1 /* 2 * drivers/cpufreq/cpufreq_conservative.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 6 * Jun Nakajima <jun.nakajima@intel.com> 7 * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/smp.h> 17 #include <linux/init.h> 18 #include <linux/interrupt.h> 19 #include <linux/ctype.h> 20 #include <linux/cpufreq.h> 21 #include <linux/sysctl.h> 22 #include <linux/types.h> 23 #include <linux/fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/cpu.h> 26 #include <linux/kmod.h> 27 #include <linux/workqueue.h> 28 #include <linux/jiffies.h> 29 #include <linux/kernel_stat.h> 30 #include <linux/percpu.h> 31 #include <linux/mutex.h> 32 /* 33 * dbs is used in this file as a shortform for demandbased switching 34 * It helps to keep variable names smaller, simpler 35 */ 36 37 #define DEF_FREQUENCY_UP_THRESHOLD (80) 38 #define DEF_FREQUENCY_DOWN_THRESHOLD (20) 39 40 /* 41 * The polling frequency of this governor depends on the capability of 42 * the processor. Default polling frequency is 1000 times the transition 43 * latency of the processor. The governor will work on any processor with 44 * transition latency <= 10mS, using appropriate sampling 45 * rate. 46 * For CPUs with transition latency > 10mS (mostly drivers 47 * with CPUFREQ_ETERNAL), this governor will not work. 48 * All times here are in uS. 49 */ 50 static unsigned int def_sampling_rate; 51 #define MIN_SAMPLING_RATE_RATIO (2) 52 /* for correct statistics, we need at least 10 ticks between each measure */ 53 #define MIN_STAT_SAMPLING_RATE \ 54 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10)) 55 #define MIN_SAMPLING_RATE \ 56 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO) 57 #define MAX_SAMPLING_RATE (500 * def_sampling_rate) 58 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000) 59 #define DEF_SAMPLING_DOWN_FACTOR (1) 60 #define MAX_SAMPLING_DOWN_FACTOR (10) 61 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000) 62 63 static void do_dbs_timer(struct work_struct *work); 64 65 struct cpu_dbs_info_s { 66 struct cpufreq_policy *cur_policy; 67 unsigned int prev_cpu_idle_up; 68 unsigned int prev_cpu_idle_down; 69 unsigned int enable; 70 unsigned int down_skip; 71 unsigned int requested_freq; 72 }; 73 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info); 74 75 static unsigned int dbs_enable; /* number of CPUs using this policy */ 76 77 /* 78 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug 79 * lock and dbs_mutex. cpu_hotplug lock should always be held before 80 * dbs_mutex. If any function that can potentially take cpu_hotplug lock 81 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then 82 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock 83 * is recursive for the same process. -Venki 84 */ 85 static DEFINE_MUTEX (dbs_mutex); 86 static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer); 87 88 struct dbs_tuners { 89 unsigned int sampling_rate; 90 unsigned int sampling_down_factor; 91 unsigned int up_threshold; 92 unsigned int down_threshold; 93 unsigned int ignore_nice; 94 unsigned int freq_step; 95 }; 96 97 static struct dbs_tuners dbs_tuners_ins = { 98 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, 99 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD, 100 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, 101 .ignore_nice = 0, 102 .freq_step = 5, 103 }; 104 105 static inline unsigned int get_cpu_idle_time(unsigned int cpu) 106 { 107 unsigned int add_nice = 0, ret; 108 109 if (dbs_tuners_ins.ignore_nice) 110 add_nice = kstat_cpu(cpu).cpustat.nice; 111 112 ret = kstat_cpu(cpu).cpustat.idle + 113 kstat_cpu(cpu).cpustat.iowait + 114 add_nice; 115 116 return ret; 117 } 118 119 /************************** sysfs interface ************************/ 120 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf) 121 { 122 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE); 123 } 124 125 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf) 126 { 127 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE); 128 } 129 130 #define define_one_ro(_name) \ 131 static struct freq_attr _name = \ 132 __ATTR(_name, 0444, show_##_name, NULL) 133 134 define_one_ro(sampling_rate_max); 135 define_one_ro(sampling_rate_min); 136 137 /* cpufreq_conservative Governor Tunables */ 138 #define show_one(file_name, object) \ 139 static ssize_t show_##file_name \ 140 (struct cpufreq_policy *unused, char *buf) \ 141 { \ 142 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \ 143 } 144 show_one(sampling_rate, sampling_rate); 145 show_one(sampling_down_factor, sampling_down_factor); 146 show_one(up_threshold, up_threshold); 147 show_one(down_threshold, down_threshold); 148 show_one(ignore_nice_load, ignore_nice); 149 show_one(freq_step, freq_step); 150 151 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, 152 const char *buf, size_t count) 153 { 154 unsigned int input; 155 int ret; 156 ret = sscanf (buf, "%u", &input); 157 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) 158 return -EINVAL; 159 160 mutex_lock(&dbs_mutex); 161 dbs_tuners_ins.sampling_down_factor = input; 162 mutex_unlock(&dbs_mutex); 163 164 return count; 165 } 166 167 static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 168 const char *buf, size_t count) 169 { 170 unsigned int input; 171 int ret; 172 ret = sscanf (buf, "%u", &input); 173 174 mutex_lock(&dbs_mutex); 175 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) { 176 mutex_unlock(&dbs_mutex); 177 return -EINVAL; 178 } 179 180 dbs_tuners_ins.sampling_rate = input; 181 mutex_unlock(&dbs_mutex); 182 183 return count; 184 } 185 186 static ssize_t store_up_threshold(struct cpufreq_policy *unused, 187 const char *buf, size_t count) 188 { 189 unsigned int input; 190 int ret; 191 ret = sscanf (buf, "%u", &input); 192 193 mutex_lock(&dbs_mutex); 194 if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) { 195 mutex_unlock(&dbs_mutex); 196 return -EINVAL; 197 } 198 199 dbs_tuners_ins.up_threshold = input; 200 mutex_unlock(&dbs_mutex); 201 202 return count; 203 } 204 205 static ssize_t store_down_threshold(struct cpufreq_policy *unused, 206 const char *buf, size_t count) 207 { 208 unsigned int input; 209 int ret; 210 ret = sscanf (buf, "%u", &input); 211 212 mutex_lock(&dbs_mutex); 213 if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) { 214 mutex_unlock(&dbs_mutex); 215 return -EINVAL; 216 } 217 218 dbs_tuners_ins.down_threshold = input; 219 mutex_unlock(&dbs_mutex); 220 221 return count; 222 } 223 224 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy, 225 const char *buf, size_t count) 226 { 227 unsigned int input; 228 int ret; 229 230 unsigned int j; 231 232 ret = sscanf (buf, "%u", &input); 233 if ( ret != 1 ) 234 return -EINVAL; 235 236 if ( input > 1 ) 237 input = 1; 238 239 mutex_lock(&dbs_mutex); 240 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */ 241 mutex_unlock(&dbs_mutex); 242 return count; 243 } 244 dbs_tuners_ins.ignore_nice = input; 245 246 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */ 247 for_each_online_cpu(j) { 248 struct cpu_dbs_info_s *j_dbs_info; 249 j_dbs_info = &per_cpu(cpu_dbs_info, j); 250 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j); 251 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up; 252 } 253 mutex_unlock(&dbs_mutex); 254 255 return count; 256 } 257 258 static ssize_t store_freq_step(struct cpufreq_policy *policy, 259 const char *buf, size_t count) 260 { 261 unsigned int input; 262 int ret; 263 264 ret = sscanf (buf, "%u", &input); 265 266 if ( ret != 1 ) 267 return -EINVAL; 268 269 if ( input > 100 ) 270 input = 100; 271 272 /* no need to test here if freq_step is zero as the user might actually 273 * want this, they would be crazy though :) */ 274 mutex_lock(&dbs_mutex); 275 dbs_tuners_ins.freq_step = input; 276 mutex_unlock(&dbs_mutex); 277 278 return count; 279 } 280 281 #define define_one_rw(_name) \ 282 static struct freq_attr _name = \ 283 __ATTR(_name, 0644, show_##_name, store_##_name) 284 285 define_one_rw(sampling_rate); 286 define_one_rw(sampling_down_factor); 287 define_one_rw(up_threshold); 288 define_one_rw(down_threshold); 289 define_one_rw(ignore_nice_load); 290 define_one_rw(freq_step); 291 292 static struct attribute * dbs_attributes[] = { 293 &sampling_rate_max.attr, 294 &sampling_rate_min.attr, 295 &sampling_rate.attr, 296 &sampling_down_factor.attr, 297 &up_threshold.attr, 298 &down_threshold.attr, 299 &ignore_nice_load.attr, 300 &freq_step.attr, 301 NULL 302 }; 303 304 static struct attribute_group dbs_attr_group = { 305 .attrs = dbs_attributes, 306 .name = "conservative", 307 }; 308 309 /************************** sysfs end ************************/ 310 311 static void dbs_check_cpu(int cpu) 312 { 313 unsigned int idle_ticks, up_idle_ticks, down_idle_ticks; 314 unsigned int tmp_idle_ticks, total_idle_ticks; 315 unsigned int freq_step; 316 unsigned int freq_down_sampling_rate; 317 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu); 318 struct cpufreq_policy *policy; 319 320 if (!this_dbs_info->enable) 321 return; 322 323 policy = this_dbs_info->cur_policy; 324 325 /* 326 * The default safe range is 20% to 80% 327 * Every sampling_rate, we check 328 * - If current idle time is less than 20%, then we try to 329 * increase frequency 330 * Every sampling_rate*sampling_down_factor, we check 331 * - If current idle time is more than 80%, then we try to 332 * decrease frequency 333 * 334 * Any frequency increase takes it to the maximum frequency. 335 * Frequency reduction happens at minimum steps of 336 * 5% (default) of max_frequency 337 */ 338 339 /* Check for frequency increase */ 340 idle_ticks = UINT_MAX; 341 342 /* Check for frequency increase */ 343 total_idle_ticks = get_cpu_idle_time(cpu); 344 tmp_idle_ticks = total_idle_ticks - 345 this_dbs_info->prev_cpu_idle_up; 346 this_dbs_info->prev_cpu_idle_up = total_idle_ticks; 347 348 if (tmp_idle_ticks < idle_ticks) 349 idle_ticks = tmp_idle_ticks; 350 351 /* Scale idle ticks by 100 and compare with up and down ticks */ 352 idle_ticks *= 100; 353 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) * 354 usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 355 356 if (idle_ticks < up_idle_ticks) { 357 this_dbs_info->down_skip = 0; 358 this_dbs_info->prev_cpu_idle_down = 359 this_dbs_info->prev_cpu_idle_up; 360 361 /* if we are already at full speed then break out early */ 362 if (this_dbs_info->requested_freq == policy->max) 363 return; 364 365 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100; 366 367 /* max freq cannot be less than 100. But who knows.... */ 368 if (unlikely(freq_step == 0)) 369 freq_step = 5; 370 371 this_dbs_info->requested_freq += freq_step; 372 if (this_dbs_info->requested_freq > policy->max) 373 this_dbs_info->requested_freq = policy->max; 374 375 __cpufreq_driver_target(policy, this_dbs_info->requested_freq, 376 CPUFREQ_RELATION_H); 377 return; 378 } 379 380 /* Check for frequency decrease */ 381 this_dbs_info->down_skip++; 382 if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor) 383 return; 384 385 /* Check for frequency decrease */ 386 total_idle_ticks = this_dbs_info->prev_cpu_idle_up; 387 tmp_idle_ticks = total_idle_ticks - 388 this_dbs_info->prev_cpu_idle_down; 389 this_dbs_info->prev_cpu_idle_down = total_idle_ticks; 390 391 if (tmp_idle_ticks < idle_ticks) 392 idle_ticks = tmp_idle_ticks; 393 394 /* Scale idle ticks by 100 and compare with up and down ticks */ 395 idle_ticks *= 100; 396 this_dbs_info->down_skip = 0; 397 398 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate * 399 dbs_tuners_ins.sampling_down_factor; 400 down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) * 401 usecs_to_jiffies(freq_down_sampling_rate); 402 403 if (idle_ticks > down_idle_ticks) { 404 /* 405 * if we are already at the lowest speed then break out early 406 * or if we 'cannot' reduce the speed as the user might want 407 * freq_step to be zero 408 */ 409 if (this_dbs_info->requested_freq == policy->min 410 || dbs_tuners_ins.freq_step == 0) 411 return; 412 413 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100; 414 415 /* max freq cannot be less than 100. But who knows.... */ 416 if (unlikely(freq_step == 0)) 417 freq_step = 5; 418 419 this_dbs_info->requested_freq -= freq_step; 420 if (this_dbs_info->requested_freq < policy->min) 421 this_dbs_info->requested_freq = policy->min; 422 423 __cpufreq_driver_target(policy, this_dbs_info->requested_freq, 424 CPUFREQ_RELATION_H); 425 return; 426 } 427 } 428 429 static void do_dbs_timer(struct work_struct *work) 430 { 431 int i; 432 mutex_lock(&dbs_mutex); 433 for_each_online_cpu(i) 434 dbs_check_cpu(i); 435 schedule_delayed_work(&dbs_work, 436 usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); 437 mutex_unlock(&dbs_mutex); 438 } 439 440 static inline void dbs_timer_init(void) 441 { 442 schedule_delayed_work(&dbs_work, 443 usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); 444 return; 445 } 446 447 static inline void dbs_timer_exit(void) 448 { 449 cancel_delayed_work(&dbs_work); 450 return; 451 } 452 453 static int cpufreq_governor_dbs(struct cpufreq_policy *policy, 454 unsigned int event) 455 { 456 unsigned int cpu = policy->cpu; 457 struct cpu_dbs_info_s *this_dbs_info; 458 unsigned int j; 459 int rc; 460 461 this_dbs_info = &per_cpu(cpu_dbs_info, cpu); 462 463 switch (event) { 464 case CPUFREQ_GOV_START: 465 if ((!cpu_online(cpu)) || 466 (!policy->cur)) 467 return -EINVAL; 468 469 if (this_dbs_info->enable) /* Already enabled */ 470 break; 471 472 mutex_lock(&dbs_mutex); 473 474 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group); 475 if (rc) { 476 mutex_unlock(&dbs_mutex); 477 return rc; 478 } 479 480 for_each_cpu_mask(j, policy->cpus) { 481 struct cpu_dbs_info_s *j_dbs_info; 482 j_dbs_info = &per_cpu(cpu_dbs_info, j); 483 j_dbs_info->cur_policy = policy; 484 485 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu); 486 j_dbs_info->prev_cpu_idle_down 487 = j_dbs_info->prev_cpu_idle_up; 488 } 489 this_dbs_info->enable = 1; 490 this_dbs_info->down_skip = 0; 491 this_dbs_info->requested_freq = policy->cur; 492 493 dbs_enable++; 494 /* 495 * Start the timerschedule work, when this governor 496 * is used for first time 497 */ 498 if (dbs_enable == 1) { 499 unsigned int latency; 500 /* policy latency is in nS. Convert it to uS first */ 501 latency = policy->cpuinfo.transition_latency / 1000; 502 if (latency == 0) 503 latency = 1; 504 505 def_sampling_rate = 10 * latency * 506 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER; 507 508 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE) 509 def_sampling_rate = MIN_STAT_SAMPLING_RATE; 510 511 dbs_tuners_ins.sampling_rate = def_sampling_rate; 512 513 dbs_timer_init(); 514 } 515 516 mutex_unlock(&dbs_mutex); 517 break; 518 519 case CPUFREQ_GOV_STOP: 520 mutex_lock(&dbs_mutex); 521 this_dbs_info->enable = 0; 522 sysfs_remove_group(&policy->kobj, &dbs_attr_group); 523 dbs_enable--; 524 /* 525 * Stop the timerschedule work, when this governor 526 * is used for first time 527 */ 528 if (dbs_enable == 0) 529 dbs_timer_exit(); 530 531 mutex_unlock(&dbs_mutex); 532 533 break; 534 535 case CPUFREQ_GOV_LIMITS: 536 mutex_lock(&dbs_mutex); 537 if (policy->max < this_dbs_info->cur_policy->cur) 538 __cpufreq_driver_target( 539 this_dbs_info->cur_policy, 540 policy->max, CPUFREQ_RELATION_H); 541 else if (policy->min > this_dbs_info->cur_policy->cur) 542 __cpufreq_driver_target( 543 this_dbs_info->cur_policy, 544 policy->min, CPUFREQ_RELATION_L); 545 mutex_unlock(&dbs_mutex); 546 break; 547 } 548 return 0; 549 } 550 551 struct cpufreq_governor cpufreq_gov_conservative = { 552 .name = "conservative", 553 .governor = cpufreq_governor_dbs, 554 .max_transition_latency = TRANSITION_LATENCY_LIMIT, 555 .owner = THIS_MODULE, 556 }; 557 EXPORT_SYMBOL(cpufreq_gov_conservative); 558 559 static int __init cpufreq_gov_dbs_init(void) 560 { 561 return cpufreq_register_governor(&cpufreq_gov_conservative); 562 } 563 564 static void __exit cpufreq_gov_dbs_exit(void) 565 { 566 /* Make sure that the scheduled work is indeed not running */ 567 flush_scheduled_work(); 568 569 cpufreq_unregister_governor(&cpufreq_gov_conservative); 570 } 571 572 573 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>"); 574 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for " 575 "Low Latency Frequency Transition capable processors " 576 "optimised for use in a battery environment"); 577 MODULE_LICENSE ("GPL"); 578 579 module_init(cpufreq_gov_dbs_init); 580 module_exit(cpufreq_gov_dbs_exit); 581