xref: /openbmc/linux/drivers/crypto/amcc/crypto4xx_core.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /**
2  * AMCC SoC PPC4xx Crypto Driver
3  *
4  * Copyright (c) 2008 Applied Micro Circuits Corporation.
5  * All rights reserved. James Hsiao <jhsiao@amcc.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * This file implements AMCC crypto offload Linux device driver for use with
18  * Linux CryptoAPI.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/module.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/slab.h>
35 #include <asm/dcr.h>
36 #include <asm/dcr-regs.h>
37 #include <asm/cacheflush.h>
38 #include <crypto/aes.h>
39 #include <crypto/sha.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 
44 #define PPC4XX_SEC_VERSION_STR			"0.5"
45 
46 /**
47  * PPC4xx Crypto Engine Initialization Routine
48  */
49 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
50 {
51 	union ce_ring_size ring_size;
52 	union ce_ring_contol ring_ctrl;
53 	union ce_part_ring_size part_ring_size;
54 	union ce_io_threshold io_threshold;
55 	u32 rand_num;
56 	union ce_pe_dma_cfg pe_dma_cfg;
57 	u32 device_ctrl;
58 
59 	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
60 	/* setup pe dma, include reset sg, pdr and pe, then release reset */
61 	pe_dma_cfg.w = 0;
62 	pe_dma_cfg.bf.bo_sgpd_en = 1;
63 	pe_dma_cfg.bf.bo_data_en = 0;
64 	pe_dma_cfg.bf.bo_sa_en = 1;
65 	pe_dma_cfg.bf.bo_pd_en = 1;
66 	pe_dma_cfg.bf.dynamic_sa_en = 1;
67 	pe_dma_cfg.bf.reset_sg = 1;
68 	pe_dma_cfg.bf.reset_pdr = 1;
69 	pe_dma_cfg.bf.reset_pe = 1;
70 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
71 	/* un reset pe,sg and pdr */
72 	pe_dma_cfg.bf.pe_mode = 0;
73 	pe_dma_cfg.bf.reset_sg = 0;
74 	pe_dma_cfg.bf.reset_pdr = 0;
75 	pe_dma_cfg.bf.reset_pe = 0;
76 	pe_dma_cfg.bf.bo_td_en = 0;
77 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
78 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
79 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
80 	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
81 	get_random_bytes(&rand_num, sizeof(rand_num));
82 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
83 	get_random_bytes(&rand_num, sizeof(rand_num));
84 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
85 	ring_size.w = 0;
86 	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
87 	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
88 	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
89 	ring_ctrl.w = 0;
90 	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
91 	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
92 	device_ctrl |= PPC4XX_DC_3DES_EN;
93 	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
94 	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
95 	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
96 	part_ring_size.w = 0;
97 	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
98 	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
99 	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
100 	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
101 	io_threshold.w = 0;
102 	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
103 	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
104 	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
105 	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
106 	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
107 	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
108 	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
109 	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
110 	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
111 	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
112 	/* un reset pe,sg and pdr */
113 	pe_dma_cfg.bf.pe_mode = 1;
114 	pe_dma_cfg.bf.reset_sg = 0;
115 	pe_dma_cfg.bf.reset_pdr = 0;
116 	pe_dma_cfg.bf.reset_pe = 0;
117 	pe_dma_cfg.bf.bo_td_en = 0;
118 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
119 	/*clear all pending interrupt*/
120 	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
121 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
122 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
124 	writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
125 }
126 
127 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
128 {
129 	ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
130 					&ctx->sa_in_dma_addr, GFP_ATOMIC);
131 	if (ctx->sa_in == NULL)
132 		return -ENOMEM;
133 
134 	ctx->sa_out = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
135 					 &ctx->sa_out_dma_addr, GFP_ATOMIC);
136 	if (ctx->sa_out == NULL) {
137 		dma_free_coherent(ctx->dev->core_dev->device,
138 				  ctx->sa_len * 4,
139 				  ctx->sa_in, ctx->sa_in_dma_addr);
140 		return -ENOMEM;
141 	}
142 
143 	memset(ctx->sa_in, 0, size * 4);
144 	memset(ctx->sa_out, 0, size * 4);
145 	ctx->sa_len = size;
146 
147 	return 0;
148 }
149 
150 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
151 {
152 	if (ctx->sa_in != NULL)
153 		dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
154 				  ctx->sa_in, ctx->sa_in_dma_addr);
155 	if (ctx->sa_out != NULL)
156 		dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
157 				  ctx->sa_out, ctx->sa_out_dma_addr);
158 
159 	ctx->sa_in_dma_addr = 0;
160 	ctx->sa_out_dma_addr = 0;
161 	ctx->sa_len = 0;
162 }
163 
164 u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx)
165 {
166 	ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device,
167 				sizeof(struct sa_state_record),
168 				&ctx->state_record_dma_addr, GFP_ATOMIC);
169 	if (!ctx->state_record_dma_addr)
170 		return -ENOMEM;
171 	memset(ctx->state_record, 0, sizeof(struct sa_state_record));
172 
173 	return 0;
174 }
175 
176 void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx)
177 {
178 	if (ctx->state_record != NULL)
179 		dma_free_coherent(ctx->dev->core_dev->device,
180 				  sizeof(struct sa_state_record),
181 				  ctx->state_record,
182 				  ctx->state_record_dma_addr);
183 	ctx->state_record_dma_addr = 0;
184 }
185 
186 /**
187  * alloc memory for the gather ring
188  * no need to alloc buf for the ring
189  * gdr_tail, gdr_head and gdr_count are initialized by this function
190  */
191 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
192 {
193 	int i;
194 	struct pd_uinfo *pd_uinfo;
195 	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
196 				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
197 				      &dev->pdr_pa, GFP_ATOMIC);
198 	if (!dev->pdr)
199 		return -ENOMEM;
200 
201 	dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD,
202 				GFP_KERNEL);
203 	if (!dev->pdr_uinfo) {
204 		dma_free_coherent(dev->core_dev->device,
205 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
206 				  dev->pdr,
207 				  dev->pdr_pa);
208 		return -ENOMEM;
209 	}
210 	memset(dev->pdr, 0,  sizeof(struct ce_pd) * PPC4XX_NUM_PD);
211 	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
212 				   256 * PPC4XX_NUM_PD,
213 				   &dev->shadow_sa_pool_pa,
214 				   GFP_ATOMIC);
215 	if (!dev->shadow_sa_pool)
216 		return -ENOMEM;
217 
218 	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
219 			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
220 			 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
221 	if (!dev->shadow_sr_pool)
222 		return -ENOMEM;
223 	for (i = 0; i < PPC4XX_NUM_PD; i++) {
224 		pd_uinfo = (struct pd_uinfo *) (dev->pdr_uinfo +
225 						sizeof(struct pd_uinfo) * i);
226 
227 		/* alloc 256 bytes which is enough for any kind of dynamic sa */
228 		pd_uinfo->sa_va = dev->shadow_sa_pool + 256 * i;
229 		pd_uinfo->sa_pa = dev->shadow_sa_pool_pa + 256 * i;
230 
231 		/* alloc state record */
232 		pd_uinfo->sr_va = dev->shadow_sr_pool +
233 		    sizeof(struct sa_state_record) * i;
234 		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
235 		    sizeof(struct sa_state_record) * i;
236 	}
237 
238 	return 0;
239 }
240 
241 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
242 {
243 	if (dev->pdr != NULL)
244 		dma_free_coherent(dev->core_dev->device,
245 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
246 				  dev->pdr, dev->pdr_pa);
247 	if (dev->shadow_sa_pool)
248 		dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD,
249 				  dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
250 	if (dev->shadow_sr_pool)
251 		dma_free_coherent(dev->core_dev->device,
252 			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
253 			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
254 
255 	kfree(dev->pdr_uinfo);
256 }
257 
258 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
259 {
260 	u32 retval;
261 	u32 tmp;
262 
263 	retval = dev->pdr_head;
264 	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
265 
266 	if (tmp == dev->pdr_tail)
267 		return ERING_WAS_FULL;
268 
269 	dev->pdr_head = tmp;
270 
271 	return retval;
272 }
273 
274 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
275 {
276 	struct pd_uinfo *pd_uinfo;
277 	unsigned long flags;
278 
279 	pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
280 				       sizeof(struct pd_uinfo) * idx);
281 	spin_lock_irqsave(&dev->core_dev->lock, flags);
282 	if (dev->pdr_tail != PPC4XX_LAST_PD)
283 		dev->pdr_tail++;
284 	else
285 		dev->pdr_tail = 0;
286 	pd_uinfo->state = PD_ENTRY_FREE;
287 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
288 
289 	return 0;
290 }
291 
292 static struct ce_pd *crypto4xx_get_pdp(struct crypto4xx_device *dev,
293 				       dma_addr_t *pd_dma, u32 idx)
294 {
295 	*pd_dma = dev->pdr_pa + sizeof(struct ce_pd) * idx;
296 
297 	return dev->pdr + sizeof(struct ce_pd) * idx;
298 }
299 
300 /**
301  * alloc memory for the gather ring
302  * no need to alloc buf for the ring
303  * gdr_tail, gdr_head and gdr_count are initialized by this function
304  */
305 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
306 {
307 	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
308 				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
309 				      &dev->gdr_pa, GFP_ATOMIC);
310 	if (!dev->gdr)
311 		return -ENOMEM;
312 
313 	memset(dev->gdr, 0, sizeof(struct ce_gd) * PPC4XX_NUM_GD);
314 
315 	return 0;
316 }
317 
318 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
319 {
320 	dma_free_coherent(dev->core_dev->device,
321 			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
322 			  dev->gdr, dev->gdr_pa);
323 }
324 
325 /*
326  * when this function is called.
327  * preemption or interrupt must be disabled
328  */
329 u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
330 {
331 	u32 retval;
332 	u32 tmp;
333 	if (n >= PPC4XX_NUM_GD)
334 		return ERING_WAS_FULL;
335 
336 	retval = dev->gdr_head;
337 	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
338 	if (dev->gdr_head > dev->gdr_tail) {
339 		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
340 			return ERING_WAS_FULL;
341 	} else if (dev->gdr_head < dev->gdr_tail) {
342 		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
343 			return ERING_WAS_FULL;
344 	}
345 	dev->gdr_head = tmp;
346 
347 	return retval;
348 }
349 
350 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
351 {
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(&dev->core_dev->lock, flags);
355 	if (dev->gdr_tail == dev->gdr_head) {
356 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
357 		return 0;
358 	}
359 
360 	if (dev->gdr_tail != PPC4XX_LAST_GD)
361 		dev->gdr_tail++;
362 	else
363 		dev->gdr_tail = 0;
364 
365 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
366 
367 	return 0;
368 }
369 
370 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
371 					      dma_addr_t *gd_dma, u32 idx)
372 {
373 	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
374 
375 	return (struct ce_gd *) (dev->gdr + sizeof(struct ce_gd) * idx);
376 }
377 
378 /**
379  * alloc memory for the scatter ring
380  * need to alloc buf for the ring
381  * sdr_tail, sdr_head and sdr_count are initialized by this function
382  */
383 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
384 {
385 	int i;
386 	struct ce_sd *sd_array;
387 
388 	/* alloc memory for scatter descriptor ring */
389 	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
390 				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
391 				      &dev->sdr_pa, GFP_ATOMIC);
392 	if (!dev->sdr)
393 		return -ENOMEM;
394 
395 	dev->scatter_buffer_size = PPC4XX_SD_BUFFER_SIZE;
396 	dev->scatter_buffer_va =
397 		dma_alloc_coherent(dev->core_dev->device,
398 			dev->scatter_buffer_size * PPC4XX_NUM_SD,
399 			&dev->scatter_buffer_pa, GFP_ATOMIC);
400 	if (!dev->scatter_buffer_va) {
401 		dma_free_coherent(dev->core_dev->device,
402 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
403 				  dev->sdr, dev->sdr_pa);
404 		return -ENOMEM;
405 	}
406 
407 	sd_array = dev->sdr;
408 
409 	for (i = 0; i < PPC4XX_NUM_SD; i++) {
410 		sd_array[i].ptr = dev->scatter_buffer_pa +
411 				  dev->scatter_buffer_size * i;
412 	}
413 
414 	return 0;
415 }
416 
417 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
418 {
419 	if (dev->sdr != NULL)
420 		dma_free_coherent(dev->core_dev->device,
421 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
422 				  dev->sdr, dev->sdr_pa);
423 
424 	if (dev->scatter_buffer_va != NULL)
425 		dma_free_coherent(dev->core_dev->device,
426 				  dev->scatter_buffer_size * PPC4XX_NUM_SD,
427 				  dev->scatter_buffer_va,
428 				  dev->scatter_buffer_pa);
429 }
430 
431 /*
432  * when this function is called.
433  * preemption or interrupt must be disabled
434  */
435 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
436 {
437 	u32 retval;
438 	u32 tmp;
439 
440 	if (n >= PPC4XX_NUM_SD)
441 		return ERING_WAS_FULL;
442 
443 	retval = dev->sdr_head;
444 	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
445 	if (dev->sdr_head > dev->gdr_tail) {
446 		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
447 			return ERING_WAS_FULL;
448 	} else if (dev->sdr_head < dev->sdr_tail) {
449 		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
450 			return ERING_WAS_FULL;
451 	} /* the head = tail, or empty case is already take cared */
452 	dev->sdr_head = tmp;
453 
454 	return retval;
455 }
456 
457 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
458 {
459 	unsigned long flags;
460 
461 	spin_lock_irqsave(&dev->core_dev->lock, flags);
462 	if (dev->sdr_tail == dev->sdr_head) {
463 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
464 		return 0;
465 	}
466 	if (dev->sdr_tail != PPC4XX_LAST_SD)
467 		dev->sdr_tail++;
468 	else
469 		dev->sdr_tail = 0;
470 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
471 
472 	return 0;
473 }
474 
475 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
476 					      dma_addr_t *sd_dma, u32 idx)
477 {
478 	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
479 
480 	return  (struct ce_sd *)(dev->sdr + sizeof(struct ce_sd) * idx);
481 }
482 
483 static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev,
484 				   dma_addr_t *addr, u32 *length,
485 				   u32 *idx, u32 *offset, u32 *nbytes)
486 {
487 	u32 len;
488 
489 	if (*length > dev->scatter_buffer_size) {
490 		memcpy(phys_to_virt(*addr),
491 			dev->scatter_buffer_va +
492 			*idx * dev->scatter_buffer_size + *offset,
493 			dev->scatter_buffer_size);
494 		*offset = 0;
495 		*length -= dev->scatter_buffer_size;
496 		*nbytes -= dev->scatter_buffer_size;
497 		if (*idx == PPC4XX_LAST_SD)
498 			*idx = 0;
499 		else
500 			(*idx)++;
501 		*addr = *addr +  dev->scatter_buffer_size;
502 		return 1;
503 	} else if (*length < dev->scatter_buffer_size) {
504 		memcpy(phys_to_virt(*addr),
505 			dev->scatter_buffer_va +
506 			*idx * dev->scatter_buffer_size + *offset, *length);
507 		if ((*offset + *length) == dev->scatter_buffer_size) {
508 			if (*idx == PPC4XX_LAST_SD)
509 				*idx = 0;
510 			else
511 				(*idx)++;
512 			*nbytes -= *length;
513 			*offset = 0;
514 		} else {
515 			*nbytes -= *length;
516 			*offset += *length;
517 		}
518 
519 		return 0;
520 	} else {
521 		len = (*nbytes <= dev->scatter_buffer_size) ?
522 				(*nbytes) : dev->scatter_buffer_size;
523 		memcpy(phys_to_virt(*addr),
524 			dev->scatter_buffer_va +
525 			*idx * dev->scatter_buffer_size + *offset,
526 			len);
527 		*offset = 0;
528 		*nbytes -= len;
529 
530 		if (*idx == PPC4XX_LAST_SD)
531 			*idx = 0;
532 		else
533 			(*idx)++;
534 
535 		return 0;
536     }
537 }
538 
539 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
540 				      struct ce_pd *pd,
541 				      struct pd_uinfo *pd_uinfo,
542 				      u32 nbytes,
543 				      struct scatterlist *dst)
544 {
545 	dma_addr_t addr;
546 	u32 this_sd;
547 	u32 offset;
548 	u32 len;
549 	u32 i;
550 	u32 sg_len;
551 	struct scatterlist *sg;
552 
553 	this_sd = pd_uinfo->first_sd;
554 	offset = 0;
555 	i = 0;
556 
557 	while (nbytes) {
558 		sg = &dst[i];
559 		sg_len = sg->length;
560 		addr = dma_map_page(dev->core_dev->device, sg_page(sg),
561 				sg->offset, sg->length, DMA_TO_DEVICE);
562 
563 		if (offset == 0) {
564 			len = (nbytes <= sg->length) ? nbytes : sg->length;
565 			while (crypto4xx_fill_one_page(dev, &addr, &len,
566 				&this_sd, &offset, &nbytes))
567 				;
568 			if (!nbytes)
569 				return;
570 			i++;
571 		} else {
572 			len = (nbytes <= (dev->scatter_buffer_size - offset)) ?
573 				nbytes : (dev->scatter_buffer_size - offset);
574 			len = (sg->length < len) ? sg->length : len;
575 			while (crypto4xx_fill_one_page(dev, &addr, &len,
576 					       &this_sd, &offset, &nbytes))
577 				;
578 			if (!nbytes)
579 				return;
580 			sg_len -= len;
581 			if (sg_len) {
582 				addr += len;
583 				while (crypto4xx_fill_one_page(dev, &addr,
584 					&sg_len, &this_sd, &offset, &nbytes))
585 					;
586 			}
587 			i++;
588 		}
589 	}
590 }
591 
592 static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo,
593 					struct crypto4xx_ctx *ctx)
594 {
595 	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
596 	struct sa_state_record *state_record =
597 				(struct sa_state_record *) pd_uinfo->sr_va;
598 
599 	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
600 		memcpy((void *) pd_uinfo->dest_va, state_record->save_digest,
601 		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
602 	}
603 
604 	return 0;
605 }
606 
607 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
608 				  struct pd_uinfo *pd_uinfo)
609 {
610 	int i;
611 	if (pd_uinfo->num_gd) {
612 		for (i = 0; i < pd_uinfo->num_gd; i++)
613 			crypto4xx_put_gd_to_gdr(dev);
614 		pd_uinfo->first_gd = 0xffffffff;
615 		pd_uinfo->num_gd = 0;
616 	}
617 	if (pd_uinfo->num_sd) {
618 		for (i = 0; i < pd_uinfo->num_sd; i++)
619 			crypto4xx_put_sd_to_sdr(dev);
620 
621 		pd_uinfo->first_sd = 0xffffffff;
622 		pd_uinfo->num_sd = 0;
623 	}
624 }
625 
626 static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev,
627 				     struct pd_uinfo *pd_uinfo,
628 				     struct ce_pd *pd)
629 {
630 	struct crypto4xx_ctx *ctx;
631 	struct ablkcipher_request *ablk_req;
632 	struct scatterlist *dst;
633 	dma_addr_t addr;
634 
635 	ablk_req = ablkcipher_request_cast(pd_uinfo->async_req);
636 	ctx  = crypto_tfm_ctx(ablk_req->base.tfm);
637 
638 	if (pd_uinfo->using_sd) {
639 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes,
640 					  ablk_req->dst);
641 	} else {
642 		dst = pd_uinfo->dest_va;
643 		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
644 				    dst->offset, dst->length, DMA_FROM_DEVICE);
645 	}
646 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
647 	if (ablk_req->base.complete != NULL)
648 		ablk_req->base.complete(&ablk_req->base, 0);
649 
650 	return 0;
651 }
652 
653 static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev,
654 				struct pd_uinfo *pd_uinfo)
655 {
656 	struct crypto4xx_ctx *ctx;
657 	struct ahash_request *ahash_req;
658 
659 	ahash_req = ahash_request_cast(pd_uinfo->async_req);
660 	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
661 
662 	crypto4xx_copy_digest_to_dst(pd_uinfo,
663 				     crypto_tfm_ctx(ahash_req->base.tfm));
664 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
665 	/* call user provided callback function x */
666 	if (ahash_req->base.complete != NULL)
667 		ahash_req->base.complete(&ahash_req->base, 0);
668 
669 	return 0;
670 }
671 
672 static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
673 {
674 	struct ce_pd *pd;
675 	struct pd_uinfo *pd_uinfo;
676 
677 	pd =  dev->pdr + sizeof(struct ce_pd)*idx;
678 	pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx;
679 	if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) ==
680 			CRYPTO_ALG_TYPE_ABLKCIPHER)
681 		return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd);
682 	else
683 		return crypto4xx_ahash_done(dev, pd_uinfo);
684 }
685 
686 /**
687  * Note: Only use this function to copy items that is word aligned.
688  */
689 void crypto4xx_memcpy_le(unsigned int *dst,
690 			 const unsigned char *buf,
691 			 int len)
692 {
693 	u8 *tmp;
694 	for (; len >= 4; buf += 4, len -= 4)
695 		*dst++ = cpu_to_le32(*(unsigned int *) buf);
696 
697 	tmp = (u8 *)dst;
698 	switch (len) {
699 	case 3:
700 		*tmp++ = 0;
701 		*tmp++ = *(buf+2);
702 		*tmp++ = *(buf+1);
703 		*tmp++ = *buf;
704 		break;
705 	case 2:
706 		*tmp++ = 0;
707 		*tmp++ = 0;
708 		*tmp++ = *(buf+1);
709 		*tmp++ = *buf;
710 		break;
711 	case 1:
712 		*tmp++ = 0;
713 		*tmp++ = 0;
714 		*tmp++ = 0;
715 		*tmp++ = *buf;
716 		break;
717 	default:
718 		break;
719 	}
720 }
721 
722 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
723 {
724 	crypto4xx_destroy_pdr(core_dev->dev);
725 	crypto4xx_destroy_gdr(core_dev->dev);
726 	crypto4xx_destroy_sdr(core_dev->dev);
727 	iounmap(core_dev->dev->ce_base);
728 	kfree(core_dev->dev);
729 	kfree(core_dev);
730 }
731 
732 void crypto4xx_return_pd(struct crypto4xx_device *dev,
733 			 u32 pd_entry, struct ce_pd *pd,
734 			 struct pd_uinfo *pd_uinfo)
735 {
736 	/* irq should be already disabled */
737 	dev->pdr_head = pd_entry;
738 	pd->pd_ctl.w = 0;
739 	pd->pd_ctl_len.w = 0;
740 	pd_uinfo->state = PD_ENTRY_FREE;
741 }
742 
743 /*
744  * derive number of elements in scatterlist
745  * Shamlessly copy from talitos.c
746  */
747 static int get_sg_count(struct scatterlist *sg_list, int nbytes)
748 {
749 	struct scatterlist *sg = sg_list;
750 	int sg_nents = 0;
751 
752 	while (nbytes) {
753 		sg_nents++;
754 		if (sg->length > nbytes)
755 			break;
756 		nbytes -= sg->length;
757 		sg = sg_next(sg);
758 	}
759 
760 	return sg_nents;
761 }
762 
763 static u32 get_next_gd(u32 current)
764 {
765 	if (current != PPC4XX_LAST_GD)
766 		return current + 1;
767 	else
768 		return 0;
769 }
770 
771 static u32 get_next_sd(u32 current)
772 {
773 	if (current != PPC4XX_LAST_SD)
774 		return current + 1;
775 	else
776 		return 0;
777 }
778 
779 u32 crypto4xx_build_pd(struct crypto_async_request *req,
780 		       struct crypto4xx_ctx *ctx,
781 		       struct scatterlist *src,
782 		       struct scatterlist *dst,
783 		       unsigned int datalen,
784 		       void *iv, u32 iv_len)
785 {
786 	struct crypto4xx_device *dev = ctx->dev;
787 	dma_addr_t addr, pd_dma, sd_dma, gd_dma;
788 	struct dynamic_sa_ctl *sa;
789 	struct scatterlist *sg;
790 	struct ce_gd *gd;
791 	struct ce_pd *pd;
792 	u32 num_gd, num_sd;
793 	u32 fst_gd = 0xffffffff;
794 	u32 fst_sd = 0xffffffff;
795 	u32 pd_entry;
796 	unsigned long flags;
797 	struct pd_uinfo *pd_uinfo = NULL;
798 	unsigned int nbytes = datalen, idx;
799 	unsigned int ivlen = 0;
800 	u32 gd_idx = 0;
801 
802 	/* figure how many gd is needed */
803 	num_gd = get_sg_count(src, datalen);
804 	if (num_gd == 1)
805 		num_gd = 0;
806 
807 	/* figure how many sd is needed */
808 	if (sg_is_last(dst) || ctx->is_hash) {
809 		num_sd = 0;
810 	} else {
811 		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
812 			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
813 			if (datalen % PPC4XX_SD_BUFFER_SIZE)
814 				num_sd++;
815 		} else {
816 			num_sd = 1;
817 		}
818 	}
819 
820 	/*
821 	 * The follow section of code needs to be protected
822 	 * The gather ring and scatter ring needs to be consecutive
823 	 * In case of run out of any kind of descriptor, the descriptor
824 	 * already got must be return the original place.
825 	 */
826 	spin_lock_irqsave(&dev->core_dev->lock, flags);
827 	if (num_gd) {
828 		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
829 		if (fst_gd == ERING_WAS_FULL) {
830 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
831 			return -EAGAIN;
832 		}
833 	}
834 	if (num_sd) {
835 		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
836 		if (fst_sd == ERING_WAS_FULL) {
837 			if (num_gd)
838 				dev->gdr_head = fst_gd;
839 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
840 			return -EAGAIN;
841 		}
842 	}
843 	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
844 	if (pd_entry == ERING_WAS_FULL) {
845 		if (num_gd)
846 			dev->gdr_head = fst_gd;
847 		if (num_sd)
848 			dev->sdr_head = fst_sd;
849 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
850 		return -EAGAIN;
851 	}
852 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
853 
854 	pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
855 				       sizeof(struct pd_uinfo) * pd_entry);
856 	pd = crypto4xx_get_pdp(dev, &pd_dma, pd_entry);
857 	pd_uinfo->async_req = req;
858 	pd_uinfo->num_gd = num_gd;
859 	pd_uinfo->num_sd = num_sd;
860 
861 	if (iv_len || ctx->is_hash) {
862 		ivlen = iv_len;
863 		pd->sa = pd_uinfo->sa_pa;
864 		sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va;
865 		if (ctx->direction == DIR_INBOUND)
866 			memcpy(sa, ctx->sa_in, ctx->sa_len * 4);
867 		else
868 			memcpy(sa, ctx->sa_out, ctx->sa_len * 4);
869 
870 		memcpy((void *) sa + ctx->offset_to_sr_ptr,
871 			&pd_uinfo->sr_pa, 4);
872 
873 		if (iv_len)
874 			crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len);
875 	} else {
876 		if (ctx->direction == DIR_INBOUND) {
877 			pd->sa = ctx->sa_in_dma_addr;
878 			sa = (struct dynamic_sa_ctl *) ctx->sa_in;
879 		} else {
880 			pd->sa = ctx->sa_out_dma_addr;
881 			sa = (struct dynamic_sa_ctl *) ctx->sa_out;
882 		}
883 	}
884 	pd->sa_len = ctx->sa_len;
885 	if (num_gd) {
886 		/* get first gd we are going to use */
887 		gd_idx = fst_gd;
888 		pd_uinfo->first_gd = fst_gd;
889 		pd_uinfo->num_gd = num_gd;
890 		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
891 		pd->src = gd_dma;
892 		/* enable gather */
893 		sa->sa_command_0.bf.gather = 1;
894 		idx = 0;
895 		src = &src[0];
896 		/* walk the sg, and setup gather array */
897 		while (nbytes) {
898 			sg = &src[idx];
899 			addr = dma_map_page(dev->core_dev->device, sg_page(sg),
900 				    sg->offset, sg->length, DMA_TO_DEVICE);
901 			gd->ptr = addr;
902 			gd->ctl_len.len = sg->length;
903 			gd->ctl_len.done = 0;
904 			gd->ctl_len.ready = 1;
905 			if (sg->length >= nbytes)
906 				break;
907 			nbytes -= sg->length;
908 			gd_idx = get_next_gd(gd_idx);
909 			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
910 			idx++;
911 		}
912 	} else {
913 		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
914 				src->offset, src->length, DMA_TO_DEVICE);
915 		/*
916 		 * Disable gather in sa command
917 		 */
918 		sa->sa_command_0.bf.gather = 0;
919 		/*
920 		 * Indicate gather array is not used
921 		 */
922 		pd_uinfo->first_gd = 0xffffffff;
923 		pd_uinfo->num_gd = 0;
924 	}
925 	if (ctx->is_hash || sg_is_last(dst)) {
926 		/*
927 		 * we know application give us dst a whole piece of memory
928 		 * no need to use scatter ring.
929 		 * In case of is_hash, the icv is always at end of src data.
930 		 */
931 		pd_uinfo->using_sd = 0;
932 		pd_uinfo->first_sd = 0xffffffff;
933 		pd_uinfo->num_sd = 0;
934 		pd_uinfo->dest_va = dst;
935 		sa->sa_command_0.bf.scatter = 0;
936 		if (ctx->is_hash)
937 			pd->dest = virt_to_phys((void *)dst);
938 		else
939 			pd->dest = (u32)dma_map_page(dev->core_dev->device,
940 					sg_page(dst), dst->offset,
941 					dst->length, DMA_TO_DEVICE);
942 	} else {
943 		struct ce_sd *sd = NULL;
944 		u32 sd_idx = fst_sd;
945 		nbytes = datalen;
946 		sa->sa_command_0.bf.scatter = 1;
947 		pd_uinfo->using_sd = 1;
948 		pd_uinfo->dest_va = dst;
949 		pd_uinfo->first_sd = fst_sd;
950 		pd_uinfo->num_sd = num_sd;
951 		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
952 		pd->dest = sd_dma;
953 		/* setup scatter descriptor */
954 		sd->ctl.done = 0;
955 		sd->ctl.rdy = 1;
956 		/* sd->ptr should be setup by sd_init routine*/
957 		idx = 0;
958 		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
959 			nbytes -= PPC4XX_SD_BUFFER_SIZE;
960 		else
961 			nbytes = 0;
962 		while (nbytes) {
963 			sd_idx = get_next_sd(sd_idx);
964 			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
965 			/* setup scatter descriptor */
966 			sd->ctl.done = 0;
967 			sd->ctl.rdy = 1;
968 			if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
969 				nbytes -= PPC4XX_SD_BUFFER_SIZE;
970 			else
971 				/*
972 				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
973 				 * which is more than nbytes, so done.
974 				 */
975 				nbytes = 0;
976 		}
977 	}
978 
979 	sa->sa_command_1.bf.hash_crypto_offset = 0;
980 	pd->pd_ctl.w = ctx->pd_ctl;
981 	pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | datalen;
982 	pd_uinfo->state = PD_ENTRY_INUSE;
983 	wmb();
984 	/* write any value to push engine to read a pd */
985 	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
986 	return -EINPROGRESS;
987 }
988 
989 /**
990  * Algorithm Registration Functions
991  */
992 static int crypto4xx_alg_init(struct crypto_tfm *tfm)
993 {
994 	struct crypto_alg *alg = tfm->__crt_alg;
995 	struct crypto4xx_alg *amcc_alg = crypto_alg_to_crypto4xx_alg(alg);
996 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
997 
998 	ctx->dev = amcc_alg->dev;
999 	ctx->sa_in = NULL;
1000 	ctx->sa_out = NULL;
1001 	ctx->sa_in_dma_addr = 0;
1002 	ctx->sa_out_dma_addr = 0;
1003 	ctx->sa_len = 0;
1004 
1005 	switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
1006 	default:
1007 		tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx);
1008 		break;
1009 	case CRYPTO_ALG_TYPE_AHASH:
1010 		crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1011 					 sizeof(struct crypto4xx_ctx));
1012 		break;
1013 	}
1014 
1015 	return 0;
1016 }
1017 
1018 static void crypto4xx_alg_exit(struct crypto_tfm *tfm)
1019 {
1020 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
1021 
1022 	crypto4xx_free_sa(ctx);
1023 	crypto4xx_free_state_record(ctx);
1024 }
1025 
1026 int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1027 			   struct crypto4xx_alg_common *crypto_alg,
1028 			   int array_size)
1029 {
1030 	struct crypto4xx_alg *alg;
1031 	int i;
1032 	int rc = 0;
1033 
1034 	for (i = 0; i < array_size; i++) {
1035 		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1036 		if (!alg)
1037 			return -ENOMEM;
1038 
1039 		alg->alg = crypto_alg[i];
1040 		alg->dev = sec_dev;
1041 
1042 		switch (alg->alg.type) {
1043 		case CRYPTO_ALG_TYPE_AHASH:
1044 			rc = crypto_register_ahash(&alg->alg.u.hash);
1045 			break;
1046 
1047 		default:
1048 			rc = crypto_register_alg(&alg->alg.u.cipher);
1049 			break;
1050 		}
1051 
1052 		if (rc) {
1053 			list_del(&alg->entry);
1054 			kfree(alg);
1055 		} else {
1056 			list_add_tail(&alg->entry, &sec_dev->alg_list);
1057 		}
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1064 {
1065 	struct crypto4xx_alg *alg, *tmp;
1066 
1067 	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1068 		list_del(&alg->entry);
1069 		switch (alg->alg.type) {
1070 		case CRYPTO_ALG_TYPE_AHASH:
1071 			crypto_unregister_ahash(&alg->alg.u.hash);
1072 			break;
1073 
1074 		default:
1075 			crypto_unregister_alg(&alg->alg.u.cipher);
1076 		}
1077 		kfree(alg);
1078 	}
1079 }
1080 
1081 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1082 {
1083 	struct device *dev = (struct device *)data;
1084 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1085 	struct pd_uinfo *pd_uinfo;
1086 	struct ce_pd *pd;
1087 	u32 tail;
1088 
1089 	while (core_dev->dev->pdr_head != core_dev->dev->pdr_tail) {
1090 		tail = core_dev->dev->pdr_tail;
1091 		pd_uinfo = core_dev->dev->pdr_uinfo +
1092 			sizeof(struct pd_uinfo)*tail;
1093 		pd =  core_dev->dev->pdr + sizeof(struct ce_pd) * tail;
1094 		if ((pd_uinfo->state == PD_ENTRY_INUSE) &&
1095 				   pd->pd_ctl.bf.pe_done &&
1096 				   !pd->pd_ctl.bf.host_ready) {
1097 			pd->pd_ctl.bf.pe_done = 0;
1098 			crypto4xx_pd_done(core_dev->dev, tail);
1099 			crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1100 			pd_uinfo->state = PD_ENTRY_FREE;
1101 		} else {
1102 			/* if tail not done, break */
1103 			break;
1104 		}
1105 	}
1106 }
1107 
1108 /**
1109  * Top Half of isr.
1110  */
1111 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1112 {
1113 	struct device *dev = (struct device *)data;
1114 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1115 
1116 	if (core_dev->dev->ce_base == 0)
1117 		return 0;
1118 
1119 	writel(PPC4XX_INTERRUPT_CLR,
1120 	       core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1121 	tasklet_schedule(&core_dev->tasklet);
1122 
1123 	return IRQ_HANDLED;
1124 }
1125 
1126 /**
1127  * Supported Crypto Algorithms
1128  */
1129 struct crypto4xx_alg_common crypto4xx_alg[] = {
1130 	/* Crypto AES modes */
1131 	{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1132 		.cra_name 	= "cbc(aes)",
1133 		.cra_driver_name = "cbc-aes-ppc4xx",
1134 		.cra_priority 	= CRYPTO4XX_CRYPTO_PRIORITY,
1135 		.cra_flags 	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1136 		.cra_blocksize 	= AES_BLOCK_SIZE,
1137 		.cra_ctxsize 	= sizeof(struct crypto4xx_ctx),
1138 		.cra_type 	= &crypto_ablkcipher_type,
1139 		.cra_init	= crypto4xx_alg_init,
1140 		.cra_exit	= crypto4xx_alg_exit,
1141 		.cra_module 	= THIS_MODULE,
1142 		.cra_u 		= {
1143 			.ablkcipher = {
1144 				.min_keysize 	= AES_MIN_KEY_SIZE,
1145 				.max_keysize 	= AES_MAX_KEY_SIZE,
1146 				.ivsize		= AES_IV_SIZE,
1147 				.setkey 	= crypto4xx_setkey_aes_cbc,
1148 				.encrypt 	= crypto4xx_encrypt,
1149 				.decrypt 	= crypto4xx_decrypt,
1150 			}
1151 		}
1152 	}},
1153 };
1154 
1155 /**
1156  * Module Initialization Routine
1157  */
1158 static int __init crypto4xx_probe(struct platform_device *ofdev)
1159 {
1160 	int rc;
1161 	struct resource res;
1162 	struct device *dev = &ofdev->dev;
1163 	struct crypto4xx_core_device *core_dev;
1164 
1165 	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1166 	if (rc)
1167 		return -ENODEV;
1168 
1169 	if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1170 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1171 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1172 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1173 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1174 	} else if (of_find_compatible_node(NULL, NULL,
1175 			"amcc,ppc405ex-crypto")) {
1176 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1177 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1178 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1179 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1180 	} else if (of_find_compatible_node(NULL, NULL,
1181 			"amcc,ppc460sx-crypto")) {
1182 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1183 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1184 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1185 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1186 	} else {
1187 		printk(KERN_ERR "Crypto Function Not supported!\n");
1188 		return -EINVAL;
1189 	}
1190 
1191 	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1192 	if (!core_dev)
1193 		return -ENOMEM;
1194 
1195 	dev_set_drvdata(dev, core_dev);
1196 	core_dev->ofdev = ofdev;
1197 	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1198 	if (!core_dev->dev)
1199 		goto err_alloc_dev;
1200 
1201 	core_dev->dev->core_dev = core_dev;
1202 	core_dev->device = dev;
1203 	spin_lock_init(&core_dev->lock);
1204 	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1205 	rc = crypto4xx_build_pdr(core_dev->dev);
1206 	if (rc)
1207 		goto err_build_pdr;
1208 
1209 	rc = crypto4xx_build_gdr(core_dev->dev);
1210 	if (rc)
1211 		goto err_build_gdr;
1212 
1213 	rc = crypto4xx_build_sdr(core_dev->dev);
1214 	if (rc)
1215 		goto err_build_sdr;
1216 
1217 	/* Init tasklet for bottom half processing */
1218 	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1219 		     (unsigned long) dev);
1220 
1221 	/* Register for Crypto isr, Crypto Engine IRQ */
1222 	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1223 	rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0,
1224 			 core_dev->dev->name, dev);
1225 	if (rc)
1226 		goto err_request_irq;
1227 
1228 	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1229 	if (!core_dev->dev->ce_base) {
1230 		dev_err(dev, "failed to of_iomap\n");
1231 		rc = -ENOMEM;
1232 		goto err_iomap;
1233 	}
1234 
1235 	/* need to setup pdr, rdr, gdr and sdr before this */
1236 	crypto4xx_hw_init(core_dev->dev);
1237 
1238 	/* Register security algorithms with Linux CryptoAPI */
1239 	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1240 			       ARRAY_SIZE(crypto4xx_alg));
1241 	if (rc)
1242 		goto err_start_dev;
1243 
1244 	return 0;
1245 
1246 err_start_dev:
1247 	iounmap(core_dev->dev->ce_base);
1248 err_iomap:
1249 	free_irq(core_dev->irq, dev);
1250 err_request_irq:
1251 	irq_dispose_mapping(core_dev->irq);
1252 	tasklet_kill(&core_dev->tasklet);
1253 	crypto4xx_destroy_sdr(core_dev->dev);
1254 err_build_sdr:
1255 	crypto4xx_destroy_gdr(core_dev->dev);
1256 err_build_gdr:
1257 	crypto4xx_destroy_pdr(core_dev->dev);
1258 err_build_pdr:
1259 	kfree(core_dev->dev);
1260 err_alloc_dev:
1261 	kfree(core_dev);
1262 
1263 	return rc;
1264 }
1265 
1266 static int __exit crypto4xx_remove(struct platform_device *ofdev)
1267 {
1268 	struct device *dev = &ofdev->dev;
1269 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1270 
1271 	free_irq(core_dev->irq, dev);
1272 	irq_dispose_mapping(core_dev->irq);
1273 
1274 	tasklet_kill(&core_dev->tasklet);
1275 	/* Un-register with Linux CryptoAPI */
1276 	crypto4xx_unregister_alg(core_dev->dev);
1277 	/* Free all allocated memory */
1278 	crypto4xx_stop_all(core_dev);
1279 
1280 	return 0;
1281 }
1282 
1283 static const struct of_device_id crypto4xx_match[] = {
1284 	{ .compatible      = "amcc,ppc4xx-crypto",},
1285 	{ },
1286 };
1287 
1288 static struct platform_driver crypto4xx_driver = {
1289 	.driver = {
1290 		.name = "crypto4xx",
1291 		.owner = THIS_MODULE,
1292 		.of_match_table = crypto4xx_match,
1293 	},
1294 	.probe		= crypto4xx_probe,
1295 	.remove		= __exit_p(crypto4xx_remove),
1296 };
1297 
1298 module_platform_driver(crypto4xx_driver);
1299 
1300 MODULE_LICENSE("GPL");
1301 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1302 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1303 
1304