1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 /** 35 * The "cpufreq driver" - the arch- or hardware-dependent low 36 * level driver of CPUFreq support, and its spinlock. This lock 37 * also protects the cpufreq_cpu_data array. 38 */ 39 static struct cpufreq_driver *cpufreq_driver; 40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback); 42 static DEFINE_RWLOCK(cpufreq_driver_lock); 43 DEFINE_MUTEX(cpufreq_governor_lock); 44 static LIST_HEAD(cpufreq_policy_list); 45 46 /* This one keeps track of the previously set governor of a removed CPU */ 47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 48 49 /* Flag to suspend/resume CPUFreq governors */ 50 static bool cpufreq_suspended; 51 52 static inline bool has_target(void) 53 { 54 return cpufreq_driver->target_index || cpufreq_driver->target; 55 } 56 57 /* 58 * rwsem to guarantee that cpufreq driver module doesn't unload during critical 59 * sections 60 */ 61 static DECLARE_RWSEM(cpufreq_rwsem); 62 63 /* internal prototypes */ 64 static int __cpufreq_governor(struct cpufreq_policy *policy, 65 unsigned int event); 66 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 67 static void handle_update(struct work_struct *work); 68 69 /** 70 * Two notifier lists: the "policy" list is involved in the 71 * validation process for a new CPU frequency policy; the 72 * "transition" list for kernel code that needs to handle 73 * changes to devices when the CPU clock speed changes. 74 * The mutex locks both lists. 75 */ 76 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 77 static struct srcu_notifier_head cpufreq_transition_notifier_list; 78 79 static bool init_cpufreq_transition_notifier_list_called; 80 static int __init init_cpufreq_transition_notifier_list(void) 81 { 82 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 83 init_cpufreq_transition_notifier_list_called = true; 84 return 0; 85 } 86 pure_initcall(init_cpufreq_transition_notifier_list); 87 88 static int off __read_mostly; 89 static int cpufreq_disabled(void) 90 { 91 return off; 92 } 93 void disable_cpufreq(void) 94 { 95 off = 1; 96 } 97 static LIST_HEAD(cpufreq_governor_list); 98 static DEFINE_MUTEX(cpufreq_governor_mutex); 99 100 bool have_governor_per_policy(void) 101 { 102 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 103 } 104 EXPORT_SYMBOL_GPL(have_governor_per_policy); 105 106 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 107 { 108 if (have_governor_per_policy()) 109 return &policy->kobj; 110 else 111 return cpufreq_global_kobject; 112 } 113 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 114 115 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 116 { 117 u64 idle_time; 118 u64 cur_wall_time; 119 u64 busy_time; 120 121 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 122 123 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 128 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 129 130 idle_time = cur_wall_time - busy_time; 131 if (wall) 132 *wall = cputime_to_usecs(cur_wall_time); 133 134 return cputime_to_usecs(idle_time); 135 } 136 137 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 138 { 139 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 140 141 if (idle_time == -1ULL) 142 return get_cpu_idle_time_jiffy(cpu, wall); 143 else if (!io_busy) 144 idle_time += get_cpu_iowait_time_us(cpu, wall); 145 146 return idle_time; 147 } 148 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 149 150 /* 151 * This is a generic cpufreq init() routine which can be used by cpufreq 152 * drivers of SMP systems. It will do following: 153 * - validate & show freq table passed 154 * - set policies transition latency 155 * - policy->cpus with all possible CPUs 156 */ 157 int cpufreq_generic_init(struct cpufreq_policy *policy, 158 struct cpufreq_frequency_table *table, 159 unsigned int transition_latency) 160 { 161 int ret; 162 163 ret = cpufreq_table_validate_and_show(policy, table); 164 if (ret) { 165 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 166 return ret; 167 } 168 169 policy->cpuinfo.transition_latency = transition_latency; 170 171 /* 172 * The driver only supports the SMP configuartion where all processors 173 * share the clock and voltage and clock. 174 */ 175 cpumask_setall(policy->cpus); 176 177 return 0; 178 } 179 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 180 181 unsigned int cpufreq_generic_get(unsigned int cpu) 182 { 183 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 184 185 if (!policy || IS_ERR(policy->clk)) { 186 pr_err("%s: No %s associated to cpu: %d\n", 187 __func__, policy ? "clk" : "policy", cpu); 188 return 0; 189 } 190 191 return clk_get_rate(policy->clk) / 1000; 192 } 193 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 194 195 /* Only for cpufreq core internal use */ 196 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 197 { 198 return per_cpu(cpufreq_cpu_data, cpu); 199 } 200 201 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 202 { 203 struct cpufreq_policy *policy = NULL; 204 unsigned long flags; 205 206 if (cpufreq_disabled() || (cpu >= nr_cpu_ids)) 207 return NULL; 208 209 if (!down_read_trylock(&cpufreq_rwsem)) 210 return NULL; 211 212 /* get the cpufreq driver */ 213 read_lock_irqsave(&cpufreq_driver_lock, flags); 214 215 if (cpufreq_driver) { 216 /* get the CPU */ 217 policy = per_cpu(cpufreq_cpu_data, cpu); 218 if (policy) 219 kobject_get(&policy->kobj); 220 } 221 222 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 223 224 if (!policy) 225 up_read(&cpufreq_rwsem); 226 227 return policy; 228 } 229 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 230 231 void cpufreq_cpu_put(struct cpufreq_policy *policy) 232 { 233 if (cpufreq_disabled()) 234 return; 235 236 kobject_put(&policy->kobj); 237 up_read(&cpufreq_rwsem); 238 } 239 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 240 241 /********************************************************************* 242 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 243 *********************************************************************/ 244 245 /** 246 * adjust_jiffies - adjust the system "loops_per_jiffy" 247 * 248 * This function alters the system "loops_per_jiffy" for the clock 249 * speed change. Note that loops_per_jiffy cannot be updated on SMP 250 * systems as each CPU might be scaled differently. So, use the arch 251 * per-CPU loops_per_jiffy value wherever possible. 252 */ 253 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 254 { 255 #ifndef CONFIG_SMP 256 static unsigned long l_p_j_ref; 257 static unsigned int l_p_j_ref_freq; 258 259 if (ci->flags & CPUFREQ_CONST_LOOPS) 260 return; 261 262 if (!l_p_j_ref_freq) { 263 l_p_j_ref = loops_per_jiffy; 264 l_p_j_ref_freq = ci->old; 265 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 266 l_p_j_ref, l_p_j_ref_freq); 267 } 268 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 269 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 270 ci->new); 271 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 272 loops_per_jiffy, ci->new); 273 } 274 #endif 275 } 276 277 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 278 struct cpufreq_freqs *freqs, unsigned int state) 279 { 280 BUG_ON(irqs_disabled()); 281 282 if (cpufreq_disabled()) 283 return; 284 285 freqs->flags = cpufreq_driver->flags; 286 pr_debug("notification %u of frequency transition to %u kHz\n", 287 state, freqs->new); 288 289 switch (state) { 290 291 case CPUFREQ_PRECHANGE: 292 /* detect if the driver reported a value as "old frequency" 293 * which is not equal to what the cpufreq core thinks is 294 * "old frequency". 295 */ 296 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 297 if ((policy) && (policy->cpu == freqs->cpu) && 298 (policy->cur) && (policy->cur != freqs->old)) { 299 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 300 freqs->old, policy->cur); 301 freqs->old = policy->cur; 302 } 303 } 304 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 305 CPUFREQ_PRECHANGE, freqs); 306 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 307 break; 308 309 case CPUFREQ_POSTCHANGE: 310 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 311 pr_debug("FREQ: %lu - CPU: %lu\n", 312 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 313 trace_cpu_frequency(freqs->new, freqs->cpu); 314 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 315 CPUFREQ_POSTCHANGE, freqs); 316 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 317 policy->cur = freqs->new; 318 break; 319 } 320 } 321 322 /** 323 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 324 * on frequency transition. 325 * 326 * This function calls the transition notifiers and the "adjust_jiffies" 327 * function. It is called twice on all CPU frequency changes that have 328 * external effects. 329 */ 330 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 331 struct cpufreq_freqs *freqs, unsigned int state) 332 { 333 for_each_cpu(freqs->cpu, policy->cpus) 334 __cpufreq_notify_transition(policy, freqs, state); 335 } 336 337 /* Do post notifications when there are chances that transition has failed */ 338 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 339 struct cpufreq_freqs *freqs, int transition_failed) 340 { 341 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 342 if (!transition_failed) 343 return; 344 345 swap(freqs->old, freqs->new); 346 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 347 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 348 } 349 350 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 351 struct cpufreq_freqs *freqs) 352 { 353 354 /* 355 * Catch double invocations of _begin() which lead to self-deadlock. 356 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 357 * doesn't invoke _begin() on their behalf, and hence the chances of 358 * double invocations are very low. Moreover, there are scenarios 359 * where these checks can emit false-positive warnings in these 360 * drivers; so we avoid that by skipping them altogether. 361 */ 362 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 363 && current == policy->transition_task); 364 365 wait: 366 wait_event(policy->transition_wait, !policy->transition_ongoing); 367 368 spin_lock(&policy->transition_lock); 369 370 if (unlikely(policy->transition_ongoing)) { 371 spin_unlock(&policy->transition_lock); 372 goto wait; 373 } 374 375 policy->transition_ongoing = true; 376 policy->transition_task = current; 377 378 spin_unlock(&policy->transition_lock); 379 380 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 381 } 382 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 383 384 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 385 struct cpufreq_freqs *freqs, int transition_failed) 386 { 387 if (unlikely(WARN_ON(!policy->transition_ongoing))) 388 return; 389 390 cpufreq_notify_post_transition(policy, freqs, transition_failed); 391 392 policy->transition_ongoing = false; 393 policy->transition_task = NULL; 394 395 wake_up(&policy->transition_wait); 396 } 397 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 398 399 400 /********************************************************************* 401 * SYSFS INTERFACE * 402 *********************************************************************/ 403 static ssize_t show_boost(struct kobject *kobj, 404 struct attribute *attr, char *buf) 405 { 406 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 407 } 408 409 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 410 const char *buf, size_t count) 411 { 412 int ret, enable; 413 414 ret = sscanf(buf, "%d", &enable); 415 if (ret != 1 || enable < 0 || enable > 1) 416 return -EINVAL; 417 418 if (cpufreq_boost_trigger_state(enable)) { 419 pr_err("%s: Cannot %s BOOST!\n", 420 __func__, enable ? "enable" : "disable"); 421 return -EINVAL; 422 } 423 424 pr_debug("%s: cpufreq BOOST %s\n", 425 __func__, enable ? "enabled" : "disabled"); 426 427 return count; 428 } 429 define_one_global_rw(boost); 430 431 static struct cpufreq_governor *find_governor(const char *str_governor) 432 { 433 struct cpufreq_governor *t; 434 435 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 436 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 437 return t; 438 439 return NULL; 440 } 441 442 /** 443 * cpufreq_parse_governor - parse a governor string 444 */ 445 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 446 struct cpufreq_governor **governor) 447 { 448 int err = -EINVAL; 449 450 if (!cpufreq_driver) 451 goto out; 452 453 if (cpufreq_driver->setpolicy) { 454 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 455 *policy = CPUFREQ_POLICY_PERFORMANCE; 456 err = 0; 457 } else if (!strncasecmp(str_governor, "powersave", 458 CPUFREQ_NAME_LEN)) { 459 *policy = CPUFREQ_POLICY_POWERSAVE; 460 err = 0; 461 } 462 } else { 463 struct cpufreq_governor *t; 464 465 mutex_lock(&cpufreq_governor_mutex); 466 467 t = find_governor(str_governor); 468 469 if (t == NULL) { 470 int ret; 471 472 mutex_unlock(&cpufreq_governor_mutex); 473 ret = request_module("cpufreq_%s", str_governor); 474 mutex_lock(&cpufreq_governor_mutex); 475 476 if (ret == 0) 477 t = find_governor(str_governor); 478 } 479 480 if (t != NULL) { 481 *governor = t; 482 err = 0; 483 } 484 485 mutex_unlock(&cpufreq_governor_mutex); 486 } 487 out: 488 return err; 489 } 490 491 /** 492 * cpufreq_per_cpu_attr_read() / show_##file_name() - 493 * print out cpufreq information 494 * 495 * Write out information from cpufreq_driver->policy[cpu]; object must be 496 * "unsigned int". 497 */ 498 499 #define show_one(file_name, object) \ 500 static ssize_t show_##file_name \ 501 (struct cpufreq_policy *policy, char *buf) \ 502 { \ 503 return sprintf(buf, "%u\n", policy->object); \ 504 } 505 506 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 507 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 508 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 509 show_one(scaling_min_freq, min); 510 show_one(scaling_max_freq, max); 511 512 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 513 { 514 ssize_t ret; 515 516 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 517 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 518 else 519 ret = sprintf(buf, "%u\n", policy->cur); 520 return ret; 521 } 522 523 static int cpufreq_set_policy(struct cpufreq_policy *policy, 524 struct cpufreq_policy *new_policy); 525 526 /** 527 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 528 */ 529 #define store_one(file_name, object) \ 530 static ssize_t store_##file_name \ 531 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 532 { \ 533 int ret, temp; \ 534 struct cpufreq_policy new_policy; \ 535 \ 536 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 537 if (ret) \ 538 return -EINVAL; \ 539 \ 540 ret = sscanf(buf, "%u", &new_policy.object); \ 541 if (ret != 1) \ 542 return -EINVAL; \ 543 \ 544 temp = new_policy.object; \ 545 ret = cpufreq_set_policy(policy, &new_policy); \ 546 if (!ret) \ 547 policy->user_policy.object = temp; \ 548 \ 549 return ret ? ret : count; \ 550 } 551 552 store_one(scaling_min_freq, min); 553 store_one(scaling_max_freq, max); 554 555 /** 556 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 557 */ 558 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 559 char *buf) 560 { 561 unsigned int cur_freq = __cpufreq_get(policy); 562 if (!cur_freq) 563 return sprintf(buf, "<unknown>"); 564 return sprintf(buf, "%u\n", cur_freq); 565 } 566 567 /** 568 * show_scaling_governor - show the current policy for the specified CPU 569 */ 570 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 571 { 572 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 573 return sprintf(buf, "powersave\n"); 574 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 575 return sprintf(buf, "performance\n"); 576 else if (policy->governor) 577 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 578 policy->governor->name); 579 return -EINVAL; 580 } 581 582 /** 583 * store_scaling_governor - store policy for the specified CPU 584 */ 585 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 586 const char *buf, size_t count) 587 { 588 int ret; 589 char str_governor[16]; 590 struct cpufreq_policy new_policy; 591 592 ret = cpufreq_get_policy(&new_policy, policy->cpu); 593 if (ret) 594 return ret; 595 596 ret = sscanf(buf, "%15s", str_governor); 597 if (ret != 1) 598 return -EINVAL; 599 600 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 601 &new_policy.governor)) 602 return -EINVAL; 603 604 ret = cpufreq_set_policy(policy, &new_policy); 605 606 policy->user_policy.policy = policy->policy; 607 policy->user_policy.governor = policy->governor; 608 609 if (ret) 610 return ret; 611 else 612 return count; 613 } 614 615 /** 616 * show_scaling_driver - show the cpufreq driver currently loaded 617 */ 618 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 619 { 620 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 621 } 622 623 /** 624 * show_scaling_available_governors - show the available CPUfreq governors 625 */ 626 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 627 char *buf) 628 { 629 ssize_t i = 0; 630 struct cpufreq_governor *t; 631 632 if (!has_target()) { 633 i += sprintf(buf, "performance powersave"); 634 goto out; 635 } 636 637 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 638 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 639 - (CPUFREQ_NAME_LEN + 2))) 640 goto out; 641 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 642 } 643 out: 644 i += sprintf(&buf[i], "\n"); 645 return i; 646 } 647 648 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 649 { 650 ssize_t i = 0; 651 unsigned int cpu; 652 653 for_each_cpu(cpu, mask) { 654 if (i) 655 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 656 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 657 if (i >= (PAGE_SIZE - 5)) 658 break; 659 } 660 i += sprintf(&buf[i], "\n"); 661 return i; 662 } 663 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 664 665 /** 666 * show_related_cpus - show the CPUs affected by each transition even if 667 * hw coordination is in use 668 */ 669 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 670 { 671 return cpufreq_show_cpus(policy->related_cpus, buf); 672 } 673 674 /** 675 * show_affected_cpus - show the CPUs affected by each transition 676 */ 677 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 678 { 679 return cpufreq_show_cpus(policy->cpus, buf); 680 } 681 682 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 683 const char *buf, size_t count) 684 { 685 unsigned int freq = 0; 686 unsigned int ret; 687 688 if (!policy->governor || !policy->governor->store_setspeed) 689 return -EINVAL; 690 691 ret = sscanf(buf, "%u", &freq); 692 if (ret != 1) 693 return -EINVAL; 694 695 policy->governor->store_setspeed(policy, freq); 696 697 return count; 698 } 699 700 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 701 { 702 if (!policy->governor || !policy->governor->show_setspeed) 703 return sprintf(buf, "<unsupported>\n"); 704 705 return policy->governor->show_setspeed(policy, buf); 706 } 707 708 /** 709 * show_bios_limit - show the current cpufreq HW/BIOS limitation 710 */ 711 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 712 { 713 unsigned int limit; 714 int ret; 715 if (cpufreq_driver->bios_limit) { 716 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 717 if (!ret) 718 return sprintf(buf, "%u\n", limit); 719 } 720 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 721 } 722 723 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 724 cpufreq_freq_attr_ro(cpuinfo_min_freq); 725 cpufreq_freq_attr_ro(cpuinfo_max_freq); 726 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 727 cpufreq_freq_attr_ro(scaling_available_governors); 728 cpufreq_freq_attr_ro(scaling_driver); 729 cpufreq_freq_attr_ro(scaling_cur_freq); 730 cpufreq_freq_attr_ro(bios_limit); 731 cpufreq_freq_attr_ro(related_cpus); 732 cpufreq_freq_attr_ro(affected_cpus); 733 cpufreq_freq_attr_rw(scaling_min_freq); 734 cpufreq_freq_attr_rw(scaling_max_freq); 735 cpufreq_freq_attr_rw(scaling_governor); 736 cpufreq_freq_attr_rw(scaling_setspeed); 737 738 static struct attribute *default_attrs[] = { 739 &cpuinfo_min_freq.attr, 740 &cpuinfo_max_freq.attr, 741 &cpuinfo_transition_latency.attr, 742 &scaling_min_freq.attr, 743 &scaling_max_freq.attr, 744 &affected_cpus.attr, 745 &related_cpus.attr, 746 &scaling_governor.attr, 747 &scaling_driver.attr, 748 &scaling_available_governors.attr, 749 &scaling_setspeed.attr, 750 NULL 751 }; 752 753 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 754 #define to_attr(a) container_of(a, struct freq_attr, attr) 755 756 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 757 { 758 struct cpufreq_policy *policy = to_policy(kobj); 759 struct freq_attr *fattr = to_attr(attr); 760 ssize_t ret; 761 762 if (!down_read_trylock(&cpufreq_rwsem)) 763 return -EINVAL; 764 765 down_read(&policy->rwsem); 766 767 if (fattr->show) 768 ret = fattr->show(policy, buf); 769 else 770 ret = -EIO; 771 772 up_read(&policy->rwsem); 773 up_read(&cpufreq_rwsem); 774 775 return ret; 776 } 777 778 static ssize_t store(struct kobject *kobj, struct attribute *attr, 779 const char *buf, size_t count) 780 { 781 struct cpufreq_policy *policy = to_policy(kobj); 782 struct freq_attr *fattr = to_attr(attr); 783 ssize_t ret = -EINVAL; 784 785 get_online_cpus(); 786 787 if (!cpu_online(policy->cpu)) 788 goto unlock; 789 790 if (!down_read_trylock(&cpufreq_rwsem)) 791 goto unlock; 792 793 down_write(&policy->rwsem); 794 795 if (fattr->store) 796 ret = fattr->store(policy, buf, count); 797 else 798 ret = -EIO; 799 800 up_write(&policy->rwsem); 801 802 up_read(&cpufreq_rwsem); 803 unlock: 804 put_online_cpus(); 805 806 return ret; 807 } 808 809 static void cpufreq_sysfs_release(struct kobject *kobj) 810 { 811 struct cpufreq_policy *policy = to_policy(kobj); 812 pr_debug("last reference is dropped\n"); 813 complete(&policy->kobj_unregister); 814 } 815 816 static const struct sysfs_ops sysfs_ops = { 817 .show = show, 818 .store = store, 819 }; 820 821 static struct kobj_type ktype_cpufreq = { 822 .sysfs_ops = &sysfs_ops, 823 .default_attrs = default_attrs, 824 .release = cpufreq_sysfs_release, 825 }; 826 827 struct kobject *cpufreq_global_kobject; 828 EXPORT_SYMBOL(cpufreq_global_kobject); 829 830 static int cpufreq_global_kobject_usage; 831 832 int cpufreq_get_global_kobject(void) 833 { 834 if (!cpufreq_global_kobject_usage++) 835 return kobject_add(cpufreq_global_kobject, 836 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 837 838 return 0; 839 } 840 EXPORT_SYMBOL(cpufreq_get_global_kobject); 841 842 void cpufreq_put_global_kobject(void) 843 { 844 if (!--cpufreq_global_kobject_usage) 845 kobject_del(cpufreq_global_kobject); 846 } 847 EXPORT_SYMBOL(cpufreq_put_global_kobject); 848 849 int cpufreq_sysfs_create_file(const struct attribute *attr) 850 { 851 int ret = cpufreq_get_global_kobject(); 852 853 if (!ret) { 854 ret = sysfs_create_file(cpufreq_global_kobject, attr); 855 if (ret) 856 cpufreq_put_global_kobject(); 857 } 858 859 return ret; 860 } 861 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 862 863 void cpufreq_sysfs_remove_file(const struct attribute *attr) 864 { 865 sysfs_remove_file(cpufreq_global_kobject, attr); 866 cpufreq_put_global_kobject(); 867 } 868 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 869 870 /* symlink affected CPUs */ 871 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 872 { 873 unsigned int j; 874 int ret = 0; 875 876 for_each_cpu(j, policy->cpus) { 877 struct device *cpu_dev; 878 879 if (j == policy->cpu) 880 continue; 881 882 pr_debug("Adding link for CPU: %u\n", j); 883 cpu_dev = get_cpu_device(j); 884 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 885 "cpufreq"); 886 if (ret) 887 break; 888 } 889 return ret; 890 } 891 892 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy, 893 struct device *dev) 894 { 895 struct freq_attr **drv_attr; 896 int ret = 0; 897 898 /* set up files for this cpu device */ 899 drv_attr = cpufreq_driver->attr; 900 while (drv_attr && *drv_attr) { 901 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 902 if (ret) 903 return ret; 904 drv_attr++; 905 } 906 if (cpufreq_driver->get) { 907 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 908 if (ret) 909 return ret; 910 } 911 912 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 913 if (ret) 914 return ret; 915 916 if (cpufreq_driver->bios_limit) { 917 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 918 if (ret) 919 return ret; 920 } 921 922 return cpufreq_add_dev_symlink(policy); 923 } 924 925 static void cpufreq_init_policy(struct cpufreq_policy *policy) 926 { 927 struct cpufreq_governor *gov = NULL; 928 struct cpufreq_policy new_policy; 929 int ret = 0; 930 931 memcpy(&new_policy, policy, sizeof(*policy)); 932 933 /* Update governor of new_policy to the governor used before hotplug */ 934 gov = find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu)); 935 if (gov) 936 pr_debug("Restoring governor %s for cpu %d\n", 937 policy->governor->name, policy->cpu); 938 else 939 gov = CPUFREQ_DEFAULT_GOVERNOR; 940 941 new_policy.governor = gov; 942 943 /* Use the default policy if its valid. */ 944 if (cpufreq_driver->setpolicy) 945 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL); 946 947 /* set default policy */ 948 ret = cpufreq_set_policy(policy, &new_policy); 949 if (ret) { 950 pr_debug("setting policy failed\n"); 951 if (cpufreq_driver->exit) 952 cpufreq_driver->exit(policy); 953 } 954 } 955 956 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, 957 unsigned int cpu, struct device *dev) 958 { 959 int ret = 0; 960 unsigned long flags; 961 962 if (has_target()) { 963 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 964 if (ret) { 965 pr_err("%s: Failed to stop governor\n", __func__); 966 return ret; 967 } 968 } 969 970 down_write(&policy->rwsem); 971 972 write_lock_irqsave(&cpufreq_driver_lock, flags); 973 974 cpumask_set_cpu(cpu, policy->cpus); 975 per_cpu(cpufreq_cpu_data, cpu) = policy; 976 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 977 978 up_write(&policy->rwsem); 979 980 if (has_target()) { 981 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 982 if (!ret) 983 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 984 985 if (ret) { 986 pr_err("%s: Failed to start governor\n", __func__); 987 return ret; 988 } 989 } 990 991 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 992 } 993 994 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu) 995 { 996 struct cpufreq_policy *policy; 997 unsigned long flags; 998 999 read_lock_irqsave(&cpufreq_driver_lock, flags); 1000 1001 policy = per_cpu(cpufreq_cpu_data_fallback, cpu); 1002 1003 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1004 1005 if (policy) 1006 policy->governor = NULL; 1007 1008 return policy; 1009 } 1010 1011 static struct cpufreq_policy *cpufreq_policy_alloc(void) 1012 { 1013 struct cpufreq_policy *policy; 1014 1015 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1016 if (!policy) 1017 return NULL; 1018 1019 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1020 goto err_free_policy; 1021 1022 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1023 goto err_free_cpumask; 1024 1025 INIT_LIST_HEAD(&policy->policy_list); 1026 init_rwsem(&policy->rwsem); 1027 spin_lock_init(&policy->transition_lock); 1028 init_waitqueue_head(&policy->transition_wait); 1029 1030 return policy; 1031 1032 err_free_cpumask: 1033 free_cpumask_var(policy->cpus); 1034 err_free_policy: 1035 kfree(policy); 1036 1037 return NULL; 1038 } 1039 1040 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1041 { 1042 struct kobject *kobj; 1043 struct completion *cmp; 1044 1045 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1046 CPUFREQ_REMOVE_POLICY, policy); 1047 1048 down_read(&policy->rwsem); 1049 kobj = &policy->kobj; 1050 cmp = &policy->kobj_unregister; 1051 up_read(&policy->rwsem); 1052 kobject_put(kobj); 1053 1054 /* 1055 * We need to make sure that the underlying kobj is 1056 * actually not referenced anymore by anybody before we 1057 * proceed with unloading. 1058 */ 1059 pr_debug("waiting for dropping of refcount\n"); 1060 wait_for_completion(cmp); 1061 pr_debug("wait complete\n"); 1062 } 1063 1064 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1065 { 1066 free_cpumask_var(policy->related_cpus); 1067 free_cpumask_var(policy->cpus); 1068 kfree(policy); 1069 } 1070 1071 static int update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu, 1072 struct device *cpu_dev) 1073 { 1074 int ret; 1075 1076 if (WARN_ON(cpu == policy->cpu)) 1077 return 0; 1078 1079 /* Move kobject to the new policy->cpu */ 1080 ret = kobject_move(&policy->kobj, &cpu_dev->kobj); 1081 if (ret) { 1082 pr_err("%s: Failed to move kobj: %d\n", __func__, ret); 1083 return ret; 1084 } 1085 1086 down_write(&policy->rwsem); 1087 1088 policy->last_cpu = policy->cpu; 1089 policy->cpu = cpu; 1090 1091 up_write(&policy->rwsem); 1092 1093 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1094 CPUFREQ_UPDATE_POLICY_CPU, policy); 1095 1096 return 0; 1097 } 1098 1099 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1100 { 1101 unsigned int j, cpu = dev->id; 1102 int ret = -ENOMEM; 1103 struct cpufreq_policy *policy; 1104 unsigned long flags; 1105 bool recover_policy = cpufreq_suspended; 1106 1107 if (cpu_is_offline(cpu)) 1108 return 0; 1109 1110 pr_debug("adding CPU %u\n", cpu); 1111 1112 /* check whether a different CPU already registered this 1113 * CPU because it is in the same boat. */ 1114 policy = cpufreq_cpu_get_raw(cpu); 1115 if (unlikely(policy)) 1116 return 0; 1117 1118 if (!down_read_trylock(&cpufreq_rwsem)) 1119 return 0; 1120 1121 /* Check if this cpu was hot-unplugged earlier and has siblings */ 1122 read_lock_irqsave(&cpufreq_driver_lock, flags); 1123 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 1124 if (cpumask_test_cpu(cpu, policy->related_cpus)) { 1125 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1126 ret = cpufreq_add_policy_cpu(policy, cpu, dev); 1127 up_read(&cpufreq_rwsem); 1128 return ret; 1129 } 1130 } 1131 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1132 1133 /* 1134 * Restore the saved policy when doing light-weight init and fall back 1135 * to the full init if that fails. 1136 */ 1137 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL; 1138 if (!policy) { 1139 recover_policy = false; 1140 policy = cpufreq_policy_alloc(); 1141 if (!policy) 1142 goto nomem_out; 1143 } 1144 1145 /* 1146 * In the resume path, since we restore a saved policy, the assignment 1147 * to policy->cpu is like an update of the existing policy, rather than 1148 * the creation of a brand new one. So we need to perform this update 1149 * by invoking update_policy_cpu(). 1150 */ 1151 if (recover_policy && cpu != policy->cpu) 1152 WARN_ON(update_policy_cpu(policy, cpu, dev)); 1153 else 1154 policy->cpu = cpu; 1155 1156 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1157 1158 init_completion(&policy->kobj_unregister); 1159 INIT_WORK(&policy->update, handle_update); 1160 1161 /* call driver. From then on the cpufreq must be able 1162 * to accept all calls to ->verify and ->setpolicy for this CPU 1163 */ 1164 ret = cpufreq_driver->init(policy); 1165 if (ret) { 1166 pr_debug("initialization failed\n"); 1167 goto err_set_policy_cpu; 1168 } 1169 1170 down_write(&policy->rwsem); 1171 1172 /* related cpus should atleast have policy->cpus */ 1173 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1174 1175 /* 1176 * affected cpus must always be the one, which are online. We aren't 1177 * managing offline cpus here. 1178 */ 1179 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1180 1181 if (!recover_policy) { 1182 policy->user_policy.min = policy->min; 1183 policy->user_policy.max = policy->max; 1184 1185 /* prepare interface data */ 1186 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1187 &dev->kobj, "cpufreq"); 1188 if (ret) { 1189 pr_err("%s: failed to init policy->kobj: %d\n", 1190 __func__, ret); 1191 goto err_init_policy_kobj; 1192 } 1193 } 1194 1195 write_lock_irqsave(&cpufreq_driver_lock, flags); 1196 for_each_cpu(j, policy->cpus) 1197 per_cpu(cpufreq_cpu_data, j) = policy; 1198 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1199 1200 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1201 policy->cur = cpufreq_driver->get(policy->cpu); 1202 if (!policy->cur) { 1203 pr_err("%s: ->get() failed\n", __func__); 1204 goto err_get_freq; 1205 } 1206 } 1207 1208 /* 1209 * Sometimes boot loaders set CPU frequency to a value outside of 1210 * frequency table present with cpufreq core. In such cases CPU might be 1211 * unstable if it has to run on that frequency for long duration of time 1212 * and so its better to set it to a frequency which is specified in 1213 * freq-table. This also makes cpufreq stats inconsistent as 1214 * cpufreq-stats would fail to register because current frequency of CPU 1215 * isn't found in freq-table. 1216 * 1217 * Because we don't want this change to effect boot process badly, we go 1218 * for the next freq which is >= policy->cur ('cur' must be set by now, 1219 * otherwise we will end up setting freq to lowest of the table as 'cur' 1220 * is initialized to zero). 1221 * 1222 * We are passing target-freq as "policy->cur - 1" otherwise 1223 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1224 * equal to target-freq. 1225 */ 1226 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1227 && has_target()) { 1228 /* Are we running at unknown frequency ? */ 1229 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1230 if (ret == -EINVAL) { 1231 /* Warn user and fix it */ 1232 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1233 __func__, policy->cpu, policy->cur); 1234 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1235 CPUFREQ_RELATION_L); 1236 1237 /* 1238 * Reaching here after boot in a few seconds may not 1239 * mean that system will remain stable at "unknown" 1240 * frequency for longer duration. Hence, a BUG_ON(). 1241 */ 1242 BUG_ON(ret); 1243 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1244 __func__, policy->cpu, policy->cur); 1245 } 1246 } 1247 1248 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1249 CPUFREQ_START, policy); 1250 1251 if (!recover_policy) { 1252 ret = cpufreq_add_dev_interface(policy, dev); 1253 if (ret) 1254 goto err_out_unregister; 1255 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1256 CPUFREQ_CREATE_POLICY, policy); 1257 } 1258 1259 write_lock_irqsave(&cpufreq_driver_lock, flags); 1260 list_add(&policy->policy_list, &cpufreq_policy_list); 1261 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1262 1263 cpufreq_init_policy(policy); 1264 1265 if (!recover_policy) { 1266 policy->user_policy.policy = policy->policy; 1267 policy->user_policy.governor = policy->governor; 1268 } 1269 up_write(&policy->rwsem); 1270 1271 kobject_uevent(&policy->kobj, KOBJ_ADD); 1272 1273 up_read(&cpufreq_rwsem); 1274 1275 /* Callback for handling stuff after policy is ready */ 1276 if (cpufreq_driver->ready) 1277 cpufreq_driver->ready(policy); 1278 1279 pr_debug("initialization complete\n"); 1280 1281 return 0; 1282 1283 err_out_unregister: 1284 err_get_freq: 1285 write_lock_irqsave(&cpufreq_driver_lock, flags); 1286 for_each_cpu(j, policy->cpus) 1287 per_cpu(cpufreq_cpu_data, j) = NULL; 1288 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1289 1290 if (!recover_policy) { 1291 kobject_put(&policy->kobj); 1292 wait_for_completion(&policy->kobj_unregister); 1293 } 1294 err_init_policy_kobj: 1295 up_write(&policy->rwsem); 1296 1297 if (cpufreq_driver->exit) 1298 cpufreq_driver->exit(policy); 1299 err_set_policy_cpu: 1300 if (recover_policy) { 1301 /* Do not leave stale fallback data behind. */ 1302 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL; 1303 cpufreq_policy_put_kobj(policy); 1304 } 1305 cpufreq_policy_free(policy); 1306 1307 nomem_out: 1308 up_read(&cpufreq_rwsem); 1309 1310 return ret; 1311 } 1312 1313 /** 1314 * cpufreq_add_dev - add a CPU device 1315 * 1316 * Adds the cpufreq interface for a CPU device. 1317 * 1318 * The Oracle says: try running cpufreq registration/unregistration concurrently 1319 * with with cpu hotplugging and all hell will break loose. Tried to clean this 1320 * mess up, but more thorough testing is needed. - Mathieu 1321 */ 1322 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1323 { 1324 return __cpufreq_add_dev(dev, sif); 1325 } 1326 1327 static int __cpufreq_remove_dev_prepare(struct device *dev, 1328 struct subsys_interface *sif) 1329 { 1330 unsigned int cpu = dev->id, cpus; 1331 int ret; 1332 unsigned long flags; 1333 struct cpufreq_policy *policy; 1334 1335 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1336 1337 write_lock_irqsave(&cpufreq_driver_lock, flags); 1338 1339 policy = per_cpu(cpufreq_cpu_data, cpu); 1340 1341 /* Save the policy somewhere when doing a light-weight tear-down */ 1342 if (cpufreq_suspended) 1343 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy; 1344 1345 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1346 1347 if (!policy) { 1348 pr_debug("%s: No cpu_data found\n", __func__); 1349 return -EINVAL; 1350 } 1351 1352 if (has_target()) { 1353 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1354 if (ret) { 1355 pr_err("%s: Failed to stop governor\n", __func__); 1356 return ret; 1357 } 1358 1359 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1360 policy->governor->name, CPUFREQ_NAME_LEN); 1361 } 1362 1363 down_read(&policy->rwsem); 1364 cpus = cpumask_weight(policy->cpus); 1365 up_read(&policy->rwsem); 1366 1367 if (cpu != policy->cpu) { 1368 sysfs_remove_link(&dev->kobj, "cpufreq"); 1369 } else if (cpus > 1) { 1370 /* Nominate new CPU */ 1371 int new_cpu = cpumask_any_but(policy->cpus, cpu); 1372 struct device *cpu_dev = get_cpu_device(new_cpu); 1373 1374 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1375 ret = update_policy_cpu(policy, new_cpu, cpu_dev); 1376 if (ret) { 1377 if (sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 1378 "cpufreq")) 1379 pr_err("%s: Failed to restore kobj link to cpu:%d\n", 1380 __func__, cpu_dev->id); 1381 return ret; 1382 } 1383 1384 if (!cpufreq_suspended) 1385 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n", 1386 __func__, new_cpu, cpu); 1387 } else if (cpufreq_driver->stop_cpu) { 1388 cpufreq_driver->stop_cpu(policy); 1389 } 1390 1391 return 0; 1392 } 1393 1394 static int __cpufreq_remove_dev_finish(struct device *dev, 1395 struct subsys_interface *sif) 1396 { 1397 unsigned int cpu = dev->id, cpus; 1398 int ret; 1399 unsigned long flags; 1400 struct cpufreq_policy *policy; 1401 1402 read_lock_irqsave(&cpufreq_driver_lock, flags); 1403 policy = per_cpu(cpufreq_cpu_data, cpu); 1404 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1405 1406 if (!policy) { 1407 pr_debug("%s: No cpu_data found\n", __func__); 1408 return -EINVAL; 1409 } 1410 1411 down_write(&policy->rwsem); 1412 cpus = cpumask_weight(policy->cpus); 1413 1414 if (cpus > 1) 1415 cpumask_clear_cpu(cpu, policy->cpus); 1416 up_write(&policy->rwsem); 1417 1418 /* If cpu is last user of policy, free policy */ 1419 if (cpus == 1) { 1420 if (has_target()) { 1421 ret = __cpufreq_governor(policy, 1422 CPUFREQ_GOV_POLICY_EXIT); 1423 if (ret) { 1424 pr_err("%s: Failed to exit governor\n", 1425 __func__); 1426 return ret; 1427 } 1428 } 1429 1430 if (!cpufreq_suspended) 1431 cpufreq_policy_put_kobj(policy); 1432 1433 /* 1434 * Perform the ->exit() even during light-weight tear-down, 1435 * since this is a core component, and is essential for the 1436 * subsequent light-weight ->init() to succeed. 1437 */ 1438 if (cpufreq_driver->exit) 1439 cpufreq_driver->exit(policy); 1440 1441 /* Remove policy from list of active policies */ 1442 write_lock_irqsave(&cpufreq_driver_lock, flags); 1443 list_del(&policy->policy_list); 1444 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1445 1446 if (!cpufreq_suspended) 1447 cpufreq_policy_free(policy); 1448 } else if (has_target()) { 1449 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1450 if (!ret) 1451 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1452 1453 if (ret) { 1454 pr_err("%s: Failed to start governor\n", __func__); 1455 return ret; 1456 } 1457 } 1458 1459 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1460 return 0; 1461 } 1462 1463 /** 1464 * cpufreq_remove_dev - remove a CPU device 1465 * 1466 * Removes the cpufreq interface for a CPU device. 1467 */ 1468 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1469 { 1470 unsigned int cpu = dev->id; 1471 int ret; 1472 1473 if (cpu_is_offline(cpu)) 1474 return 0; 1475 1476 ret = __cpufreq_remove_dev_prepare(dev, sif); 1477 1478 if (!ret) 1479 ret = __cpufreq_remove_dev_finish(dev, sif); 1480 1481 return ret; 1482 } 1483 1484 static void handle_update(struct work_struct *work) 1485 { 1486 struct cpufreq_policy *policy = 1487 container_of(work, struct cpufreq_policy, update); 1488 unsigned int cpu = policy->cpu; 1489 pr_debug("handle_update for cpu %u called\n", cpu); 1490 cpufreq_update_policy(cpu); 1491 } 1492 1493 /** 1494 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1495 * in deep trouble. 1496 * @policy: policy managing CPUs 1497 * @new_freq: CPU frequency the CPU actually runs at 1498 * 1499 * We adjust to current frequency first, and need to clean up later. 1500 * So either call to cpufreq_update_policy() or schedule handle_update()). 1501 */ 1502 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1503 unsigned int new_freq) 1504 { 1505 struct cpufreq_freqs freqs; 1506 1507 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1508 policy->cur, new_freq); 1509 1510 freqs.old = policy->cur; 1511 freqs.new = new_freq; 1512 1513 cpufreq_freq_transition_begin(policy, &freqs); 1514 cpufreq_freq_transition_end(policy, &freqs, 0); 1515 } 1516 1517 /** 1518 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1519 * @cpu: CPU number 1520 * 1521 * This is the last known freq, without actually getting it from the driver. 1522 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1523 */ 1524 unsigned int cpufreq_quick_get(unsigned int cpu) 1525 { 1526 struct cpufreq_policy *policy; 1527 unsigned int ret_freq = 0; 1528 1529 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1530 return cpufreq_driver->get(cpu); 1531 1532 policy = cpufreq_cpu_get(cpu); 1533 if (policy) { 1534 ret_freq = policy->cur; 1535 cpufreq_cpu_put(policy); 1536 } 1537 1538 return ret_freq; 1539 } 1540 EXPORT_SYMBOL(cpufreq_quick_get); 1541 1542 /** 1543 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1544 * @cpu: CPU number 1545 * 1546 * Just return the max possible frequency for a given CPU. 1547 */ 1548 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1549 { 1550 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1551 unsigned int ret_freq = 0; 1552 1553 if (policy) { 1554 ret_freq = policy->max; 1555 cpufreq_cpu_put(policy); 1556 } 1557 1558 return ret_freq; 1559 } 1560 EXPORT_SYMBOL(cpufreq_quick_get_max); 1561 1562 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1563 { 1564 unsigned int ret_freq = 0; 1565 1566 if (!cpufreq_driver->get) 1567 return ret_freq; 1568 1569 ret_freq = cpufreq_driver->get(policy->cpu); 1570 1571 if (ret_freq && policy->cur && 1572 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1573 /* verify no discrepancy between actual and 1574 saved value exists */ 1575 if (unlikely(ret_freq != policy->cur)) { 1576 cpufreq_out_of_sync(policy, ret_freq); 1577 schedule_work(&policy->update); 1578 } 1579 } 1580 1581 return ret_freq; 1582 } 1583 1584 /** 1585 * cpufreq_get - get the current CPU frequency (in kHz) 1586 * @cpu: CPU number 1587 * 1588 * Get the CPU current (static) CPU frequency 1589 */ 1590 unsigned int cpufreq_get(unsigned int cpu) 1591 { 1592 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1593 unsigned int ret_freq = 0; 1594 1595 if (policy) { 1596 down_read(&policy->rwsem); 1597 ret_freq = __cpufreq_get(policy); 1598 up_read(&policy->rwsem); 1599 1600 cpufreq_cpu_put(policy); 1601 } 1602 1603 return ret_freq; 1604 } 1605 EXPORT_SYMBOL(cpufreq_get); 1606 1607 static struct subsys_interface cpufreq_interface = { 1608 .name = "cpufreq", 1609 .subsys = &cpu_subsys, 1610 .add_dev = cpufreq_add_dev, 1611 .remove_dev = cpufreq_remove_dev, 1612 }; 1613 1614 /* 1615 * In case platform wants some specific frequency to be configured 1616 * during suspend.. 1617 */ 1618 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1619 { 1620 int ret; 1621 1622 if (!policy->suspend_freq) { 1623 pr_err("%s: suspend_freq can't be zero\n", __func__); 1624 return -EINVAL; 1625 } 1626 1627 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1628 policy->suspend_freq); 1629 1630 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1631 CPUFREQ_RELATION_H); 1632 if (ret) 1633 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1634 __func__, policy->suspend_freq, ret); 1635 1636 return ret; 1637 } 1638 EXPORT_SYMBOL(cpufreq_generic_suspend); 1639 1640 /** 1641 * cpufreq_suspend() - Suspend CPUFreq governors 1642 * 1643 * Called during system wide Suspend/Hibernate cycles for suspending governors 1644 * as some platforms can't change frequency after this point in suspend cycle. 1645 * Because some of the devices (like: i2c, regulators, etc) they use for 1646 * changing frequency are suspended quickly after this point. 1647 */ 1648 void cpufreq_suspend(void) 1649 { 1650 struct cpufreq_policy *policy; 1651 1652 if (!cpufreq_driver) 1653 return; 1654 1655 if (!has_target()) 1656 goto suspend; 1657 1658 pr_debug("%s: Suspending Governors\n", __func__); 1659 1660 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 1661 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP)) 1662 pr_err("%s: Failed to stop governor for policy: %p\n", 1663 __func__, policy); 1664 else if (cpufreq_driver->suspend 1665 && cpufreq_driver->suspend(policy)) 1666 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1667 policy); 1668 } 1669 1670 suspend: 1671 cpufreq_suspended = true; 1672 } 1673 1674 /** 1675 * cpufreq_resume() - Resume CPUFreq governors 1676 * 1677 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1678 * are suspended with cpufreq_suspend(). 1679 */ 1680 void cpufreq_resume(void) 1681 { 1682 struct cpufreq_policy *policy; 1683 1684 if (!cpufreq_driver) 1685 return; 1686 1687 cpufreq_suspended = false; 1688 1689 if (!has_target()) 1690 return; 1691 1692 pr_debug("%s: Resuming Governors\n", __func__); 1693 1694 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 1695 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) 1696 pr_err("%s: Failed to resume driver: %p\n", __func__, 1697 policy); 1698 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START) 1699 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS)) 1700 pr_err("%s: Failed to start governor for policy: %p\n", 1701 __func__, policy); 1702 1703 /* 1704 * schedule call cpufreq_update_policy() for boot CPU, i.e. last 1705 * policy in list. It will verify that the current freq is in 1706 * sync with what we believe it to be. 1707 */ 1708 if (list_is_last(&policy->policy_list, &cpufreq_policy_list)) 1709 schedule_work(&policy->update); 1710 } 1711 } 1712 1713 /** 1714 * cpufreq_get_current_driver - return current driver's name 1715 * 1716 * Return the name string of the currently loaded cpufreq driver 1717 * or NULL, if none. 1718 */ 1719 const char *cpufreq_get_current_driver(void) 1720 { 1721 if (cpufreq_driver) 1722 return cpufreq_driver->name; 1723 1724 return NULL; 1725 } 1726 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1727 1728 /** 1729 * cpufreq_get_driver_data - return current driver data 1730 * 1731 * Return the private data of the currently loaded cpufreq 1732 * driver, or NULL if no cpufreq driver is loaded. 1733 */ 1734 void *cpufreq_get_driver_data(void) 1735 { 1736 if (cpufreq_driver) 1737 return cpufreq_driver->driver_data; 1738 1739 return NULL; 1740 } 1741 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1742 1743 /********************************************************************* 1744 * NOTIFIER LISTS INTERFACE * 1745 *********************************************************************/ 1746 1747 /** 1748 * cpufreq_register_notifier - register a driver with cpufreq 1749 * @nb: notifier function to register 1750 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1751 * 1752 * Add a driver to one of two lists: either a list of drivers that 1753 * are notified about clock rate changes (once before and once after 1754 * the transition), or a list of drivers that are notified about 1755 * changes in cpufreq policy. 1756 * 1757 * This function may sleep, and has the same return conditions as 1758 * blocking_notifier_chain_register. 1759 */ 1760 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1761 { 1762 int ret; 1763 1764 if (cpufreq_disabled()) 1765 return -EINVAL; 1766 1767 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1768 1769 switch (list) { 1770 case CPUFREQ_TRANSITION_NOTIFIER: 1771 ret = srcu_notifier_chain_register( 1772 &cpufreq_transition_notifier_list, nb); 1773 break; 1774 case CPUFREQ_POLICY_NOTIFIER: 1775 ret = blocking_notifier_chain_register( 1776 &cpufreq_policy_notifier_list, nb); 1777 break; 1778 default: 1779 ret = -EINVAL; 1780 } 1781 1782 return ret; 1783 } 1784 EXPORT_SYMBOL(cpufreq_register_notifier); 1785 1786 /** 1787 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1788 * @nb: notifier block to be unregistered 1789 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1790 * 1791 * Remove a driver from the CPU frequency notifier list. 1792 * 1793 * This function may sleep, and has the same return conditions as 1794 * blocking_notifier_chain_unregister. 1795 */ 1796 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1797 { 1798 int ret; 1799 1800 if (cpufreq_disabled()) 1801 return -EINVAL; 1802 1803 switch (list) { 1804 case CPUFREQ_TRANSITION_NOTIFIER: 1805 ret = srcu_notifier_chain_unregister( 1806 &cpufreq_transition_notifier_list, nb); 1807 break; 1808 case CPUFREQ_POLICY_NOTIFIER: 1809 ret = blocking_notifier_chain_unregister( 1810 &cpufreq_policy_notifier_list, nb); 1811 break; 1812 default: 1813 ret = -EINVAL; 1814 } 1815 1816 return ret; 1817 } 1818 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1819 1820 1821 /********************************************************************* 1822 * GOVERNORS * 1823 *********************************************************************/ 1824 1825 /* Must set freqs->new to intermediate frequency */ 1826 static int __target_intermediate(struct cpufreq_policy *policy, 1827 struct cpufreq_freqs *freqs, int index) 1828 { 1829 int ret; 1830 1831 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1832 1833 /* We don't need to switch to intermediate freq */ 1834 if (!freqs->new) 1835 return 0; 1836 1837 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1838 __func__, policy->cpu, freqs->old, freqs->new); 1839 1840 cpufreq_freq_transition_begin(policy, freqs); 1841 ret = cpufreq_driver->target_intermediate(policy, index); 1842 cpufreq_freq_transition_end(policy, freqs, ret); 1843 1844 if (ret) 1845 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1846 __func__, ret); 1847 1848 return ret; 1849 } 1850 1851 static int __target_index(struct cpufreq_policy *policy, 1852 struct cpufreq_frequency_table *freq_table, int index) 1853 { 1854 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1855 unsigned int intermediate_freq = 0; 1856 int retval = -EINVAL; 1857 bool notify; 1858 1859 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1860 if (notify) { 1861 /* Handle switching to intermediate frequency */ 1862 if (cpufreq_driver->get_intermediate) { 1863 retval = __target_intermediate(policy, &freqs, index); 1864 if (retval) 1865 return retval; 1866 1867 intermediate_freq = freqs.new; 1868 /* Set old freq to intermediate */ 1869 if (intermediate_freq) 1870 freqs.old = freqs.new; 1871 } 1872 1873 freqs.new = freq_table[index].frequency; 1874 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1875 __func__, policy->cpu, freqs.old, freqs.new); 1876 1877 cpufreq_freq_transition_begin(policy, &freqs); 1878 } 1879 1880 retval = cpufreq_driver->target_index(policy, index); 1881 if (retval) 1882 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1883 retval); 1884 1885 if (notify) { 1886 cpufreq_freq_transition_end(policy, &freqs, retval); 1887 1888 /* 1889 * Failed after setting to intermediate freq? Driver should have 1890 * reverted back to initial frequency and so should we. Check 1891 * here for intermediate_freq instead of get_intermediate, in 1892 * case we have't switched to intermediate freq at all. 1893 */ 1894 if (unlikely(retval && intermediate_freq)) { 1895 freqs.old = intermediate_freq; 1896 freqs.new = policy->restore_freq; 1897 cpufreq_freq_transition_begin(policy, &freqs); 1898 cpufreq_freq_transition_end(policy, &freqs, 0); 1899 } 1900 } 1901 1902 return retval; 1903 } 1904 1905 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1906 unsigned int target_freq, 1907 unsigned int relation) 1908 { 1909 unsigned int old_target_freq = target_freq; 1910 int retval = -EINVAL; 1911 1912 if (cpufreq_disabled()) 1913 return -ENODEV; 1914 1915 /* Make sure that target_freq is within supported range */ 1916 if (target_freq > policy->max) 1917 target_freq = policy->max; 1918 if (target_freq < policy->min) 1919 target_freq = policy->min; 1920 1921 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1922 policy->cpu, target_freq, relation, old_target_freq); 1923 1924 /* 1925 * This might look like a redundant call as we are checking it again 1926 * after finding index. But it is left intentionally for cases where 1927 * exactly same freq is called again and so we can save on few function 1928 * calls. 1929 */ 1930 if (target_freq == policy->cur) 1931 return 0; 1932 1933 /* Save last value to restore later on errors */ 1934 policy->restore_freq = policy->cur; 1935 1936 if (cpufreq_driver->target) 1937 retval = cpufreq_driver->target(policy, target_freq, relation); 1938 else if (cpufreq_driver->target_index) { 1939 struct cpufreq_frequency_table *freq_table; 1940 int index; 1941 1942 freq_table = cpufreq_frequency_get_table(policy->cpu); 1943 if (unlikely(!freq_table)) { 1944 pr_err("%s: Unable to find freq_table\n", __func__); 1945 goto out; 1946 } 1947 1948 retval = cpufreq_frequency_table_target(policy, freq_table, 1949 target_freq, relation, &index); 1950 if (unlikely(retval)) { 1951 pr_err("%s: Unable to find matching freq\n", __func__); 1952 goto out; 1953 } 1954 1955 if (freq_table[index].frequency == policy->cur) { 1956 retval = 0; 1957 goto out; 1958 } 1959 1960 retval = __target_index(policy, freq_table, index); 1961 } 1962 1963 out: 1964 return retval; 1965 } 1966 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1967 1968 int cpufreq_driver_target(struct cpufreq_policy *policy, 1969 unsigned int target_freq, 1970 unsigned int relation) 1971 { 1972 int ret = -EINVAL; 1973 1974 down_write(&policy->rwsem); 1975 1976 ret = __cpufreq_driver_target(policy, target_freq, relation); 1977 1978 up_write(&policy->rwsem); 1979 1980 return ret; 1981 } 1982 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1983 1984 static int __cpufreq_governor(struct cpufreq_policy *policy, 1985 unsigned int event) 1986 { 1987 int ret; 1988 1989 /* Only must be defined when default governor is known to have latency 1990 restrictions, like e.g. conservative or ondemand. 1991 That this is the case is already ensured in Kconfig 1992 */ 1993 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1994 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1995 #else 1996 struct cpufreq_governor *gov = NULL; 1997 #endif 1998 1999 /* Don't start any governor operations if we are entering suspend */ 2000 if (cpufreq_suspended) 2001 return 0; 2002 /* 2003 * Governor might not be initiated here if ACPI _PPC changed 2004 * notification happened, so check it. 2005 */ 2006 if (!policy->governor) 2007 return -EINVAL; 2008 2009 if (policy->governor->max_transition_latency && 2010 policy->cpuinfo.transition_latency > 2011 policy->governor->max_transition_latency) { 2012 if (!gov) 2013 return -EINVAL; 2014 else { 2015 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 2016 policy->governor->name, gov->name); 2017 policy->governor = gov; 2018 } 2019 } 2020 2021 if (event == CPUFREQ_GOV_POLICY_INIT) 2022 if (!try_module_get(policy->governor->owner)) 2023 return -EINVAL; 2024 2025 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 2026 policy->cpu, event); 2027 2028 mutex_lock(&cpufreq_governor_lock); 2029 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 2030 || (!policy->governor_enabled 2031 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 2032 mutex_unlock(&cpufreq_governor_lock); 2033 return -EBUSY; 2034 } 2035 2036 if (event == CPUFREQ_GOV_STOP) 2037 policy->governor_enabled = false; 2038 else if (event == CPUFREQ_GOV_START) 2039 policy->governor_enabled = true; 2040 2041 mutex_unlock(&cpufreq_governor_lock); 2042 2043 ret = policy->governor->governor(policy, event); 2044 2045 if (!ret) { 2046 if (event == CPUFREQ_GOV_POLICY_INIT) 2047 policy->governor->initialized++; 2048 else if (event == CPUFREQ_GOV_POLICY_EXIT) 2049 policy->governor->initialized--; 2050 } else { 2051 /* Restore original values */ 2052 mutex_lock(&cpufreq_governor_lock); 2053 if (event == CPUFREQ_GOV_STOP) 2054 policy->governor_enabled = true; 2055 else if (event == CPUFREQ_GOV_START) 2056 policy->governor_enabled = false; 2057 mutex_unlock(&cpufreq_governor_lock); 2058 } 2059 2060 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 2061 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 2062 module_put(policy->governor->owner); 2063 2064 return ret; 2065 } 2066 2067 int cpufreq_register_governor(struct cpufreq_governor *governor) 2068 { 2069 int err; 2070 2071 if (!governor) 2072 return -EINVAL; 2073 2074 if (cpufreq_disabled()) 2075 return -ENODEV; 2076 2077 mutex_lock(&cpufreq_governor_mutex); 2078 2079 governor->initialized = 0; 2080 err = -EBUSY; 2081 if (!find_governor(governor->name)) { 2082 err = 0; 2083 list_add(&governor->governor_list, &cpufreq_governor_list); 2084 } 2085 2086 mutex_unlock(&cpufreq_governor_mutex); 2087 return err; 2088 } 2089 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2090 2091 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2092 { 2093 int cpu; 2094 2095 if (!governor) 2096 return; 2097 2098 if (cpufreq_disabled()) 2099 return; 2100 2101 for_each_present_cpu(cpu) { 2102 if (cpu_online(cpu)) 2103 continue; 2104 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 2105 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 2106 } 2107 2108 mutex_lock(&cpufreq_governor_mutex); 2109 list_del(&governor->governor_list); 2110 mutex_unlock(&cpufreq_governor_mutex); 2111 return; 2112 } 2113 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2114 2115 2116 /********************************************************************* 2117 * POLICY INTERFACE * 2118 *********************************************************************/ 2119 2120 /** 2121 * cpufreq_get_policy - get the current cpufreq_policy 2122 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2123 * is written 2124 * 2125 * Reads the current cpufreq policy. 2126 */ 2127 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2128 { 2129 struct cpufreq_policy *cpu_policy; 2130 if (!policy) 2131 return -EINVAL; 2132 2133 cpu_policy = cpufreq_cpu_get(cpu); 2134 if (!cpu_policy) 2135 return -EINVAL; 2136 2137 memcpy(policy, cpu_policy, sizeof(*policy)); 2138 2139 cpufreq_cpu_put(cpu_policy); 2140 return 0; 2141 } 2142 EXPORT_SYMBOL(cpufreq_get_policy); 2143 2144 /* 2145 * policy : current policy. 2146 * new_policy: policy to be set. 2147 */ 2148 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2149 struct cpufreq_policy *new_policy) 2150 { 2151 struct cpufreq_governor *old_gov; 2152 int ret; 2153 2154 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2155 new_policy->cpu, new_policy->min, new_policy->max); 2156 2157 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2158 2159 if (new_policy->min > policy->max || new_policy->max < policy->min) 2160 return -EINVAL; 2161 2162 /* verify the cpu speed can be set within this limit */ 2163 ret = cpufreq_driver->verify(new_policy); 2164 if (ret) 2165 return ret; 2166 2167 /* adjust if necessary - all reasons */ 2168 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2169 CPUFREQ_ADJUST, new_policy); 2170 2171 /* adjust if necessary - hardware incompatibility*/ 2172 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2173 CPUFREQ_INCOMPATIBLE, new_policy); 2174 2175 /* 2176 * verify the cpu speed can be set within this limit, which might be 2177 * different to the first one 2178 */ 2179 ret = cpufreq_driver->verify(new_policy); 2180 if (ret) 2181 return ret; 2182 2183 /* notification of the new policy */ 2184 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2185 CPUFREQ_NOTIFY, new_policy); 2186 2187 policy->min = new_policy->min; 2188 policy->max = new_policy->max; 2189 2190 pr_debug("new min and max freqs are %u - %u kHz\n", 2191 policy->min, policy->max); 2192 2193 if (cpufreq_driver->setpolicy) { 2194 policy->policy = new_policy->policy; 2195 pr_debug("setting range\n"); 2196 return cpufreq_driver->setpolicy(new_policy); 2197 } 2198 2199 if (new_policy->governor == policy->governor) 2200 goto out; 2201 2202 pr_debug("governor switch\n"); 2203 2204 /* save old, working values */ 2205 old_gov = policy->governor; 2206 /* end old governor */ 2207 if (old_gov) { 2208 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2209 up_write(&policy->rwsem); 2210 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2211 down_write(&policy->rwsem); 2212 } 2213 2214 /* start new governor */ 2215 policy->governor = new_policy->governor; 2216 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) { 2217 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) 2218 goto out; 2219 2220 up_write(&policy->rwsem); 2221 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2222 down_write(&policy->rwsem); 2223 } 2224 2225 /* new governor failed, so re-start old one */ 2226 pr_debug("starting governor %s failed\n", policy->governor->name); 2227 if (old_gov) { 2228 policy->governor = old_gov; 2229 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2230 __cpufreq_governor(policy, CPUFREQ_GOV_START); 2231 } 2232 2233 return -EINVAL; 2234 2235 out: 2236 pr_debug("governor: change or update limits\n"); 2237 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2238 } 2239 2240 /** 2241 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2242 * @cpu: CPU which shall be re-evaluated 2243 * 2244 * Useful for policy notifiers which have different necessities 2245 * at different times. 2246 */ 2247 int cpufreq_update_policy(unsigned int cpu) 2248 { 2249 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2250 struct cpufreq_policy new_policy; 2251 int ret; 2252 2253 if (!policy) 2254 return -ENODEV; 2255 2256 down_write(&policy->rwsem); 2257 2258 pr_debug("updating policy for CPU %u\n", cpu); 2259 memcpy(&new_policy, policy, sizeof(*policy)); 2260 new_policy.min = policy->user_policy.min; 2261 new_policy.max = policy->user_policy.max; 2262 new_policy.policy = policy->user_policy.policy; 2263 new_policy.governor = policy->user_policy.governor; 2264 2265 /* 2266 * BIOS might change freq behind our back 2267 * -> ask driver for current freq and notify governors about a change 2268 */ 2269 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2270 new_policy.cur = cpufreq_driver->get(cpu); 2271 if (WARN_ON(!new_policy.cur)) { 2272 ret = -EIO; 2273 goto unlock; 2274 } 2275 2276 if (!policy->cur) { 2277 pr_debug("Driver did not initialize current freq\n"); 2278 policy->cur = new_policy.cur; 2279 } else { 2280 if (policy->cur != new_policy.cur && has_target()) 2281 cpufreq_out_of_sync(policy, new_policy.cur); 2282 } 2283 } 2284 2285 ret = cpufreq_set_policy(policy, &new_policy); 2286 2287 unlock: 2288 up_write(&policy->rwsem); 2289 2290 cpufreq_cpu_put(policy); 2291 return ret; 2292 } 2293 EXPORT_SYMBOL(cpufreq_update_policy); 2294 2295 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2296 unsigned long action, void *hcpu) 2297 { 2298 unsigned int cpu = (unsigned long)hcpu; 2299 struct device *dev; 2300 2301 dev = get_cpu_device(cpu); 2302 if (dev) { 2303 switch (action & ~CPU_TASKS_FROZEN) { 2304 case CPU_ONLINE: 2305 __cpufreq_add_dev(dev, NULL); 2306 break; 2307 2308 case CPU_DOWN_PREPARE: 2309 __cpufreq_remove_dev_prepare(dev, NULL); 2310 break; 2311 2312 case CPU_POST_DEAD: 2313 __cpufreq_remove_dev_finish(dev, NULL); 2314 break; 2315 2316 case CPU_DOWN_FAILED: 2317 __cpufreq_add_dev(dev, NULL); 2318 break; 2319 } 2320 } 2321 return NOTIFY_OK; 2322 } 2323 2324 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2325 .notifier_call = cpufreq_cpu_callback, 2326 }; 2327 2328 /********************************************************************* 2329 * BOOST * 2330 *********************************************************************/ 2331 static int cpufreq_boost_set_sw(int state) 2332 { 2333 struct cpufreq_frequency_table *freq_table; 2334 struct cpufreq_policy *policy; 2335 int ret = -EINVAL; 2336 2337 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 2338 freq_table = cpufreq_frequency_get_table(policy->cpu); 2339 if (freq_table) { 2340 ret = cpufreq_frequency_table_cpuinfo(policy, 2341 freq_table); 2342 if (ret) { 2343 pr_err("%s: Policy frequency update failed\n", 2344 __func__); 2345 break; 2346 } 2347 policy->user_policy.max = policy->max; 2348 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2349 } 2350 } 2351 2352 return ret; 2353 } 2354 2355 int cpufreq_boost_trigger_state(int state) 2356 { 2357 unsigned long flags; 2358 int ret = 0; 2359 2360 if (cpufreq_driver->boost_enabled == state) 2361 return 0; 2362 2363 write_lock_irqsave(&cpufreq_driver_lock, flags); 2364 cpufreq_driver->boost_enabled = state; 2365 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2366 2367 ret = cpufreq_driver->set_boost(state); 2368 if (ret) { 2369 write_lock_irqsave(&cpufreq_driver_lock, flags); 2370 cpufreq_driver->boost_enabled = !state; 2371 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2372 2373 pr_err("%s: Cannot %s BOOST\n", 2374 __func__, state ? "enable" : "disable"); 2375 } 2376 2377 return ret; 2378 } 2379 2380 int cpufreq_boost_supported(void) 2381 { 2382 if (likely(cpufreq_driver)) 2383 return cpufreq_driver->boost_supported; 2384 2385 return 0; 2386 } 2387 EXPORT_SYMBOL_GPL(cpufreq_boost_supported); 2388 2389 int cpufreq_boost_enabled(void) 2390 { 2391 return cpufreq_driver->boost_enabled; 2392 } 2393 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2394 2395 /********************************************************************* 2396 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2397 *********************************************************************/ 2398 2399 /** 2400 * cpufreq_register_driver - register a CPU Frequency driver 2401 * @driver_data: A struct cpufreq_driver containing the values# 2402 * submitted by the CPU Frequency driver. 2403 * 2404 * Registers a CPU Frequency driver to this core code. This code 2405 * returns zero on success, -EBUSY when another driver got here first 2406 * (and isn't unregistered in the meantime). 2407 * 2408 */ 2409 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2410 { 2411 unsigned long flags; 2412 int ret; 2413 2414 if (cpufreq_disabled()) 2415 return -ENODEV; 2416 2417 if (!driver_data || !driver_data->verify || !driver_data->init || 2418 !(driver_data->setpolicy || driver_data->target_index || 2419 driver_data->target) || 2420 (driver_data->setpolicy && (driver_data->target_index || 2421 driver_data->target)) || 2422 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2423 return -EINVAL; 2424 2425 pr_debug("trying to register driver %s\n", driver_data->name); 2426 2427 write_lock_irqsave(&cpufreq_driver_lock, flags); 2428 if (cpufreq_driver) { 2429 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2430 return -EEXIST; 2431 } 2432 cpufreq_driver = driver_data; 2433 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2434 2435 if (driver_data->setpolicy) 2436 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2437 2438 if (cpufreq_boost_supported()) { 2439 /* 2440 * Check if driver provides function to enable boost - 2441 * if not, use cpufreq_boost_set_sw as default 2442 */ 2443 if (!cpufreq_driver->set_boost) 2444 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2445 2446 ret = cpufreq_sysfs_create_file(&boost.attr); 2447 if (ret) { 2448 pr_err("%s: cannot register global BOOST sysfs file\n", 2449 __func__); 2450 goto err_null_driver; 2451 } 2452 } 2453 2454 ret = subsys_interface_register(&cpufreq_interface); 2455 if (ret) 2456 goto err_boost_unreg; 2457 2458 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2459 list_empty(&cpufreq_policy_list)) { 2460 /* if all ->init() calls failed, unregister */ 2461 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2462 driver_data->name); 2463 goto err_if_unreg; 2464 } 2465 2466 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2467 pr_debug("driver %s up and running\n", driver_data->name); 2468 2469 return 0; 2470 err_if_unreg: 2471 subsys_interface_unregister(&cpufreq_interface); 2472 err_boost_unreg: 2473 if (cpufreq_boost_supported()) 2474 cpufreq_sysfs_remove_file(&boost.attr); 2475 err_null_driver: 2476 write_lock_irqsave(&cpufreq_driver_lock, flags); 2477 cpufreq_driver = NULL; 2478 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2479 return ret; 2480 } 2481 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2482 2483 /** 2484 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2485 * 2486 * Unregister the current CPUFreq driver. Only call this if you have 2487 * the right to do so, i.e. if you have succeeded in initialising before! 2488 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2489 * currently not initialised. 2490 */ 2491 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2492 { 2493 unsigned long flags; 2494 2495 if (!cpufreq_driver || (driver != cpufreq_driver)) 2496 return -EINVAL; 2497 2498 pr_debug("unregistering driver %s\n", driver->name); 2499 2500 subsys_interface_unregister(&cpufreq_interface); 2501 if (cpufreq_boost_supported()) 2502 cpufreq_sysfs_remove_file(&boost.attr); 2503 2504 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2505 2506 down_write(&cpufreq_rwsem); 2507 write_lock_irqsave(&cpufreq_driver_lock, flags); 2508 2509 cpufreq_driver = NULL; 2510 2511 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2512 up_write(&cpufreq_rwsem); 2513 2514 return 0; 2515 } 2516 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2517 2518 /* 2519 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2520 * or mutexes when secondary CPUs are halted. 2521 */ 2522 static struct syscore_ops cpufreq_syscore_ops = { 2523 .shutdown = cpufreq_suspend, 2524 }; 2525 2526 static int __init cpufreq_core_init(void) 2527 { 2528 if (cpufreq_disabled()) 2529 return -ENODEV; 2530 2531 cpufreq_global_kobject = kobject_create(); 2532 BUG_ON(!cpufreq_global_kobject); 2533 2534 register_syscore_ops(&cpufreq_syscore_ops); 2535 2536 return 0; 2537 } 2538 core_initcall(cpufreq_core_init); 2539