1 /* 2 * cpuidle.c - core cpuidle infrastructure 3 * 4 * (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 5 * Shaohua Li <shaohua.li@intel.com> 6 * Adam Belay <abelay@novell.com> 7 * 8 * This code is licenced under the GPL. 9 */ 10 11 #include "linux/percpu-defs.h" 12 #include <linux/clockchips.h> 13 #include <linux/kernel.h> 14 #include <linux/mutex.h> 15 #include <linux/sched.h> 16 #include <linux/sched/clock.h> 17 #include <linux/sched/idle.h> 18 #include <linux/notifier.h> 19 #include <linux/pm_qos.h> 20 #include <linux/cpu.h> 21 #include <linux/cpuidle.h> 22 #include <linux/ktime.h> 23 #include <linux/hrtimer.h> 24 #include <linux/module.h> 25 #include <linux/suspend.h> 26 #include <linux/tick.h> 27 #include <linux/mmu_context.h> 28 #include <linux/context_tracking.h> 29 #include <trace/events/power.h> 30 31 #include "cpuidle.h" 32 33 DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices); 34 DEFINE_PER_CPU(struct cpuidle_device, cpuidle_dev); 35 36 DEFINE_MUTEX(cpuidle_lock); 37 LIST_HEAD(cpuidle_detected_devices); 38 39 static int enabled_devices; 40 static int off __read_mostly; 41 static int initialized __read_mostly; 42 43 int cpuidle_disabled(void) 44 { 45 return off; 46 } 47 void disable_cpuidle(void) 48 { 49 off = 1; 50 } 51 52 bool cpuidle_not_available(struct cpuidle_driver *drv, 53 struct cpuidle_device *dev) 54 { 55 return off || !initialized || !drv || !dev || !dev->enabled; 56 } 57 58 /** 59 * cpuidle_play_dead - cpu off-lining 60 * 61 * Returns in case of an error or no driver 62 */ 63 int cpuidle_play_dead(void) 64 { 65 struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices); 66 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 67 int i; 68 69 if (!drv) 70 return -ENODEV; 71 72 /* Find lowest-power state that supports long-term idle */ 73 for (i = drv->state_count - 1; i >= 0; i--) 74 if (drv->states[i].enter_dead) 75 return drv->states[i].enter_dead(dev, i); 76 77 return -ENODEV; 78 } 79 80 static int find_deepest_state(struct cpuidle_driver *drv, 81 struct cpuidle_device *dev, 82 u64 max_latency_ns, 83 unsigned int forbidden_flags, 84 bool s2idle) 85 { 86 u64 latency_req = 0; 87 int i, ret = 0; 88 89 for (i = 1; i < drv->state_count; i++) { 90 struct cpuidle_state *s = &drv->states[i]; 91 92 if (dev->states_usage[i].disable || 93 s->exit_latency_ns <= latency_req || 94 s->exit_latency_ns > max_latency_ns || 95 (s->flags & forbidden_flags) || 96 (s2idle && !s->enter_s2idle)) 97 continue; 98 99 latency_req = s->exit_latency_ns; 100 ret = i; 101 } 102 return ret; 103 } 104 105 /** 106 * cpuidle_use_deepest_state - Set/unset governor override mode. 107 * @latency_limit_ns: Idle state exit latency limit (or no override if 0). 108 * 109 * If @latency_limit_ns is nonzero, set the current CPU to use the deepest idle 110 * state with exit latency within @latency_limit_ns (override governors going 111 * forward), or do not override governors if it is zero. 112 */ 113 void cpuidle_use_deepest_state(u64 latency_limit_ns) 114 { 115 struct cpuidle_device *dev; 116 117 preempt_disable(); 118 dev = cpuidle_get_device(); 119 if (dev) 120 dev->forced_idle_latency_limit_ns = latency_limit_ns; 121 preempt_enable(); 122 } 123 124 /** 125 * cpuidle_find_deepest_state - Find the deepest available idle state. 126 * @drv: cpuidle driver for the given CPU. 127 * @dev: cpuidle device for the given CPU. 128 * @latency_limit_ns: Idle state exit latency limit 129 * 130 * Return: the index of the deepest available idle state. 131 */ 132 int cpuidle_find_deepest_state(struct cpuidle_driver *drv, 133 struct cpuidle_device *dev, 134 u64 latency_limit_ns) 135 { 136 return find_deepest_state(drv, dev, latency_limit_ns, 0, false); 137 } 138 139 #ifdef CONFIG_SUSPEND 140 static noinstr void enter_s2idle_proper(struct cpuidle_driver *drv, 141 struct cpuidle_device *dev, int index) 142 { 143 struct cpuidle_state *target_state = &drv->states[index]; 144 ktime_t time_start, time_end; 145 146 instrumentation_begin(); 147 148 time_start = ns_to_ktime(local_clock()); 149 150 tick_freeze(); 151 /* 152 * The state used here cannot be a "coupled" one, because the "coupled" 153 * cpuidle mechanism enables interrupts and doing that with timekeeping 154 * suspended is generally unsafe. 155 */ 156 stop_critical_timings(); 157 if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) { 158 ct_cpuidle_enter(); 159 /* Annotate away the indirect call */ 160 instrumentation_begin(); 161 } 162 target_state->enter_s2idle(dev, drv, index); 163 if (WARN_ON_ONCE(!irqs_disabled())) 164 raw_local_irq_disable(); 165 if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) { 166 instrumentation_end(); 167 ct_cpuidle_exit(); 168 } 169 tick_unfreeze(); 170 start_critical_timings(); 171 172 time_end = ns_to_ktime(local_clock()); 173 174 dev->states_usage[index].s2idle_time += ktime_us_delta(time_end, time_start); 175 dev->states_usage[index].s2idle_usage++; 176 instrumentation_end(); 177 } 178 179 /** 180 * cpuidle_enter_s2idle - Enter an idle state suitable for suspend-to-idle. 181 * @drv: cpuidle driver for the given CPU. 182 * @dev: cpuidle device for the given CPU. 183 * 184 * If there are states with the ->enter_s2idle callback, find the deepest of 185 * them and enter it with frozen tick. 186 */ 187 int cpuidle_enter_s2idle(struct cpuidle_driver *drv, struct cpuidle_device *dev) 188 { 189 int index; 190 191 /* 192 * Find the deepest state with ->enter_s2idle present, which guarantees 193 * that interrupts won't be enabled when it exits and allows the tick to 194 * be frozen safely. 195 */ 196 index = find_deepest_state(drv, dev, U64_MAX, 0, true); 197 if (index > 0) { 198 enter_s2idle_proper(drv, dev, index); 199 local_irq_enable(); 200 } 201 return index; 202 } 203 #endif /* CONFIG_SUSPEND */ 204 205 /** 206 * cpuidle_enter_state - enter the state and update stats 207 * @dev: cpuidle device for this cpu 208 * @drv: cpuidle driver for this cpu 209 * @index: index into the states table in @drv of the state to enter 210 */ 211 noinstr int cpuidle_enter_state(struct cpuidle_device *dev, 212 struct cpuidle_driver *drv, 213 int index) 214 { 215 int entered_state; 216 217 struct cpuidle_state *target_state = &drv->states[index]; 218 bool broadcast = !!(target_state->flags & CPUIDLE_FLAG_TIMER_STOP); 219 ktime_t time_start, time_end; 220 221 instrumentation_begin(); 222 223 /* 224 * Tell the time framework to switch to a broadcast timer because our 225 * local timer will be shut down. If a local timer is used from another 226 * CPU as a broadcast timer, this call may fail if it is not available. 227 */ 228 if (broadcast && tick_broadcast_enter()) { 229 index = find_deepest_state(drv, dev, target_state->exit_latency_ns, 230 CPUIDLE_FLAG_TIMER_STOP, false); 231 if (index < 0) { 232 default_idle_call(); 233 return -EBUSY; 234 } 235 target_state = &drv->states[index]; 236 broadcast = false; 237 } 238 239 if (target_state->flags & CPUIDLE_FLAG_TLB_FLUSHED) 240 leave_mm(dev->cpu); 241 242 /* Take note of the planned idle state. */ 243 sched_idle_set_state(target_state); 244 245 trace_cpu_idle(index, dev->cpu); 246 time_start = ns_to_ktime(local_clock()); 247 248 stop_critical_timings(); 249 if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) { 250 ct_cpuidle_enter(); 251 /* Annotate away the indirect call */ 252 instrumentation_begin(); 253 } 254 255 entered_state = target_state->enter(dev, drv, index); 256 257 if (WARN_ONCE(!irqs_disabled(), "%ps leaked IRQ state", target_state->enter)) 258 raw_local_irq_disable(); 259 260 if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) { 261 instrumentation_end(); 262 ct_cpuidle_exit(); 263 } 264 start_critical_timings(); 265 266 sched_clock_idle_wakeup_event(); 267 time_end = ns_to_ktime(local_clock()); 268 trace_cpu_idle(PWR_EVENT_EXIT, dev->cpu); 269 270 /* The cpu is no longer idle or about to enter idle. */ 271 sched_idle_set_state(NULL); 272 273 if (broadcast) 274 tick_broadcast_exit(); 275 276 if (!cpuidle_state_is_coupled(drv, index)) 277 local_irq_enable(); 278 279 if (entered_state >= 0) { 280 s64 diff, delay = drv->states[entered_state].exit_latency_ns; 281 int i; 282 283 /* 284 * Update cpuidle counters 285 * This can be moved to within driver enter routine, 286 * but that results in multiple copies of same code. 287 */ 288 diff = ktime_sub(time_end, time_start); 289 290 dev->last_residency_ns = diff; 291 dev->states_usage[entered_state].time_ns += diff; 292 dev->states_usage[entered_state].usage++; 293 294 if (diff < drv->states[entered_state].target_residency_ns) { 295 for (i = entered_state - 1; i >= 0; i--) { 296 if (dev->states_usage[i].disable) 297 continue; 298 299 /* Shallower states are enabled, so update. */ 300 dev->states_usage[entered_state].above++; 301 trace_cpu_idle_miss(dev->cpu, entered_state, false); 302 break; 303 } 304 } else if (diff > delay) { 305 for (i = entered_state + 1; i < drv->state_count; i++) { 306 if (dev->states_usage[i].disable) 307 continue; 308 309 /* 310 * Update if a deeper state would have been a 311 * better match for the observed idle duration. 312 */ 313 if (diff - delay >= drv->states[i].target_residency_ns) { 314 dev->states_usage[entered_state].below++; 315 trace_cpu_idle_miss(dev->cpu, entered_state, true); 316 } 317 318 break; 319 } 320 } 321 } else { 322 dev->last_residency_ns = 0; 323 dev->states_usage[index].rejected++; 324 } 325 326 instrumentation_end(); 327 328 return entered_state; 329 } 330 331 /** 332 * cpuidle_select - ask the cpuidle framework to choose an idle state 333 * 334 * @drv: the cpuidle driver 335 * @dev: the cpuidle device 336 * @stop_tick: indication on whether or not to stop the tick 337 * 338 * Returns the index of the idle state. The return value must not be negative. 339 * 340 * The memory location pointed to by @stop_tick is expected to be written the 341 * 'false' boolean value if the scheduler tick should not be stopped before 342 * entering the returned state. 343 */ 344 int cpuidle_select(struct cpuidle_driver *drv, struct cpuidle_device *dev, 345 bool *stop_tick) 346 { 347 return cpuidle_curr_governor->select(drv, dev, stop_tick); 348 } 349 350 /** 351 * cpuidle_enter - enter into the specified idle state 352 * 353 * @drv: the cpuidle driver tied with the cpu 354 * @dev: the cpuidle device 355 * @index: the index in the idle state table 356 * 357 * Returns the index in the idle state, < 0 in case of error. 358 * The error code depends on the backend driver 359 */ 360 int cpuidle_enter(struct cpuidle_driver *drv, struct cpuidle_device *dev, 361 int index) 362 { 363 int ret = 0; 364 365 /* 366 * Store the next hrtimer, which becomes either next tick or the next 367 * timer event, whatever expires first. Additionally, to make this data 368 * useful for consumers outside cpuidle, we rely on that the governor's 369 * ->select() callback have decided, whether to stop the tick or not. 370 */ 371 WRITE_ONCE(dev->next_hrtimer, tick_nohz_get_next_hrtimer()); 372 373 if (cpuidle_state_is_coupled(drv, index)) 374 ret = cpuidle_enter_state_coupled(dev, drv, index); 375 else 376 ret = cpuidle_enter_state(dev, drv, index); 377 378 WRITE_ONCE(dev->next_hrtimer, 0); 379 return ret; 380 } 381 382 /** 383 * cpuidle_reflect - tell the underlying governor what was the state 384 * we were in 385 * 386 * @dev : the cpuidle device 387 * @index: the index in the idle state table 388 * 389 */ 390 void cpuidle_reflect(struct cpuidle_device *dev, int index) 391 { 392 if (cpuidle_curr_governor->reflect && index >= 0) 393 cpuidle_curr_governor->reflect(dev, index); 394 } 395 396 /* 397 * Min polling interval of 10usec is a guess. It is assuming that 398 * for most users, the time for a single ping-pong workload like 399 * perf bench pipe would generally complete within 10usec but 400 * this is hardware dependant. Actual time can be estimated with 401 * 402 * perf bench sched pipe -l 10000 403 * 404 * Run multiple times to avoid cpufreq effects. 405 */ 406 #define CPUIDLE_POLL_MIN 10000 407 #define CPUIDLE_POLL_MAX (TICK_NSEC / 16) 408 409 /** 410 * cpuidle_poll_time - return amount of time to poll for, 411 * governors can override dev->poll_limit_ns if necessary 412 * 413 * @drv: the cpuidle driver tied with the cpu 414 * @dev: the cpuidle device 415 * 416 */ 417 u64 cpuidle_poll_time(struct cpuidle_driver *drv, 418 struct cpuidle_device *dev) 419 { 420 int i; 421 u64 limit_ns; 422 423 BUILD_BUG_ON(CPUIDLE_POLL_MIN > CPUIDLE_POLL_MAX); 424 425 if (dev->poll_limit_ns) 426 return dev->poll_limit_ns; 427 428 limit_ns = CPUIDLE_POLL_MAX; 429 for (i = 1; i < drv->state_count; i++) { 430 u64 state_limit; 431 432 if (dev->states_usage[i].disable) 433 continue; 434 435 state_limit = drv->states[i].target_residency_ns; 436 if (state_limit < CPUIDLE_POLL_MIN) 437 continue; 438 439 limit_ns = min_t(u64, state_limit, CPUIDLE_POLL_MAX); 440 break; 441 } 442 443 dev->poll_limit_ns = limit_ns; 444 445 return dev->poll_limit_ns; 446 } 447 448 /** 449 * cpuidle_install_idle_handler - installs the cpuidle idle loop handler 450 */ 451 void cpuidle_install_idle_handler(void) 452 { 453 if (enabled_devices) { 454 /* Make sure all changes finished before we switch to new idle */ 455 smp_wmb(); 456 initialized = 1; 457 } 458 } 459 460 /** 461 * cpuidle_uninstall_idle_handler - uninstalls the cpuidle idle loop handler 462 */ 463 void cpuidle_uninstall_idle_handler(void) 464 { 465 if (enabled_devices) { 466 initialized = 0; 467 wake_up_all_idle_cpus(); 468 } 469 470 /* 471 * Make sure external observers (such as the scheduler) 472 * are done looking at pointed idle states. 473 */ 474 synchronize_rcu(); 475 } 476 477 /** 478 * cpuidle_pause_and_lock - temporarily disables CPUIDLE 479 */ 480 void cpuidle_pause_and_lock(void) 481 { 482 mutex_lock(&cpuidle_lock); 483 cpuidle_uninstall_idle_handler(); 484 } 485 486 EXPORT_SYMBOL_GPL(cpuidle_pause_and_lock); 487 488 /** 489 * cpuidle_resume_and_unlock - resumes CPUIDLE operation 490 */ 491 void cpuidle_resume_and_unlock(void) 492 { 493 cpuidle_install_idle_handler(); 494 mutex_unlock(&cpuidle_lock); 495 } 496 497 EXPORT_SYMBOL_GPL(cpuidle_resume_and_unlock); 498 499 /* Currently used in suspend/resume path to suspend cpuidle */ 500 void cpuidle_pause(void) 501 { 502 mutex_lock(&cpuidle_lock); 503 cpuidle_uninstall_idle_handler(); 504 mutex_unlock(&cpuidle_lock); 505 } 506 507 /* Currently used in suspend/resume path to resume cpuidle */ 508 void cpuidle_resume(void) 509 { 510 mutex_lock(&cpuidle_lock); 511 cpuidle_install_idle_handler(); 512 mutex_unlock(&cpuidle_lock); 513 } 514 515 /** 516 * cpuidle_enable_device - enables idle PM for a CPU 517 * @dev: the CPU 518 * 519 * This function must be called between cpuidle_pause_and_lock and 520 * cpuidle_resume_and_unlock when used externally. 521 */ 522 int cpuidle_enable_device(struct cpuidle_device *dev) 523 { 524 int ret; 525 struct cpuidle_driver *drv; 526 527 if (!dev) 528 return -EINVAL; 529 530 if (dev->enabled) 531 return 0; 532 533 if (!cpuidle_curr_governor) 534 return -EIO; 535 536 drv = cpuidle_get_cpu_driver(dev); 537 538 if (!drv) 539 return -EIO; 540 541 if (!dev->registered) 542 return -EINVAL; 543 544 ret = cpuidle_add_device_sysfs(dev); 545 if (ret) 546 return ret; 547 548 if (cpuidle_curr_governor->enable) { 549 ret = cpuidle_curr_governor->enable(drv, dev); 550 if (ret) 551 goto fail_sysfs; 552 } 553 554 smp_wmb(); 555 556 dev->enabled = 1; 557 558 enabled_devices++; 559 return 0; 560 561 fail_sysfs: 562 cpuidle_remove_device_sysfs(dev); 563 564 return ret; 565 } 566 567 EXPORT_SYMBOL_GPL(cpuidle_enable_device); 568 569 /** 570 * cpuidle_disable_device - disables idle PM for a CPU 571 * @dev: the CPU 572 * 573 * This function must be called between cpuidle_pause_and_lock and 574 * cpuidle_resume_and_unlock when used externally. 575 */ 576 void cpuidle_disable_device(struct cpuidle_device *dev) 577 { 578 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 579 580 if (!dev || !dev->enabled) 581 return; 582 583 if (!drv || !cpuidle_curr_governor) 584 return; 585 586 dev->enabled = 0; 587 588 if (cpuidle_curr_governor->disable) 589 cpuidle_curr_governor->disable(drv, dev); 590 591 cpuidle_remove_device_sysfs(dev); 592 enabled_devices--; 593 } 594 595 EXPORT_SYMBOL_GPL(cpuidle_disable_device); 596 597 static void __cpuidle_unregister_device(struct cpuidle_device *dev) 598 { 599 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 600 601 list_del(&dev->device_list); 602 per_cpu(cpuidle_devices, dev->cpu) = NULL; 603 module_put(drv->owner); 604 605 dev->registered = 0; 606 } 607 608 static void __cpuidle_device_init(struct cpuidle_device *dev) 609 { 610 memset(dev->states_usage, 0, sizeof(dev->states_usage)); 611 dev->last_residency_ns = 0; 612 dev->next_hrtimer = 0; 613 } 614 615 /** 616 * __cpuidle_register_device - internal register function called before register 617 * and enable routines 618 * @dev: the cpu 619 * 620 * cpuidle_lock mutex must be held before this is called 621 */ 622 static int __cpuidle_register_device(struct cpuidle_device *dev) 623 { 624 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 625 int i, ret; 626 627 if (!try_module_get(drv->owner)) 628 return -EINVAL; 629 630 for (i = 0; i < drv->state_count; i++) { 631 if (drv->states[i].flags & CPUIDLE_FLAG_UNUSABLE) 632 dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_DRIVER; 633 634 if (drv->states[i].flags & CPUIDLE_FLAG_OFF) 635 dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_USER; 636 } 637 638 per_cpu(cpuidle_devices, dev->cpu) = dev; 639 list_add(&dev->device_list, &cpuidle_detected_devices); 640 641 ret = cpuidle_coupled_register_device(dev); 642 if (ret) 643 __cpuidle_unregister_device(dev); 644 else 645 dev->registered = 1; 646 647 return ret; 648 } 649 650 /** 651 * cpuidle_register_device - registers a CPU's idle PM feature 652 * @dev: the cpu 653 */ 654 int cpuidle_register_device(struct cpuidle_device *dev) 655 { 656 int ret = -EBUSY; 657 658 if (!dev) 659 return -EINVAL; 660 661 mutex_lock(&cpuidle_lock); 662 663 if (dev->registered) 664 goto out_unlock; 665 666 __cpuidle_device_init(dev); 667 668 ret = __cpuidle_register_device(dev); 669 if (ret) 670 goto out_unlock; 671 672 ret = cpuidle_add_sysfs(dev); 673 if (ret) 674 goto out_unregister; 675 676 ret = cpuidle_enable_device(dev); 677 if (ret) 678 goto out_sysfs; 679 680 cpuidle_install_idle_handler(); 681 682 out_unlock: 683 mutex_unlock(&cpuidle_lock); 684 685 return ret; 686 687 out_sysfs: 688 cpuidle_remove_sysfs(dev); 689 out_unregister: 690 __cpuidle_unregister_device(dev); 691 goto out_unlock; 692 } 693 694 EXPORT_SYMBOL_GPL(cpuidle_register_device); 695 696 /** 697 * cpuidle_unregister_device - unregisters a CPU's idle PM feature 698 * @dev: the cpu 699 */ 700 void cpuidle_unregister_device(struct cpuidle_device *dev) 701 { 702 if (!dev || dev->registered == 0) 703 return; 704 705 cpuidle_pause_and_lock(); 706 707 cpuidle_disable_device(dev); 708 709 cpuidle_remove_sysfs(dev); 710 711 __cpuidle_unregister_device(dev); 712 713 cpuidle_coupled_unregister_device(dev); 714 715 cpuidle_resume_and_unlock(); 716 } 717 718 EXPORT_SYMBOL_GPL(cpuidle_unregister_device); 719 720 /** 721 * cpuidle_unregister: unregister a driver and the devices. This function 722 * can be used only if the driver has been previously registered through 723 * the cpuidle_register function. 724 * 725 * @drv: a valid pointer to a struct cpuidle_driver 726 */ 727 void cpuidle_unregister(struct cpuidle_driver *drv) 728 { 729 int cpu; 730 struct cpuidle_device *device; 731 732 for_each_cpu(cpu, drv->cpumask) { 733 device = &per_cpu(cpuidle_dev, cpu); 734 cpuidle_unregister_device(device); 735 } 736 737 cpuidle_unregister_driver(drv); 738 } 739 EXPORT_SYMBOL_GPL(cpuidle_unregister); 740 741 /** 742 * cpuidle_register: registers the driver and the cpu devices with the 743 * coupled_cpus passed as parameter. This function is used for all common 744 * initialization pattern there are in the arch specific drivers. The 745 * devices is globally defined in this file. 746 * 747 * @drv : a valid pointer to a struct cpuidle_driver 748 * @coupled_cpus: a cpumask for the coupled states 749 * 750 * Returns 0 on success, < 0 otherwise 751 */ 752 int cpuidle_register(struct cpuidle_driver *drv, 753 const struct cpumask *const coupled_cpus) 754 { 755 int ret, cpu; 756 struct cpuidle_device *device; 757 758 ret = cpuidle_register_driver(drv); 759 if (ret) { 760 pr_err("failed to register cpuidle driver\n"); 761 return ret; 762 } 763 764 for_each_cpu(cpu, drv->cpumask) { 765 device = &per_cpu(cpuidle_dev, cpu); 766 device->cpu = cpu; 767 768 #ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED 769 /* 770 * On multiplatform for ARM, the coupled idle states could be 771 * enabled in the kernel even if the cpuidle driver does not 772 * use it. Note, coupled_cpus is a struct copy. 773 */ 774 if (coupled_cpus) 775 device->coupled_cpus = *coupled_cpus; 776 #endif 777 ret = cpuidle_register_device(device); 778 if (!ret) 779 continue; 780 781 pr_err("Failed to register cpuidle device for cpu%d\n", cpu); 782 783 cpuidle_unregister(drv); 784 break; 785 } 786 787 return ret; 788 } 789 EXPORT_SYMBOL_GPL(cpuidle_register); 790 791 /** 792 * cpuidle_init - core initializer 793 */ 794 static int __init cpuidle_init(void) 795 { 796 if (cpuidle_disabled()) 797 return -ENODEV; 798 799 return cpuidle_add_interface(cpu_subsys.dev_root); 800 } 801 802 module_param(off, int, 0444); 803 module_param_string(governor, param_governor, CPUIDLE_NAME_LEN, 0444); 804 core_initcall(cpuidle_init); 805