950 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2951 * (VF function number 0x2) 2952 */ 2953 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 2954 u32 number) 2955 { 2956 u32 max_q_num = qm->ctrl_qp_num; 2957 2958 if (base >= max_q_num || number > max_q_num || 2959 (base + number) > max_q_num) 2960 return -EINVAL; 2961 2962 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 2963 } 2964 2965 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 2966 { 2967 struct hisi_qm_status *status = &qm->status; 2968 2969 status->eq_head = 0; 2970 status->aeq_head = 0; 2971 status->eqc_phase = true; 2972 status->aeqc_phase = true; 2973 } 2974 2975 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 2976 { 2977 /* Clear eq/aeq interrupt source */ 2978 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 2979 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 2980 2981 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 2982 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 2983 } 2984 2985 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 2986 { 2987 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 2988 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 2989 } 2990 2991 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 2992 { 2993 struct device *dev = &qm->pdev->dev; 2994 struct qm_eqc *eqc; 2995 dma_addr_t eqc_dma; 2996 int ret; 2997 2998 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 2999 if (!eqc) 3000 return -ENOMEM; 3001 3002 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3003 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3004 if (qm->ver == QM_HW_V1) 3005 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3006 eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3007 3008 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3009 DMA_TO_DEVICE); 3010 if (dma_mapping_error(dev, eqc_dma)) { 3011 kfree(eqc); 3012 return -ENOMEM; 3013 } 3014 3015 ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3016 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3017 kfree(eqc); 3018 3019 return ret; 3020 } 3021 3022 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3023 { 3024 struct device *dev = &qm->pdev->dev; 3025 struct qm_aeqc *aeqc; 3026 dma_addr_t aeqc_dma; 3027 int ret; 3028 3029 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3030 if (!aeqc) 3031 return -ENOMEM; 3032 3033 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3034 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3035 aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3036 3037 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3038 DMA_TO_DEVICE); 3039 if (dma_mapping_error(dev, aeqc_dma)) { 3040 kfree(aeqc); 3041 return -ENOMEM; 3042 } 3043 3044 ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3045 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3046 kfree(aeqc); 3047 3048 return ret; 3049 } 3050 3051 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3052 { 3053 struct device *dev = &qm->pdev->dev; 3054 int ret; 3055 3056 qm_init_eq_aeq_status(qm); 3057 3058 ret = qm_eq_ctx_cfg(qm); 3059 if (ret) { 3060 dev_err(dev, "Set eqc failed!\n"); 3061 return ret; 3062 } 3063 3064 return qm_aeq_ctx_cfg(qm); 3065 } 3066 3067 static int __hisi_qm_start(struct hisi_qm *qm) 3068 { 3069 int ret; 3070 3071 WARN_ON(!qm->qdma.va); 3072 3073 if (qm->fun_type == QM_HW_PF) { 3074 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3075 if (ret) 3076 return ret; 3077 } 3078 3079 ret = qm_eq_aeq_ctx_cfg(qm); 3080 if (ret) 3081 return ret; 3082 3083 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3084 if (ret) 3085 return ret; 3086 3087 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3088 if (ret) 3089 return ret; 3090 3091 qm_init_prefetch(qm); 3092 qm_enable_eq_aeq_interrupts(qm); 3093 3094 return 0; 3095 } 3096 3097 /** 3098 * hisi_qm_start() - start qm 3099 * @qm: The qm to be started. 3100 * 3101 * This function starts a qm, then we can allocate qp from this qm. 3102 */ 3103 int hisi_qm_start(struct hisi_qm *qm) 3104 { 3105 struct device *dev = &qm->pdev->dev; 3106 int ret = 0; 3107 3108 down_write(&qm->qps_lock); 3109 3110 if (!qm_avail_state(qm, QM_START)) { 3111 up_write(&qm->qps_lock); 3112 return -EPERM; 3113 } 3114 3115 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3116 3117 if (!qm->qp_num) { 3118 dev_err(dev, "qp_num should not be 0\n"); 3119 ret = -EINVAL; 3120 goto err_unlock; 3121 } 3122 3123 ret = __hisi_qm_start(qm); 3124 if (!ret) 3125 atomic_set(&qm->status.flags, QM_START); 3126 3127 hisi_qm_set_state(qm, QM_READY); 3128 err_unlock: 3129 up_write(&qm->qps_lock); 3130 return ret; 3131 } 3132 EXPORT_SYMBOL_GPL(hisi_qm_start); 3133 3134 static int qm_restart(struct hisi_qm *qm) 3135 { 3136 struct device *dev = &qm->pdev->dev; 3137 struct hisi_qp *qp; 3138 int ret, i; 3139 3140 ret = hisi_qm_start(qm); 3141 if (ret < 0) 3142 return ret; 3143 3144 down_write(&qm->qps_lock); 3145 for (i = 0; i < qm->qp_num; i++) { 3146 qp = &qm->qp_array[i]; 3147 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3148 qp->is_resetting == true) { 3149 ret = qm_start_qp_nolock(qp, 0); 3150 if (ret < 0) { 3151 dev_err(dev, "Failed to start qp%d!\n", i); 3152 3153 up_write(&qm->qps_lock); 3154 return ret; 3155 } 3156 qp->is_resetting = false; 3157 } 3158 } 3159 up_write(&qm->qps_lock); 3160 3161 return 0; 3162 } 3163 3164 /* Stop started qps in reset flow */ 3165 static int qm_stop_started_qp(struct hisi_qm *qm) 3166 { 3167 struct device *dev = &qm->pdev->dev; 3168 struct hisi_qp *qp; 3169 int i, ret; 3170 3171 for (i = 0; i < qm->qp_num; i++) { 3172 qp = &qm->qp_array[i]; 3173 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3174 qp->is_resetting = true; 3175 ret = qm_stop_qp_nolock(qp); 3176 if (ret < 0) { 3177 dev_err(dev, "Failed to stop qp%d!\n", i); 3178 return ret; 3179 } 3180 } 3181 } 3182 3183 return 0; 3184 } 3185 3186 /** 3187 * qm_clear_queues() - Clear all queues memory in a qm. 3188 * @qm: The qm in which the queues will be cleared. 3189 * 3190 * This function clears all queues memory in a qm. Reset of accelerator can 3191 * use this to clear queues. 3192 */ 3193 static void qm_clear_queues(struct hisi_qm *qm) 3194 { 3195 struct hisi_qp *qp; 3196 int i; 3197 3198 for (i = 0; i < qm->qp_num; i++) { 3199 qp = &qm->qp_array[i]; 3200 if (qp->is_in_kernel && qp->is_resetting) 3201 memset(qp->qdma.va, 0, qp->qdma.size); 3202 } 3203 3204 memset(qm->qdma.va, 0, qm->qdma.size); 3205 } 3206 3207 /** 3208 * hisi_qm_stop() - Stop a qm. 3209 * @qm: The qm which will be stopped. 3210 * @r: The reason to stop qm. 3211 * 3212 * This function stops qm and its qps, then qm can not accept request. 3213 * Related resources are not released at this state, we can use hisi_qm_start 3214 * to let qm start again. 3215 */ 3216 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3217 { 3218 struct device *dev = &qm->pdev->dev; 3219 int ret = 0; 3220 3221 down_write(&qm->qps_lock); 3222 3223 qm->status.stop_reason = r; 3224 if (!qm_avail_state(qm, QM_STOP)) { 3225 ret = -EPERM; 3226 goto err_unlock; 3227 } 3228 3229 if (qm->status.stop_reason == QM_SOFT_RESET || 3230 qm->status.stop_reason == QM_DOWN) { 3231 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3232 ret = qm_stop_started_qp(qm); 3233 if (ret < 0) { 3234 dev_err(dev, "Failed to stop started qp!\n"); 3235 goto err_unlock; 3236 } 3237 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3238 } 3239 3240 qm_disable_eq_aeq_interrupts(qm); 3241 if (qm->fun_type == QM_HW_PF) { 3242 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3243 if (ret < 0) { 3244 dev_err(dev, "Failed to set vft!\n"); 3245 ret = -EBUSY; 3246 goto err_unlock; 3247 } 3248 } 3249 3250 qm_clear_queues(qm); 3251 atomic_set(&qm->status.flags, QM_STOP); 3252 3253 err_unlock: 3254 up_write(&qm->qps_lock); 3255 return ret; 3256 } 3257 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3258 3259 static void qm_hw_error_init(struct hisi_qm *qm) 3260 { 3261 if (!qm->ops->hw_error_init) { 3262 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3263 return; 3264 } 3265 3266 qm->ops->hw_error_init(qm); 3267 } 3268 3269 static void qm_hw_error_uninit(struct hisi_qm *qm) 3270 { 3271 if (!qm->ops->hw_error_uninit) { 3272 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3273 return; 3274 } 3275 3276 qm->ops->hw_error_uninit(qm); 3277 } 3278 3279 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3280 { 3281 if (!qm->ops->hw_error_handle) { 3282 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3283 return ACC_ERR_NONE; 3284 } 3285 3286 return qm->ops->hw_error_handle(qm); 3287 } 3288 3289 /** 3290 * hisi_qm_dev_err_init() - Initialize device error configuration. 3291 * @qm: The qm for which we want to do error initialization. 3292 * 3293 * Initialize QM and device error related configuration. 3294 */ 3295 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3296 { 3297 if (qm->fun_type == QM_HW_VF) 3298 return; 3299 3300 qm_hw_error_init(qm); 3301 3302 if (!qm->err_ini->hw_err_enable) { 3303 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3304 return; 3305 } 3306 qm->err_ini->hw_err_enable(qm); 3307 } 3308 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3309 3310 /** 3311 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3312 * @qm: The qm for which we want to do error uninitialization. 3313 * 3314 * Uninitialize QM and device error related configuration. 3315 */ 3316 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3317 { 3318 if (qm->fun_type == QM_HW_VF) 3319 return; 3320 3321 qm_hw_error_uninit(qm); 3322 3323 if (!qm->err_ini->hw_err_disable) { 3324 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3325 return; 3326 } 3327 qm->err_ini->hw_err_disable(qm); 3328 } 3329 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3330 3331 /** 3332 * hisi_qm_free_qps() - free multiple queue pairs. 3333 * @qps: The queue pairs need to be freed. 3334 * @qp_num: The num of queue pairs. 3335 */ 3336 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3337 { 3338 int i; 3339 3340 if (!qps || qp_num <= 0) 3341 return; 3342 3343 for (i = qp_num - 1; i >= 0; i--) 3344 hisi_qm_release_qp(qps[i]); 3345 } 3346 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3347 3348 static void free_list(struct list_head *head) 3349 { 3350 struct hisi_qm_resource *res, *tmp; 3351 3352 list_for_each_entry_safe(res, tmp, head, list) { 3353 list_del(&res->list); 3354 kfree(res); 3355 } 3356 } 3357 3358 static int hisi_qm_sort_devices(int node, struct list_head *head, 3359 struct hisi_qm_list *qm_list) 3360 { 3361 struct hisi_qm_resource *res, *tmp; 3362 struct hisi_qm *qm; 3363 struct list_head *n; 3364 struct device *dev; 3365 int dev_node; 3366 3367 list_for_each_entry(qm, &qm_list->list, list) { 3368 dev = &qm->pdev->dev; 3369 3370 dev_node = dev_to_node(dev); 3371 if (dev_node < 0) 3372 dev_node = 0; 3373 3374 res = kzalloc(sizeof(*res), GFP_KERNEL); 3375 if (!res) 3376 return -ENOMEM; 3377 3378 res->qm = qm; 3379 res->distance = node_distance(dev_node, node); 3380 n = head; 3381 list_for_each_entry(tmp, head, list) { 3382 if (res->distance < tmp->distance) { 3383 n = &tmp->list; 3384 break; 3385 } 3386 } 3387 list_add_tail(&res->list, n); 3388 } 3389 3390 return 0; 3391 } 3392 3393 /** 3394 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3395 * @qm_list: The list of all available devices. 3396 * @qp_num: The number of queue pairs need created. 3397 * @alg_type: The algorithm type. 3398 * @node: The numa node. 3399 * @qps: The queue pairs need created. 3400 * 3401 * This function will sort all available device according to numa distance. 3402 * Then try to create all queue pairs from one device, if all devices do 3403 * not meet the requirements will return error. 3404 */ 3405 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3406 u8 alg_type, int node, struct hisi_qp **qps) 3407 { 3408 struct hisi_qm_resource *tmp; 3409 int ret = -ENODEV; 3410 LIST_HEAD(head); 3411 int i; 3412 3413 if (!qps || !qm_list || qp_num <= 0) 3414 return -EINVAL; 3415 3416 mutex_lock(&qm_list->lock); 3417 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3418 mutex_unlock(&qm_list->lock); 3419 goto err; 3420 } 3421 3422 list_for_each_entry(tmp, &head, list) { 3423 for (i = 0; i < qp_num; i++) { 3424 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3425 if (IS_ERR(qps[i])) { 3426 hisi_qm_free_qps(qps, i); 3427 break; 3428 } 3429 } 3430 3431 if (i == qp_num) { 3432 ret = 0; 3433 break; 3434 } 3435 } 3436 3437 mutex_unlock(&qm_list->lock); 3438 if (ret) 3439 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3440 node, alg_type, qp_num); 3441 3442 err: 3443 free_list(&head); 3444 return ret; 3445 } 3446 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3447 3448 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3449 { 3450 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3451 u32 max_qp_num = qm->max_qp_num; 3452 u32 q_base = qm->qp_num; 3453 int ret; 3454 3455 if (!num_vfs) 3456 return -EINVAL; 3457 3458 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3459 3460 /* If vfs_q_num is less than num_vfs, return error. */ 3461 if (vfs_q_num < num_vfs) 3462 return -EINVAL; 3463 3464 q_num = vfs_q_num / num_vfs; 3465 remain_q_num = vfs_q_num % num_vfs; 3466 3467 for (i = num_vfs; i > 0; i--) { 3468 /* 3469 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3470 * remaining queues equally. 3471 */ 3472 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3473 act_q_num = q_num + remain_q_num; 3474 remain_q_num = 0; 3475 } else if (remain_q_num > 0) { 3476 act_q_num = q_num + 1; 3477 remain_q_num--; 3478 } else { 3479 act_q_num = q_num; 3480 } 3481 3482 act_q_num = min(act_q_num, max_qp_num); 3483 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3484 if (ret) { 3485 for (j = num_vfs; j > i; j--) 3486 hisi_qm_set_vft(qm, j, 0, 0); 3487 return ret; 3488 } 3489 q_base += act_q_num; 3490 } 3491 3492 return 0; 3493 } 3494 3495 static int qm_clear_vft_config(struct hisi_qm *qm) 3496 { 3497 int ret; 3498 u32 i; 3499 3500 for (i = 1; i <= qm->vfs_num; i++) { 3501 ret = hisi_qm_set_vft(qm, i, 0, 0); 3502 if (ret) 3503 return ret; 3504 } 3505 qm->vfs_num = 0; 3506 3507 return 0; 3508 } 3509 3510 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3511 { 3512 struct device *dev = &qm->pdev->dev; 3513 u32 ir = qos * QM_QOS_RATE; 3514 int ret, total_vfs, i; 3515 3516 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3517 if (fun_index > total_vfs) 3518 return -EINVAL; 3519 3520 qm->factor[fun_index].func_qos = qos; 3521 3522 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3523 if (ret) { 3524 dev_err(dev, "failed to calculate shaper parameter!\n"); 3525 return -EINVAL; 3526 } 3527 3528 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3529 /* The base number of queue reuse for different alg type */ 3530 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3531 if (ret) { 3532 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3533 return -EINVAL; 3534 } 3535 } 3536 3537 return 0; 3538 } 3539 3540 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3541 { 3542 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3543 u64 shaper_vft, ir_calc, ir; 3544 unsigned int val; 3545 u32 error_rate; 3546 int ret; 3547 3548 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3549 val & BIT(0), POLL_PERIOD, 3550 POLL_TIMEOUT); 3551 if (ret) 3552 return 0; 3553 3554 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3555 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3556 writel(fun_index, qm->io_base + QM_VFT_CFG); 3557 3558 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3559 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3560 3561 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3562 val & BIT(0), POLL_PERIOD, 3563 POLL_TIMEOUT); 3564 if (ret) 3565 return 0; 3566 3567 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3568 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3569 3570 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3571 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3572 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3573 3574 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3575 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3576 3577 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3578 3579 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3580 3581 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3582 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3583 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3584 return 0; 3585 } 3586 3587 return ir; 3588 } 3589 3590 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3591 { 3592 struct device *dev = &qm->pdev->dev; 3593 u64 mb_cmd; 3594 u32 qos; 3595 int ret; 3596 3597 qos = qm_get_shaper_vft_qos(qm, fun_num); 3598 if (!qos) { 3599 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3600 return; 3601 } 3602 3603 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3604 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3605 if (ret) 3606 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3607 } 3608 3609 static int qm_vf_read_qos(struct hisi_qm *qm) 3610 { 3611 int cnt = 0; 3612 int ret = -EINVAL; 3613 3614 /* reset mailbox qos val */ 3615 qm->mb_qos = 0; 3616 3617 /* vf ping pf to get function qos */ 3618 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3619 if (ret) { 3620 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3621 return ret; 3622 } 3623 3624 while (true) { 3625 msleep(QM_WAIT_DST_ACK); 3626 if (qm->mb_qos) 3627 break; 3628 3629 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3630 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3631 return -ETIMEDOUT; 3632 } 3633 } 3634 3635 return ret; 3636 } 3637 3638 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3639 size_t count, loff_t *pos) 3640 { 3641 struct hisi_qm *qm = filp->private_data; 3642 char tbuf[QM_DBG_READ_LEN]; 3643 u32 qos_val, ir; 3644 int ret; 3645 3646 ret = hisi_qm_get_dfx_access(qm); 3647 if (ret) 3648 return ret; 3649 3650 /* Mailbox and reset cannot be operated at the same time */ 3651 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3652 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3653 ret = -EAGAIN; 3654 goto err_put_dfx_access; 3655 } 3656 3657 if (qm->fun_type == QM_HW_PF) { 3658 ir = qm_get_shaper_vft_qos(qm, 0); 3659 } else { 3660 ret = qm_vf_read_qos(qm); 3661 if (ret) 3662 goto err_get_status; 3663 ir = qm->mb_qos; 3664 } 3665 3666 qos_val = ir / QM_QOS_RATE; 3667 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3668 3669 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3670 3671 err_get_status: 3672 clear_bit(QM_RESETTING, &qm->misc_ctl); 3673 err_put_dfx_access: 3674 hisi_qm_put_dfx_access(qm); 3675 return ret; 3676 } 3677 3678 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3679 unsigned long *val, 3680 unsigned int *fun_index) 3681 { 3682 const struct bus_type *bus_type = qm->pdev->dev.bus; 3683 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3684 char val_buf[QM_DBG_READ_LEN] = {0}; 3685 struct pci_dev *pdev; 3686 struct device *dev; 3687 int ret; 3688 3689 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3690 if (ret != QM_QOS_PARAM_NUM) 3691 return -EINVAL; 3692 3693 ret = kstrtoul(val_buf, 10, val); 3694 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3695 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3696 return -EINVAL; 3697 } 3698 3699 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3700 if (!dev) { 3701 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3702 return -ENODEV; 3703 } 3704 3705 pdev = container_of(dev, struct pci_dev, dev); 3706 3707 *fun_index = pdev->devfn; 3708 3709 return 0; 3710 } 3711 3712 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3713 size_t count, loff_t *pos) 3714 { 3715 struct hisi_qm *qm = filp->private_data; 3716 char tbuf[QM_DBG_READ_LEN]; 3717 unsigned int fun_index; 3718 unsigned long val; 3719 int len, ret; 3720 3721 if (*pos != 0) 3722 return 0; 3723 3724 if (count >= QM_DBG_READ_LEN) 3725 return -ENOSPC; 3726 3727 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3728 if (len < 0) 3729 return len; 3730 3731 tbuf[len] = '\0'; 3732 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3733 if (ret) 3734 return ret; 3735 3736 /* Mailbox and reset cannot be operated at the same time */ 3737 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3738 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3739 return -EAGAIN; 3740 } 3741 3742 ret = qm_pm_get_sync(qm); 3743 if (ret) { 3744 ret = -EINVAL; 3745 goto err_get_status; 3746 } 3747 3748 ret = qm_func_shaper_enable(qm, fun_index, val); 3749 if (ret) { 3750 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3751 ret = -EINVAL; 3752 goto err_put_sync; 3753 } 3754 3755 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3756 fun_index, val); 3757 ret = count; 3758 3759 err_put_sync: 3760 qm_pm_put_sync(qm); 3761 err_get_status: 3762 clear_bit(QM_RESETTING, &qm->misc_ctl); 3763 return ret; 3764 } 3765 3766 static const struct file_operations qm_algqos_fops = { 3767 .owner = THIS_MODULE, 3768 .open = simple_open, 3769 .read = qm_algqos_read, 3770 .write = qm_algqos_write, 3771 }; 3772 3773 /** 3774 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3775 * @qm: The qm for which we want to add debugfs files. 3776 * 3777 * Create function qos debugfs files, VF ping PF to get function qos. 3778 */ 3779 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3780 { 3781 if (qm->fun_type == QM_HW_PF) 3782 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3783 qm, &qm_algqos_fops); 3784 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3785 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3786 qm, &qm_algqos_fops); 3787 } 3788 3789 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3790 { 3791 int i; 3792 3793 for (i = 1; i <= total_func; i++) 3794 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3795 } 3796 3797 /** 3798 * hisi_qm_sriov_enable() - enable virtual functions 3799 * @pdev: the PCIe device 3800 * @max_vfs: the number of virtual functions to enable 3801 * 3802 * Returns the number of enabled VFs. If there are VFs enabled already or 3803 * max_vfs is more than the total number of device can be enabled, returns 3804 * failure. 3805 */ 3806 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3807 { 3808 struct hisi_qm *qm = pci_get_drvdata(pdev); 3809 int pre_existing_vfs, num_vfs, total_vfs, ret; 3810 3811 ret = qm_pm_get_sync(qm); 3812 if (ret) 3813 return ret; 3814 3815 total_vfs = pci_sriov_get_totalvfs(pdev); 3816 pre_existing_vfs = pci_num_vf(pdev); 3817 if (pre_existing_vfs) { 3818 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3819 pre_existing_vfs); 3820 goto err_put_sync; 3821 } 3822 3823 if (max_vfs > total_vfs) { 3824 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3825 ret = -ERANGE; 3826 goto err_put_sync; 3827 } 3828 3829 num_vfs = max_vfs; 3830 3831 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3832 hisi_qm_init_vf_qos(qm, num_vfs); 3833 3834 ret = qm_vf_q_assign(qm, num_vfs); 3835 if (ret) { 3836 pci_err(pdev, "Can't assign queues for VF!\n"); 3837 goto err_put_sync; 3838 } 3839 3840 qm->vfs_num = num_vfs; 3841 3842 ret = pci_enable_sriov(pdev, num_vfs); 3843 if (ret) { 3844 pci_err(pdev, "Can't enable VF!\n"); 3845 qm_clear_vft_config(qm); 3846 goto err_put_sync; 3847 } 3848 3849 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3850 3851 return num_vfs; 3852 3853 err_put_sync: 3854 qm_pm_put_sync(qm); 3855 return ret; 3856 } 3857 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3858 3859 /** 3860 * hisi_qm_sriov_disable - disable virtual functions 3861 * @pdev: the PCI device. 3862 * @is_frozen: true when all the VFs are frozen. 3863 * 3864 * Return failure if there are VFs assigned already or VF is in used. 3865 */ 3866 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3867 { 3868 struct hisi_qm *qm = pci_get_drvdata(pdev); 3869 int ret; 3870 3871 if (pci_vfs_assigned(pdev)) { 3872 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3873 return -EPERM; 3874 } 3875 3876 /* While VF is in used, SRIOV cannot be disabled. */ 3877 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3878 pci_err(pdev, "Task is using its VF!\n"); 3879 return -EBUSY; 3880 } 3881 3882 pci_disable_sriov(pdev); 3883 3884 ret = qm_clear_vft_config(qm); 3885 if (ret) 3886 return ret; 3887 3888 qm_pm_put_sync(qm); 3889 3890 return 0; 3891 } 3892 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3893 3894 /** 3895 * hisi_qm_sriov_configure - configure the number of VFs 3896 * @pdev: The PCI device 3897 * @num_vfs: The number of VFs need enabled 3898 * 3899 * Enable SR-IOV according to num_vfs, 0 means disable. 3900 */ 3901 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3902 { 3903 if (num_vfs == 0) 3904 return hisi_qm_sriov_disable(pdev, false); 3905 else 3906 return hisi_qm_sriov_enable(pdev, num_vfs); 3907 } 3908 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3909 3910 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3911 { 3912 u32 err_sts; 3913 3914 if (!qm->err_ini->get_dev_hw_err_status) { 3915 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3916 return ACC_ERR_NONE; 3917 } 3918 3919 /* get device hardware error status */ 3920 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3921 if (err_sts) { 3922 if (err_sts & qm->err_info.ecc_2bits_mask) 3923 qm->err_status.is_dev_ecc_mbit = true; 3924 3925 if (qm->err_ini->log_dev_hw_err) 3926 qm->err_ini->log_dev_hw_err(qm, err_sts); 3927 3928 if (err_sts & qm->err_info.dev_reset_mask) 3929 return ACC_ERR_NEED_RESET; 3930 3931 if (qm->err_ini->clear_dev_hw_err_status) 3932 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 3933 } 3934 3935 return ACC_ERR_RECOVERED; 3936 } 3937 3938 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3939 { 3940 enum acc_err_result qm_ret, dev_ret; 3941 3942 /* log qm error */ 3943 qm_ret = qm_hw_error_handle(qm); 3944 3945 /* log device error */ 3946 dev_ret = qm_dev_err_handle(qm); 3947 3948 return (qm_ret == ACC_ERR_NEED_RESET || 3949 dev_ret == ACC_ERR_NEED_RESET) ? 3950 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3951 } 3952 3953 /** 3954 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 3955 * @pdev: The PCI device which need report error. 3956 * @state: The connectivity between CPU and device. 3957 * 3958 * We register this function into PCIe AER handlers, It will report device or 3959 * qm hardware error status when error occur. 3960 */ 3961 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 3962 pci_channel_state_t state) 3963 { 3964 struct hisi_qm *qm = pci_get_drvdata(pdev); 3965 enum acc_err_result ret; 3966 3967 if (pdev->is_virtfn) 3968 return PCI_ERS_RESULT_NONE; 3969 3970 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 3971 if (state == pci_channel_io_perm_failure) 3972 return PCI_ERS_RESULT_DISCONNECT; 3973 3974 ret = qm_process_dev_error(qm); 3975 if (ret == ACC_ERR_NEED_RESET) 3976 return PCI_ERS_RESULT_NEED_RESET; 3977 3978 return PCI_ERS_RESULT_RECOVERED; 3979 } 3980 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 3981 3982 static int qm_check_req_recv(struct hisi_qm *qm) 3983 { 3984 struct pci_dev *pdev = qm->pdev; 3985 int ret; 3986 u32 val; 3987 3988 if (qm->ver >= QM_HW_V3) 3989 return 0; 3990 3991 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 3992 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3993 (val == ACC_VENDOR_ID_VALUE), 3994 POLL_PERIOD, POLL_TIMEOUT); 3995 if (ret) { 3996 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 3997 return ret; 3998 } 3999 4000 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4001 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4002 (val == PCI_VENDOR_ID_HUAWEI), 4003 POLL_PERIOD, POLL_TIMEOUT); 4004 if (ret) 4005 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4006 4007 return ret; 4008 } 4009 4010 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4011 { 4012 struct pci_dev *pdev = qm->pdev; 4013 u16 cmd; 4014 int i; 4015 4016 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4017 if (set) 4018 cmd |= PCI_COMMAND_MEMORY; 4019 else 4020 cmd &= ~PCI_COMMAND_MEMORY; 4021 4022 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4023 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4024 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4025 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4026 return 0; 4027 4028 udelay(1); 4029 } 4030 4031 return -ETIMEDOUT; 4032 } 4033 4034 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4035 { 4036 struct pci_dev *pdev = qm->pdev; 4037 u16 sriov_ctrl; 4038 int pos; 4039 int i; 4040 4041 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4042 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4043 if (set) 4044 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4045 else 4046 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4047 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4048 4049 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4050 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4051 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4052 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4053 return 0; 4054 4055 udelay(1); 4056 } 4057 4058 return -ETIMEDOUT; 4059 } 4060 4061 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4062 enum qm_stop_reason stop_reason) 4063 { 4064 struct hisi_qm_list *qm_list = qm->qm_list; 4065 struct pci_dev *pdev = qm->pdev; 4066 struct pci_dev *virtfn; 4067 struct hisi_qm *vf_qm; 4068 int ret = 0; 4069 4070 mutex_lock(&qm_list->lock); 4071 list_for_each_entry(vf_qm, &qm_list->list, list) { 4072 virtfn = vf_qm->pdev; 4073 if (virtfn == pdev) 4074 continue; 4075 4076 if (pci_physfn(virtfn) == pdev) { 4077 /* save VFs PCIE BAR configuration */ 4078 pci_save_state(virtfn); 4079 4080 ret = hisi_qm_stop(vf_qm, stop_reason); 4081 if (ret) 4082 goto stop_fail; 4083 } 4084 } 4085 4086 stop_fail: 4087 mutex_unlock(&qm_list->lock); 4088 return ret; 4089 } 4090 4091 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4092 enum qm_stop_reason stop_reason) 4093 { 4094 struct pci_dev *pdev = qm->pdev; 4095 int ret; 4096 4097 if (!qm->vfs_num) 4098 return 0; 4099 4100 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4101 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4102 ret = qm_ping_all_vfs(qm, cmd); 4103 if (ret) 4104 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4105 } else { 4106 ret = qm_vf_reset_prepare(qm, stop_reason); 4107 if (ret) 4108 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4109 } 4110 4111 return ret; 4112 } 4113 4114 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4115 { 4116 struct pci_dev *pdev = qm->pdev; 4117 int ret; 4118 4119 ret = qm_reset_prepare_ready(qm); 4120 if (ret) { 4121 pci_err(pdev, "Controller reset not ready!\n"); 4122 return ret; 4123 } 4124 4125 /* PF obtains the information of VF by querying the register. */ 4126 qm_cmd_uninit(qm); 4127 4128 /* Whether VFs stop successfully, soft reset will continue. */ 4129 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4130 if (ret) 4131 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4132 4133 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4134 if (ret) { 4135 pci_err(pdev, "Fails to stop QM!\n"); 4136 qm_reset_bit_clear(qm); 4137 return ret; 4138 } 4139 4140 if (qm->use_sva) { 4141 ret = qm_hw_err_isolate(qm); 4142 if (ret) 4143 pci_err(pdev, "failed to isolate hw err!\n"); 4144 } 4145 4146 ret = qm_wait_vf_prepare_finish(qm); 4147 if (ret) 4148 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4149 4150 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4151 4152 return 0; 4153 } 4154 4155 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4156 { 4157 u32 nfe_enb = 0; 4158 4159 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4160 if (qm->ver >= QM_HW_V3) 4161 return; 4162 4163 if (!qm->err_status.is_dev_ecc_mbit && 4164 qm->err_status.is_qm_ecc_mbit && 4165 qm->err_ini->close_axi_master_ooo) { 4166 qm->err_ini->close_axi_master_ooo(qm); 4167 } else if (qm->err_status.is_dev_ecc_mbit && 4168 !qm->err_status.is_qm_ecc_mbit && 4169 !qm->err_ini->close_axi_master_ooo) { 4170 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4171 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4172 qm->io_base + QM_RAS_NFE_ENABLE); 4173 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4174 } 4175 } 4176 4177 static int qm_soft_reset(struct hisi_qm *qm) 4178 { 4179 struct pci_dev *pdev = qm->pdev; 4180 int ret; 4181 u32 val; 4182 4183 /* Ensure all doorbells and mailboxes received by QM */ 4184 ret = qm_check_req_recv(qm); 4185 if (ret) 4186 return ret; 4187 4188 if (qm->vfs_num) { 4189 ret = qm_set_vf_mse(qm, false); 4190 if (ret) { 4191 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4192 return ret; 4193 } 4194 } 4195 4196 ret = qm->ops->set_msi(qm, false); 4197 if (ret) { 4198 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4199 return ret; 4200 } 4201 4202 qm_dev_ecc_mbit_handle(qm); 4203 4204 /* OOO register set and check */ 4205 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 4206 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4207 4208 /* If bus lock, reset chip */ 4209 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4210 val, 4211 (val == ACC_MASTER_TRANS_RETURN_RW), 4212 POLL_PERIOD, POLL_TIMEOUT); 4213 if (ret) { 4214 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 4215 return ret; 4216 } 4217 4218 if (qm->err_ini->close_sva_prefetch) 4219 qm->err_ini->close_sva_prefetch(qm); 4220 4221 ret = qm_set_pf_mse(qm, false); 4222 if (ret) { 4223 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4224 return ret; 4225 } 4226 4227 /* The reset related sub-control registers are not in PCI BAR */ 4228 if (ACPI_HANDLE(&pdev->dev)) { 4229 unsigned long long value = 0; 4230 acpi_status s; 4231 4232 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4233 qm->err_info.acpi_rst, 4234 NULL, &value); 4235 if (ACPI_FAILURE(s)) { 4236 pci_err(pdev, "NO controller reset method!\n"); 4237 return -EIO; 4238 } 4239 4240 if (value) { 4241 pci_err(pdev, "Reset step %llu failed!\n", value); 4242 return -EIO; 4243 } 4244 } else { 4245 pci_err(pdev, "No reset method!\n"); 4246 return -EINVAL; 4247 } 4248 4249 return 0; 4250 } 4251 4252 static int qm_vf_reset_done(struct hisi_qm *qm) 4253 { 4254 struct hisi_qm_list *qm_list = qm->qm_list; 4255 struct pci_dev *pdev = qm->pdev; 4256 struct pci_dev *virtfn; 4257 struct hisi_qm *vf_qm; 4258 int ret = 0; 4259 4260 mutex_lock(&qm_list->lock); 4261 list_for_each_entry(vf_qm, &qm_list->list, list) { 4262 virtfn = vf_qm->pdev; 4263 if (virtfn == pdev) 4264 continue; 4265 4266 if (pci_physfn(virtfn) == pdev) { 4267 /* enable VFs PCIE BAR configuration */ 4268 pci_restore_state(virtfn); 4269 4270 ret = qm_restart(vf_qm); 4271 if (ret) 4272 goto restart_fail; 4273 } 4274 } 4275 4276 restart_fail: 4277 mutex_unlock(&qm_list->lock); 4278 return ret; 4279 } 4280 4281 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4282 { 4283 struct pci_dev *pdev = qm->pdev; 4284 int ret; 4285 4286 if (!qm->vfs_num) 4287 return 0; 4288 4289 ret = qm_vf_q_assign(qm, qm->vfs_num); 4290 if (ret) { 4291 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4292 return ret; 4293 } 4294 4295 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4296 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4297 ret = qm_ping_all_vfs(qm, cmd); 4298 if (ret) 4299 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4300 } else { 4301 ret = qm_vf_reset_done(qm); 4302 if (ret) 4303 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4304 } 4305 4306 return ret; 4307 } 4308 4309 static int qm_dev_hw_init(struct hisi_qm *qm) 4310 { 4311 return qm->err_ini->hw_init(qm); 4312 } 4313 4314 static void qm_restart_prepare(struct hisi_qm *qm) 4315 { 4316 u32 value; 4317 4318 if (qm->err_ini->open_sva_prefetch) 4319 qm->err_ini->open_sva_prefetch(qm); 4320 4321 if (qm->ver >= QM_HW_V3) 4322 return; 4323 4324 if (!qm->err_status.is_qm_ecc_mbit && 4325 !qm->err_status.is_dev_ecc_mbit) 4326 return; 4327 4328 /* temporarily close the OOO port used for PEH to write out MSI */ 4329 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4330 writel(value & ~qm->err_info.msi_wr_port, 4331 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4332 4333 /* clear dev ecc 2bit error source if having */ 4334 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4335 if (value && qm->err_ini->clear_dev_hw_err_status) 4336 qm->err_ini->clear_dev_hw_err_status(qm, value); 4337 4338 /* clear QM ecc mbit error source */ 4339 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4340 4341 /* clear AM Reorder Buffer ecc mbit source */ 4342 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4343 } 4344 4345 static void qm_restart_done(struct hisi_qm *qm) 4346 { 4347 u32 value; 4348 4349 if (qm->ver >= QM_HW_V3) 4350 goto clear_flags; 4351 4352 if (!qm->err_status.is_qm_ecc_mbit && 4353 !qm->err_status.is_dev_ecc_mbit) 4354 return; 4355 4356 /* open the OOO port for PEH to write out MSI */ 4357 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4358 value |= qm->err_info.msi_wr_port; 4359 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4360 4361 clear_flags: 4362 qm->err_status.is_qm_ecc_mbit = false; 4363 qm->err_status.is_dev_ecc_mbit = false; 4364 } 4365 4366 static int qm_controller_reset_done(struct hisi_qm *qm) 4367 { 4368 struct pci_dev *pdev = qm->pdev; 4369 int ret; 4370 4371 ret = qm->ops->set_msi(qm, true); 4372 if (ret) { 4373 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4374 return ret; 4375 } 4376 4377 ret = qm_set_pf_mse(qm, true); 4378 if (ret) { 4379 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4380 return ret; 4381 } 4382 4383 if (qm->vfs_num) { 4384 ret = qm_set_vf_mse(qm, true); 4385 if (ret) { 4386 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4387 return ret; 4388 } 4389 } 4390 4391 ret = qm_dev_hw_init(qm); 4392 if (ret) { 4393 pci_err(pdev, "Failed to init device\n"); 4394 return ret; 4395 } 4396 4397 qm_restart_prepare(qm); 4398 hisi_qm_dev_err_init(qm); 4399 if (qm->err_ini->open_axi_master_ooo) 4400 qm->err_ini->open_axi_master_ooo(qm); 4401 4402 ret = qm_dev_mem_reset(qm); 4403 if (ret) { 4404 pci_err(pdev, "failed to reset device memory\n"); 4405 return ret; 4406 } 4407 4408 ret = qm_restart(qm); 4409 if (ret) { 4410 pci_err(pdev, "Failed to start QM!\n"); 4411 return ret; 4412 } 4413 4414 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4415 if (ret) 4416 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4417 4418 ret = qm_wait_vf_prepare_finish(qm); 4419 if (ret) 4420 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4421 4422 qm_cmd_init(qm); 4423 qm_restart_done(qm); 4424 4425 qm_reset_bit_clear(qm); 4426 4427 return 0; 4428 } 4429 4430 static int qm_controller_reset(struct hisi_qm *qm) 4431 { 4432 struct pci_dev *pdev = qm->pdev; 4433 int ret; 4434 4435 pci_info(pdev, "Controller resetting...\n"); 4436 4437 ret = qm_controller_reset_prepare(qm); 4438 if (ret) { 4439 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4440 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4441 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4442 return ret; 4443 } 4444 4445 hisi_qm_show_last_dfx_regs(qm); 4446 if (qm->err_ini->show_last_dfx_regs) 4447 qm->err_ini->show_last_dfx_regs(qm); 4448 4449 ret = qm_soft_reset(qm); 4450 if (ret) 4451 goto err_reset; 4452 4453 ret = qm_controller_reset_done(qm); 4454 if (ret) 4455 goto err_reset; 4456 4457 pci_info(pdev, "Controller reset complete\n"); 4458 4459 return 0; 4460 4461 err_reset: 4462 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4463 qm_reset_bit_clear(qm); 4464 4465 /* if resetting fails, isolate the device */ 4466 if (qm->use_sva) 4467 qm->isolate_data.is_isolate = true; 4468 return ret; 4469 } 4470 4471 /** 4472 * hisi_qm_dev_slot_reset() - slot reset 4473 * @pdev: the PCIe device 4474 * 4475 * This function offers QM relate PCIe device reset interface. Drivers which 4476 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4477 */ 4478 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4479 { 4480 struct hisi_qm *qm = pci_get_drvdata(pdev); 4481 int ret; 4482 4483 if (pdev->is_virtfn) 4484 return PCI_ERS_RESULT_RECOVERED; 4485 4486 /* reset pcie device controller */ 4487 ret = qm_controller_reset(qm); 4488 if (ret) { 4489 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4490 return PCI_ERS_RESULT_DISCONNECT; 4491 } 4492 4493 return PCI_ERS_RESULT_RECOVERED; 4494 } 4495 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4496 4497 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4498 { 4499 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4500 struct hisi_qm *qm = pci_get_drvdata(pdev); 4501 u32 delay = 0; 4502 int ret; 4503 4504 hisi_qm_dev_err_uninit(pf_qm); 4505 4506 /* 4507 * Check whether there is an ECC mbit error, If it occurs, need to 4508 * wait for soft reset to fix it. 4509 */ 4510 while (qm_check_dev_error(pf_qm)) { 4511 msleep(++delay); 4512 if (delay > QM_RESET_WAIT_TIMEOUT) 4513 return; 4514 } 4515 4516 ret = qm_reset_prepare_ready(qm); 4517 if (ret) { 4518 pci_err(pdev, "FLR not ready!\n"); 4519 return; 4520 } 4521 4522 /* PF obtains the information of VF by querying the register. */ 4523 if (qm->fun_type == QM_HW_PF) 4524 qm_cmd_uninit(qm); 4525 4526 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4527 if (ret) 4528 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4529 4530 ret = hisi_qm_stop(qm, QM_DOWN); 4531 if (ret) { 4532 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4533 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4534 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4535 return; 4536 } 4537 4538 ret = qm_wait_vf_prepare_finish(qm); 4539 if (ret) 4540 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4541 4542 pci_info(pdev, "FLR resetting...\n"); 4543 } 4544 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4545 4546 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4547 { 4548 struct pci_dev *pf_pdev = pci_physfn(pdev); 4549 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4550 u32 id; 4551 4552 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4553 if (id == QM_PCI_COMMAND_INVALID) { 4554 pci_err(pdev, "Device can not be used!\n"); 4555 return false; 4556 } 4557 4558 return true; 4559 } 4560 4561 void hisi_qm_reset_done(struct pci_dev *pdev) 4562 { 4563 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4564 struct hisi_qm *qm = pci_get_drvdata(pdev); 4565 int ret; 4566 4567 if (qm->fun_type == QM_HW_PF) { 4568 ret = qm_dev_hw_init(qm); 4569 if (ret) { 4570 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4571 goto flr_done; 4572 } 4573 } 4574 4575 hisi_qm_dev_err_init(pf_qm); 4576 4577 ret = qm_restart(qm); 4578 if (ret) { 4579 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4580 goto flr_done; 4581 } 4582 4583 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4584 if (ret) 4585 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4586 4587 ret = qm_wait_vf_prepare_finish(qm); 4588 if (ret) 4589 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4590 4591 flr_done: 4592 if (qm->fun_type == QM_HW_PF) 4593 qm_cmd_init(qm); 4594 4595 if (qm_flr_reset_complete(pdev)) 4596 pci_info(pdev, "FLR reset complete\n"); 4597 4598 qm_reset_bit_clear(qm); 4599 } 4600 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4601 4602 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4603 { 4604 struct hisi_qm *qm = data; 4605 enum acc_err_result ret; 4606 4607 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4608 ret = qm_process_dev_error(qm); 4609 if (ret == ACC_ERR_NEED_RESET && 4610 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4611 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4612 schedule_work(&qm->rst_work); 4613 4614 return IRQ_HANDLED; 4615 } 4616 4617 /** 4618 * hisi_qm_dev_shutdown() - Shutdown device. 4619 * @pdev: The device will be shutdown. 4620 * 4621 * This function will stop qm when OS shutdown or rebooting. 4622 */ 4623 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4624 { 4625 struct hisi_qm *qm = pci_get_drvdata(pdev); 4626 int ret; 4627 4628 ret = hisi_qm_stop(qm, QM_DOWN); 4629 if (ret) 4630 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4631 4632 hisi_qm_cache_wb(qm); 4633 } 4634 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4635 4636 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4637 { 4638 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4639 int ret; 4640 4641 ret = qm_pm_get_sync(qm); 4642 if (ret) { 4643 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4644 return; 4645 } 4646 4647 /* reset pcie device controller */ 4648 ret = qm_controller_reset(qm); 4649 if (ret) 4650 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4651 4652 qm_pm_put_sync(qm); 4653 } 4654 4655 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4656 enum qm_stop_reason stop_reason) 4657 { 4658 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4659 struct pci_dev *pdev = qm->pdev; 4660 int ret; 4661 4662 ret = qm_reset_prepare_ready(qm); 4663 if (ret) { 4664 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4665 atomic_set(&qm->status.flags, QM_STOP); 4666 cmd = QM_VF_PREPARE_FAIL; 4667 goto err_prepare; 4668 } 4669 4670 ret = hisi_qm_stop(qm, stop_reason); 4671 if (ret) { 4672 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4673 atomic_set(&qm->status.flags, QM_STOP); 4674 cmd = QM_VF_PREPARE_FAIL; 4675 goto err_prepare; 4676 } else { 4677 goto out; 4678 } 4679 4680 err_prepare: 4681 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4682 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4683 out: 4684 pci_save_state(pdev); 4685 ret = qm_ping_pf(qm, cmd); 4686 if (ret) 4687 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4688 } 4689 4690 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4691 { 4692 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4693 struct pci_dev *pdev = qm->pdev; 4694 int ret; 4695 4696 pci_restore_state(pdev); 4697 ret = hisi_qm_start(qm); 4698 if (ret) { 4699 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4700 cmd = QM_VF_START_FAIL; 4701 } 4702 4703 qm_cmd_init(qm); 4704 ret = qm_ping_pf(qm, cmd); 4705 if (ret) 4706 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4707 4708 qm_reset_bit_clear(qm); 4709 } 4710 4711 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4712 { 4713 struct device *dev = &qm->pdev->dev; 4714 u32 val, cmd; 4715 u64 msg; 4716 int ret; 4717 4718 /* Wait for reset to finish */ 4719 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4720 val == BIT(0), QM_VF_RESET_WAIT_US, 4721 QM_VF_RESET_WAIT_TIMEOUT_US); 4722 /* hardware completion status should be available by this time */ 4723 if (ret) { 4724 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4725 return -ETIMEDOUT; 4726 } 4727 4728 /* 4729 * Whether message is got successfully, 4730 * VF needs to ack PF by clearing the interrupt. 4731 */ 4732 ret = qm_get_mb_cmd(qm, &msg, 0); 4733 qm_clear_cmd_interrupt(qm, 0); 4734 if (ret) { 4735 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4736 return ret; 4737 } 4738 4739 cmd = msg & QM_MB_CMD_DATA_MASK; 4740 if (cmd != QM_PF_RESET_DONE) { 4741 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4742 ret = -EINVAL; 4743 } 4744 4745 return ret; 4746 } 4747 4748 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4749 enum qm_stop_reason stop_reason) 4750 { 4751 struct device *dev = &qm->pdev->dev; 4752 int ret; 4753 4754 dev_info(dev, "device reset start...\n"); 4755 4756 /* The message is obtained by querying the register during resetting */ 4757 qm_cmd_uninit(qm); 4758 qm_pf_reset_vf_prepare(qm, stop_reason); 4759 4760 ret = qm_wait_pf_reset_finish(qm); 4761 if (ret) 4762 goto err_get_status; 4763 4764 qm_pf_reset_vf_done(qm); 4765 4766 dev_info(dev, "device reset done.\n"); 4767 4768 return; 4769 4770 err_get_status: 4771 qm_cmd_init(qm); 4772 qm_reset_bit_clear(qm); 4773 } 4774 4775 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4776 { 4777 struct device *dev = &qm->pdev->dev; 4778 u64 msg; 4779 u32 cmd; 4780 int ret; 4781 4782 /* 4783 * Get the msg from source by sending mailbox. Whether message is got 4784 * successfully, destination needs to ack source by clearing the interrupt. 4785 */ 4786 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4787 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4788 if (ret) { 4789 dev_err(dev, "failed to get msg from source!\n"); 4790 return; 4791 } 4792 4793 cmd = msg & QM_MB_CMD_DATA_MASK; 4794 switch (cmd) { 4795 case QM_PF_FLR_PREPARE: 4796 qm_pf_reset_vf_process(qm, QM_DOWN); 4797 break; 4798 case QM_PF_SRST_PREPARE: 4799 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4800 break; 4801 case QM_VF_GET_QOS: 4802 qm_vf_get_qos(qm, fun_num); 4803 break; 4804 case QM_PF_SET_QOS: 4805 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4806 break; 4807 default: 4808 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4809 break; 4810 } 4811 } 4812 4813 static void qm_cmd_process(struct work_struct *cmd_process) 4814 { 4815 struct hisi_qm *qm = container_of(cmd_process, 4816 struct hisi_qm, cmd_process); 4817 u32 vfs_num = qm->vfs_num; 4818 u64 val; 4819 u32 i; 4820 4821 if (qm->fun_type == QM_HW_PF) { 4822 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4823 if (!val) 4824 return; 4825 4826 for (i = 1; i <= vfs_num; i++) { 4827 if (val & BIT(i)) 4828 qm_handle_cmd_msg(qm, i); 4829 } 4830 4831 return; 4832 } 4833 4834 qm_handle_cmd_msg(qm, 0); 4835 } 4836 4837 /** 4838 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 4839 * @qm: The qm needs add. 4840 * @qm_list: The qm list. 4841 * 4842 * This function adds qm to qm list, and will register algorithm to 4843 * crypto when the qm list is empty. 4844 */ 4845 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4846 { 4847 struct device *dev = &qm->pdev->dev; 4848 int flag = 0; 4849 int ret = 0; 4850 4851 mutex_lock(&qm_list->lock); 4852 if (list_empty(&qm_list->list)) 4853 flag = 1; 4854 list_add_tail(&qm->list, &qm_list->list); 4855 mutex_unlock(&qm_list->lock); 4856 4857 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4858 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4859 return 0; 4860 } 4861 4862 if (flag) { 4863 ret = qm_list->register_to_crypto(qm); 4864 if (ret) { 4865 mutex_lock(&qm_list->lock); 4866 list_del(&qm->list); 4867 mutex_unlock(&qm_list->lock); 4868 } 4869 } 4870 4871 return ret; 4872 } 4873 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4874 4875 /** 4876 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 4877 * qm list. 4878 * @qm: The qm needs delete. 4879 * @qm_list: The qm list. 4880 * 4881 * This function deletes qm from qm list, and will unregister algorithm 4882 * from crypto when the qm list is empty. 4883 */ 4884 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4885 { 4886 mutex_lock(&qm_list->lock); 4887 list_del(&qm->list); 4888 mutex_unlock(&qm_list->lock); 4889 4890 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4891 return; 4892 4893 if (list_empty(&qm_list->list)) 4894 qm_list->unregister_from_crypto(qm); 4895 } 4896 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4897 4898 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4899 { 4900 struct pci_dev *pdev = qm->pdev; 4901 u32 irq_vector, val; 4902 4903 if (qm->fun_type == QM_HW_VF) 4904 return; 4905 4906 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 4907 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4908 return; 4909 4910 irq_vector = val & QM_IRQ_VECTOR_MASK; 4911 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4912 } 4913 4914 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4915 { 4916 struct pci_dev *pdev = qm->pdev; 4917 u32 irq_vector, val; 4918 int ret; 4919 4920 if (qm->fun_type == QM_HW_VF) 4921 return 0; 4922 4923 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 4924 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4925 return 0; 4926 4927 irq_vector = val & QM_IRQ_VECTOR_MASK; 4928 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4929 if (ret) 4930 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 4931 4932 return ret; 4933 } 4934 4935 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 4936 { 4937 struct pci_dev *pdev = qm->pdev; 4938 u32 irq_vector, val; 4939 4940 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 4941 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4942 return; 4943 4944 irq_vector = val & QM_IRQ_VECTOR_MASK; 4945 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4946 } 4947 4948 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 4949 { 4950 struct pci_dev *pdev = qm->pdev; 4951 u32 irq_vector, val; 4952 int ret; 4953 4954 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 4955 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4956 return 0; 4957 4958 irq_vector = val & QM_IRQ_VECTOR_MASK; 4959 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 4960 if (ret) 4961 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 4962 4963 return ret; 4964 } 4965 4966 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 4967 { 4968 struct pci_dev *pdev = qm->pdev; 4969 u32 irq_vector, val; 4970 4971 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 4972 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4973 return; 4974 4975 irq_vector = val & QM_IRQ_VECTOR_MASK; 4976 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4977 } 4978 4979 static int qm_register_aeq_irq(struct hisi_qm *qm) 4980 { 4981 struct pci_dev *pdev = qm->pdev; 4982 u32 irq_vector, val; 4983 int ret; 4984 4985 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 4986 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4987 return 0; 4988 4989 irq_vector = val & QM_IRQ_VECTOR_MASK; 4990 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, 4991 qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); 4992 if (ret) 4993 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 4994 4995 return ret; 4996 } 4997 4998 static void qm_unregister_eq_irq(struct hisi_qm *qm) 4999 { 5000 struct pci_dev *pdev = qm->pdev; 5001 u32 irq_vector, val; 5002 5003 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 5004 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5005 return; 5006 5007 irq_vector = val & QM_IRQ_VECTOR_MASK; 5008 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5009 } 5010 5011 static int qm_register_eq_irq(struct hisi_qm *qm) 5012 { 5013 struct pci_dev *pdev = qm->pdev; 5014 u32 irq_vector, val; 5015 int ret; 5016 5017 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 5018 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5019 return 0; 5020 5021 irq_vector = val & QM_IRQ_VECTOR_MASK; 5022 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 5023 if (ret) 5024 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5025 5026 return ret; 5027 } 5028 5029 static void qm_irqs_unregister(struct hisi_qm *qm) 5030 { 5031 qm_unregister_mb_cmd_irq(qm); 5032 qm_unregister_abnormal_irq(qm); 5033 qm_unregister_aeq_irq(qm); 5034 qm_unregister_eq_irq(qm); 5035 } 5036 5037 static int qm_irqs_register(struct hisi_qm *qm) 5038 { 5039 int ret; 5040 5041 ret = qm_register_eq_irq(qm); 5042 if (ret) 5043 return ret; 5044 5045 ret = qm_register_aeq_irq(qm); 5046 if (ret) 5047 goto free_eq_irq; 5048 5049 ret = qm_register_abnormal_irq(qm); 5050 if (ret) 5051 goto free_aeq_irq; 5052 5053 ret = qm_register_mb_cmd_irq(qm); 5054 if (ret) 5055 goto free_abnormal_irq; 5056 5057 return 0; 5058 5059 free_abnormal_irq: 5060 qm_unregister_abnormal_irq(qm); 5061 free_aeq_irq: 5062 qm_unregister_aeq_irq(qm); 5063 free_eq_irq: 5064 qm_unregister_eq_irq(qm); 5065 return ret; 5066 } 5067 5068 static int qm_get_qp_num(struct hisi_qm *qm) 5069 { 5070 struct device *dev = &qm->pdev->dev; 5071 bool is_db_isolation; 5072 5073 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5074 if (qm->fun_type == QM_HW_VF) { 5075 if (qm->ver != QM_HW_V1) 5076 /* v2 starts to support get vft by mailbox */ 5077 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5078 5079 return 0; 5080 } 5081 5082 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5083 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5084 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5085 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5086 5087 if (qm->qp_num <= qm->max_qp_num) 5088 return 0; 5089 5090 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5091 /* Check whether the set qp number is valid */ 5092 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5093 qm->qp_num, qm->max_qp_num); 5094 return -EINVAL; 5095 } 5096 5097 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5098 qm->qp_num, qm->max_qp_num); 5099 qm->qp_num = qm->max_qp_num; 5100 qm->debug.curr_qm_qp_num = qm->qp_num; 5101 5102 return 0; 5103 } 5104 5105 static void qm_get_hw_caps(struct hisi_qm *qm) 5106 { 5107 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5108 qm_cap_info_pf : qm_cap_info_vf; 5109 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5110 ARRAY_SIZE(qm_cap_info_vf); 5111 u32 val, i; 5112 5113 /* Doorbell isolate register is a independent register. */ 5114 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5115 if (val) 5116 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5117 5118 if (qm->ver >= QM_HW_V3) { 5119 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5120 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5121 } 5122 5123 /* Get PF/VF common capbility */ 5124 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5125 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5126 if (val) 5127 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5128 } 5129 5130 /* Get PF/VF different capbility */ 5131 for (i = 0; i < size; i++) { 5132 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5133 if (val) 5134 set_bit(cap_info[i].type, &qm->caps); 5135 } 5136 } 5137 5138 static int qm_get_pci_res(struct hisi_qm *qm) 5139 { 5140 struct pci_dev *pdev = qm->pdev; 5141 struct device *dev = &pdev->dev; 5142 int ret; 5143 5144 ret = pci_request_mem_regions(pdev, qm->dev_name); 5145 if (ret < 0) { 5146 dev_err(dev, "Failed to request mem regions!\n"); 5147 return ret; 5148 } 5149 5150 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5151 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5152 if (!qm->io_base) { 5153 ret = -EIO; 5154 goto err_request_mem_regions; 5155 } 5156 5157 qm_get_hw_caps(qm); 5158 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5159 qm->db_interval = QM_QP_DB_INTERVAL; 5160 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5161 qm->db_io_base = ioremap(qm->db_phys_base, 5162 pci_resource_len(pdev, PCI_BAR_4)); 5163 if (!qm->db_io_base) { 5164 ret = -EIO; 5165 goto err_ioremap; 5166 } 5167 } else { 5168 qm->db_phys_base = qm->phys_base; 5169 qm->db_io_base = qm->io_base; 5170 qm->db_interval = 0; 5171 } 5172 5173 ret = qm_get_qp_num(qm); 5174 if (ret) 5175 goto err_db_ioremap; 5176 5177 return 0; 5178 5179 err_db_ioremap: 5180 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5181 iounmap(qm->db_io_base); 5182 err_ioremap: 5183 iounmap(qm->io_base); 5184 err_request_mem_regions: 5185 pci_release_mem_regions(pdev); 5186 return ret; 5187 } 5188 5189 static int hisi_qm_pci_init(struct hisi_qm *qm) 5190 { 5191 struct pci_dev *pdev = qm->pdev; 5192 struct device *dev = &pdev->dev; 5193 unsigned int num_vec; 5194 int ret; 5195 5196 ret = pci_enable_device_mem(pdev); 5197 if (ret < 0) { 5198 dev_err(dev, "Failed to enable device mem!\n"); 5199 return ret; 5200 } 5201 5202 ret = qm_get_pci_res(qm); 5203 if (ret) 5204 goto err_disable_pcidev; 5205 5206 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5207 if (ret < 0) 5208 goto err_get_pci_res; 5209 pci_set_master(pdev); 5210 5211 num_vec = qm_get_irq_num(qm); 5212 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5213 if (ret < 0) { 5214 dev_err(dev, "Failed to enable MSI vectors!\n"); 5215 goto err_get_pci_res; 5216 } 5217 5218 return 0; 5219 5220 err_get_pci_res: 5221 qm_put_pci_res(qm); 5222 err_disable_pcidev: 5223 pci_disable_device(pdev); 5224 return ret; 5225 } 5226 5227 static int hisi_qm_init_work(struct hisi_qm *qm) 5228 { 5229 int i; 5230 5231 for (i = 0; i < qm->qp_num; i++) 5232 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5233 5234 if (qm->fun_type == QM_HW_PF) 5235 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5236 5237 if (qm->ver > QM_HW_V2) 5238 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5239 5240 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5241 WQ_UNBOUND, num_online_cpus(), 5242 pci_name(qm->pdev)); 5243 if (!qm->wq) { 5244 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5245 return -ENOMEM; 5246 } 5247 5248 return 0; 5249 } 5250 5251 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5252 { 5253 struct device *dev = &qm->pdev->dev; 5254 u16 sq_depth, cq_depth; 5255 size_t qp_dma_size; 5256 int i, ret; 5257 5258 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5259 if (!qm->qp_array) 5260 return -ENOMEM; 5261 5262 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5263 if (!qm->poll_data) { 5264 kfree(qm->qp_array); 5265 return -ENOMEM; 5266 } 5267 5268 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5269 5270 /* one more page for device or qp statuses */ 5271 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5272 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5273 for (i = 0; i < qm->qp_num; i++) { 5274 qm->poll_data[i].qm = qm; 5275 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5276 if (ret) 5277 goto err_init_qp_mem; 5278 5279 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5280 } 5281 5282 return 0; 5283 err_init_qp_mem: 5284 hisi_qp_memory_uninit(qm, i); 5285 5286 return ret; 5287 } 5288 5289 static int hisi_qm_memory_init(struct hisi_qm *qm) 5290 { 5291 struct device *dev = &qm->pdev->dev; 5292 int ret, total_func; 5293 size_t off = 0; 5294 5295 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5296 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5297 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5298 if (!qm->factor) 5299 return -ENOMEM; 5300 5301 /* Only the PF value needs to be initialized */ 5302 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5303 } 5304 5305 #define QM_INIT_BUF(qm, type, num) do { \ 5306 (qm)->type = ((qm)->qdma.va + (off)); \ 5307 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5308 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5309 } while (0) 5310 5311 idr_init(&qm->qp_idr); 5312 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5313 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5314 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5315 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5316 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5317 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5318 GFP_ATOMIC); 5319 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5320 if (!qm->qdma.va) { 5321 ret = -ENOMEM; 5322 goto err_destroy_idr; 5323 } 5324 5325 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5326 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5327 QM_INIT_BUF(qm, sqc, qm->qp_num); 5328 QM_INIT_BUF(qm, cqc, qm->qp_num); 5329 5330 ret = hisi_qp_alloc_memory(qm); 5331 if (ret) 5332 goto err_alloc_qp_array; 5333 5334 return 0; 5335 5336 err_alloc_qp_array: 5337 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5338 err_destroy_idr: 5339 idr_destroy(&qm->qp_idr); 5340 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5341 kfree(qm->factor); 5342 5343 return ret; 5344 } 5345 5346 /** 5347 * hisi_qm_init() - Initialize configures about qm. 5348 * @qm: The qm needing init. 5349 * 5350 * This function init qm, then we can call hisi_qm_start to put qm into work. 5351 */ 5352 int hisi_qm_init(struct hisi_qm *qm) 5353 { 5354 struct pci_dev *pdev = qm->pdev; 5355 struct device *dev = &pdev->dev; 5356 int ret; 5357 5358 hisi_qm_pre_init(qm); 5359 5360 ret = hisi_qm_pci_init(qm); 5361 if (ret) 5362 return ret; 5363 5364 ret = qm_irqs_register(qm); 5365 if (ret) 5366 goto err_pci_init; 5367 5368 if (qm->fun_type == QM_HW_PF) { 5369 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5370 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5371 qm_disable_clock_gate(qm); 5372 ret = qm_dev_mem_reset(qm); 5373 if (ret) { 5374 dev_err(dev, "failed to reset device memory\n"); 5375 goto err_irq_register; 5376 } 5377 } 5378 5379 if (qm->mode == UACCE_MODE_SVA) { 5380 ret = qm_alloc_uacce(qm); 5381 if (ret < 0) 5382 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5383 } 5384 5385 ret = hisi_qm_memory_init(qm); 5386 if (ret) 5387 goto err_alloc_uacce; 5388 5389 ret = hisi_qm_init_work(qm); 5390 if (ret) 5391 goto err_free_qm_memory; 5392 5393 qm_cmd_init(qm); 5394 atomic_set(&qm->status.flags, QM_INIT); 5395 5396 return 0; 5397 5398 err_free_qm_memory: 5399 hisi_qm_memory_uninit(qm); 5400 err_alloc_uacce: 5401 qm_remove_uacce(qm); 5402 err_irq_register: 5403 qm_irqs_unregister(qm); 5404 err_pci_init: 5405 hisi_qm_pci_uninit(qm); 5406 return ret; 5407 } 5408 EXPORT_SYMBOL_GPL(hisi_qm_init); 5409 5410 /** 5411 * hisi_qm_get_dfx_access() - Try to get dfx access. 5412 * @qm: pointer to accelerator device. 5413 * 5414 * Try to get dfx access, then user can get message. 5415 * 5416 * If device is in suspended, return failure, otherwise 5417 * bump up the runtime PM usage counter. 5418 */ 5419 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5420 { 5421 struct device *dev = &qm->pdev->dev; 5422 5423 if (pm_runtime_suspended(dev)) { 5424 dev_info(dev, "can not read/write - device in suspended.\n"); 5425 return -EAGAIN; 5426 } 5427 5428 return qm_pm_get_sync(qm); 5429 } 5430 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5431 5432 /** 5433 * hisi_qm_put_dfx_access() - Put dfx access. 5434 * @qm: pointer to accelerator device. 5435 * 5436 * Put dfx access, drop runtime PM usage counter. 5437 */ 5438 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5439 { 5440 qm_pm_put_sync(qm); 5441 } 5442 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5443 5444 /** 5445 * hisi_qm_pm_init() - Initialize qm runtime PM. 5446 * @qm: pointer to accelerator device. 5447 * 5448 * Function that initialize qm runtime PM. 5449 */ 5450 void hisi_qm_pm_init(struct hisi_qm *qm) 5451 { 5452 struct device *dev = &qm->pdev->dev; 5453 5454 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5455 return; 5456 5457 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5458 pm_runtime_use_autosuspend(dev); 5459 pm_runtime_put_noidle(dev); 5460 } 5461 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5462 5463 /** 5464 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5465 * @qm: pointer to accelerator device. 5466 * 5467 * Function that uninitialize qm runtime PM. 5468 */ 5469 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5470 { 5471 struct device *dev = &qm->pdev->dev; 5472 5473 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5474 return; 5475 5476 pm_runtime_get_noresume(dev); 5477 pm_runtime_dont_use_autosuspend(dev); 5478 } 5479 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5480 5481 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5482 { 5483 struct pci_dev *pdev = qm->pdev; 5484 int ret; 5485 u32 val; 5486 5487 ret = qm->ops->set_msi(qm, false); 5488 if (ret) { 5489 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5490 return ret; 5491 } 5492 5493 /* shutdown OOO register */ 5494 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5495 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5496 5497 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5498 val, 5499 (val == ACC_MASTER_TRANS_RETURN_RW), 5500 POLL_PERIOD, POLL_TIMEOUT); 5501 if (ret) { 5502 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5503 return ret; 5504 } 5505 5506 ret = qm_set_pf_mse(qm, false); 5507 if (ret) 5508 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5509 5510 return ret; 5511 } 5512 5513 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5514 { 5515 struct pci_dev *pdev = qm->pdev; 5516 int ret; 5517 5518 ret = qm_set_pf_mse(qm, true); 5519 if (ret) { 5520 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5521 return ret; 5522 } 5523 5524 ret = qm->ops->set_msi(qm, true); 5525 if (ret) { 5526 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5527 return ret; 5528 } 5529 5530 ret = qm_dev_hw_init(qm); 5531 if (ret) { 5532 pci_err(pdev, "failed to init device after resuming\n"); 5533 return ret; 5534 } 5535 5536 qm_cmd_init(qm); 5537 hisi_qm_dev_err_init(qm); 5538 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5539 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5540 qm_disable_clock_gate(qm); 5541 ret = qm_dev_mem_reset(qm); 5542 if (ret) 5543 pci_err(pdev, "failed to reset device memory\n"); 5544 5545 return ret; 5546 } 5547 5548 /** 5549 * hisi_qm_suspend() - Runtime suspend of given device. 5550 * @dev: device to suspend. 5551 * 5552 * Function that suspend the device. 5553 */ 5554 int hisi_qm_suspend(struct device *dev) 5555 { 5556 struct pci_dev *pdev = to_pci_dev(dev); 5557 struct hisi_qm *qm = pci_get_drvdata(pdev); 5558 int ret; 5559 5560 pci_info(pdev, "entering suspended state\n"); 5561 5562 ret = hisi_qm_stop(qm, QM_NORMAL); 5563 if (ret) { 5564 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5565 return ret; 5566 } 5567 5568 ret = qm_prepare_for_suspend(qm); 5569 if (ret) 5570 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5571 5572 return ret; 5573 } 5574 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5575 5576 /** 5577 * hisi_qm_resume() - Runtime resume of given device. 5578 * @dev: device to resume. 5579 * 5580 * Function that resume the device. 5581 */ 5582 int hisi_qm_resume(struct device *dev) 5583 { 5584 struct pci_dev *pdev = to_pci_dev(dev); 5585 struct hisi_qm *qm = pci_get_drvdata(pdev); 5586 int ret; 5587 5588 pci_info(pdev, "resuming from suspend state\n"); 5589 5590 ret = qm_rebuild_for_resume(qm); 5591 if (ret) { 5592 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5593 return ret; 5594 } 5595 5596 ret = hisi_qm_start(qm); 5597 if (ret) { 5598 if (qm_check_dev_error(qm)) { 5599 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5600 return 0; 5601 } 5602 5603 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5604 } 5605 5606 return ret; 5607 } 5608 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5609 5610 MODULE_LICENSE("GPL v2"); 5611 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5612 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5613