xref: /openbmc/linux/drivers/cpufreq/cpufreq_conservative.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/cpu.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
32 /*
33  * dbs is used in this file as a shortform for demandbased switching
34  * It helps to keep variable names smaller, simpler
35  */
36 
37 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
39 
40 /*
41  * The polling frequency of this governor depends on the capability of
42  * the processor. Default polling frequency is 1000 times the transition
43  * latency of the processor. The governor will work on any processor with
44  * transition latency <= 10mS, using appropriate sampling
45  * rate.
46  * For CPUs with transition latency > 10mS (mostly drivers
47  * with CPUFREQ_ETERNAL), this governor will not work.
48  * All times here are in uS.
49  */
50 static unsigned int 				def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO			(2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE			\
54 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE			\
56 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
58 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
59 #define DEF_SAMPLING_DOWN_FACTOR		(1)
60 #define MAX_SAMPLING_DOWN_FACTOR		(10)
61 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
62 
63 static void do_dbs_timer(struct work_struct *work);
64 
65 struct cpu_dbs_info_s {
66 	struct cpufreq_policy 	*cur_policy;
67 	unsigned int 		prev_cpu_idle_up;
68 	unsigned int 		prev_cpu_idle_down;
69 	unsigned int 		enable;
70 	unsigned int		down_skip;
71 	unsigned int		requested_freq;
72 };
73 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
74 
75 static unsigned int dbs_enable;	/* number of CPUs using this policy */
76 
77 /*
78  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
79  * lock and dbs_mutex. cpu_hotplug lock should always be held before
80  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
81  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
82  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
83  * is recursive for the same process. -Venki
84  */
85 static DEFINE_MUTEX 	(dbs_mutex);
86 static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
87 
88 struct dbs_tuners {
89 	unsigned int 		sampling_rate;
90 	unsigned int		sampling_down_factor;
91 	unsigned int		up_threshold;
92 	unsigned int		down_threshold;
93 	unsigned int		ignore_nice;
94 	unsigned int		freq_step;
95 };
96 
97 static struct dbs_tuners dbs_tuners_ins = {
98 	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
99 	.down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD,
100 	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
101 	.ignore_nice		= 0,
102 	.freq_step		= 5,
103 };
104 
105 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
106 {
107 	unsigned int add_nice = 0, ret;
108 
109 	if (dbs_tuners_ins.ignore_nice)
110 		add_nice = kstat_cpu(cpu).cpustat.nice;
111 
112 	ret = 	kstat_cpu(cpu).cpustat.idle +
113 		kstat_cpu(cpu).cpustat.iowait +
114 		add_nice;
115 
116 	return ret;
117 }
118 
119 /************************** sysfs interface ************************/
120 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
121 {
122 	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
123 }
124 
125 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
126 {
127 	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
128 }
129 
130 #define define_one_ro(_name) 					\
131 static struct freq_attr _name =  				\
132 __ATTR(_name, 0444, show_##_name, NULL)
133 
134 define_one_ro(sampling_rate_max);
135 define_one_ro(sampling_rate_min);
136 
137 /* cpufreq_conservative Governor Tunables */
138 #define show_one(file_name, object)					\
139 static ssize_t show_##file_name						\
140 (struct cpufreq_policy *unused, char *buf)				\
141 {									\
142 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
143 }
144 show_one(sampling_rate, sampling_rate);
145 show_one(sampling_down_factor, sampling_down_factor);
146 show_one(up_threshold, up_threshold);
147 show_one(down_threshold, down_threshold);
148 show_one(ignore_nice_load, ignore_nice);
149 show_one(freq_step, freq_step);
150 
151 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
152 		const char *buf, size_t count)
153 {
154 	unsigned int input;
155 	int ret;
156 	ret = sscanf (buf, "%u", &input);
157 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
158 		return -EINVAL;
159 
160 	mutex_lock(&dbs_mutex);
161 	dbs_tuners_ins.sampling_down_factor = input;
162 	mutex_unlock(&dbs_mutex);
163 
164 	return count;
165 }
166 
167 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
168 		const char *buf, size_t count)
169 {
170 	unsigned int input;
171 	int ret;
172 	ret = sscanf (buf, "%u", &input);
173 
174 	mutex_lock(&dbs_mutex);
175 	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
176 		mutex_unlock(&dbs_mutex);
177 		return -EINVAL;
178 	}
179 
180 	dbs_tuners_ins.sampling_rate = input;
181 	mutex_unlock(&dbs_mutex);
182 
183 	return count;
184 }
185 
186 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
187 		const char *buf, size_t count)
188 {
189 	unsigned int input;
190 	int ret;
191 	ret = sscanf (buf, "%u", &input);
192 
193 	mutex_lock(&dbs_mutex);
194 	if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
195 		mutex_unlock(&dbs_mutex);
196 		return -EINVAL;
197 	}
198 
199 	dbs_tuners_ins.up_threshold = input;
200 	mutex_unlock(&dbs_mutex);
201 
202 	return count;
203 }
204 
205 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
206 		const char *buf, size_t count)
207 {
208 	unsigned int input;
209 	int ret;
210 	ret = sscanf (buf, "%u", &input);
211 
212 	mutex_lock(&dbs_mutex);
213 	if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
214 		mutex_unlock(&dbs_mutex);
215 		return -EINVAL;
216 	}
217 
218 	dbs_tuners_ins.down_threshold = input;
219 	mutex_unlock(&dbs_mutex);
220 
221 	return count;
222 }
223 
224 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
225 		const char *buf, size_t count)
226 {
227 	unsigned int input;
228 	int ret;
229 
230 	unsigned int j;
231 
232 	ret = sscanf (buf, "%u", &input);
233 	if ( ret != 1 )
234 		return -EINVAL;
235 
236 	if ( input > 1 )
237 		input = 1;
238 
239 	mutex_lock(&dbs_mutex);
240 	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
241 		mutex_unlock(&dbs_mutex);
242 		return count;
243 	}
244 	dbs_tuners_ins.ignore_nice = input;
245 
246 	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
247 	for_each_online_cpu(j) {
248 		struct cpu_dbs_info_s *j_dbs_info;
249 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
250 		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
251 		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
252 	}
253 	mutex_unlock(&dbs_mutex);
254 
255 	return count;
256 }
257 
258 static ssize_t store_freq_step(struct cpufreq_policy *policy,
259 		const char *buf, size_t count)
260 {
261 	unsigned int input;
262 	int ret;
263 
264 	ret = sscanf (buf, "%u", &input);
265 
266 	if ( ret != 1 )
267 		return -EINVAL;
268 
269 	if ( input > 100 )
270 		input = 100;
271 
272 	/* no need to test here if freq_step is zero as the user might actually
273 	 * want this, they would be crazy though :) */
274 	mutex_lock(&dbs_mutex);
275 	dbs_tuners_ins.freq_step = input;
276 	mutex_unlock(&dbs_mutex);
277 
278 	return count;
279 }
280 
281 #define define_one_rw(_name) \
282 static struct freq_attr _name = \
283 __ATTR(_name, 0644, show_##_name, store_##_name)
284 
285 define_one_rw(sampling_rate);
286 define_one_rw(sampling_down_factor);
287 define_one_rw(up_threshold);
288 define_one_rw(down_threshold);
289 define_one_rw(ignore_nice_load);
290 define_one_rw(freq_step);
291 
292 static struct attribute * dbs_attributes[] = {
293 	&sampling_rate_max.attr,
294 	&sampling_rate_min.attr,
295 	&sampling_rate.attr,
296 	&sampling_down_factor.attr,
297 	&up_threshold.attr,
298 	&down_threshold.attr,
299 	&ignore_nice_load.attr,
300 	&freq_step.attr,
301 	NULL
302 };
303 
304 static struct attribute_group dbs_attr_group = {
305 	.attrs = dbs_attributes,
306 	.name = "conservative",
307 };
308 
309 /************************** sysfs end ************************/
310 
311 static void dbs_check_cpu(int cpu)
312 {
313 	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
314 	unsigned int tmp_idle_ticks, total_idle_ticks;
315 	unsigned int freq_step;
316 	unsigned int freq_down_sampling_rate;
317 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
318 	struct cpufreq_policy *policy;
319 
320 	if (!this_dbs_info->enable)
321 		return;
322 
323 	policy = this_dbs_info->cur_policy;
324 
325 	/*
326 	 * The default safe range is 20% to 80%
327 	 * Every sampling_rate, we check
328 	 * 	- If current idle time is less than 20%, then we try to
329 	 * 	  increase frequency
330 	 * Every sampling_rate*sampling_down_factor, we check
331 	 * 	- If current idle time is more than 80%, then we try to
332 	 * 	  decrease frequency
333 	 *
334 	 * Any frequency increase takes it to the maximum frequency.
335 	 * Frequency reduction happens at minimum steps of
336 	 * 5% (default) of max_frequency
337 	 */
338 
339 	/* Check for frequency increase */
340 	idle_ticks = UINT_MAX;
341 
342 	/* Check for frequency increase */
343 	total_idle_ticks = get_cpu_idle_time(cpu);
344 	tmp_idle_ticks = total_idle_ticks -
345 		this_dbs_info->prev_cpu_idle_up;
346 	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
347 
348 	if (tmp_idle_ticks < idle_ticks)
349 		idle_ticks = tmp_idle_ticks;
350 
351 	/* Scale idle ticks by 100 and compare with up and down ticks */
352 	idle_ticks *= 100;
353 	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
354 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
355 
356 	if (idle_ticks < up_idle_ticks) {
357 		this_dbs_info->down_skip = 0;
358 		this_dbs_info->prev_cpu_idle_down =
359 			this_dbs_info->prev_cpu_idle_up;
360 
361 		/* if we are already at full speed then break out early */
362 		if (this_dbs_info->requested_freq == policy->max)
363 			return;
364 
365 		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
366 
367 		/* max freq cannot be less than 100. But who knows.... */
368 		if (unlikely(freq_step == 0))
369 			freq_step = 5;
370 
371 		this_dbs_info->requested_freq += freq_step;
372 		if (this_dbs_info->requested_freq > policy->max)
373 			this_dbs_info->requested_freq = policy->max;
374 
375 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
376 			CPUFREQ_RELATION_H);
377 		return;
378 	}
379 
380 	/* Check for frequency decrease */
381 	this_dbs_info->down_skip++;
382 	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
383 		return;
384 
385 	/* Check for frequency decrease */
386 	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
387 	tmp_idle_ticks = total_idle_ticks -
388 		this_dbs_info->prev_cpu_idle_down;
389 	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
390 
391 	if (tmp_idle_ticks < idle_ticks)
392 		idle_ticks = tmp_idle_ticks;
393 
394 	/* Scale idle ticks by 100 and compare with up and down ticks */
395 	idle_ticks *= 100;
396 	this_dbs_info->down_skip = 0;
397 
398 	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
399 		dbs_tuners_ins.sampling_down_factor;
400 	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
401 		usecs_to_jiffies(freq_down_sampling_rate);
402 
403 	if (idle_ticks > down_idle_ticks) {
404 		/*
405 		 * if we are already at the lowest speed then break out early
406 		 * or if we 'cannot' reduce the speed as the user might want
407 		 * freq_step to be zero
408 		 */
409 		if (this_dbs_info->requested_freq == policy->min
410 				|| dbs_tuners_ins.freq_step == 0)
411 			return;
412 
413 		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
414 
415 		/* max freq cannot be less than 100. But who knows.... */
416 		if (unlikely(freq_step == 0))
417 			freq_step = 5;
418 
419 		this_dbs_info->requested_freq -= freq_step;
420 		if (this_dbs_info->requested_freq < policy->min)
421 			this_dbs_info->requested_freq = policy->min;
422 
423 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
424 				CPUFREQ_RELATION_H);
425 		return;
426 	}
427 }
428 
429 static void do_dbs_timer(struct work_struct *work)
430 {
431 	int i;
432 	mutex_lock(&dbs_mutex);
433 	for_each_online_cpu(i)
434 		dbs_check_cpu(i);
435 	schedule_delayed_work(&dbs_work,
436 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
437 	mutex_unlock(&dbs_mutex);
438 }
439 
440 static inline void dbs_timer_init(void)
441 {
442 	schedule_delayed_work(&dbs_work,
443 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
444 	return;
445 }
446 
447 static inline void dbs_timer_exit(void)
448 {
449 	cancel_delayed_work(&dbs_work);
450 	return;
451 }
452 
453 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
454 				   unsigned int event)
455 {
456 	unsigned int cpu = policy->cpu;
457 	struct cpu_dbs_info_s *this_dbs_info;
458 	unsigned int j;
459 	int rc;
460 
461 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
462 
463 	switch (event) {
464 	case CPUFREQ_GOV_START:
465 		if ((!cpu_online(cpu)) ||
466 		    (!policy->cur))
467 			return -EINVAL;
468 
469 		if (this_dbs_info->enable) /* Already enabled */
470 			break;
471 
472 		mutex_lock(&dbs_mutex);
473 
474 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
475 		if (rc) {
476 			mutex_unlock(&dbs_mutex);
477 			return rc;
478 		}
479 
480 		for_each_cpu_mask(j, policy->cpus) {
481 			struct cpu_dbs_info_s *j_dbs_info;
482 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
483 			j_dbs_info->cur_policy = policy;
484 
485 			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
486 			j_dbs_info->prev_cpu_idle_down
487 				= j_dbs_info->prev_cpu_idle_up;
488 		}
489 		this_dbs_info->enable = 1;
490 		this_dbs_info->down_skip = 0;
491 		this_dbs_info->requested_freq = policy->cur;
492 
493 		dbs_enable++;
494 		/*
495 		 * Start the timerschedule work, when this governor
496 		 * is used for first time
497 		 */
498 		if (dbs_enable == 1) {
499 			unsigned int latency;
500 			/* policy latency is in nS. Convert it to uS first */
501 			latency = policy->cpuinfo.transition_latency / 1000;
502 			if (latency == 0)
503 				latency = 1;
504 
505 			def_sampling_rate = 10 * latency *
506 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
507 
508 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
509 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
510 
511 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
512 
513 			dbs_timer_init();
514 		}
515 
516 		mutex_unlock(&dbs_mutex);
517 		break;
518 
519 	case CPUFREQ_GOV_STOP:
520 		mutex_lock(&dbs_mutex);
521 		this_dbs_info->enable = 0;
522 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
523 		dbs_enable--;
524 		/*
525 		 * Stop the timerschedule work, when this governor
526 		 * is used for first time
527 		 */
528 		if (dbs_enable == 0)
529 			dbs_timer_exit();
530 
531 		mutex_unlock(&dbs_mutex);
532 
533 		break;
534 
535 	case CPUFREQ_GOV_LIMITS:
536 		mutex_lock(&dbs_mutex);
537 		if (policy->max < this_dbs_info->cur_policy->cur)
538 			__cpufreq_driver_target(
539 					this_dbs_info->cur_policy,
540 				       	policy->max, CPUFREQ_RELATION_H);
541 		else if (policy->min > this_dbs_info->cur_policy->cur)
542 			__cpufreq_driver_target(
543 					this_dbs_info->cur_policy,
544 				       	policy->min, CPUFREQ_RELATION_L);
545 		mutex_unlock(&dbs_mutex);
546 		break;
547 	}
548 	return 0;
549 }
550 
551 struct cpufreq_governor cpufreq_gov_conservative = {
552 	.name			= "conservative",
553 	.governor		= cpufreq_governor_dbs,
554 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
555 	.owner			= THIS_MODULE,
556 };
557 EXPORT_SYMBOL(cpufreq_gov_conservative);
558 
559 static int __init cpufreq_gov_dbs_init(void)
560 {
561 	return cpufreq_register_governor(&cpufreq_gov_conservative);
562 }
563 
564 static void __exit cpufreq_gov_dbs_exit(void)
565 {
566 	/* Make sure that the scheduled work is indeed not running */
567 	flush_scheduled_work();
568 
569 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
570 }
571 
572 
573 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
574 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
575 		"Low Latency Frequency Transition capable processors "
576 		"optimised for use in a battery environment");
577 MODULE_LICENSE ("GPL");
578 
579 module_init(cpufreq_gov_dbs_init);
580 module_exit(cpufreq_gov_dbs_exit);
581