1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 /** 34 * The "cpufreq driver" - the arch- or hardware-dependent low 35 * level driver of CPUFreq support, and its spinlock. This lock 36 * also protects the cpufreq_cpu_data array. 37 */ 38 static struct cpufreq_driver *cpufreq_driver; 39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback); 41 static DEFINE_RWLOCK(cpufreq_driver_lock); 42 static DEFINE_MUTEX(cpufreq_governor_lock); 43 static LIST_HEAD(cpufreq_policy_list); 44 45 #ifdef CONFIG_HOTPLUG_CPU 46 /* This one keeps track of the previously set governor of a removed CPU */ 47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 48 #endif 49 50 static inline bool has_target(void) 51 { 52 return cpufreq_driver->target_index || cpufreq_driver->target; 53 } 54 55 /* 56 * rwsem to guarantee that cpufreq driver module doesn't unload during critical 57 * sections 58 */ 59 static DECLARE_RWSEM(cpufreq_rwsem); 60 61 /* internal prototypes */ 62 static int __cpufreq_governor(struct cpufreq_policy *policy, 63 unsigned int event); 64 static unsigned int __cpufreq_get(unsigned int cpu); 65 static void handle_update(struct work_struct *work); 66 67 /** 68 * Two notifier lists: the "policy" list is involved in the 69 * validation process for a new CPU frequency policy; the 70 * "transition" list for kernel code that needs to handle 71 * changes to devices when the CPU clock speed changes. 72 * The mutex locks both lists. 73 */ 74 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 75 static struct srcu_notifier_head cpufreq_transition_notifier_list; 76 77 static bool init_cpufreq_transition_notifier_list_called; 78 static int __init init_cpufreq_transition_notifier_list(void) 79 { 80 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 81 init_cpufreq_transition_notifier_list_called = true; 82 return 0; 83 } 84 pure_initcall(init_cpufreq_transition_notifier_list); 85 86 static int off __read_mostly; 87 static int cpufreq_disabled(void) 88 { 89 return off; 90 } 91 void disable_cpufreq(void) 92 { 93 off = 1; 94 } 95 static LIST_HEAD(cpufreq_governor_list); 96 static DEFINE_MUTEX(cpufreq_governor_mutex); 97 98 bool have_governor_per_policy(void) 99 { 100 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 101 } 102 EXPORT_SYMBOL_GPL(have_governor_per_policy); 103 104 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 105 { 106 if (have_governor_per_policy()) 107 return &policy->kobj; 108 else 109 return cpufreq_global_kobject; 110 } 111 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 112 113 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 114 { 115 u64 idle_time; 116 u64 cur_wall_time; 117 u64 busy_time; 118 119 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 120 121 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 122 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 127 128 idle_time = cur_wall_time - busy_time; 129 if (wall) 130 *wall = cputime_to_usecs(cur_wall_time); 131 132 return cputime_to_usecs(idle_time); 133 } 134 135 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 136 { 137 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 138 139 if (idle_time == -1ULL) 140 return get_cpu_idle_time_jiffy(cpu, wall); 141 else if (!io_busy) 142 idle_time += get_cpu_iowait_time_us(cpu, wall); 143 144 return idle_time; 145 } 146 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 147 148 /* 149 * This is a generic cpufreq init() routine which can be used by cpufreq 150 * drivers of SMP systems. It will do following: 151 * - validate & show freq table passed 152 * - set policies transition latency 153 * - policy->cpus with all possible CPUs 154 */ 155 int cpufreq_generic_init(struct cpufreq_policy *policy, 156 struct cpufreq_frequency_table *table, 157 unsigned int transition_latency) 158 { 159 int ret; 160 161 ret = cpufreq_table_validate_and_show(policy, table); 162 if (ret) { 163 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 164 return ret; 165 } 166 167 policy->cpuinfo.transition_latency = transition_latency; 168 169 /* 170 * The driver only supports the SMP configuartion where all processors 171 * share the clock and voltage and clock. 172 */ 173 cpumask_setall(policy->cpus); 174 175 return 0; 176 } 177 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 178 179 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 180 { 181 struct cpufreq_policy *policy = NULL; 182 unsigned long flags; 183 184 if (cpufreq_disabled() || (cpu >= nr_cpu_ids)) 185 return NULL; 186 187 if (!down_read_trylock(&cpufreq_rwsem)) 188 return NULL; 189 190 /* get the cpufreq driver */ 191 read_lock_irqsave(&cpufreq_driver_lock, flags); 192 193 if (cpufreq_driver) { 194 /* get the CPU */ 195 policy = per_cpu(cpufreq_cpu_data, cpu); 196 if (policy) 197 kobject_get(&policy->kobj); 198 } 199 200 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 201 202 if (!policy) 203 up_read(&cpufreq_rwsem); 204 205 return policy; 206 } 207 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 208 209 void cpufreq_cpu_put(struct cpufreq_policy *policy) 210 { 211 if (cpufreq_disabled()) 212 return; 213 214 kobject_put(&policy->kobj); 215 up_read(&cpufreq_rwsem); 216 } 217 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 218 219 /********************************************************************* 220 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 221 *********************************************************************/ 222 223 /** 224 * adjust_jiffies - adjust the system "loops_per_jiffy" 225 * 226 * This function alters the system "loops_per_jiffy" for the clock 227 * speed change. Note that loops_per_jiffy cannot be updated on SMP 228 * systems as each CPU might be scaled differently. So, use the arch 229 * per-CPU loops_per_jiffy value wherever possible. 230 */ 231 #ifndef CONFIG_SMP 232 static unsigned long l_p_j_ref; 233 static unsigned int l_p_j_ref_freq; 234 235 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 236 { 237 if (ci->flags & CPUFREQ_CONST_LOOPS) 238 return; 239 240 if (!l_p_j_ref_freq) { 241 l_p_j_ref = loops_per_jiffy; 242 l_p_j_ref_freq = ci->old; 243 pr_debug("saving %lu as reference value for loops_per_jiffy; " 244 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 245 } 246 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) || 247 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 248 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 249 ci->new); 250 pr_debug("scaling loops_per_jiffy to %lu " 251 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 252 } 253 } 254 #else 255 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 256 { 257 return; 258 } 259 #endif 260 261 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 262 struct cpufreq_freqs *freqs, unsigned int state) 263 { 264 BUG_ON(irqs_disabled()); 265 266 if (cpufreq_disabled()) 267 return; 268 269 freqs->flags = cpufreq_driver->flags; 270 pr_debug("notification %u of frequency transition to %u kHz\n", 271 state, freqs->new); 272 273 switch (state) { 274 275 case CPUFREQ_PRECHANGE: 276 /* detect if the driver reported a value as "old frequency" 277 * which is not equal to what the cpufreq core thinks is 278 * "old frequency". 279 */ 280 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 281 if ((policy) && (policy->cpu == freqs->cpu) && 282 (policy->cur) && (policy->cur != freqs->old)) { 283 pr_debug("Warning: CPU frequency is" 284 " %u, cpufreq assumed %u kHz.\n", 285 freqs->old, policy->cur); 286 freqs->old = policy->cur; 287 } 288 } 289 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 290 CPUFREQ_PRECHANGE, freqs); 291 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 292 break; 293 294 case CPUFREQ_POSTCHANGE: 295 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 296 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new, 297 (unsigned long)freqs->cpu); 298 trace_cpu_frequency(freqs->new, freqs->cpu); 299 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 300 CPUFREQ_POSTCHANGE, freqs); 301 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 302 policy->cur = freqs->new; 303 break; 304 } 305 } 306 307 /** 308 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 309 * on frequency transition. 310 * 311 * This function calls the transition notifiers and the "adjust_jiffies" 312 * function. It is called twice on all CPU frequency changes that have 313 * external effects. 314 */ 315 void cpufreq_notify_transition(struct cpufreq_policy *policy, 316 struct cpufreq_freqs *freqs, unsigned int state) 317 { 318 for_each_cpu(freqs->cpu, policy->cpus) 319 __cpufreq_notify_transition(policy, freqs, state); 320 } 321 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 322 323 324 /********************************************************************* 325 * SYSFS INTERFACE * 326 *********************************************************************/ 327 328 static struct cpufreq_governor *__find_governor(const char *str_governor) 329 { 330 struct cpufreq_governor *t; 331 332 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 333 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 334 return t; 335 336 return NULL; 337 } 338 339 /** 340 * cpufreq_parse_governor - parse a governor string 341 */ 342 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 343 struct cpufreq_governor **governor) 344 { 345 int err = -EINVAL; 346 347 if (!cpufreq_driver) 348 goto out; 349 350 if (cpufreq_driver->setpolicy) { 351 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 352 *policy = CPUFREQ_POLICY_PERFORMANCE; 353 err = 0; 354 } else if (!strnicmp(str_governor, "powersave", 355 CPUFREQ_NAME_LEN)) { 356 *policy = CPUFREQ_POLICY_POWERSAVE; 357 err = 0; 358 } 359 } else if (has_target()) { 360 struct cpufreq_governor *t; 361 362 mutex_lock(&cpufreq_governor_mutex); 363 364 t = __find_governor(str_governor); 365 366 if (t == NULL) { 367 int ret; 368 369 mutex_unlock(&cpufreq_governor_mutex); 370 ret = request_module("cpufreq_%s", str_governor); 371 mutex_lock(&cpufreq_governor_mutex); 372 373 if (ret == 0) 374 t = __find_governor(str_governor); 375 } 376 377 if (t != NULL) { 378 *governor = t; 379 err = 0; 380 } 381 382 mutex_unlock(&cpufreq_governor_mutex); 383 } 384 out: 385 return err; 386 } 387 388 /** 389 * cpufreq_per_cpu_attr_read() / show_##file_name() - 390 * print out cpufreq information 391 * 392 * Write out information from cpufreq_driver->policy[cpu]; object must be 393 * "unsigned int". 394 */ 395 396 #define show_one(file_name, object) \ 397 static ssize_t show_##file_name \ 398 (struct cpufreq_policy *policy, char *buf) \ 399 { \ 400 return sprintf(buf, "%u\n", policy->object); \ 401 } 402 403 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 404 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 405 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 406 show_one(scaling_min_freq, min); 407 show_one(scaling_max_freq, max); 408 show_one(scaling_cur_freq, cur); 409 410 static int cpufreq_set_policy(struct cpufreq_policy *policy, 411 struct cpufreq_policy *new_policy); 412 413 /** 414 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 415 */ 416 #define store_one(file_name, object) \ 417 static ssize_t store_##file_name \ 418 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 419 { \ 420 int ret; \ 421 struct cpufreq_policy new_policy; \ 422 \ 423 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 424 if (ret) \ 425 return -EINVAL; \ 426 \ 427 ret = sscanf(buf, "%u", &new_policy.object); \ 428 if (ret != 1) \ 429 return -EINVAL; \ 430 \ 431 ret = cpufreq_set_policy(policy, &new_policy); \ 432 policy->user_policy.object = policy->object; \ 433 \ 434 return ret ? ret : count; \ 435 } 436 437 store_one(scaling_min_freq, min); 438 store_one(scaling_max_freq, max); 439 440 /** 441 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 442 */ 443 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 444 char *buf) 445 { 446 unsigned int cur_freq = __cpufreq_get(policy->cpu); 447 if (!cur_freq) 448 return sprintf(buf, "<unknown>"); 449 return sprintf(buf, "%u\n", cur_freq); 450 } 451 452 /** 453 * show_scaling_governor - show the current policy for the specified CPU 454 */ 455 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 456 { 457 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 458 return sprintf(buf, "powersave\n"); 459 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 460 return sprintf(buf, "performance\n"); 461 else if (policy->governor) 462 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 463 policy->governor->name); 464 return -EINVAL; 465 } 466 467 /** 468 * store_scaling_governor - store policy for the specified CPU 469 */ 470 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 471 const char *buf, size_t count) 472 { 473 int ret; 474 char str_governor[16]; 475 struct cpufreq_policy new_policy; 476 477 ret = cpufreq_get_policy(&new_policy, policy->cpu); 478 if (ret) 479 return ret; 480 481 ret = sscanf(buf, "%15s", str_governor); 482 if (ret != 1) 483 return -EINVAL; 484 485 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 486 &new_policy.governor)) 487 return -EINVAL; 488 489 ret = cpufreq_set_policy(policy, &new_policy); 490 491 policy->user_policy.policy = policy->policy; 492 policy->user_policy.governor = policy->governor; 493 494 if (ret) 495 return ret; 496 else 497 return count; 498 } 499 500 /** 501 * show_scaling_driver - show the cpufreq driver currently loaded 502 */ 503 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 504 { 505 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 506 } 507 508 /** 509 * show_scaling_available_governors - show the available CPUfreq governors 510 */ 511 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 512 char *buf) 513 { 514 ssize_t i = 0; 515 struct cpufreq_governor *t; 516 517 if (!has_target()) { 518 i += sprintf(buf, "performance powersave"); 519 goto out; 520 } 521 522 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 523 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 524 - (CPUFREQ_NAME_LEN + 2))) 525 goto out; 526 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 527 } 528 out: 529 i += sprintf(&buf[i], "\n"); 530 return i; 531 } 532 533 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 534 { 535 ssize_t i = 0; 536 unsigned int cpu; 537 538 for_each_cpu(cpu, mask) { 539 if (i) 540 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 541 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 542 if (i >= (PAGE_SIZE - 5)) 543 break; 544 } 545 i += sprintf(&buf[i], "\n"); 546 return i; 547 } 548 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 549 550 /** 551 * show_related_cpus - show the CPUs affected by each transition even if 552 * hw coordination is in use 553 */ 554 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 555 { 556 return cpufreq_show_cpus(policy->related_cpus, buf); 557 } 558 559 /** 560 * show_affected_cpus - show the CPUs affected by each transition 561 */ 562 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 563 { 564 return cpufreq_show_cpus(policy->cpus, buf); 565 } 566 567 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 568 const char *buf, size_t count) 569 { 570 unsigned int freq = 0; 571 unsigned int ret; 572 573 if (!policy->governor || !policy->governor->store_setspeed) 574 return -EINVAL; 575 576 ret = sscanf(buf, "%u", &freq); 577 if (ret != 1) 578 return -EINVAL; 579 580 policy->governor->store_setspeed(policy, freq); 581 582 return count; 583 } 584 585 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 586 { 587 if (!policy->governor || !policy->governor->show_setspeed) 588 return sprintf(buf, "<unsupported>\n"); 589 590 return policy->governor->show_setspeed(policy, buf); 591 } 592 593 /** 594 * show_bios_limit - show the current cpufreq HW/BIOS limitation 595 */ 596 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 597 { 598 unsigned int limit; 599 int ret; 600 if (cpufreq_driver->bios_limit) { 601 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 602 if (!ret) 603 return sprintf(buf, "%u\n", limit); 604 } 605 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 606 } 607 608 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 609 cpufreq_freq_attr_ro(cpuinfo_min_freq); 610 cpufreq_freq_attr_ro(cpuinfo_max_freq); 611 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 612 cpufreq_freq_attr_ro(scaling_available_governors); 613 cpufreq_freq_attr_ro(scaling_driver); 614 cpufreq_freq_attr_ro(scaling_cur_freq); 615 cpufreq_freq_attr_ro(bios_limit); 616 cpufreq_freq_attr_ro(related_cpus); 617 cpufreq_freq_attr_ro(affected_cpus); 618 cpufreq_freq_attr_rw(scaling_min_freq); 619 cpufreq_freq_attr_rw(scaling_max_freq); 620 cpufreq_freq_attr_rw(scaling_governor); 621 cpufreq_freq_attr_rw(scaling_setspeed); 622 623 static struct attribute *default_attrs[] = { 624 &cpuinfo_min_freq.attr, 625 &cpuinfo_max_freq.attr, 626 &cpuinfo_transition_latency.attr, 627 &scaling_min_freq.attr, 628 &scaling_max_freq.attr, 629 &affected_cpus.attr, 630 &related_cpus.attr, 631 &scaling_governor.attr, 632 &scaling_driver.attr, 633 &scaling_available_governors.attr, 634 &scaling_setspeed.attr, 635 NULL 636 }; 637 638 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 639 #define to_attr(a) container_of(a, struct freq_attr, attr) 640 641 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 642 { 643 struct cpufreq_policy *policy = to_policy(kobj); 644 struct freq_attr *fattr = to_attr(attr); 645 ssize_t ret; 646 647 if (!down_read_trylock(&cpufreq_rwsem)) 648 return -EINVAL; 649 650 down_read(&policy->rwsem); 651 652 if (fattr->show) 653 ret = fattr->show(policy, buf); 654 else 655 ret = -EIO; 656 657 up_read(&policy->rwsem); 658 up_read(&cpufreq_rwsem); 659 660 return ret; 661 } 662 663 static ssize_t store(struct kobject *kobj, struct attribute *attr, 664 const char *buf, size_t count) 665 { 666 struct cpufreq_policy *policy = to_policy(kobj); 667 struct freq_attr *fattr = to_attr(attr); 668 ssize_t ret = -EINVAL; 669 670 get_online_cpus(); 671 672 if (!cpu_online(policy->cpu)) 673 goto unlock; 674 675 if (!down_read_trylock(&cpufreq_rwsem)) 676 goto unlock; 677 678 down_write(&policy->rwsem); 679 680 if (fattr->store) 681 ret = fattr->store(policy, buf, count); 682 else 683 ret = -EIO; 684 685 up_write(&policy->rwsem); 686 687 up_read(&cpufreq_rwsem); 688 unlock: 689 put_online_cpus(); 690 691 return ret; 692 } 693 694 static void cpufreq_sysfs_release(struct kobject *kobj) 695 { 696 struct cpufreq_policy *policy = to_policy(kobj); 697 pr_debug("last reference is dropped\n"); 698 complete(&policy->kobj_unregister); 699 } 700 701 static const struct sysfs_ops sysfs_ops = { 702 .show = show, 703 .store = store, 704 }; 705 706 static struct kobj_type ktype_cpufreq = { 707 .sysfs_ops = &sysfs_ops, 708 .default_attrs = default_attrs, 709 .release = cpufreq_sysfs_release, 710 }; 711 712 struct kobject *cpufreq_global_kobject; 713 EXPORT_SYMBOL(cpufreq_global_kobject); 714 715 static int cpufreq_global_kobject_usage; 716 717 int cpufreq_get_global_kobject(void) 718 { 719 if (!cpufreq_global_kobject_usage++) 720 return kobject_add(cpufreq_global_kobject, 721 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 722 723 return 0; 724 } 725 EXPORT_SYMBOL(cpufreq_get_global_kobject); 726 727 void cpufreq_put_global_kobject(void) 728 { 729 if (!--cpufreq_global_kobject_usage) 730 kobject_del(cpufreq_global_kobject); 731 } 732 EXPORT_SYMBOL(cpufreq_put_global_kobject); 733 734 int cpufreq_sysfs_create_file(const struct attribute *attr) 735 { 736 int ret = cpufreq_get_global_kobject(); 737 738 if (!ret) { 739 ret = sysfs_create_file(cpufreq_global_kobject, attr); 740 if (ret) 741 cpufreq_put_global_kobject(); 742 } 743 744 return ret; 745 } 746 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 747 748 void cpufreq_sysfs_remove_file(const struct attribute *attr) 749 { 750 sysfs_remove_file(cpufreq_global_kobject, attr); 751 cpufreq_put_global_kobject(); 752 } 753 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 754 755 /* symlink affected CPUs */ 756 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 757 { 758 unsigned int j; 759 int ret = 0; 760 761 for_each_cpu(j, policy->cpus) { 762 struct device *cpu_dev; 763 764 if (j == policy->cpu) 765 continue; 766 767 pr_debug("Adding link for CPU: %u\n", j); 768 cpu_dev = get_cpu_device(j); 769 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 770 "cpufreq"); 771 if (ret) 772 break; 773 } 774 return ret; 775 } 776 777 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy, 778 struct device *dev) 779 { 780 struct freq_attr **drv_attr; 781 int ret = 0; 782 783 /* prepare interface data */ 784 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 785 &dev->kobj, "cpufreq"); 786 if (ret) 787 return ret; 788 789 /* set up files for this cpu device */ 790 drv_attr = cpufreq_driver->attr; 791 while ((drv_attr) && (*drv_attr)) { 792 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 793 if (ret) 794 goto err_out_kobj_put; 795 drv_attr++; 796 } 797 if (cpufreq_driver->get) { 798 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 799 if (ret) 800 goto err_out_kobj_put; 801 } 802 if (has_target()) { 803 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 804 if (ret) 805 goto err_out_kobj_put; 806 } 807 if (cpufreq_driver->bios_limit) { 808 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 809 if (ret) 810 goto err_out_kobj_put; 811 } 812 813 ret = cpufreq_add_dev_symlink(policy); 814 if (ret) 815 goto err_out_kobj_put; 816 817 return ret; 818 819 err_out_kobj_put: 820 kobject_put(&policy->kobj); 821 wait_for_completion(&policy->kobj_unregister); 822 return ret; 823 } 824 825 static void cpufreq_init_policy(struct cpufreq_policy *policy) 826 { 827 struct cpufreq_policy new_policy; 828 int ret = 0; 829 830 memcpy(&new_policy, policy, sizeof(*policy)); 831 /* assure that the starting sequence is run in cpufreq_set_policy */ 832 policy->governor = NULL; 833 834 /* set default policy */ 835 ret = cpufreq_set_policy(policy, &new_policy); 836 policy->user_policy.policy = policy->policy; 837 policy->user_policy.governor = policy->governor; 838 839 if (ret) { 840 pr_debug("setting policy failed\n"); 841 if (cpufreq_driver->exit) 842 cpufreq_driver->exit(policy); 843 } 844 } 845 846 #ifdef CONFIG_HOTPLUG_CPU 847 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, 848 unsigned int cpu, struct device *dev, 849 bool frozen) 850 { 851 int ret = 0; 852 unsigned long flags; 853 854 if (has_target()) { 855 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 856 if (ret) { 857 pr_err("%s: Failed to stop governor\n", __func__); 858 return ret; 859 } 860 } 861 862 down_write(&policy->rwsem); 863 864 write_lock_irqsave(&cpufreq_driver_lock, flags); 865 866 cpumask_set_cpu(cpu, policy->cpus); 867 per_cpu(cpufreq_cpu_data, cpu) = policy; 868 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 869 870 up_write(&policy->rwsem); 871 872 if (has_target()) { 873 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) || 874 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) { 875 pr_err("%s: Failed to start governor\n", __func__); 876 return ret; 877 } 878 } 879 880 /* Don't touch sysfs links during light-weight init */ 881 if (!frozen) 882 ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 883 884 return ret; 885 } 886 #endif 887 888 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu) 889 { 890 struct cpufreq_policy *policy; 891 unsigned long flags; 892 893 read_lock_irqsave(&cpufreq_driver_lock, flags); 894 895 policy = per_cpu(cpufreq_cpu_data_fallback, cpu); 896 897 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 898 899 return policy; 900 } 901 902 static struct cpufreq_policy *cpufreq_policy_alloc(void) 903 { 904 struct cpufreq_policy *policy; 905 906 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 907 if (!policy) 908 return NULL; 909 910 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 911 goto err_free_policy; 912 913 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 914 goto err_free_cpumask; 915 916 INIT_LIST_HEAD(&policy->policy_list); 917 init_rwsem(&policy->rwsem); 918 919 return policy; 920 921 err_free_cpumask: 922 free_cpumask_var(policy->cpus); 923 err_free_policy: 924 kfree(policy); 925 926 return NULL; 927 } 928 929 static void cpufreq_policy_free(struct cpufreq_policy *policy) 930 { 931 free_cpumask_var(policy->related_cpus); 932 free_cpumask_var(policy->cpus); 933 kfree(policy); 934 } 935 936 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 937 { 938 if (WARN_ON(cpu == policy->cpu)) 939 return; 940 941 down_write(&policy->rwsem); 942 943 policy->last_cpu = policy->cpu; 944 policy->cpu = cpu; 945 946 up_write(&policy->rwsem); 947 948 cpufreq_frequency_table_update_policy_cpu(policy); 949 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 950 CPUFREQ_UPDATE_POLICY_CPU, policy); 951 } 952 953 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif, 954 bool frozen) 955 { 956 unsigned int j, cpu = dev->id; 957 int ret = -ENOMEM; 958 struct cpufreq_policy *policy; 959 unsigned long flags; 960 #ifdef CONFIG_HOTPLUG_CPU 961 struct cpufreq_policy *tpolicy; 962 struct cpufreq_governor *gov; 963 #endif 964 965 if (cpu_is_offline(cpu)) 966 return 0; 967 968 pr_debug("adding CPU %u\n", cpu); 969 970 #ifdef CONFIG_SMP 971 /* check whether a different CPU already registered this 972 * CPU because it is in the same boat. */ 973 policy = cpufreq_cpu_get(cpu); 974 if (unlikely(policy)) { 975 cpufreq_cpu_put(policy); 976 return 0; 977 } 978 #endif 979 980 if (!down_read_trylock(&cpufreq_rwsem)) 981 return 0; 982 983 #ifdef CONFIG_HOTPLUG_CPU 984 /* Check if this cpu was hot-unplugged earlier and has siblings */ 985 read_lock_irqsave(&cpufreq_driver_lock, flags); 986 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) { 987 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) { 988 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 989 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev, frozen); 990 up_read(&cpufreq_rwsem); 991 return ret; 992 } 993 } 994 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 995 #endif 996 997 if (frozen) 998 /* Restore the saved policy when doing light-weight init */ 999 policy = cpufreq_policy_restore(cpu); 1000 else 1001 policy = cpufreq_policy_alloc(); 1002 1003 if (!policy) 1004 goto nomem_out; 1005 1006 1007 /* 1008 * In the resume path, since we restore a saved policy, the assignment 1009 * to policy->cpu is like an update of the existing policy, rather than 1010 * the creation of a brand new one. So we need to perform this update 1011 * by invoking update_policy_cpu(). 1012 */ 1013 if (frozen && cpu != policy->cpu) 1014 update_policy_cpu(policy, cpu); 1015 else 1016 policy->cpu = cpu; 1017 1018 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 1019 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1020 1021 init_completion(&policy->kobj_unregister); 1022 INIT_WORK(&policy->update, handle_update); 1023 1024 /* call driver. From then on the cpufreq must be able 1025 * to accept all calls to ->verify and ->setpolicy for this CPU 1026 */ 1027 ret = cpufreq_driver->init(policy); 1028 if (ret) { 1029 pr_debug("initialization failed\n"); 1030 goto err_set_policy_cpu; 1031 } 1032 1033 if (cpufreq_driver->get) { 1034 policy->cur = cpufreq_driver->get(policy->cpu); 1035 if (!policy->cur) { 1036 pr_err("%s: ->get() failed\n", __func__); 1037 goto err_get_freq; 1038 } 1039 } 1040 1041 /* related cpus should atleast have policy->cpus */ 1042 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1043 1044 /* 1045 * affected cpus must always be the one, which are online. We aren't 1046 * managing offline cpus here. 1047 */ 1048 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1049 1050 policy->user_policy.min = policy->min; 1051 policy->user_policy.max = policy->max; 1052 1053 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1054 CPUFREQ_START, policy); 1055 1056 #ifdef CONFIG_HOTPLUG_CPU 1057 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu)); 1058 if (gov) { 1059 policy->governor = gov; 1060 pr_debug("Restoring governor %s for cpu %d\n", 1061 policy->governor->name, cpu); 1062 } 1063 #endif 1064 1065 write_lock_irqsave(&cpufreq_driver_lock, flags); 1066 for_each_cpu(j, policy->cpus) 1067 per_cpu(cpufreq_cpu_data, j) = policy; 1068 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1069 1070 if (!frozen) { 1071 ret = cpufreq_add_dev_interface(policy, dev); 1072 if (ret) 1073 goto err_out_unregister; 1074 } 1075 1076 write_lock_irqsave(&cpufreq_driver_lock, flags); 1077 list_add(&policy->policy_list, &cpufreq_policy_list); 1078 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1079 1080 cpufreq_init_policy(policy); 1081 1082 kobject_uevent(&policy->kobj, KOBJ_ADD); 1083 up_read(&cpufreq_rwsem); 1084 1085 pr_debug("initialization complete\n"); 1086 1087 return 0; 1088 1089 err_out_unregister: 1090 write_lock_irqsave(&cpufreq_driver_lock, flags); 1091 for_each_cpu(j, policy->cpus) 1092 per_cpu(cpufreq_cpu_data, j) = NULL; 1093 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1094 1095 err_get_freq: 1096 if (cpufreq_driver->exit) 1097 cpufreq_driver->exit(policy); 1098 err_set_policy_cpu: 1099 cpufreq_policy_free(policy); 1100 nomem_out: 1101 up_read(&cpufreq_rwsem); 1102 1103 return ret; 1104 } 1105 1106 /** 1107 * cpufreq_add_dev - add a CPU device 1108 * 1109 * Adds the cpufreq interface for a CPU device. 1110 * 1111 * The Oracle says: try running cpufreq registration/unregistration concurrently 1112 * with with cpu hotplugging and all hell will break loose. Tried to clean this 1113 * mess up, but more thorough testing is needed. - Mathieu 1114 */ 1115 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1116 { 1117 return __cpufreq_add_dev(dev, sif, false); 1118 } 1119 1120 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy, 1121 unsigned int old_cpu, bool frozen) 1122 { 1123 struct device *cpu_dev; 1124 int ret; 1125 1126 /* first sibling now owns the new sysfs dir */ 1127 cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu)); 1128 1129 /* Don't touch sysfs files during light-weight tear-down */ 1130 if (frozen) 1131 return cpu_dev->id; 1132 1133 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1134 ret = kobject_move(&policy->kobj, &cpu_dev->kobj); 1135 if (ret) { 1136 pr_err("%s: Failed to move kobj: %d", __func__, ret); 1137 1138 down_write(&policy->rwsem); 1139 cpumask_set_cpu(old_cpu, policy->cpus); 1140 up_write(&policy->rwsem); 1141 1142 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 1143 "cpufreq"); 1144 1145 return -EINVAL; 1146 } 1147 1148 return cpu_dev->id; 1149 } 1150 1151 static int __cpufreq_remove_dev_prepare(struct device *dev, 1152 struct subsys_interface *sif, 1153 bool frozen) 1154 { 1155 unsigned int cpu = dev->id, cpus; 1156 int new_cpu, ret; 1157 unsigned long flags; 1158 struct cpufreq_policy *policy; 1159 1160 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1161 1162 write_lock_irqsave(&cpufreq_driver_lock, flags); 1163 1164 policy = per_cpu(cpufreq_cpu_data, cpu); 1165 1166 /* Save the policy somewhere when doing a light-weight tear-down */ 1167 if (frozen) 1168 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy; 1169 1170 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1171 1172 if (!policy) { 1173 pr_debug("%s: No cpu_data found\n", __func__); 1174 return -EINVAL; 1175 } 1176 1177 if (has_target()) { 1178 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1179 if (ret) { 1180 pr_err("%s: Failed to stop governor\n", __func__); 1181 return ret; 1182 } 1183 } 1184 1185 #ifdef CONFIG_HOTPLUG_CPU 1186 if (!cpufreq_driver->setpolicy) 1187 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1188 policy->governor->name, CPUFREQ_NAME_LEN); 1189 #endif 1190 1191 down_read(&policy->rwsem); 1192 cpus = cpumask_weight(policy->cpus); 1193 up_read(&policy->rwsem); 1194 1195 if (cpu != policy->cpu) { 1196 if (!frozen) 1197 sysfs_remove_link(&dev->kobj, "cpufreq"); 1198 } else if (cpus > 1) { 1199 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu, frozen); 1200 if (new_cpu >= 0) { 1201 update_policy_cpu(policy, new_cpu); 1202 1203 if (!frozen) { 1204 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n", 1205 __func__, new_cpu, cpu); 1206 } 1207 } 1208 } 1209 1210 return 0; 1211 } 1212 1213 static int __cpufreq_remove_dev_finish(struct device *dev, 1214 struct subsys_interface *sif, 1215 bool frozen) 1216 { 1217 unsigned int cpu = dev->id, cpus; 1218 int ret; 1219 unsigned long flags; 1220 struct cpufreq_policy *policy; 1221 struct kobject *kobj; 1222 struct completion *cmp; 1223 1224 read_lock_irqsave(&cpufreq_driver_lock, flags); 1225 policy = per_cpu(cpufreq_cpu_data, cpu); 1226 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1227 1228 if (!policy) { 1229 pr_debug("%s: No cpu_data found\n", __func__); 1230 return -EINVAL; 1231 } 1232 1233 down_write(&policy->rwsem); 1234 cpus = cpumask_weight(policy->cpus); 1235 1236 if (cpus > 1) 1237 cpumask_clear_cpu(cpu, policy->cpus); 1238 up_write(&policy->rwsem); 1239 1240 /* If cpu is last user of policy, free policy */ 1241 if (cpus == 1) { 1242 if (has_target()) { 1243 ret = __cpufreq_governor(policy, 1244 CPUFREQ_GOV_POLICY_EXIT); 1245 if (ret) { 1246 pr_err("%s: Failed to exit governor\n", 1247 __func__); 1248 return ret; 1249 } 1250 } 1251 1252 if (!frozen) { 1253 down_read(&policy->rwsem); 1254 kobj = &policy->kobj; 1255 cmp = &policy->kobj_unregister; 1256 up_read(&policy->rwsem); 1257 kobject_put(kobj); 1258 1259 /* 1260 * We need to make sure that the underlying kobj is 1261 * actually not referenced anymore by anybody before we 1262 * proceed with unloading. 1263 */ 1264 pr_debug("waiting for dropping of refcount\n"); 1265 wait_for_completion(cmp); 1266 pr_debug("wait complete\n"); 1267 } 1268 1269 /* 1270 * Perform the ->exit() even during light-weight tear-down, 1271 * since this is a core component, and is essential for the 1272 * subsequent light-weight ->init() to succeed. 1273 */ 1274 if (cpufreq_driver->exit) 1275 cpufreq_driver->exit(policy); 1276 1277 /* Remove policy from list of active policies */ 1278 write_lock_irqsave(&cpufreq_driver_lock, flags); 1279 list_del(&policy->policy_list); 1280 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1281 1282 if (!frozen) 1283 cpufreq_policy_free(policy); 1284 } else { 1285 if (has_target()) { 1286 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) || 1287 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) { 1288 pr_err("%s: Failed to start governor\n", 1289 __func__); 1290 return ret; 1291 } 1292 } 1293 } 1294 1295 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1296 return 0; 1297 } 1298 1299 /** 1300 * cpufreq_remove_dev - remove a CPU device 1301 * 1302 * Removes the cpufreq interface for a CPU device. 1303 */ 1304 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1305 { 1306 unsigned int cpu = dev->id; 1307 int ret; 1308 1309 if (cpu_is_offline(cpu)) 1310 return 0; 1311 1312 ret = __cpufreq_remove_dev_prepare(dev, sif, false); 1313 1314 if (!ret) 1315 ret = __cpufreq_remove_dev_finish(dev, sif, false); 1316 1317 return ret; 1318 } 1319 1320 static void handle_update(struct work_struct *work) 1321 { 1322 struct cpufreq_policy *policy = 1323 container_of(work, struct cpufreq_policy, update); 1324 unsigned int cpu = policy->cpu; 1325 pr_debug("handle_update for cpu %u called\n", cpu); 1326 cpufreq_update_policy(cpu); 1327 } 1328 1329 /** 1330 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1331 * in deep trouble. 1332 * @cpu: cpu number 1333 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1334 * @new_freq: CPU frequency the CPU actually runs at 1335 * 1336 * We adjust to current frequency first, and need to clean up later. 1337 * So either call to cpufreq_update_policy() or schedule handle_update()). 1338 */ 1339 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1340 unsigned int new_freq) 1341 { 1342 struct cpufreq_policy *policy; 1343 struct cpufreq_freqs freqs; 1344 unsigned long flags; 1345 1346 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing " 1347 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1348 1349 freqs.old = old_freq; 1350 freqs.new = new_freq; 1351 1352 read_lock_irqsave(&cpufreq_driver_lock, flags); 1353 policy = per_cpu(cpufreq_cpu_data, cpu); 1354 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1355 1356 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); 1357 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); 1358 } 1359 1360 /** 1361 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1362 * @cpu: CPU number 1363 * 1364 * This is the last known freq, without actually getting it from the driver. 1365 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1366 */ 1367 unsigned int cpufreq_quick_get(unsigned int cpu) 1368 { 1369 struct cpufreq_policy *policy; 1370 unsigned int ret_freq = 0; 1371 1372 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1373 return cpufreq_driver->get(cpu); 1374 1375 policy = cpufreq_cpu_get(cpu); 1376 if (policy) { 1377 ret_freq = policy->cur; 1378 cpufreq_cpu_put(policy); 1379 } 1380 1381 return ret_freq; 1382 } 1383 EXPORT_SYMBOL(cpufreq_quick_get); 1384 1385 /** 1386 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1387 * @cpu: CPU number 1388 * 1389 * Just return the max possible frequency for a given CPU. 1390 */ 1391 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1392 { 1393 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1394 unsigned int ret_freq = 0; 1395 1396 if (policy) { 1397 ret_freq = policy->max; 1398 cpufreq_cpu_put(policy); 1399 } 1400 1401 return ret_freq; 1402 } 1403 EXPORT_SYMBOL(cpufreq_quick_get_max); 1404 1405 static unsigned int __cpufreq_get(unsigned int cpu) 1406 { 1407 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1408 unsigned int ret_freq = 0; 1409 1410 if (!cpufreq_driver->get) 1411 return ret_freq; 1412 1413 ret_freq = cpufreq_driver->get(cpu); 1414 1415 if (ret_freq && policy->cur && 1416 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1417 /* verify no discrepancy between actual and 1418 saved value exists */ 1419 if (unlikely(ret_freq != policy->cur)) { 1420 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1421 schedule_work(&policy->update); 1422 } 1423 } 1424 1425 return ret_freq; 1426 } 1427 1428 /** 1429 * cpufreq_get - get the current CPU frequency (in kHz) 1430 * @cpu: CPU number 1431 * 1432 * Get the CPU current (static) CPU frequency 1433 */ 1434 unsigned int cpufreq_get(unsigned int cpu) 1435 { 1436 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1437 unsigned int ret_freq = 0; 1438 1439 if (cpufreq_disabled() || !cpufreq_driver) 1440 return -ENOENT; 1441 1442 BUG_ON(!policy); 1443 1444 if (!down_read_trylock(&cpufreq_rwsem)) 1445 return 0; 1446 1447 down_read(&policy->rwsem); 1448 1449 ret_freq = __cpufreq_get(cpu); 1450 1451 up_read(&policy->rwsem); 1452 up_read(&cpufreq_rwsem); 1453 1454 return ret_freq; 1455 } 1456 EXPORT_SYMBOL(cpufreq_get); 1457 1458 static struct subsys_interface cpufreq_interface = { 1459 .name = "cpufreq", 1460 .subsys = &cpu_subsys, 1461 .add_dev = cpufreq_add_dev, 1462 .remove_dev = cpufreq_remove_dev, 1463 }; 1464 1465 /** 1466 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend. 1467 * 1468 * This function is only executed for the boot processor. The other CPUs 1469 * have been put offline by means of CPU hotplug. 1470 */ 1471 static int cpufreq_bp_suspend(void) 1472 { 1473 int ret = 0; 1474 1475 int cpu = smp_processor_id(); 1476 struct cpufreq_policy *policy; 1477 1478 pr_debug("suspending cpu %u\n", cpu); 1479 1480 /* If there's no policy for the boot CPU, we have nothing to do. */ 1481 policy = cpufreq_cpu_get(cpu); 1482 if (!policy) 1483 return 0; 1484 1485 if (cpufreq_driver->suspend) { 1486 ret = cpufreq_driver->suspend(policy); 1487 if (ret) 1488 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1489 "step on CPU %u\n", policy->cpu); 1490 } 1491 1492 cpufreq_cpu_put(policy); 1493 return ret; 1494 } 1495 1496 /** 1497 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU. 1498 * 1499 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1500 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1501 * restored. It will verify that the current freq is in sync with 1502 * what we believe it to be. This is a bit later than when it 1503 * should be, but nonethteless it's better than calling 1504 * cpufreq_driver->get() here which might re-enable interrupts... 1505 * 1506 * This function is only executed for the boot CPU. The other CPUs have not 1507 * been turned on yet. 1508 */ 1509 static void cpufreq_bp_resume(void) 1510 { 1511 int ret = 0; 1512 1513 int cpu = smp_processor_id(); 1514 struct cpufreq_policy *policy; 1515 1516 pr_debug("resuming cpu %u\n", cpu); 1517 1518 /* If there's no policy for the boot CPU, we have nothing to do. */ 1519 policy = cpufreq_cpu_get(cpu); 1520 if (!policy) 1521 return; 1522 1523 if (cpufreq_driver->resume) { 1524 ret = cpufreq_driver->resume(policy); 1525 if (ret) { 1526 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1527 "step on CPU %u\n", policy->cpu); 1528 goto fail; 1529 } 1530 } 1531 1532 schedule_work(&policy->update); 1533 1534 fail: 1535 cpufreq_cpu_put(policy); 1536 } 1537 1538 static struct syscore_ops cpufreq_syscore_ops = { 1539 .suspend = cpufreq_bp_suspend, 1540 .resume = cpufreq_bp_resume, 1541 }; 1542 1543 /** 1544 * cpufreq_get_current_driver - return current driver's name 1545 * 1546 * Return the name string of the currently loaded cpufreq driver 1547 * or NULL, if none. 1548 */ 1549 const char *cpufreq_get_current_driver(void) 1550 { 1551 if (cpufreq_driver) 1552 return cpufreq_driver->name; 1553 1554 return NULL; 1555 } 1556 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1557 1558 /********************************************************************* 1559 * NOTIFIER LISTS INTERFACE * 1560 *********************************************************************/ 1561 1562 /** 1563 * cpufreq_register_notifier - register a driver with cpufreq 1564 * @nb: notifier function to register 1565 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1566 * 1567 * Add a driver to one of two lists: either a list of drivers that 1568 * are notified about clock rate changes (once before and once after 1569 * the transition), or a list of drivers that are notified about 1570 * changes in cpufreq policy. 1571 * 1572 * This function may sleep, and has the same return conditions as 1573 * blocking_notifier_chain_register. 1574 */ 1575 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1576 { 1577 int ret; 1578 1579 if (cpufreq_disabled()) 1580 return -EINVAL; 1581 1582 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1583 1584 switch (list) { 1585 case CPUFREQ_TRANSITION_NOTIFIER: 1586 ret = srcu_notifier_chain_register( 1587 &cpufreq_transition_notifier_list, nb); 1588 break; 1589 case CPUFREQ_POLICY_NOTIFIER: 1590 ret = blocking_notifier_chain_register( 1591 &cpufreq_policy_notifier_list, nb); 1592 break; 1593 default: 1594 ret = -EINVAL; 1595 } 1596 1597 return ret; 1598 } 1599 EXPORT_SYMBOL(cpufreq_register_notifier); 1600 1601 /** 1602 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1603 * @nb: notifier block to be unregistered 1604 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1605 * 1606 * Remove a driver from the CPU frequency notifier list. 1607 * 1608 * This function may sleep, and has the same return conditions as 1609 * blocking_notifier_chain_unregister. 1610 */ 1611 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1612 { 1613 int ret; 1614 1615 if (cpufreq_disabled()) 1616 return -EINVAL; 1617 1618 switch (list) { 1619 case CPUFREQ_TRANSITION_NOTIFIER: 1620 ret = srcu_notifier_chain_unregister( 1621 &cpufreq_transition_notifier_list, nb); 1622 break; 1623 case CPUFREQ_POLICY_NOTIFIER: 1624 ret = blocking_notifier_chain_unregister( 1625 &cpufreq_policy_notifier_list, nb); 1626 break; 1627 default: 1628 ret = -EINVAL; 1629 } 1630 1631 return ret; 1632 } 1633 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1634 1635 1636 /********************************************************************* 1637 * GOVERNORS * 1638 *********************************************************************/ 1639 1640 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1641 unsigned int target_freq, 1642 unsigned int relation) 1643 { 1644 int retval = -EINVAL; 1645 unsigned int old_target_freq = target_freq; 1646 1647 if (cpufreq_disabled()) 1648 return -ENODEV; 1649 1650 /* Make sure that target_freq is within supported range */ 1651 if (target_freq > policy->max) 1652 target_freq = policy->max; 1653 if (target_freq < policy->min) 1654 target_freq = policy->min; 1655 1656 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1657 policy->cpu, target_freq, relation, old_target_freq); 1658 1659 /* 1660 * This might look like a redundant call as we are checking it again 1661 * after finding index. But it is left intentionally for cases where 1662 * exactly same freq is called again and so we can save on few function 1663 * calls. 1664 */ 1665 if (target_freq == policy->cur) 1666 return 0; 1667 1668 if (cpufreq_driver->target) 1669 retval = cpufreq_driver->target(policy, target_freq, relation); 1670 else if (cpufreq_driver->target_index) { 1671 struct cpufreq_frequency_table *freq_table; 1672 int index; 1673 1674 freq_table = cpufreq_frequency_get_table(policy->cpu); 1675 if (unlikely(!freq_table)) { 1676 pr_err("%s: Unable to find freq_table\n", __func__); 1677 goto out; 1678 } 1679 1680 retval = cpufreq_frequency_table_target(policy, freq_table, 1681 target_freq, relation, &index); 1682 if (unlikely(retval)) { 1683 pr_err("%s: Unable to find matching freq\n", __func__); 1684 goto out; 1685 } 1686 1687 if (freq_table[index].frequency == policy->cur) 1688 retval = 0; 1689 else 1690 retval = cpufreq_driver->target_index(policy, index); 1691 } 1692 1693 out: 1694 return retval; 1695 } 1696 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1697 1698 int cpufreq_driver_target(struct cpufreq_policy *policy, 1699 unsigned int target_freq, 1700 unsigned int relation) 1701 { 1702 int ret = -EINVAL; 1703 1704 down_write(&policy->rwsem); 1705 1706 ret = __cpufreq_driver_target(policy, target_freq, relation); 1707 1708 up_write(&policy->rwsem); 1709 1710 return ret; 1711 } 1712 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1713 1714 /* 1715 * when "event" is CPUFREQ_GOV_LIMITS 1716 */ 1717 1718 static int __cpufreq_governor(struct cpufreq_policy *policy, 1719 unsigned int event) 1720 { 1721 int ret; 1722 1723 /* Only must be defined when default governor is known to have latency 1724 restrictions, like e.g. conservative or ondemand. 1725 That this is the case is already ensured in Kconfig 1726 */ 1727 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1728 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1729 #else 1730 struct cpufreq_governor *gov = NULL; 1731 #endif 1732 1733 if (policy->governor->max_transition_latency && 1734 policy->cpuinfo.transition_latency > 1735 policy->governor->max_transition_latency) { 1736 if (!gov) 1737 return -EINVAL; 1738 else { 1739 printk(KERN_WARNING "%s governor failed, too long" 1740 " transition latency of HW, fallback" 1741 " to %s governor\n", 1742 policy->governor->name, 1743 gov->name); 1744 policy->governor = gov; 1745 } 1746 } 1747 1748 if (event == CPUFREQ_GOV_POLICY_INIT) 1749 if (!try_module_get(policy->governor->owner)) 1750 return -EINVAL; 1751 1752 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 1753 policy->cpu, event); 1754 1755 mutex_lock(&cpufreq_governor_lock); 1756 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 1757 || (!policy->governor_enabled 1758 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 1759 mutex_unlock(&cpufreq_governor_lock); 1760 return -EBUSY; 1761 } 1762 1763 if (event == CPUFREQ_GOV_STOP) 1764 policy->governor_enabled = false; 1765 else if (event == CPUFREQ_GOV_START) 1766 policy->governor_enabled = true; 1767 1768 mutex_unlock(&cpufreq_governor_lock); 1769 1770 ret = policy->governor->governor(policy, event); 1771 1772 if (!ret) { 1773 if (event == CPUFREQ_GOV_POLICY_INIT) 1774 policy->governor->initialized++; 1775 else if (event == CPUFREQ_GOV_POLICY_EXIT) 1776 policy->governor->initialized--; 1777 } else { 1778 /* Restore original values */ 1779 mutex_lock(&cpufreq_governor_lock); 1780 if (event == CPUFREQ_GOV_STOP) 1781 policy->governor_enabled = true; 1782 else if (event == CPUFREQ_GOV_START) 1783 policy->governor_enabled = false; 1784 mutex_unlock(&cpufreq_governor_lock); 1785 } 1786 1787 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 1788 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 1789 module_put(policy->governor->owner); 1790 1791 return ret; 1792 } 1793 1794 int cpufreq_register_governor(struct cpufreq_governor *governor) 1795 { 1796 int err; 1797 1798 if (!governor) 1799 return -EINVAL; 1800 1801 if (cpufreq_disabled()) 1802 return -ENODEV; 1803 1804 mutex_lock(&cpufreq_governor_mutex); 1805 1806 governor->initialized = 0; 1807 err = -EBUSY; 1808 if (__find_governor(governor->name) == NULL) { 1809 err = 0; 1810 list_add(&governor->governor_list, &cpufreq_governor_list); 1811 } 1812 1813 mutex_unlock(&cpufreq_governor_mutex); 1814 return err; 1815 } 1816 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1817 1818 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1819 { 1820 #ifdef CONFIG_HOTPLUG_CPU 1821 int cpu; 1822 #endif 1823 1824 if (!governor) 1825 return; 1826 1827 if (cpufreq_disabled()) 1828 return; 1829 1830 #ifdef CONFIG_HOTPLUG_CPU 1831 for_each_present_cpu(cpu) { 1832 if (cpu_online(cpu)) 1833 continue; 1834 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 1835 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 1836 } 1837 #endif 1838 1839 mutex_lock(&cpufreq_governor_mutex); 1840 list_del(&governor->governor_list); 1841 mutex_unlock(&cpufreq_governor_mutex); 1842 return; 1843 } 1844 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1845 1846 1847 /********************************************************************* 1848 * POLICY INTERFACE * 1849 *********************************************************************/ 1850 1851 /** 1852 * cpufreq_get_policy - get the current cpufreq_policy 1853 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1854 * is written 1855 * 1856 * Reads the current cpufreq policy. 1857 */ 1858 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1859 { 1860 struct cpufreq_policy *cpu_policy; 1861 if (!policy) 1862 return -EINVAL; 1863 1864 cpu_policy = cpufreq_cpu_get(cpu); 1865 if (!cpu_policy) 1866 return -EINVAL; 1867 1868 memcpy(policy, cpu_policy, sizeof(*policy)); 1869 1870 cpufreq_cpu_put(cpu_policy); 1871 return 0; 1872 } 1873 EXPORT_SYMBOL(cpufreq_get_policy); 1874 1875 /* 1876 * policy : current policy. 1877 * new_policy: policy to be set. 1878 */ 1879 static int cpufreq_set_policy(struct cpufreq_policy *policy, 1880 struct cpufreq_policy *new_policy) 1881 { 1882 int ret = 0, failed = 1; 1883 1884 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", new_policy->cpu, 1885 new_policy->min, new_policy->max); 1886 1887 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 1888 1889 if (new_policy->min > policy->max || new_policy->max < policy->min) { 1890 ret = -EINVAL; 1891 goto error_out; 1892 } 1893 1894 /* verify the cpu speed can be set within this limit */ 1895 ret = cpufreq_driver->verify(new_policy); 1896 if (ret) 1897 goto error_out; 1898 1899 /* adjust if necessary - all reasons */ 1900 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1901 CPUFREQ_ADJUST, new_policy); 1902 1903 /* adjust if necessary - hardware incompatibility*/ 1904 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1905 CPUFREQ_INCOMPATIBLE, new_policy); 1906 1907 /* 1908 * verify the cpu speed can be set within this limit, which might be 1909 * different to the first one 1910 */ 1911 ret = cpufreq_driver->verify(new_policy); 1912 if (ret) 1913 goto error_out; 1914 1915 /* notification of the new policy */ 1916 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1917 CPUFREQ_NOTIFY, new_policy); 1918 1919 policy->min = new_policy->min; 1920 policy->max = new_policy->max; 1921 1922 pr_debug("new min and max freqs are %u - %u kHz\n", 1923 policy->min, policy->max); 1924 1925 if (cpufreq_driver->setpolicy) { 1926 policy->policy = new_policy->policy; 1927 pr_debug("setting range\n"); 1928 ret = cpufreq_driver->setpolicy(new_policy); 1929 } else { 1930 if (new_policy->governor != policy->governor) { 1931 /* save old, working values */ 1932 struct cpufreq_governor *old_gov = policy->governor; 1933 1934 pr_debug("governor switch\n"); 1935 1936 /* end old governor */ 1937 if (policy->governor) { 1938 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1939 up_write(&policy->rwsem); 1940 __cpufreq_governor(policy, 1941 CPUFREQ_GOV_POLICY_EXIT); 1942 down_write(&policy->rwsem); 1943 } 1944 1945 /* start new governor */ 1946 policy->governor = new_policy->governor; 1947 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) { 1948 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) { 1949 failed = 0; 1950 } else { 1951 up_write(&policy->rwsem); 1952 __cpufreq_governor(policy, 1953 CPUFREQ_GOV_POLICY_EXIT); 1954 down_write(&policy->rwsem); 1955 } 1956 } 1957 1958 if (failed) { 1959 /* new governor failed, so re-start old one */ 1960 pr_debug("starting governor %s failed\n", 1961 policy->governor->name); 1962 if (old_gov) { 1963 policy->governor = old_gov; 1964 __cpufreq_governor(policy, 1965 CPUFREQ_GOV_POLICY_INIT); 1966 __cpufreq_governor(policy, 1967 CPUFREQ_GOV_START); 1968 } 1969 ret = -EINVAL; 1970 goto error_out; 1971 } 1972 /* might be a policy change, too, so fall through */ 1973 } 1974 pr_debug("governor: change or update limits\n"); 1975 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1976 } 1977 1978 error_out: 1979 return ret; 1980 } 1981 1982 /** 1983 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1984 * @cpu: CPU which shall be re-evaluated 1985 * 1986 * Useful for policy notifiers which have different necessities 1987 * at different times. 1988 */ 1989 int cpufreq_update_policy(unsigned int cpu) 1990 { 1991 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1992 struct cpufreq_policy new_policy; 1993 int ret; 1994 1995 if (!policy) { 1996 ret = -ENODEV; 1997 goto no_policy; 1998 } 1999 2000 down_write(&policy->rwsem); 2001 2002 pr_debug("updating policy for CPU %u\n", cpu); 2003 memcpy(&new_policy, policy, sizeof(*policy)); 2004 new_policy.min = policy->user_policy.min; 2005 new_policy.max = policy->user_policy.max; 2006 new_policy.policy = policy->user_policy.policy; 2007 new_policy.governor = policy->user_policy.governor; 2008 2009 /* 2010 * BIOS might change freq behind our back 2011 * -> ask driver for current freq and notify governors about a change 2012 */ 2013 if (cpufreq_driver->get) { 2014 new_policy.cur = cpufreq_driver->get(cpu); 2015 if (!policy->cur) { 2016 pr_debug("Driver did not initialize current freq"); 2017 policy->cur = new_policy.cur; 2018 } else { 2019 if (policy->cur != new_policy.cur && has_target()) 2020 cpufreq_out_of_sync(cpu, policy->cur, 2021 new_policy.cur); 2022 } 2023 } 2024 2025 ret = cpufreq_set_policy(policy, &new_policy); 2026 2027 up_write(&policy->rwsem); 2028 2029 cpufreq_cpu_put(policy); 2030 no_policy: 2031 return ret; 2032 } 2033 EXPORT_SYMBOL(cpufreq_update_policy); 2034 2035 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2036 unsigned long action, void *hcpu) 2037 { 2038 unsigned int cpu = (unsigned long)hcpu; 2039 struct device *dev; 2040 bool frozen = false; 2041 2042 dev = get_cpu_device(cpu); 2043 if (dev) { 2044 2045 if (action & CPU_TASKS_FROZEN) 2046 frozen = true; 2047 2048 switch (action & ~CPU_TASKS_FROZEN) { 2049 case CPU_ONLINE: 2050 __cpufreq_add_dev(dev, NULL, frozen); 2051 cpufreq_update_policy(cpu); 2052 break; 2053 2054 case CPU_DOWN_PREPARE: 2055 __cpufreq_remove_dev_prepare(dev, NULL, frozen); 2056 break; 2057 2058 case CPU_POST_DEAD: 2059 __cpufreq_remove_dev_finish(dev, NULL, frozen); 2060 break; 2061 2062 case CPU_DOWN_FAILED: 2063 __cpufreq_add_dev(dev, NULL, frozen); 2064 break; 2065 } 2066 } 2067 return NOTIFY_OK; 2068 } 2069 2070 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2071 .notifier_call = cpufreq_cpu_callback, 2072 }; 2073 2074 /********************************************************************* 2075 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2076 *********************************************************************/ 2077 2078 /** 2079 * cpufreq_register_driver - register a CPU Frequency driver 2080 * @driver_data: A struct cpufreq_driver containing the values# 2081 * submitted by the CPU Frequency driver. 2082 * 2083 * Registers a CPU Frequency driver to this core code. This code 2084 * returns zero on success, -EBUSY when another driver got here first 2085 * (and isn't unregistered in the meantime). 2086 * 2087 */ 2088 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2089 { 2090 unsigned long flags; 2091 int ret; 2092 2093 if (cpufreq_disabled()) 2094 return -ENODEV; 2095 2096 if (!driver_data || !driver_data->verify || !driver_data->init || 2097 !(driver_data->setpolicy || driver_data->target_index || 2098 driver_data->target)) 2099 return -EINVAL; 2100 2101 pr_debug("trying to register driver %s\n", driver_data->name); 2102 2103 if (driver_data->setpolicy) 2104 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2105 2106 write_lock_irqsave(&cpufreq_driver_lock, flags); 2107 if (cpufreq_driver) { 2108 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2109 return -EEXIST; 2110 } 2111 cpufreq_driver = driver_data; 2112 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2113 2114 ret = subsys_interface_register(&cpufreq_interface); 2115 if (ret) 2116 goto err_null_driver; 2117 2118 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 2119 int i; 2120 ret = -ENODEV; 2121 2122 /* check for at least one working CPU */ 2123 for (i = 0; i < nr_cpu_ids; i++) 2124 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 2125 ret = 0; 2126 break; 2127 } 2128 2129 /* if all ->init() calls failed, unregister */ 2130 if (ret) { 2131 pr_debug("no CPU initialized for driver %s\n", 2132 driver_data->name); 2133 goto err_if_unreg; 2134 } 2135 } 2136 2137 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2138 pr_debug("driver %s up and running\n", driver_data->name); 2139 2140 return 0; 2141 err_if_unreg: 2142 subsys_interface_unregister(&cpufreq_interface); 2143 err_null_driver: 2144 write_lock_irqsave(&cpufreq_driver_lock, flags); 2145 cpufreq_driver = NULL; 2146 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2147 return ret; 2148 } 2149 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2150 2151 /** 2152 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2153 * 2154 * Unregister the current CPUFreq driver. Only call this if you have 2155 * the right to do so, i.e. if you have succeeded in initialising before! 2156 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2157 * currently not initialised. 2158 */ 2159 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2160 { 2161 unsigned long flags; 2162 2163 if (!cpufreq_driver || (driver != cpufreq_driver)) 2164 return -EINVAL; 2165 2166 pr_debug("unregistering driver %s\n", driver->name); 2167 2168 subsys_interface_unregister(&cpufreq_interface); 2169 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2170 2171 down_write(&cpufreq_rwsem); 2172 write_lock_irqsave(&cpufreq_driver_lock, flags); 2173 2174 cpufreq_driver = NULL; 2175 2176 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2177 up_write(&cpufreq_rwsem); 2178 2179 return 0; 2180 } 2181 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2182 2183 static int __init cpufreq_core_init(void) 2184 { 2185 if (cpufreq_disabled()) 2186 return -ENODEV; 2187 2188 cpufreq_global_kobject = kobject_create(); 2189 BUG_ON(!cpufreq_global_kobject); 2190 register_syscore_ops(&cpufreq_syscore_ops); 2191 2192 return 0; 2193 } 2194 core_initcall(cpufreq_core_init); 2195