xref: /openbmc/linux/drivers/cpufreq/cpufreq_ondemand.c (revision 3a3e9e06d0c11b8efa95933a88c9e67209fa4330)
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20 
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
23 #define DEF_SAMPLING_DOWN_FACTOR		(1)
24 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
28 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
29 
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31 
32 static struct od_ops od_ops;
33 
34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
35 static struct cpufreq_governor cpufreq_gov_ondemand;
36 #endif
37 
38 static unsigned int default_powersave_bias;
39 
40 static void ondemand_powersave_bias_init_cpu(int cpu)
41 {
42 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
43 
44 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
45 	dbs_info->freq_lo = 0;
46 }
47 
48 /*
49  * Not all CPUs want IO time to be accounted as busy; this depends on how
50  * efficient idling at a higher frequency/voltage is.
51  * Pavel Machek says this is not so for various generations of AMD and old
52  * Intel systems.
53  * Mike Chan (android.com) claims this is also not true for ARM.
54  * Because of this, whitelist specific known (series) of CPUs by default, and
55  * leave all others up to the user.
56  */
57 static int should_io_be_busy(void)
58 {
59 #if defined(CONFIG_X86)
60 	/*
61 	 * For Intel, Core 2 (model 15) and later have an efficient idle.
62 	 */
63 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
64 			boot_cpu_data.x86 == 6 &&
65 			boot_cpu_data.x86_model >= 15)
66 		return 1;
67 #endif
68 	return 0;
69 }
70 
71 /*
72  * Find right freq to be set now with powersave_bias on.
73  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
74  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
75  */
76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
77 		unsigned int freq_next, unsigned int relation)
78 {
79 	unsigned int freq_req, freq_reduc, freq_avg;
80 	unsigned int freq_hi, freq_lo;
81 	unsigned int index = 0;
82 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
83 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
84 						   policy->cpu);
85 	struct dbs_data *dbs_data = policy->governor_data;
86 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
87 
88 	if (!dbs_info->freq_table) {
89 		dbs_info->freq_lo = 0;
90 		dbs_info->freq_lo_jiffies = 0;
91 		return freq_next;
92 	}
93 
94 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
95 			relation, &index);
96 	freq_req = dbs_info->freq_table[index].frequency;
97 	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
98 	freq_avg = freq_req - freq_reduc;
99 
100 	/* Find freq bounds for freq_avg in freq_table */
101 	index = 0;
102 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 			CPUFREQ_RELATION_H, &index);
104 	freq_lo = dbs_info->freq_table[index].frequency;
105 	index = 0;
106 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
107 			CPUFREQ_RELATION_L, &index);
108 	freq_hi = dbs_info->freq_table[index].frequency;
109 
110 	/* Find out how long we have to be in hi and lo freqs */
111 	if (freq_hi == freq_lo) {
112 		dbs_info->freq_lo = 0;
113 		dbs_info->freq_lo_jiffies = 0;
114 		return freq_lo;
115 	}
116 	jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
117 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
118 	jiffies_hi += ((freq_hi - freq_lo) / 2);
119 	jiffies_hi /= (freq_hi - freq_lo);
120 	jiffies_lo = jiffies_total - jiffies_hi;
121 	dbs_info->freq_lo = freq_lo;
122 	dbs_info->freq_lo_jiffies = jiffies_lo;
123 	dbs_info->freq_hi_jiffies = jiffies_hi;
124 	return freq_hi;
125 }
126 
127 static void ondemand_powersave_bias_init(void)
128 {
129 	int i;
130 	for_each_online_cpu(i) {
131 		ondemand_powersave_bias_init_cpu(i);
132 	}
133 }
134 
135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
136 {
137 	struct dbs_data *dbs_data = policy->governor_data;
138 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
139 
140 	if (od_tuners->powersave_bias)
141 		freq = od_ops.powersave_bias_target(policy, freq,
142 				CPUFREQ_RELATION_H);
143 	else if (policy->cur == policy->max)
144 		return;
145 
146 	__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
147 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
148 }
149 
150 /*
151  * Every sampling_rate, we check, if current idle time is less than 20%
152  * (default), then we try to increase frequency. Else, we adjust the frequency
153  * proportional to load.
154  */
155 static void od_check_cpu(int cpu, unsigned int load)
156 {
157 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
158 	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
159 	struct dbs_data *dbs_data = policy->governor_data;
160 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
161 
162 	dbs_info->freq_lo = 0;
163 
164 	/* Check for frequency increase */
165 	if (load > od_tuners->up_threshold) {
166 		/* If switching to max speed, apply sampling_down_factor */
167 		if (policy->cur < policy->max)
168 			dbs_info->rate_mult =
169 				od_tuners->sampling_down_factor;
170 		dbs_freq_increase(policy, policy->max);
171 		return;
172 	} else {
173 		/* Calculate the next frequency proportional to load */
174 		unsigned int freq_next;
175 		freq_next = load * policy->cpuinfo.max_freq / 100;
176 
177 		/* No longer fully busy, reset rate_mult */
178 		dbs_info->rate_mult = 1;
179 
180 		if (freq_next < policy->min)
181 			freq_next = policy->min;
182 
183 		if (!od_tuners->powersave_bias) {
184 			__cpufreq_driver_target(policy, freq_next,
185 					CPUFREQ_RELATION_L);
186 			return;
187 		}
188 
189 		freq_next = od_ops.powersave_bias_target(policy, freq_next,
190 					CPUFREQ_RELATION_L);
191 		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
192 	}
193 }
194 
195 static void od_dbs_timer(struct work_struct *work)
196 {
197 	struct od_cpu_dbs_info_s *dbs_info =
198 		container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
199 	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
200 	struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
201 			cpu);
202 	struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
203 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
204 	int delay = 0, sample_type = core_dbs_info->sample_type;
205 	bool modify_all = true;
206 
207 	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
208 	if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
209 		modify_all = false;
210 		goto max_delay;
211 	}
212 
213 	/* Common NORMAL_SAMPLE setup */
214 	core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
215 	if (sample_type == OD_SUB_SAMPLE) {
216 		delay = core_dbs_info->freq_lo_jiffies;
217 		__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
218 				core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
219 	} else {
220 		dbs_check_cpu(dbs_data, cpu);
221 		if (core_dbs_info->freq_lo) {
222 			/* Setup timer for SUB_SAMPLE */
223 			core_dbs_info->sample_type = OD_SUB_SAMPLE;
224 			delay = core_dbs_info->freq_hi_jiffies;
225 		}
226 	}
227 
228 max_delay:
229 	if (!delay)
230 		delay = delay_for_sampling_rate(od_tuners->sampling_rate
231 				* core_dbs_info->rate_mult);
232 
233 	gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
234 	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
235 }
236 
237 /************************** sysfs interface ************************/
238 static struct common_dbs_data od_dbs_cdata;
239 
240 /**
241  * update_sampling_rate - update sampling rate effective immediately if needed.
242  * @new_rate: new sampling rate
243  *
244  * If new rate is smaller than the old, simply updating
245  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
246  * original sampling_rate was 1 second and the requested new sampling rate is 10
247  * ms because the user needs immediate reaction from ondemand governor, but not
248  * sure if higher frequency will be required or not, then, the governor may
249  * change the sampling rate too late; up to 1 second later. Thus, if we are
250  * reducing the sampling rate, we need to make the new value effective
251  * immediately.
252  */
253 static void update_sampling_rate(struct dbs_data *dbs_data,
254 		unsigned int new_rate)
255 {
256 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
257 	int cpu;
258 
259 	od_tuners->sampling_rate = new_rate = max(new_rate,
260 			dbs_data->min_sampling_rate);
261 
262 	for_each_online_cpu(cpu) {
263 		struct cpufreq_policy *policy;
264 		struct od_cpu_dbs_info_s *dbs_info;
265 		unsigned long next_sampling, appointed_at;
266 
267 		policy = cpufreq_cpu_get(cpu);
268 		if (!policy)
269 			continue;
270 		if (policy->governor != &cpufreq_gov_ondemand) {
271 			cpufreq_cpu_put(policy);
272 			continue;
273 		}
274 		dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
275 		cpufreq_cpu_put(policy);
276 
277 		mutex_lock(&dbs_info->cdbs.timer_mutex);
278 
279 		if (!delayed_work_pending(&dbs_info->cdbs.work)) {
280 			mutex_unlock(&dbs_info->cdbs.timer_mutex);
281 			continue;
282 		}
283 
284 		next_sampling = jiffies + usecs_to_jiffies(new_rate);
285 		appointed_at = dbs_info->cdbs.work.timer.expires;
286 
287 		if (time_before(next_sampling, appointed_at)) {
288 
289 			mutex_unlock(&dbs_info->cdbs.timer_mutex);
290 			cancel_delayed_work_sync(&dbs_info->cdbs.work);
291 			mutex_lock(&dbs_info->cdbs.timer_mutex);
292 
293 			gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
294 					usecs_to_jiffies(new_rate), true);
295 
296 		}
297 		mutex_unlock(&dbs_info->cdbs.timer_mutex);
298 	}
299 }
300 
301 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
302 		size_t count)
303 {
304 	unsigned int input;
305 	int ret;
306 	ret = sscanf(buf, "%u", &input);
307 	if (ret != 1)
308 		return -EINVAL;
309 
310 	update_sampling_rate(dbs_data, input);
311 	return count;
312 }
313 
314 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
315 		size_t count)
316 {
317 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
318 	unsigned int input;
319 	int ret;
320 	unsigned int j;
321 
322 	ret = sscanf(buf, "%u", &input);
323 	if (ret != 1)
324 		return -EINVAL;
325 	od_tuners->io_is_busy = !!input;
326 
327 	/* we need to re-evaluate prev_cpu_idle */
328 	for_each_online_cpu(j) {
329 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
330 									j);
331 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
332 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
333 	}
334 	return count;
335 }
336 
337 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
338 		size_t count)
339 {
340 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
341 	unsigned int input;
342 	int ret;
343 	ret = sscanf(buf, "%u", &input);
344 
345 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
346 			input < MIN_FREQUENCY_UP_THRESHOLD) {
347 		return -EINVAL;
348 	}
349 
350 	od_tuners->up_threshold = input;
351 	return count;
352 }
353 
354 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
355 		const char *buf, size_t count)
356 {
357 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
358 	unsigned int input, j;
359 	int ret;
360 	ret = sscanf(buf, "%u", &input);
361 
362 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
363 		return -EINVAL;
364 	od_tuners->sampling_down_factor = input;
365 
366 	/* Reset down sampling multiplier in case it was active */
367 	for_each_online_cpu(j) {
368 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
369 				j);
370 		dbs_info->rate_mult = 1;
371 	}
372 	return count;
373 }
374 
375 static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf,
376 		size_t count)
377 {
378 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
379 	unsigned int input;
380 	int ret;
381 
382 	unsigned int j;
383 
384 	ret = sscanf(buf, "%u", &input);
385 	if (ret != 1)
386 		return -EINVAL;
387 
388 	if (input > 1)
389 		input = 1;
390 
391 	if (input == od_tuners->ignore_nice) { /* nothing to do */
392 		return count;
393 	}
394 	od_tuners->ignore_nice = input;
395 
396 	/* we need to re-evaluate prev_cpu_idle */
397 	for_each_online_cpu(j) {
398 		struct od_cpu_dbs_info_s *dbs_info;
399 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
400 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
401 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
402 		if (od_tuners->ignore_nice)
403 			dbs_info->cdbs.prev_cpu_nice =
404 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
405 
406 	}
407 	return count;
408 }
409 
410 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
411 		size_t count)
412 {
413 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
414 	unsigned int input;
415 	int ret;
416 	ret = sscanf(buf, "%u", &input);
417 
418 	if (ret != 1)
419 		return -EINVAL;
420 
421 	if (input > 1000)
422 		input = 1000;
423 
424 	od_tuners->powersave_bias = input;
425 	ondemand_powersave_bias_init();
426 	return count;
427 }
428 
429 show_store_one(od, sampling_rate);
430 show_store_one(od, io_is_busy);
431 show_store_one(od, up_threshold);
432 show_store_one(od, sampling_down_factor);
433 show_store_one(od, ignore_nice);
434 show_store_one(od, powersave_bias);
435 declare_show_sampling_rate_min(od);
436 
437 gov_sys_pol_attr_rw(sampling_rate);
438 gov_sys_pol_attr_rw(io_is_busy);
439 gov_sys_pol_attr_rw(up_threshold);
440 gov_sys_pol_attr_rw(sampling_down_factor);
441 gov_sys_pol_attr_rw(ignore_nice);
442 gov_sys_pol_attr_rw(powersave_bias);
443 gov_sys_pol_attr_ro(sampling_rate_min);
444 
445 static struct attribute *dbs_attributes_gov_sys[] = {
446 	&sampling_rate_min_gov_sys.attr,
447 	&sampling_rate_gov_sys.attr,
448 	&up_threshold_gov_sys.attr,
449 	&sampling_down_factor_gov_sys.attr,
450 	&ignore_nice_gov_sys.attr,
451 	&powersave_bias_gov_sys.attr,
452 	&io_is_busy_gov_sys.attr,
453 	NULL
454 };
455 
456 static struct attribute_group od_attr_group_gov_sys = {
457 	.attrs = dbs_attributes_gov_sys,
458 	.name = "ondemand",
459 };
460 
461 static struct attribute *dbs_attributes_gov_pol[] = {
462 	&sampling_rate_min_gov_pol.attr,
463 	&sampling_rate_gov_pol.attr,
464 	&up_threshold_gov_pol.attr,
465 	&sampling_down_factor_gov_pol.attr,
466 	&ignore_nice_gov_pol.attr,
467 	&powersave_bias_gov_pol.attr,
468 	&io_is_busy_gov_pol.attr,
469 	NULL
470 };
471 
472 static struct attribute_group od_attr_group_gov_pol = {
473 	.attrs = dbs_attributes_gov_pol,
474 	.name = "ondemand",
475 };
476 
477 /************************** sysfs end ************************/
478 
479 static int od_init(struct dbs_data *dbs_data)
480 {
481 	struct od_dbs_tuners *tuners;
482 	u64 idle_time;
483 	int cpu;
484 
485 	tuners = kzalloc(sizeof(struct od_dbs_tuners), GFP_KERNEL);
486 	if (!tuners) {
487 		pr_err("%s: kzalloc failed\n", __func__);
488 		return -ENOMEM;
489 	}
490 
491 	cpu = get_cpu();
492 	idle_time = get_cpu_idle_time_us(cpu, NULL);
493 	put_cpu();
494 	if (idle_time != -1ULL) {
495 		/* Idle micro accounting is supported. Use finer thresholds */
496 		tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
497 		/*
498 		 * In nohz/micro accounting case we set the minimum frequency
499 		 * not depending on HZ, but fixed (very low). The deferred
500 		 * timer might skip some samples if idle/sleeping as needed.
501 		*/
502 		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
503 	} else {
504 		tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
505 
506 		/* For correct statistics, we need 10 ticks for each measure */
507 		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
508 			jiffies_to_usecs(10);
509 	}
510 
511 	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
512 	tuners->ignore_nice = 0;
513 	tuners->powersave_bias = default_powersave_bias;
514 	tuners->io_is_busy = should_io_be_busy();
515 
516 	dbs_data->tuners = tuners;
517 	mutex_init(&dbs_data->mutex);
518 	return 0;
519 }
520 
521 static void od_exit(struct dbs_data *dbs_data)
522 {
523 	kfree(dbs_data->tuners);
524 }
525 
526 define_get_cpu_dbs_routines(od_cpu_dbs_info);
527 
528 static struct od_ops od_ops = {
529 	.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
530 	.powersave_bias_target = generic_powersave_bias_target,
531 	.freq_increase = dbs_freq_increase,
532 };
533 
534 static struct common_dbs_data od_dbs_cdata = {
535 	.governor = GOV_ONDEMAND,
536 	.attr_group_gov_sys = &od_attr_group_gov_sys,
537 	.attr_group_gov_pol = &od_attr_group_gov_pol,
538 	.get_cpu_cdbs = get_cpu_cdbs,
539 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
540 	.gov_dbs_timer = od_dbs_timer,
541 	.gov_check_cpu = od_check_cpu,
542 	.gov_ops = &od_ops,
543 	.init = od_init,
544 	.exit = od_exit,
545 };
546 
547 static void od_set_powersave_bias(unsigned int powersave_bias)
548 {
549 	struct cpufreq_policy *policy;
550 	struct dbs_data *dbs_data;
551 	struct od_dbs_tuners *od_tuners;
552 	unsigned int cpu;
553 	cpumask_t done;
554 
555 	default_powersave_bias = powersave_bias;
556 	cpumask_clear(&done);
557 
558 	get_online_cpus();
559 	for_each_online_cpu(cpu) {
560 		if (cpumask_test_cpu(cpu, &done))
561 			continue;
562 
563 		policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
564 		if (!policy)
565 			continue;
566 
567 		cpumask_or(&done, &done, policy->cpus);
568 
569 		if (policy->governor != &cpufreq_gov_ondemand)
570 			continue;
571 
572 		dbs_data = policy->governor_data;
573 		od_tuners = dbs_data->tuners;
574 		od_tuners->powersave_bias = default_powersave_bias;
575 	}
576 	put_online_cpus();
577 }
578 
579 void od_register_powersave_bias_handler(unsigned int (*f)
580 		(struct cpufreq_policy *, unsigned int, unsigned int),
581 		unsigned int powersave_bias)
582 {
583 	od_ops.powersave_bias_target = f;
584 	od_set_powersave_bias(powersave_bias);
585 }
586 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
587 
588 void od_unregister_powersave_bias_handler(void)
589 {
590 	od_ops.powersave_bias_target = generic_powersave_bias_target;
591 	od_set_powersave_bias(0);
592 }
593 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
594 
595 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
596 		unsigned int event)
597 {
598 	return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
599 }
600 
601 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
602 static
603 #endif
604 struct cpufreq_governor cpufreq_gov_ondemand = {
605 	.name			= "ondemand",
606 	.governor		= od_cpufreq_governor_dbs,
607 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
608 	.owner			= THIS_MODULE,
609 };
610 
611 static int __init cpufreq_gov_dbs_init(void)
612 {
613 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
614 }
615 
616 static void __exit cpufreq_gov_dbs_exit(void)
617 {
618 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
619 }
620 
621 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
622 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
623 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
624 	"Low Latency Frequency Transition capable processors");
625 MODULE_LICENSE("GPL");
626 
627 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
628 fs_initcall(cpufreq_gov_dbs_init);
629 #else
630 module_init(cpufreq_gov_dbs_init);
631 #endif
632 module_exit(cpufreq_gov_dbs_exit);
633