1 /* 2 * drivers/cpufreq/cpufreq_ondemand.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 6 * Jun Nakajima <jun.nakajima@intel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cpu.h> 16 #include <linux/percpu-defs.h> 17 #include <linux/slab.h> 18 #include <linux/tick.h> 19 #include "cpufreq_governor.h" 20 21 /* On-demand governor macros */ 22 #define DEF_FREQUENCY_UP_THRESHOLD (80) 23 #define DEF_SAMPLING_DOWN_FACTOR (1) 24 #define MAX_SAMPLING_DOWN_FACTOR (100000) 25 #define MICRO_FREQUENCY_UP_THRESHOLD (95) 26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000) 27 #define MIN_FREQUENCY_UP_THRESHOLD (11) 28 #define MAX_FREQUENCY_UP_THRESHOLD (100) 29 30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info); 31 32 static struct od_ops od_ops; 33 34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 35 static struct cpufreq_governor cpufreq_gov_ondemand; 36 #endif 37 38 static unsigned int default_powersave_bias; 39 40 static void ondemand_powersave_bias_init_cpu(int cpu) 41 { 42 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); 43 44 dbs_info->freq_table = cpufreq_frequency_get_table(cpu); 45 dbs_info->freq_lo = 0; 46 } 47 48 /* 49 * Not all CPUs want IO time to be accounted as busy; this depends on how 50 * efficient idling at a higher frequency/voltage is. 51 * Pavel Machek says this is not so for various generations of AMD and old 52 * Intel systems. 53 * Mike Chan (android.com) claims this is also not true for ARM. 54 * Because of this, whitelist specific known (series) of CPUs by default, and 55 * leave all others up to the user. 56 */ 57 static int should_io_be_busy(void) 58 { 59 #if defined(CONFIG_X86) 60 /* 61 * For Intel, Core 2 (model 15) and later have an efficient idle. 62 */ 63 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && 64 boot_cpu_data.x86 == 6 && 65 boot_cpu_data.x86_model >= 15) 66 return 1; 67 #endif 68 return 0; 69 } 70 71 /* 72 * Find right freq to be set now with powersave_bias on. 73 * Returns the freq_hi to be used right now and will set freq_hi_jiffies, 74 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. 75 */ 76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy, 77 unsigned int freq_next, unsigned int relation) 78 { 79 unsigned int freq_req, freq_reduc, freq_avg; 80 unsigned int freq_hi, freq_lo; 81 unsigned int index = 0; 82 unsigned int jiffies_total, jiffies_hi, jiffies_lo; 83 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, 84 policy->cpu); 85 struct dbs_data *dbs_data = policy->governor_data; 86 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 87 88 if (!dbs_info->freq_table) { 89 dbs_info->freq_lo = 0; 90 dbs_info->freq_lo_jiffies = 0; 91 return freq_next; 92 } 93 94 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, 95 relation, &index); 96 freq_req = dbs_info->freq_table[index].frequency; 97 freq_reduc = freq_req * od_tuners->powersave_bias / 1000; 98 freq_avg = freq_req - freq_reduc; 99 100 /* Find freq bounds for freq_avg in freq_table */ 101 index = 0; 102 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 103 CPUFREQ_RELATION_H, &index); 104 freq_lo = dbs_info->freq_table[index].frequency; 105 index = 0; 106 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 107 CPUFREQ_RELATION_L, &index); 108 freq_hi = dbs_info->freq_table[index].frequency; 109 110 /* Find out how long we have to be in hi and lo freqs */ 111 if (freq_hi == freq_lo) { 112 dbs_info->freq_lo = 0; 113 dbs_info->freq_lo_jiffies = 0; 114 return freq_lo; 115 } 116 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate); 117 jiffies_hi = (freq_avg - freq_lo) * jiffies_total; 118 jiffies_hi += ((freq_hi - freq_lo) / 2); 119 jiffies_hi /= (freq_hi - freq_lo); 120 jiffies_lo = jiffies_total - jiffies_hi; 121 dbs_info->freq_lo = freq_lo; 122 dbs_info->freq_lo_jiffies = jiffies_lo; 123 dbs_info->freq_hi_jiffies = jiffies_hi; 124 return freq_hi; 125 } 126 127 static void ondemand_powersave_bias_init(void) 128 { 129 int i; 130 for_each_online_cpu(i) { 131 ondemand_powersave_bias_init_cpu(i); 132 } 133 } 134 135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq) 136 { 137 struct dbs_data *dbs_data = policy->governor_data; 138 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 139 140 if (od_tuners->powersave_bias) 141 freq = od_ops.powersave_bias_target(policy, freq, 142 CPUFREQ_RELATION_H); 143 else if (policy->cur == policy->max) 144 return; 145 146 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ? 147 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H); 148 } 149 150 /* 151 * Every sampling_rate, we check, if current idle time is less than 20% 152 * (default), then we try to increase frequency. Else, we adjust the frequency 153 * proportional to load. 154 */ 155 static void od_check_cpu(int cpu, unsigned int load) 156 { 157 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); 158 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy; 159 struct dbs_data *dbs_data = policy->governor_data; 160 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 161 162 dbs_info->freq_lo = 0; 163 164 /* Check for frequency increase */ 165 if (load > od_tuners->up_threshold) { 166 /* If switching to max speed, apply sampling_down_factor */ 167 if (policy->cur < policy->max) 168 dbs_info->rate_mult = 169 od_tuners->sampling_down_factor; 170 dbs_freq_increase(policy, policy->max); 171 return; 172 } else { 173 /* Calculate the next frequency proportional to load */ 174 unsigned int freq_next; 175 freq_next = load * policy->cpuinfo.max_freq / 100; 176 177 /* No longer fully busy, reset rate_mult */ 178 dbs_info->rate_mult = 1; 179 180 if (freq_next < policy->min) 181 freq_next = policy->min; 182 183 if (!od_tuners->powersave_bias) { 184 __cpufreq_driver_target(policy, freq_next, 185 CPUFREQ_RELATION_L); 186 return; 187 } 188 189 freq_next = od_ops.powersave_bias_target(policy, freq_next, 190 CPUFREQ_RELATION_L); 191 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L); 192 } 193 } 194 195 static void od_dbs_timer(struct work_struct *work) 196 { 197 struct od_cpu_dbs_info_s *dbs_info = 198 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work); 199 unsigned int cpu = dbs_info->cdbs.cur_policy->cpu; 200 struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info, 201 cpu); 202 struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data; 203 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 204 int delay = 0, sample_type = core_dbs_info->sample_type; 205 bool modify_all = true; 206 207 mutex_lock(&core_dbs_info->cdbs.timer_mutex); 208 if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) { 209 modify_all = false; 210 goto max_delay; 211 } 212 213 /* Common NORMAL_SAMPLE setup */ 214 core_dbs_info->sample_type = OD_NORMAL_SAMPLE; 215 if (sample_type == OD_SUB_SAMPLE) { 216 delay = core_dbs_info->freq_lo_jiffies; 217 __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy, 218 core_dbs_info->freq_lo, CPUFREQ_RELATION_H); 219 } else { 220 dbs_check_cpu(dbs_data, cpu); 221 if (core_dbs_info->freq_lo) { 222 /* Setup timer for SUB_SAMPLE */ 223 core_dbs_info->sample_type = OD_SUB_SAMPLE; 224 delay = core_dbs_info->freq_hi_jiffies; 225 } 226 } 227 228 max_delay: 229 if (!delay) 230 delay = delay_for_sampling_rate(od_tuners->sampling_rate 231 * core_dbs_info->rate_mult); 232 233 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all); 234 mutex_unlock(&core_dbs_info->cdbs.timer_mutex); 235 } 236 237 /************************** sysfs interface ************************/ 238 static struct common_dbs_data od_dbs_cdata; 239 240 /** 241 * update_sampling_rate - update sampling rate effective immediately if needed. 242 * @new_rate: new sampling rate 243 * 244 * If new rate is smaller than the old, simply updating 245 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the 246 * original sampling_rate was 1 second and the requested new sampling rate is 10 247 * ms because the user needs immediate reaction from ondemand governor, but not 248 * sure if higher frequency will be required or not, then, the governor may 249 * change the sampling rate too late; up to 1 second later. Thus, if we are 250 * reducing the sampling rate, we need to make the new value effective 251 * immediately. 252 */ 253 static void update_sampling_rate(struct dbs_data *dbs_data, 254 unsigned int new_rate) 255 { 256 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 257 int cpu; 258 259 od_tuners->sampling_rate = new_rate = max(new_rate, 260 dbs_data->min_sampling_rate); 261 262 for_each_online_cpu(cpu) { 263 struct cpufreq_policy *policy; 264 struct od_cpu_dbs_info_s *dbs_info; 265 unsigned long next_sampling, appointed_at; 266 267 policy = cpufreq_cpu_get(cpu); 268 if (!policy) 269 continue; 270 if (policy->governor != &cpufreq_gov_ondemand) { 271 cpufreq_cpu_put(policy); 272 continue; 273 } 274 dbs_info = &per_cpu(od_cpu_dbs_info, cpu); 275 cpufreq_cpu_put(policy); 276 277 mutex_lock(&dbs_info->cdbs.timer_mutex); 278 279 if (!delayed_work_pending(&dbs_info->cdbs.work)) { 280 mutex_unlock(&dbs_info->cdbs.timer_mutex); 281 continue; 282 } 283 284 next_sampling = jiffies + usecs_to_jiffies(new_rate); 285 appointed_at = dbs_info->cdbs.work.timer.expires; 286 287 if (time_before(next_sampling, appointed_at)) { 288 289 mutex_unlock(&dbs_info->cdbs.timer_mutex); 290 cancel_delayed_work_sync(&dbs_info->cdbs.work); 291 mutex_lock(&dbs_info->cdbs.timer_mutex); 292 293 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, 294 usecs_to_jiffies(new_rate), true); 295 296 } 297 mutex_unlock(&dbs_info->cdbs.timer_mutex); 298 } 299 } 300 301 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf, 302 size_t count) 303 { 304 unsigned int input; 305 int ret; 306 ret = sscanf(buf, "%u", &input); 307 if (ret != 1) 308 return -EINVAL; 309 310 update_sampling_rate(dbs_data, input); 311 return count; 312 } 313 314 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf, 315 size_t count) 316 { 317 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 318 unsigned int input; 319 int ret; 320 unsigned int j; 321 322 ret = sscanf(buf, "%u", &input); 323 if (ret != 1) 324 return -EINVAL; 325 od_tuners->io_is_busy = !!input; 326 327 /* we need to re-evaluate prev_cpu_idle */ 328 for_each_online_cpu(j) { 329 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, 330 j); 331 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j, 332 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy); 333 } 334 return count; 335 } 336 337 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf, 338 size_t count) 339 { 340 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 341 unsigned int input; 342 int ret; 343 ret = sscanf(buf, "%u", &input); 344 345 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 346 input < MIN_FREQUENCY_UP_THRESHOLD) { 347 return -EINVAL; 348 } 349 350 od_tuners->up_threshold = input; 351 return count; 352 } 353 354 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data, 355 const char *buf, size_t count) 356 { 357 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 358 unsigned int input, j; 359 int ret; 360 ret = sscanf(buf, "%u", &input); 361 362 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) 363 return -EINVAL; 364 od_tuners->sampling_down_factor = input; 365 366 /* Reset down sampling multiplier in case it was active */ 367 for_each_online_cpu(j) { 368 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, 369 j); 370 dbs_info->rate_mult = 1; 371 } 372 return count; 373 } 374 375 static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf, 376 size_t count) 377 { 378 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 379 unsigned int input; 380 int ret; 381 382 unsigned int j; 383 384 ret = sscanf(buf, "%u", &input); 385 if (ret != 1) 386 return -EINVAL; 387 388 if (input > 1) 389 input = 1; 390 391 if (input == od_tuners->ignore_nice) { /* nothing to do */ 392 return count; 393 } 394 od_tuners->ignore_nice = input; 395 396 /* we need to re-evaluate prev_cpu_idle */ 397 for_each_online_cpu(j) { 398 struct od_cpu_dbs_info_s *dbs_info; 399 dbs_info = &per_cpu(od_cpu_dbs_info, j); 400 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j, 401 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy); 402 if (od_tuners->ignore_nice) 403 dbs_info->cdbs.prev_cpu_nice = 404 kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 405 406 } 407 return count; 408 } 409 410 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf, 411 size_t count) 412 { 413 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 414 unsigned int input; 415 int ret; 416 ret = sscanf(buf, "%u", &input); 417 418 if (ret != 1) 419 return -EINVAL; 420 421 if (input > 1000) 422 input = 1000; 423 424 od_tuners->powersave_bias = input; 425 ondemand_powersave_bias_init(); 426 return count; 427 } 428 429 show_store_one(od, sampling_rate); 430 show_store_one(od, io_is_busy); 431 show_store_one(od, up_threshold); 432 show_store_one(od, sampling_down_factor); 433 show_store_one(od, ignore_nice); 434 show_store_one(od, powersave_bias); 435 declare_show_sampling_rate_min(od); 436 437 gov_sys_pol_attr_rw(sampling_rate); 438 gov_sys_pol_attr_rw(io_is_busy); 439 gov_sys_pol_attr_rw(up_threshold); 440 gov_sys_pol_attr_rw(sampling_down_factor); 441 gov_sys_pol_attr_rw(ignore_nice); 442 gov_sys_pol_attr_rw(powersave_bias); 443 gov_sys_pol_attr_ro(sampling_rate_min); 444 445 static struct attribute *dbs_attributes_gov_sys[] = { 446 &sampling_rate_min_gov_sys.attr, 447 &sampling_rate_gov_sys.attr, 448 &up_threshold_gov_sys.attr, 449 &sampling_down_factor_gov_sys.attr, 450 &ignore_nice_gov_sys.attr, 451 &powersave_bias_gov_sys.attr, 452 &io_is_busy_gov_sys.attr, 453 NULL 454 }; 455 456 static struct attribute_group od_attr_group_gov_sys = { 457 .attrs = dbs_attributes_gov_sys, 458 .name = "ondemand", 459 }; 460 461 static struct attribute *dbs_attributes_gov_pol[] = { 462 &sampling_rate_min_gov_pol.attr, 463 &sampling_rate_gov_pol.attr, 464 &up_threshold_gov_pol.attr, 465 &sampling_down_factor_gov_pol.attr, 466 &ignore_nice_gov_pol.attr, 467 &powersave_bias_gov_pol.attr, 468 &io_is_busy_gov_pol.attr, 469 NULL 470 }; 471 472 static struct attribute_group od_attr_group_gov_pol = { 473 .attrs = dbs_attributes_gov_pol, 474 .name = "ondemand", 475 }; 476 477 /************************** sysfs end ************************/ 478 479 static int od_init(struct dbs_data *dbs_data) 480 { 481 struct od_dbs_tuners *tuners; 482 u64 idle_time; 483 int cpu; 484 485 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL); 486 if (!tuners) { 487 pr_err("%s: kzalloc failed\n", __func__); 488 return -ENOMEM; 489 } 490 491 cpu = get_cpu(); 492 idle_time = get_cpu_idle_time_us(cpu, NULL); 493 put_cpu(); 494 if (idle_time != -1ULL) { 495 /* Idle micro accounting is supported. Use finer thresholds */ 496 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD; 497 /* 498 * In nohz/micro accounting case we set the minimum frequency 499 * not depending on HZ, but fixed (very low). The deferred 500 * timer might skip some samples if idle/sleeping as needed. 501 */ 502 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE; 503 } else { 504 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD; 505 506 /* For correct statistics, we need 10 ticks for each measure */ 507 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO * 508 jiffies_to_usecs(10); 509 } 510 511 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR; 512 tuners->ignore_nice = 0; 513 tuners->powersave_bias = default_powersave_bias; 514 tuners->io_is_busy = should_io_be_busy(); 515 516 dbs_data->tuners = tuners; 517 mutex_init(&dbs_data->mutex); 518 return 0; 519 } 520 521 static void od_exit(struct dbs_data *dbs_data) 522 { 523 kfree(dbs_data->tuners); 524 } 525 526 define_get_cpu_dbs_routines(od_cpu_dbs_info); 527 528 static struct od_ops od_ops = { 529 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu, 530 .powersave_bias_target = generic_powersave_bias_target, 531 .freq_increase = dbs_freq_increase, 532 }; 533 534 static struct common_dbs_data od_dbs_cdata = { 535 .governor = GOV_ONDEMAND, 536 .attr_group_gov_sys = &od_attr_group_gov_sys, 537 .attr_group_gov_pol = &od_attr_group_gov_pol, 538 .get_cpu_cdbs = get_cpu_cdbs, 539 .get_cpu_dbs_info_s = get_cpu_dbs_info_s, 540 .gov_dbs_timer = od_dbs_timer, 541 .gov_check_cpu = od_check_cpu, 542 .gov_ops = &od_ops, 543 .init = od_init, 544 .exit = od_exit, 545 }; 546 547 static void od_set_powersave_bias(unsigned int powersave_bias) 548 { 549 struct cpufreq_policy *policy; 550 struct dbs_data *dbs_data; 551 struct od_dbs_tuners *od_tuners; 552 unsigned int cpu; 553 cpumask_t done; 554 555 default_powersave_bias = powersave_bias; 556 cpumask_clear(&done); 557 558 get_online_cpus(); 559 for_each_online_cpu(cpu) { 560 if (cpumask_test_cpu(cpu, &done)) 561 continue; 562 563 policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy; 564 if (!policy) 565 continue; 566 567 cpumask_or(&done, &done, policy->cpus); 568 569 if (policy->governor != &cpufreq_gov_ondemand) 570 continue; 571 572 dbs_data = policy->governor_data; 573 od_tuners = dbs_data->tuners; 574 od_tuners->powersave_bias = default_powersave_bias; 575 } 576 put_online_cpus(); 577 } 578 579 void od_register_powersave_bias_handler(unsigned int (*f) 580 (struct cpufreq_policy *, unsigned int, unsigned int), 581 unsigned int powersave_bias) 582 { 583 od_ops.powersave_bias_target = f; 584 od_set_powersave_bias(powersave_bias); 585 } 586 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler); 587 588 void od_unregister_powersave_bias_handler(void) 589 { 590 od_ops.powersave_bias_target = generic_powersave_bias_target; 591 od_set_powersave_bias(0); 592 } 593 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler); 594 595 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy, 596 unsigned int event) 597 { 598 return cpufreq_governor_dbs(policy, &od_dbs_cdata, event); 599 } 600 601 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 602 static 603 #endif 604 struct cpufreq_governor cpufreq_gov_ondemand = { 605 .name = "ondemand", 606 .governor = od_cpufreq_governor_dbs, 607 .max_transition_latency = TRANSITION_LATENCY_LIMIT, 608 .owner = THIS_MODULE, 609 }; 610 611 static int __init cpufreq_gov_dbs_init(void) 612 { 613 return cpufreq_register_governor(&cpufreq_gov_ondemand); 614 } 615 616 static void __exit cpufreq_gov_dbs_exit(void) 617 { 618 cpufreq_unregister_governor(&cpufreq_gov_ondemand); 619 } 620 621 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); 622 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>"); 623 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " 624 "Low Latency Frequency Transition capable processors"); 625 MODULE_LICENSE("GPL"); 626 627 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 628 fs_initcall(cpufreq_gov_dbs_init); 629 #else 630 module_init(cpufreq_gov_dbs_init); 631 #endif 632 module_exit(cpufreq_gov_dbs_exit); 633