1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * 7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 8 * Added handling for CPU hotplug 9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 10 * Fix handling for CPU hotplug -- affected CPUs 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 * 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/init.h> 21 #include <linux/notifier.h> 22 #include <linux/cpufreq.h> 23 #include <linux/delay.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/device.h> 27 #include <linux/slab.h> 28 #include <linux/cpu.h> 29 #include <linux/completion.h> 30 #include <linux/mutex.h> 31 32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \ 33 "cpufreq-core", msg) 34 35 /** 36 * The "cpufreq driver" - the arch- or hardware-dependent low 37 * level driver of CPUFreq support, and its spinlock. This lock 38 * also protects the cpufreq_cpu_data array. 39 */ 40 static struct cpufreq_driver *cpufreq_driver; 41 static struct cpufreq_policy *cpufreq_cpu_data[NR_CPUS]; 42 #ifdef CONFIG_HOTPLUG_CPU 43 /* This one keeps track of the previously set governor of a removed CPU */ 44 static struct cpufreq_governor *cpufreq_cpu_governor[NR_CPUS]; 45 #endif 46 static DEFINE_SPINLOCK(cpufreq_driver_lock); 47 48 /* 49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 50 * all cpufreq/hotplug/workqueue/etc related lock issues. 51 * 52 * The rules for this semaphore: 53 * - Any routine that wants to read from the policy structure will 54 * do a down_read on this semaphore. 55 * - Any routine that will write to the policy structure and/or may take away 56 * the policy altogether (eg. CPU hotplug), will hold this lock in write 57 * mode before doing so. 58 * 59 * Additional rules: 60 * - All holders of the lock should check to make sure that the CPU they 61 * are concerned with are online after they get the lock. 62 * - Governor routines that can be called in cpufreq hotplug path should not 63 * take this sem as top level hotplug notifier handler takes this. 64 */ 65 static DEFINE_PER_CPU(int, policy_cpu); 66 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 67 68 #define lock_policy_rwsem(mode, cpu) \ 69 int lock_policy_rwsem_##mode \ 70 (int cpu) \ 71 { \ 72 int policy_cpu = per_cpu(policy_cpu, cpu); \ 73 BUG_ON(policy_cpu == -1); \ 74 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 75 if (unlikely(!cpu_online(cpu))) { \ 76 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 77 return -1; \ 78 } \ 79 \ 80 return 0; \ 81 } 82 83 lock_policy_rwsem(read, cpu); 84 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read); 85 86 lock_policy_rwsem(write, cpu); 87 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write); 88 89 void unlock_policy_rwsem_read(int cpu) 90 { 91 int policy_cpu = per_cpu(policy_cpu, cpu); 92 BUG_ON(policy_cpu == -1); 93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu)); 94 } 95 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read); 96 97 void unlock_policy_rwsem_write(int cpu) 98 { 99 int policy_cpu = per_cpu(policy_cpu, cpu); 100 BUG_ON(policy_cpu == -1); 101 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu)); 102 } 103 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write); 104 105 106 /* internal prototypes */ 107 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event); 108 static unsigned int __cpufreq_get(unsigned int cpu); 109 static void handle_update(struct work_struct *work); 110 111 /** 112 * Two notifier lists: the "policy" list is involved in the 113 * validation process for a new CPU frequency policy; the 114 * "transition" list for kernel code that needs to handle 115 * changes to devices when the CPU clock speed changes. 116 * The mutex locks both lists. 117 */ 118 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 119 static struct srcu_notifier_head cpufreq_transition_notifier_list; 120 121 static int __init init_cpufreq_transition_notifier_list(void) 122 { 123 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 124 return 0; 125 } 126 pure_initcall(init_cpufreq_transition_notifier_list); 127 128 static LIST_HEAD(cpufreq_governor_list); 129 static DEFINE_MUTEX (cpufreq_governor_mutex); 130 131 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 132 { 133 struct cpufreq_policy *data; 134 unsigned long flags; 135 136 if (cpu >= NR_CPUS) 137 goto err_out; 138 139 /* get the cpufreq driver */ 140 spin_lock_irqsave(&cpufreq_driver_lock, flags); 141 142 if (!cpufreq_driver) 143 goto err_out_unlock; 144 145 if (!try_module_get(cpufreq_driver->owner)) 146 goto err_out_unlock; 147 148 149 /* get the CPU */ 150 data = cpufreq_cpu_data[cpu]; 151 152 if (!data) 153 goto err_out_put_module; 154 155 if (!kobject_get(&data->kobj)) 156 goto err_out_put_module; 157 158 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 159 return data; 160 161 err_out_put_module: 162 module_put(cpufreq_driver->owner); 163 err_out_unlock: 164 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 165 err_out: 166 return NULL; 167 } 168 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 169 170 171 void cpufreq_cpu_put(struct cpufreq_policy *data) 172 { 173 kobject_put(&data->kobj); 174 module_put(cpufreq_driver->owner); 175 } 176 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 177 178 179 /********************************************************************* 180 * UNIFIED DEBUG HELPERS * 181 *********************************************************************/ 182 #ifdef CONFIG_CPU_FREQ_DEBUG 183 184 /* what part(s) of the CPUfreq subsystem are debugged? */ 185 static unsigned int debug; 186 187 /* is the debug output ratelimit'ed using printk_ratelimit? User can 188 * set or modify this value. 189 */ 190 static unsigned int debug_ratelimit = 1; 191 192 /* is the printk_ratelimit'ing enabled? It's enabled after a successful 193 * loading of a cpufreq driver, temporarily disabled when a new policy 194 * is set, and disabled upon cpufreq driver removal 195 */ 196 static unsigned int disable_ratelimit = 1; 197 static DEFINE_SPINLOCK(disable_ratelimit_lock); 198 199 static void cpufreq_debug_enable_ratelimit(void) 200 { 201 unsigned long flags; 202 203 spin_lock_irqsave(&disable_ratelimit_lock, flags); 204 if (disable_ratelimit) 205 disable_ratelimit--; 206 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 207 } 208 209 static void cpufreq_debug_disable_ratelimit(void) 210 { 211 unsigned long flags; 212 213 spin_lock_irqsave(&disable_ratelimit_lock, flags); 214 disable_ratelimit++; 215 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 216 } 217 218 void cpufreq_debug_printk(unsigned int type, const char *prefix, 219 const char *fmt, ...) 220 { 221 char s[256]; 222 va_list args; 223 unsigned int len; 224 unsigned long flags; 225 226 WARN_ON(!prefix); 227 if (type & debug) { 228 spin_lock_irqsave(&disable_ratelimit_lock, flags); 229 if (!disable_ratelimit && debug_ratelimit 230 && !printk_ratelimit()) { 231 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 232 return; 233 } 234 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 235 236 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix); 237 238 va_start(args, fmt); 239 len += vsnprintf(&s[len], (256 - len), fmt, args); 240 va_end(args); 241 242 printk(s); 243 244 WARN_ON(len < 5); 245 } 246 } 247 EXPORT_SYMBOL(cpufreq_debug_printk); 248 249 250 module_param(debug, uint, 0644); 251 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core," 252 " 2 to debug drivers, and 4 to debug governors."); 253 254 module_param(debug_ratelimit, uint, 0644); 255 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:" 256 " set to 0 to disable ratelimiting."); 257 258 #else /* !CONFIG_CPU_FREQ_DEBUG */ 259 260 static inline void cpufreq_debug_enable_ratelimit(void) { return; } 261 static inline void cpufreq_debug_disable_ratelimit(void) { return; } 262 263 #endif /* CONFIG_CPU_FREQ_DEBUG */ 264 265 266 /********************************************************************* 267 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 268 *********************************************************************/ 269 270 /** 271 * adjust_jiffies - adjust the system "loops_per_jiffy" 272 * 273 * This function alters the system "loops_per_jiffy" for the clock 274 * speed change. Note that loops_per_jiffy cannot be updated on SMP 275 * systems as each CPU might be scaled differently. So, use the arch 276 * per-CPU loops_per_jiffy value wherever possible. 277 */ 278 #ifndef CONFIG_SMP 279 static unsigned long l_p_j_ref; 280 static unsigned int l_p_j_ref_freq; 281 282 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 283 { 284 if (ci->flags & CPUFREQ_CONST_LOOPS) 285 return; 286 287 if (!l_p_j_ref_freq) { 288 l_p_j_ref = loops_per_jiffy; 289 l_p_j_ref_freq = ci->old; 290 dprintk("saving %lu as reference value for loops_per_jiffy;" 291 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 292 } 293 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) || 294 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) || 295 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 296 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 297 ci->new); 298 dprintk("scaling loops_per_jiffy to %lu" 299 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 300 } 301 } 302 #else 303 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 304 { 305 return; 306 } 307 #endif 308 309 310 /** 311 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 312 * on frequency transition. 313 * 314 * This function calls the transition notifiers and the "adjust_jiffies" 315 * function. It is called twice on all CPU frequency changes that have 316 * external effects. 317 */ 318 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state) 319 { 320 struct cpufreq_policy *policy; 321 322 BUG_ON(irqs_disabled()); 323 324 freqs->flags = cpufreq_driver->flags; 325 dprintk("notification %u of frequency transition to %u kHz\n", 326 state, freqs->new); 327 328 policy = cpufreq_cpu_data[freqs->cpu]; 329 switch (state) { 330 331 case CPUFREQ_PRECHANGE: 332 /* detect if the driver reported a value as "old frequency" 333 * which is not equal to what the cpufreq core thinks is 334 * "old frequency". 335 */ 336 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 337 if ((policy) && (policy->cpu == freqs->cpu) && 338 (policy->cur) && (policy->cur != freqs->old)) { 339 dprintk("Warning: CPU frequency is" 340 " %u, cpufreq assumed %u kHz.\n", 341 freqs->old, policy->cur); 342 freqs->old = policy->cur; 343 } 344 } 345 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 346 CPUFREQ_PRECHANGE, freqs); 347 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 348 break; 349 350 case CPUFREQ_POSTCHANGE: 351 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 352 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 353 CPUFREQ_POSTCHANGE, freqs); 354 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 355 policy->cur = freqs->new; 356 break; 357 } 358 } 359 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 360 361 362 363 /********************************************************************* 364 * SYSFS INTERFACE * 365 *********************************************************************/ 366 367 static struct cpufreq_governor *__find_governor(const char *str_governor) 368 { 369 struct cpufreq_governor *t; 370 371 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 372 if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN)) 373 return t; 374 375 return NULL; 376 } 377 378 /** 379 * cpufreq_parse_governor - parse a governor string 380 */ 381 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy, 382 struct cpufreq_governor **governor) 383 { 384 int err = -EINVAL; 385 386 if (!cpufreq_driver) 387 goto out; 388 389 if (cpufreq_driver->setpolicy) { 390 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 391 *policy = CPUFREQ_POLICY_PERFORMANCE; 392 err = 0; 393 } else if (!strnicmp(str_governor, "powersave", 394 CPUFREQ_NAME_LEN)) { 395 *policy = CPUFREQ_POLICY_POWERSAVE; 396 err = 0; 397 } 398 } else if (cpufreq_driver->target) { 399 struct cpufreq_governor *t; 400 401 mutex_lock(&cpufreq_governor_mutex); 402 403 t = __find_governor(str_governor); 404 405 if (t == NULL) { 406 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s", 407 str_governor); 408 409 if (name) { 410 int ret; 411 412 mutex_unlock(&cpufreq_governor_mutex); 413 ret = request_module(name); 414 mutex_lock(&cpufreq_governor_mutex); 415 416 if (ret == 0) 417 t = __find_governor(str_governor); 418 } 419 420 kfree(name); 421 } 422 423 if (t != NULL) { 424 *governor = t; 425 err = 0; 426 } 427 428 mutex_unlock(&cpufreq_governor_mutex); 429 } 430 out: 431 return err; 432 } 433 434 435 /* drivers/base/cpu.c */ 436 extern struct sysdev_class cpu_sysdev_class; 437 438 439 /** 440 * cpufreq_per_cpu_attr_read() / show_##file_name() - 441 * print out cpufreq information 442 * 443 * Write out information from cpufreq_driver->policy[cpu]; object must be 444 * "unsigned int". 445 */ 446 447 #define show_one(file_name, object) \ 448 static ssize_t show_##file_name \ 449 (struct cpufreq_policy * policy, char *buf) \ 450 { \ 451 return sprintf (buf, "%u\n", policy->object); \ 452 } 453 454 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 455 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 456 show_one(scaling_min_freq, min); 457 show_one(scaling_max_freq, max); 458 show_one(scaling_cur_freq, cur); 459 460 static int __cpufreq_set_policy(struct cpufreq_policy *data, 461 struct cpufreq_policy *policy); 462 463 /** 464 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 465 */ 466 #define store_one(file_name, object) \ 467 static ssize_t store_##file_name \ 468 (struct cpufreq_policy * policy, const char *buf, size_t count) \ 469 { \ 470 unsigned int ret = -EINVAL; \ 471 struct cpufreq_policy new_policy; \ 472 \ 473 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 474 if (ret) \ 475 return -EINVAL; \ 476 \ 477 ret = sscanf (buf, "%u", &new_policy.object); \ 478 if (ret != 1) \ 479 return -EINVAL; \ 480 \ 481 ret = __cpufreq_set_policy(policy, &new_policy); \ 482 policy->user_policy.object = policy->object; \ 483 \ 484 return ret ? ret : count; \ 485 } 486 487 store_one(scaling_min_freq,min); 488 store_one(scaling_max_freq,max); 489 490 /** 491 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 492 */ 493 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy, 494 char *buf) 495 { 496 unsigned int cur_freq = __cpufreq_get(policy->cpu); 497 if (!cur_freq) 498 return sprintf(buf, "<unknown>"); 499 return sprintf(buf, "%u\n", cur_freq); 500 } 501 502 503 /** 504 * show_scaling_governor - show the current policy for the specified CPU 505 */ 506 static ssize_t show_scaling_governor (struct cpufreq_policy * policy, 507 char *buf) 508 { 509 if(policy->policy == CPUFREQ_POLICY_POWERSAVE) 510 return sprintf(buf, "powersave\n"); 511 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 512 return sprintf(buf, "performance\n"); 513 else if (policy->governor) 514 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name); 515 return -EINVAL; 516 } 517 518 519 /** 520 * store_scaling_governor - store policy for the specified CPU 521 */ 522 static ssize_t store_scaling_governor (struct cpufreq_policy * policy, 523 const char *buf, size_t count) 524 { 525 unsigned int ret = -EINVAL; 526 char str_governor[16]; 527 struct cpufreq_policy new_policy; 528 529 ret = cpufreq_get_policy(&new_policy, policy->cpu); 530 if (ret) 531 return ret; 532 533 ret = sscanf (buf, "%15s", str_governor); 534 if (ret != 1) 535 return -EINVAL; 536 537 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 538 &new_policy.governor)) 539 return -EINVAL; 540 541 /* Do not use cpufreq_set_policy here or the user_policy.max 542 will be wrongly overridden */ 543 ret = __cpufreq_set_policy(policy, &new_policy); 544 545 policy->user_policy.policy = policy->policy; 546 policy->user_policy.governor = policy->governor; 547 548 if (ret) 549 return ret; 550 else 551 return count; 552 } 553 554 /** 555 * show_scaling_driver - show the cpufreq driver currently loaded 556 */ 557 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf) 558 { 559 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name); 560 } 561 562 /** 563 * show_scaling_available_governors - show the available CPUfreq governors 564 */ 565 static ssize_t show_scaling_available_governors (struct cpufreq_policy *policy, 566 char *buf) 567 { 568 ssize_t i = 0; 569 struct cpufreq_governor *t; 570 571 if (!cpufreq_driver->target) { 572 i += sprintf(buf, "performance powersave"); 573 goto out; 574 } 575 576 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 577 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2))) 578 goto out; 579 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name); 580 } 581 out: 582 i += sprintf(&buf[i], "\n"); 583 return i; 584 } 585 /** 586 * show_affected_cpus - show the CPUs affected by each transition 587 */ 588 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf) 589 { 590 ssize_t i = 0; 591 unsigned int cpu; 592 593 for_each_cpu_mask(cpu, policy->cpus) { 594 if (i) 595 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 596 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 597 if (i >= (PAGE_SIZE - 5)) 598 break; 599 } 600 i += sprintf(&buf[i], "\n"); 601 return i; 602 } 603 604 605 #define define_one_ro(_name) \ 606 static struct freq_attr _name = \ 607 __ATTR(_name, 0444, show_##_name, NULL) 608 609 #define define_one_ro0400(_name) \ 610 static struct freq_attr _name = \ 611 __ATTR(_name, 0400, show_##_name, NULL) 612 613 #define define_one_rw(_name) \ 614 static struct freq_attr _name = \ 615 __ATTR(_name, 0644, show_##_name, store_##_name) 616 617 define_one_ro0400(cpuinfo_cur_freq); 618 define_one_ro(cpuinfo_min_freq); 619 define_one_ro(cpuinfo_max_freq); 620 define_one_ro(scaling_available_governors); 621 define_one_ro(scaling_driver); 622 define_one_ro(scaling_cur_freq); 623 define_one_ro(affected_cpus); 624 define_one_rw(scaling_min_freq); 625 define_one_rw(scaling_max_freq); 626 define_one_rw(scaling_governor); 627 628 static struct attribute * default_attrs[] = { 629 &cpuinfo_min_freq.attr, 630 &cpuinfo_max_freq.attr, 631 &scaling_min_freq.attr, 632 &scaling_max_freq.attr, 633 &affected_cpus.attr, 634 &scaling_governor.attr, 635 &scaling_driver.attr, 636 &scaling_available_governors.attr, 637 NULL 638 }; 639 640 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj) 641 #define to_attr(a) container_of(a,struct freq_attr,attr) 642 643 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf) 644 { 645 struct cpufreq_policy * policy = to_policy(kobj); 646 struct freq_attr * fattr = to_attr(attr); 647 ssize_t ret; 648 policy = cpufreq_cpu_get(policy->cpu); 649 if (!policy) 650 return -EINVAL; 651 652 if (lock_policy_rwsem_read(policy->cpu) < 0) 653 return -EINVAL; 654 655 if (fattr->show) 656 ret = fattr->show(policy, buf); 657 else 658 ret = -EIO; 659 660 unlock_policy_rwsem_read(policy->cpu); 661 662 cpufreq_cpu_put(policy); 663 return ret; 664 } 665 666 static ssize_t store(struct kobject * kobj, struct attribute * attr, 667 const char * buf, size_t count) 668 { 669 struct cpufreq_policy * policy = to_policy(kobj); 670 struct freq_attr * fattr = to_attr(attr); 671 ssize_t ret; 672 policy = cpufreq_cpu_get(policy->cpu); 673 if (!policy) 674 return -EINVAL; 675 676 if (lock_policy_rwsem_write(policy->cpu) < 0) 677 return -EINVAL; 678 679 if (fattr->store) 680 ret = fattr->store(policy, buf, count); 681 else 682 ret = -EIO; 683 684 unlock_policy_rwsem_write(policy->cpu); 685 686 cpufreq_cpu_put(policy); 687 return ret; 688 } 689 690 static void cpufreq_sysfs_release(struct kobject * kobj) 691 { 692 struct cpufreq_policy * policy = to_policy(kobj); 693 dprintk("last reference is dropped\n"); 694 complete(&policy->kobj_unregister); 695 } 696 697 static struct sysfs_ops sysfs_ops = { 698 .show = show, 699 .store = store, 700 }; 701 702 static struct kobj_type ktype_cpufreq = { 703 .sysfs_ops = &sysfs_ops, 704 .default_attrs = default_attrs, 705 .release = cpufreq_sysfs_release, 706 }; 707 708 709 /** 710 * cpufreq_add_dev - add a CPU device 711 * 712 * Adds the cpufreq interface for a CPU device. 713 */ 714 static int cpufreq_add_dev (struct sys_device * sys_dev) 715 { 716 unsigned int cpu = sys_dev->id; 717 int ret = 0; 718 struct cpufreq_policy new_policy; 719 struct cpufreq_policy *policy; 720 struct freq_attr **drv_attr; 721 struct sys_device *cpu_sys_dev; 722 unsigned long flags; 723 unsigned int j; 724 #ifdef CONFIG_SMP 725 struct cpufreq_policy *managed_policy; 726 #endif 727 728 if (cpu_is_offline(cpu)) 729 return 0; 730 731 cpufreq_debug_disable_ratelimit(); 732 dprintk("adding CPU %u\n", cpu); 733 734 #ifdef CONFIG_SMP 735 /* check whether a different CPU already registered this 736 * CPU because it is in the same boat. */ 737 policy = cpufreq_cpu_get(cpu); 738 if (unlikely(policy)) { 739 cpufreq_cpu_put(policy); 740 cpufreq_debug_enable_ratelimit(); 741 return 0; 742 } 743 #endif 744 745 if (!try_module_get(cpufreq_driver->owner)) { 746 ret = -EINVAL; 747 goto module_out; 748 } 749 750 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL); 751 if (!policy) { 752 ret = -ENOMEM; 753 goto nomem_out; 754 } 755 756 policy->cpu = cpu; 757 policy->cpus = cpumask_of_cpu(cpu); 758 759 /* Initially set CPU itself as the policy_cpu */ 760 per_cpu(policy_cpu, cpu) = cpu; 761 lock_policy_rwsem_write(cpu); 762 763 init_completion(&policy->kobj_unregister); 764 INIT_WORK(&policy->update, handle_update); 765 766 /* Set governor before ->init, so that driver could check it */ 767 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 768 /* call driver. From then on the cpufreq must be able 769 * to accept all calls to ->verify and ->setpolicy for this CPU 770 */ 771 ret = cpufreq_driver->init(policy); 772 if (ret) { 773 dprintk("initialization failed\n"); 774 unlock_policy_rwsem_write(cpu); 775 goto err_out; 776 } 777 policy->user_policy.min = policy->cpuinfo.min_freq; 778 policy->user_policy.max = policy->cpuinfo.max_freq; 779 780 #ifdef CONFIG_SMP 781 782 #ifdef CONFIG_HOTPLUG_CPU 783 if (cpufreq_cpu_governor[cpu]){ 784 policy->governor = cpufreq_cpu_governor[cpu]; 785 dprintk("Restoring governor %s for cpu %d\n", 786 policy->governor->name, cpu); 787 } 788 #endif 789 790 for_each_cpu_mask(j, policy->cpus) { 791 if (cpu == j) 792 continue; 793 794 /* check for existing affected CPUs. They may not be aware 795 * of it due to CPU Hotplug. 796 */ 797 managed_policy = cpufreq_cpu_get(j); 798 if (unlikely(managed_policy)) { 799 800 /* Set proper policy_cpu */ 801 unlock_policy_rwsem_write(cpu); 802 per_cpu(policy_cpu, cpu) = managed_policy->cpu; 803 804 if (lock_policy_rwsem_write(cpu) < 0) 805 goto err_out_driver_exit; 806 807 spin_lock_irqsave(&cpufreq_driver_lock, flags); 808 managed_policy->cpus = policy->cpus; 809 cpufreq_cpu_data[cpu] = managed_policy; 810 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 811 812 dprintk("CPU already managed, adding link\n"); 813 ret = sysfs_create_link(&sys_dev->kobj, 814 &managed_policy->kobj, 815 "cpufreq"); 816 if (ret) { 817 unlock_policy_rwsem_write(cpu); 818 goto err_out_driver_exit; 819 } 820 821 cpufreq_debug_enable_ratelimit(); 822 ret = 0; 823 unlock_policy_rwsem_write(cpu); 824 goto err_out_driver_exit; /* call driver->exit() */ 825 } 826 } 827 #endif 828 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy)); 829 830 /* prepare interface data */ 831 policy->kobj.parent = &sys_dev->kobj; 832 policy->kobj.ktype = &ktype_cpufreq; 833 kobject_set_name(&policy->kobj, "cpufreq"); 834 835 ret = kobject_register(&policy->kobj); 836 if (ret) { 837 unlock_policy_rwsem_write(cpu); 838 goto err_out_driver_exit; 839 } 840 /* set up files for this cpu device */ 841 drv_attr = cpufreq_driver->attr; 842 while ((drv_attr) && (*drv_attr)) { 843 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 844 if (ret) 845 goto err_out_driver_exit; 846 drv_attr++; 847 } 848 if (cpufreq_driver->get){ 849 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 850 if (ret) 851 goto err_out_driver_exit; 852 } 853 if (cpufreq_driver->target){ 854 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 855 if (ret) 856 goto err_out_driver_exit; 857 } 858 859 spin_lock_irqsave(&cpufreq_driver_lock, flags); 860 for_each_cpu_mask(j, policy->cpus) { 861 cpufreq_cpu_data[j] = policy; 862 per_cpu(policy_cpu, j) = policy->cpu; 863 } 864 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 865 866 /* symlink affected CPUs */ 867 for_each_cpu_mask(j, policy->cpus) { 868 if (j == cpu) 869 continue; 870 if (!cpu_online(j)) 871 continue; 872 873 dprintk("CPU %u already managed, adding link\n", j); 874 cpufreq_cpu_get(cpu); 875 cpu_sys_dev = get_cpu_sysdev(j); 876 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj, 877 "cpufreq"); 878 if (ret) { 879 unlock_policy_rwsem_write(cpu); 880 goto err_out_unregister; 881 } 882 } 883 884 policy->governor = NULL; /* to assure that the starting sequence is 885 * run in cpufreq_set_policy */ 886 887 /* set default policy */ 888 ret = __cpufreq_set_policy(policy, &new_policy); 889 policy->user_policy.policy = policy->policy; 890 policy->user_policy.governor = policy->governor; 891 892 unlock_policy_rwsem_write(cpu); 893 894 if (ret) { 895 dprintk("setting policy failed\n"); 896 goto err_out_unregister; 897 } 898 899 module_put(cpufreq_driver->owner); 900 dprintk("initialization complete\n"); 901 cpufreq_debug_enable_ratelimit(); 902 903 return 0; 904 905 906 err_out_unregister: 907 spin_lock_irqsave(&cpufreq_driver_lock, flags); 908 for_each_cpu_mask(j, policy->cpus) 909 cpufreq_cpu_data[j] = NULL; 910 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 911 912 kobject_unregister(&policy->kobj); 913 wait_for_completion(&policy->kobj_unregister); 914 915 err_out_driver_exit: 916 if (cpufreq_driver->exit) 917 cpufreq_driver->exit(policy); 918 919 err_out: 920 kfree(policy); 921 922 nomem_out: 923 module_put(cpufreq_driver->owner); 924 module_out: 925 cpufreq_debug_enable_ratelimit(); 926 return ret; 927 } 928 929 930 /** 931 * __cpufreq_remove_dev - remove a CPU device 932 * 933 * Removes the cpufreq interface for a CPU device. 934 * Caller should already have policy_rwsem in write mode for this CPU. 935 * This routine frees the rwsem before returning. 936 */ 937 static int __cpufreq_remove_dev (struct sys_device * sys_dev) 938 { 939 unsigned int cpu = sys_dev->id; 940 unsigned long flags; 941 struct cpufreq_policy *data; 942 #ifdef CONFIG_SMP 943 struct sys_device *cpu_sys_dev; 944 unsigned int j; 945 #endif 946 947 cpufreq_debug_disable_ratelimit(); 948 dprintk("unregistering CPU %u\n", cpu); 949 950 spin_lock_irqsave(&cpufreq_driver_lock, flags); 951 data = cpufreq_cpu_data[cpu]; 952 953 if (!data) { 954 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 955 cpufreq_debug_enable_ratelimit(); 956 unlock_policy_rwsem_write(cpu); 957 return -EINVAL; 958 } 959 cpufreq_cpu_data[cpu] = NULL; 960 961 962 #ifdef CONFIG_SMP 963 /* if this isn't the CPU which is the parent of the kobj, we 964 * only need to unlink, put and exit 965 */ 966 if (unlikely(cpu != data->cpu)) { 967 dprintk("removing link\n"); 968 cpu_clear(cpu, data->cpus); 969 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 970 sysfs_remove_link(&sys_dev->kobj, "cpufreq"); 971 cpufreq_cpu_put(data); 972 cpufreq_debug_enable_ratelimit(); 973 unlock_policy_rwsem_write(cpu); 974 return 0; 975 } 976 #endif 977 978 979 if (!kobject_get(&data->kobj)) { 980 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 981 cpufreq_debug_enable_ratelimit(); 982 unlock_policy_rwsem_write(cpu); 983 return -EFAULT; 984 } 985 986 #ifdef CONFIG_SMP 987 988 #ifdef CONFIG_HOTPLUG_CPU 989 cpufreq_cpu_governor[cpu] = data->governor; 990 #endif 991 992 /* if we have other CPUs still registered, we need to unlink them, 993 * or else wait_for_completion below will lock up. Clean the 994 * cpufreq_cpu_data[] while holding the lock, and remove the sysfs 995 * links afterwards. 996 */ 997 if (unlikely(cpus_weight(data->cpus) > 1)) { 998 for_each_cpu_mask(j, data->cpus) { 999 if (j == cpu) 1000 continue; 1001 cpufreq_cpu_data[j] = NULL; 1002 } 1003 } 1004 1005 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1006 1007 if (unlikely(cpus_weight(data->cpus) > 1)) { 1008 for_each_cpu_mask(j, data->cpus) { 1009 if (j == cpu) 1010 continue; 1011 dprintk("removing link for cpu %u\n", j); 1012 #ifdef CONFIG_HOTPLUG_CPU 1013 cpufreq_cpu_governor[j] = data->governor; 1014 #endif 1015 cpu_sys_dev = get_cpu_sysdev(j); 1016 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq"); 1017 cpufreq_cpu_put(data); 1018 } 1019 } 1020 #else 1021 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1022 #endif 1023 1024 if (cpufreq_driver->target) 1025 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1026 1027 unlock_policy_rwsem_write(cpu); 1028 1029 kobject_unregister(&data->kobj); 1030 1031 kobject_put(&data->kobj); 1032 1033 /* we need to make sure that the underlying kobj is actually 1034 * not referenced anymore by anybody before we proceed with 1035 * unloading. 1036 */ 1037 dprintk("waiting for dropping of refcount\n"); 1038 wait_for_completion(&data->kobj_unregister); 1039 dprintk("wait complete\n"); 1040 1041 if (cpufreq_driver->exit) 1042 cpufreq_driver->exit(data); 1043 1044 kfree(data); 1045 1046 cpufreq_debug_enable_ratelimit(); 1047 return 0; 1048 } 1049 1050 1051 static int cpufreq_remove_dev (struct sys_device * sys_dev) 1052 { 1053 unsigned int cpu = sys_dev->id; 1054 int retval; 1055 1056 if (cpu_is_offline(cpu)) 1057 return 0; 1058 1059 if (unlikely(lock_policy_rwsem_write(cpu))) 1060 BUG(); 1061 1062 retval = __cpufreq_remove_dev(sys_dev); 1063 return retval; 1064 } 1065 1066 1067 static void handle_update(struct work_struct *work) 1068 { 1069 struct cpufreq_policy *policy = 1070 container_of(work, struct cpufreq_policy, update); 1071 unsigned int cpu = policy->cpu; 1072 dprintk("handle_update for cpu %u called\n", cpu); 1073 cpufreq_update_policy(cpu); 1074 } 1075 1076 /** 1077 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble. 1078 * @cpu: cpu number 1079 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1080 * @new_freq: CPU frequency the CPU actually runs at 1081 * 1082 * We adjust to current frequency first, and need to clean up later. So either call 1083 * to cpufreq_update_policy() or schedule handle_update()). 1084 */ 1085 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1086 unsigned int new_freq) 1087 { 1088 struct cpufreq_freqs freqs; 1089 1090 dprintk("Warning: CPU frequency out of sync: cpufreq and timing " 1091 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1092 1093 freqs.cpu = cpu; 1094 freqs.old = old_freq; 1095 freqs.new = new_freq; 1096 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); 1097 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); 1098 } 1099 1100 1101 /** 1102 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1103 * @cpu: CPU number 1104 * 1105 * This is the last known freq, without actually getting it from the driver. 1106 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1107 */ 1108 unsigned int cpufreq_quick_get(unsigned int cpu) 1109 { 1110 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1111 unsigned int ret_freq = 0; 1112 1113 if (policy) { 1114 ret_freq = policy->cur; 1115 cpufreq_cpu_put(policy); 1116 } 1117 1118 return (ret_freq); 1119 } 1120 EXPORT_SYMBOL(cpufreq_quick_get); 1121 1122 1123 static unsigned int __cpufreq_get(unsigned int cpu) 1124 { 1125 struct cpufreq_policy *policy = cpufreq_cpu_data[cpu]; 1126 unsigned int ret_freq = 0; 1127 1128 if (!cpufreq_driver->get) 1129 return (ret_freq); 1130 1131 ret_freq = cpufreq_driver->get(cpu); 1132 1133 if (ret_freq && policy->cur && 1134 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1135 /* verify no discrepancy between actual and 1136 saved value exists */ 1137 if (unlikely(ret_freq != policy->cur)) { 1138 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1139 schedule_work(&policy->update); 1140 } 1141 } 1142 1143 return (ret_freq); 1144 } 1145 1146 /** 1147 * cpufreq_get - get the current CPU frequency (in kHz) 1148 * @cpu: CPU number 1149 * 1150 * Get the CPU current (static) CPU frequency 1151 */ 1152 unsigned int cpufreq_get(unsigned int cpu) 1153 { 1154 unsigned int ret_freq = 0; 1155 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1156 1157 if (!policy) 1158 goto out; 1159 1160 if (unlikely(lock_policy_rwsem_read(cpu))) 1161 goto out_policy; 1162 1163 ret_freq = __cpufreq_get(cpu); 1164 1165 unlock_policy_rwsem_read(cpu); 1166 1167 out_policy: 1168 cpufreq_cpu_put(policy); 1169 out: 1170 return (ret_freq); 1171 } 1172 EXPORT_SYMBOL(cpufreq_get); 1173 1174 1175 /** 1176 * cpufreq_suspend - let the low level driver prepare for suspend 1177 */ 1178 1179 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg) 1180 { 1181 int cpu = sysdev->id; 1182 int ret = 0; 1183 unsigned int cur_freq = 0; 1184 struct cpufreq_policy *cpu_policy; 1185 1186 dprintk("suspending cpu %u\n", cpu); 1187 1188 if (!cpu_online(cpu)) 1189 return 0; 1190 1191 /* we may be lax here as interrupts are off. Nonetheless 1192 * we need to grab the correct cpu policy, as to check 1193 * whether we really run on this CPU. 1194 */ 1195 1196 cpu_policy = cpufreq_cpu_get(cpu); 1197 if (!cpu_policy) 1198 return -EINVAL; 1199 1200 /* only handle each CPU group once */ 1201 if (unlikely(cpu_policy->cpu != cpu)) { 1202 cpufreq_cpu_put(cpu_policy); 1203 return 0; 1204 } 1205 1206 if (cpufreq_driver->suspend) { 1207 ret = cpufreq_driver->suspend(cpu_policy, pmsg); 1208 if (ret) { 1209 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1210 "step on CPU %u\n", cpu_policy->cpu); 1211 cpufreq_cpu_put(cpu_policy); 1212 return ret; 1213 } 1214 } 1215 1216 1217 if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS) 1218 goto out; 1219 1220 if (cpufreq_driver->get) 1221 cur_freq = cpufreq_driver->get(cpu_policy->cpu); 1222 1223 if (!cur_freq || !cpu_policy->cur) { 1224 printk(KERN_ERR "cpufreq: suspend failed to assert current " 1225 "frequency is what timing core thinks it is.\n"); 1226 goto out; 1227 } 1228 1229 if (unlikely(cur_freq != cpu_policy->cur)) { 1230 struct cpufreq_freqs freqs; 1231 1232 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN)) 1233 dprintk("Warning: CPU frequency is %u, " 1234 "cpufreq assumed %u kHz.\n", 1235 cur_freq, cpu_policy->cur); 1236 1237 freqs.cpu = cpu; 1238 freqs.old = cpu_policy->cur; 1239 freqs.new = cur_freq; 1240 1241 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 1242 CPUFREQ_SUSPENDCHANGE, &freqs); 1243 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs); 1244 1245 cpu_policy->cur = cur_freq; 1246 } 1247 1248 out: 1249 cpufreq_cpu_put(cpu_policy); 1250 return 0; 1251 } 1252 1253 /** 1254 * cpufreq_resume - restore proper CPU frequency handling after resume 1255 * 1256 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1257 * 2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync 1258 * 3.) schedule call cpufreq_update_policy() ASAP as interrupts are 1259 * restored. 1260 */ 1261 static int cpufreq_resume(struct sys_device * sysdev) 1262 { 1263 int cpu = sysdev->id; 1264 int ret = 0; 1265 struct cpufreq_policy *cpu_policy; 1266 1267 dprintk("resuming cpu %u\n", cpu); 1268 1269 if (!cpu_online(cpu)) 1270 return 0; 1271 1272 /* we may be lax here as interrupts are off. Nonetheless 1273 * we need to grab the correct cpu policy, as to check 1274 * whether we really run on this CPU. 1275 */ 1276 1277 cpu_policy = cpufreq_cpu_get(cpu); 1278 if (!cpu_policy) 1279 return -EINVAL; 1280 1281 /* only handle each CPU group once */ 1282 if (unlikely(cpu_policy->cpu != cpu)) { 1283 cpufreq_cpu_put(cpu_policy); 1284 return 0; 1285 } 1286 1287 if (cpufreq_driver->resume) { 1288 ret = cpufreq_driver->resume(cpu_policy); 1289 if (ret) { 1290 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1291 "step on CPU %u\n", cpu_policy->cpu); 1292 cpufreq_cpu_put(cpu_policy); 1293 return ret; 1294 } 1295 } 1296 1297 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1298 unsigned int cur_freq = 0; 1299 1300 if (cpufreq_driver->get) 1301 cur_freq = cpufreq_driver->get(cpu_policy->cpu); 1302 1303 if (!cur_freq || !cpu_policy->cur) { 1304 printk(KERN_ERR "cpufreq: resume failed to assert " 1305 "current frequency is what timing core " 1306 "thinks it is.\n"); 1307 goto out; 1308 } 1309 1310 if (unlikely(cur_freq != cpu_policy->cur)) { 1311 struct cpufreq_freqs freqs; 1312 1313 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN)) 1314 dprintk("Warning: CPU frequency" 1315 "is %u, cpufreq assumed %u kHz.\n", 1316 cur_freq, cpu_policy->cur); 1317 1318 freqs.cpu = cpu; 1319 freqs.old = cpu_policy->cur; 1320 freqs.new = cur_freq; 1321 1322 srcu_notifier_call_chain( 1323 &cpufreq_transition_notifier_list, 1324 CPUFREQ_RESUMECHANGE, &freqs); 1325 adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs); 1326 1327 cpu_policy->cur = cur_freq; 1328 } 1329 } 1330 1331 out: 1332 schedule_work(&cpu_policy->update); 1333 cpufreq_cpu_put(cpu_policy); 1334 return ret; 1335 } 1336 1337 static struct sysdev_driver cpufreq_sysdev_driver = { 1338 .add = cpufreq_add_dev, 1339 .remove = cpufreq_remove_dev, 1340 .suspend = cpufreq_suspend, 1341 .resume = cpufreq_resume, 1342 }; 1343 1344 1345 /********************************************************************* 1346 * NOTIFIER LISTS INTERFACE * 1347 *********************************************************************/ 1348 1349 /** 1350 * cpufreq_register_notifier - register a driver with cpufreq 1351 * @nb: notifier function to register 1352 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1353 * 1354 * Add a driver to one of two lists: either a list of drivers that 1355 * are notified about clock rate changes (once before and once after 1356 * the transition), or a list of drivers that are notified about 1357 * changes in cpufreq policy. 1358 * 1359 * This function may sleep, and has the same return conditions as 1360 * blocking_notifier_chain_register. 1361 */ 1362 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1363 { 1364 int ret; 1365 1366 switch (list) { 1367 case CPUFREQ_TRANSITION_NOTIFIER: 1368 ret = srcu_notifier_chain_register( 1369 &cpufreq_transition_notifier_list, nb); 1370 break; 1371 case CPUFREQ_POLICY_NOTIFIER: 1372 ret = blocking_notifier_chain_register( 1373 &cpufreq_policy_notifier_list, nb); 1374 break; 1375 default: 1376 ret = -EINVAL; 1377 } 1378 1379 return ret; 1380 } 1381 EXPORT_SYMBOL(cpufreq_register_notifier); 1382 1383 1384 /** 1385 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1386 * @nb: notifier block to be unregistered 1387 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1388 * 1389 * Remove a driver from the CPU frequency notifier list. 1390 * 1391 * This function may sleep, and has the same return conditions as 1392 * blocking_notifier_chain_unregister. 1393 */ 1394 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1395 { 1396 int ret; 1397 1398 switch (list) { 1399 case CPUFREQ_TRANSITION_NOTIFIER: 1400 ret = srcu_notifier_chain_unregister( 1401 &cpufreq_transition_notifier_list, nb); 1402 break; 1403 case CPUFREQ_POLICY_NOTIFIER: 1404 ret = blocking_notifier_chain_unregister( 1405 &cpufreq_policy_notifier_list, nb); 1406 break; 1407 default: 1408 ret = -EINVAL; 1409 } 1410 1411 return ret; 1412 } 1413 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1414 1415 1416 /********************************************************************* 1417 * GOVERNORS * 1418 *********************************************************************/ 1419 1420 1421 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1422 unsigned int target_freq, 1423 unsigned int relation) 1424 { 1425 int retval = -EINVAL; 1426 1427 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu, 1428 target_freq, relation); 1429 if (cpu_online(policy->cpu) && cpufreq_driver->target) 1430 retval = cpufreq_driver->target(policy, target_freq, relation); 1431 1432 return retval; 1433 } 1434 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1435 1436 int cpufreq_driver_target(struct cpufreq_policy *policy, 1437 unsigned int target_freq, 1438 unsigned int relation) 1439 { 1440 int ret; 1441 1442 policy = cpufreq_cpu_get(policy->cpu); 1443 if (!policy) 1444 return -EINVAL; 1445 1446 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1447 return -EINVAL; 1448 1449 ret = __cpufreq_driver_target(policy, target_freq, relation); 1450 1451 unlock_policy_rwsem_write(policy->cpu); 1452 1453 cpufreq_cpu_put(policy); 1454 return ret; 1455 } 1456 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1457 1458 int __cpufreq_driver_getavg(struct cpufreq_policy *policy) 1459 { 1460 int ret = 0; 1461 1462 policy = cpufreq_cpu_get(policy->cpu); 1463 if (!policy) 1464 return -EINVAL; 1465 1466 if (cpu_online(policy->cpu) && cpufreq_driver->getavg) 1467 ret = cpufreq_driver->getavg(policy->cpu); 1468 1469 cpufreq_cpu_put(policy); 1470 return ret; 1471 } 1472 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg); 1473 1474 /* 1475 * when "event" is CPUFREQ_GOV_LIMITS 1476 */ 1477 1478 static int __cpufreq_governor(struct cpufreq_policy *policy, 1479 unsigned int event) 1480 { 1481 int ret; 1482 1483 /* Only must be defined when default governor is known to have latency 1484 restrictions, like e.g. conservative or ondemand. 1485 That this is the case is already ensured in Kconfig 1486 */ 1487 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1488 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1489 #else 1490 struct cpufreq_governor *gov = NULL; 1491 #endif 1492 1493 if (policy->governor->max_transition_latency && 1494 policy->cpuinfo.transition_latency > 1495 policy->governor->max_transition_latency) { 1496 if (!gov) 1497 return -EINVAL; 1498 else { 1499 printk(KERN_WARNING "%s governor failed, too long" 1500 " transition latency of HW, fallback" 1501 " to %s governor\n", 1502 policy->governor->name, 1503 gov->name); 1504 policy->governor = gov; 1505 } 1506 } 1507 1508 if (!try_module_get(policy->governor->owner)) 1509 return -EINVAL; 1510 1511 dprintk("__cpufreq_governor for CPU %u, event %u\n", 1512 policy->cpu, event); 1513 ret = policy->governor->governor(policy, event); 1514 1515 /* we keep one module reference alive for 1516 each CPU governed by this CPU */ 1517 if ((event != CPUFREQ_GOV_START) || ret) 1518 module_put(policy->governor->owner); 1519 if ((event == CPUFREQ_GOV_STOP) && !ret) 1520 module_put(policy->governor->owner); 1521 1522 return ret; 1523 } 1524 1525 1526 int cpufreq_register_governor(struct cpufreq_governor *governor) 1527 { 1528 int err; 1529 1530 if (!governor) 1531 return -EINVAL; 1532 1533 mutex_lock(&cpufreq_governor_mutex); 1534 1535 err = -EBUSY; 1536 if (__find_governor(governor->name) == NULL) { 1537 err = 0; 1538 list_add(&governor->governor_list, &cpufreq_governor_list); 1539 } 1540 1541 mutex_unlock(&cpufreq_governor_mutex); 1542 return err; 1543 } 1544 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1545 1546 1547 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1548 { 1549 if (!governor) 1550 return; 1551 1552 mutex_lock(&cpufreq_governor_mutex); 1553 list_del(&governor->governor_list); 1554 mutex_unlock(&cpufreq_governor_mutex); 1555 return; 1556 } 1557 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1558 1559 1560 1561 /********************************************************************* 1562 * POLICY INTERFACE * 1563 *********************************************************************/ 1564 1565 /** 1566 * cpufreq_get_policy - get the current cpufreq_policy 1567 * @policy: struct cpufreq_policy into which the current cpufreq_policy is written 1568 * 1569 * Reads the current cpufreq policy. 1570 */ 1571 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1572 { 1573 struct cpufreq_policy *cpu_policy; 1574 if (!policy) 1575 return -EINVAL; 1576 1577 cpu_policy = cpufreq_cpu_get(cpu); 1578 if (!cpu_policy) 1579 return -EINVAL; 1580 1581 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy)); 1582 1583 cpufreq_cpu_put(cpu_policy); 1584 return 0; 1585 } 1586 EXPORT_SYMBOL(cpufreq_get_policy); 1587 1588 1589 /* 1590 * data : current policy. 1591 * policy : policy to be set. 1592 */ 1593 static int __cpufreq_set_policy(struct cpufreq_policy *data, 1594 struct cpufreq_policy *policy) 1595 { 1596 int ret = 0; 1597 1598 cpufreq_debug_disable_ratelimit(); 1599 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu, 1600 policy->min, policy->max); 1601 1602 memcpy(&policy->cpuinfo, &data->cpuinfo, 1603 sizeof(struct cpufreq_cpuinfo)); 1604 1605 if (policy->min > data->min && policy->min > policy->max) { 1606 ret = -EINVAL; 1607 goto error_out; 1608 } 1609 1610 /* verify the cpu speed can be set within this limit */ 1611 ret = cpufreq_driver->verify(policy); 1612 if (ret) 1613 goto error_out; 1614 1615 /* adjust if necessary - all reasons */ 1616 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1617 CPUFREQ_ADJUST, policy); 1618 1619 /* adjust if necessary - hardware incompatibility*/ 1620 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1621 CPUFREQ_INCOMPATIBLE, policy); 1622 1623 /* verify the cpu speed can be set within this limit, 1624 which might be different to the first one */ 1625 ret = cpufreq_driver->verify(policy); 1626 if (ret) 1627 goto error_out; 1628 1629 /* notification of the new policy */ 1630 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1631 CPUFREQ_NOTIFY, policy); 1632 1633 data->min = policy->min; 1634 data->max = policy->max; 1635 1636 dprintk("new min and max freqs are %u - %u kHz\n", 1637 data->min, data->max); 1638 1639 if (cpufreq_driver->setpolicy) { 1640 data->policy = policy->policy; 1641 dprintk("setting range\n"); 1642 ret = cpufreq_driver->setpolicy(policy); 1643 } else { 1644 if (policy->governor != data->governor) { 1645 /* save old, working values */ 1646 struct cpufreq_governor *old_gov = data->governor; 1647 1648 dprintk("governor switch\n"); 1649 1650 /* end old governor */ 1651 if (data->governor) 1652 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1653 1654 /* start new governor */ 1655 data->governor = policy->governor; 1656 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) { 1657 /* new governor failed, so re-start old one */ 1658 dprintk("starting governor %s failed\n", 1659 data->governor->name); 1660 if (old_gov) { 1661 data->governor = old_gov; 1662 __cpufreq_governor(data, 1663 CPUFREQ_GOV_START); 1664 } 1665 ret = -EINVAL; 1666 goto error_out; 1667 } 1668 /* might be a policy change, too, so fall through */ 1669 } 1670 dprintk("governor: change or update limits\n"); 1671 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1672 } 1673 1674 error_out: 1675 cpufreq_debug_enable_ratelimit(); 1676 return ret; 1677 } 1678 1679 /** 1680 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1681 * @cpu: CPU which shall be re-evaluated 1682 * 1683 * Usefull for policy notifiers which have different necessities 1684 * at different times. 1685 */ 1686 int cpufreq_update_policy(unsigned int cpu) 1687 { 1688 struct cpufreq_policy *data = cpufreq_cpu_get(cpu); 1689 struct cpufreq_policy policy; 1690 int ret = 0; 1691 1692 if (!data) 1693 return -ENODEV; 1694 1695 if (unlikely(lock_policy_rwsem_write(cpu))) 1696 return -EINVAL; 1697 1698 dprintk("updating policy for CPU %u\n", cpu); 1699 memcpy(&policy, data, sizeof(struct cpufreq_policy)); 1700 policy.min = data->user_policy.min; 1701 policy.max = data->user_policy.max; 1702 policy.policy = data->user_policy.policy; 1703 policy.governor = data->user_policy.governor; 1704 1705 /* BIOS might change freq behind our back 1706 -> ask driver for current freq and notify governors about a change */ 1707 if (cpufreq_driver->get) { 1708 policy.cur = cpufreq_driver->get(cpu); 1709 if (!data->cur) { 1710 dprintk("Driver did not initialize current freq"); 1711 data->cur = policy.cur; 1712 } else { 1713 if (data->cur != policy.cur) 1714 cpufreq_out_of_sync(cpu, data->cur, 1715 policy.cur); 1716 } 1717 } 1718 1719 ret = __cpufreq_set_policy(data, &policy); 1720 1721 unlock_policy_rwsem_write(cpu); 1722 1723 cpufreq_cpu_put(data); 1724 return ret; 1725 } 1726 EXPORT_SYMBOL(cpufreq_update_policy); 1727 1728 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb, 1729 unsigned long action, void *hcpu) 1730 { 1731 unsigned int cpu = (unsigned long)hcpu; 1732 struct sys_device *sys_dev; 1733 1734 sys_dev = get_cpu_sysdev(cpu); 1735 if (sys_dev) { 1736 switch (action) { 1737 case CPU_ONLINE: 1738 case CPU_ONLINE_FROZEN: 1739 cpufreq_add_dev(sys_dev); 1740 break; 1741 case CPU_DOWN_PREPARE: 1742 case CPU_DOWN_PREPARE_FROZEN: 1743 if (unlikely(lock_policy_rwsem_write(cpu))) 1744 BUG(); 1745 1746 __cpufreq_remove_dev(sys_dev); 1747 break; 1748 case CPU_DOWN_FAILED: 1749 case CPU_DOWN_FAILED_FROZEN: 1750 cpufreq_add_dev(sys_dev); 1751 break; 1752 } 1753 } 1754 return NOTIFY_OK; 1755 } 1756 1757 static struct notifier_block __cpuinitdata cpufreq_cpu_notifier = 1758 { 1759 .notifier_call = cpufreq_cpu_callback, 1760 }; 1761 1762 /********************************************************************* 1763 * REGISTER / UNREGISTER CPUFREQ DRIVER * 1764 *********************************************************************/ 1765 1766 /** 1767 * cpufreq_register_driver - register a CPU Frequency driver 1768 * @driver_data: A struct cpufreq_driver containing the values# 1769 * submitted by the CPU Frequency driver. 1770 * 1771 * Registers a CPU Frequency driver to this core code. This code 1772 * returns zero on success, -EBUSY when another driver got here first 1773 * (and isn't unregistered in the meantime). 1774 * 1775 */ 1776 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 1777 { 1778 unsigned long flags; 1779 int ret; 1780 1781 if (!driver_data || !driver_data->verify || !driver_data->init || 1782 ((!driver_data->setpolicy) && (!driver_data->target))) 1783 return -EINVAL; 1784 1785 dprintk("trying to register driver %s\n", driver_data->name); 1786 1787 if (driver_data->setpolicy) 1788 driver_data->flags |= CPUFREQ_CONST_LOOPS; 1789 1790 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1791 if (cpufreq_driver) { 1792 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1793 return -EBUSY; 1794 } 1795 cpufreq_driver = driver_data; 1796 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1797 1798 ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver); 1799 1800 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) { 1801 int i; 1802 ret = -ENODEV; 1803 1804 /* check for at least one working CPU */ 1805 for (i=0; i<NR_CPUS; i++) 1806 if (cpufreq_cpu_data[i]) 1807 ret = 0; 1808 1809 /* if all ->init() calls failed, unregister */ 1810 if (ret) { 1811 dprintk("no CPU initialized for driver %s\n", 1812 driver_data->name); 1813 sysdev_driver_unregister(&cpu_sysdev_class, 1814 &cpufreq_sysdev_driver); 1815 1816 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1817 cpufreq_driver = NULL; 1818 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1819 } 1820 } 1821 1822 if (!ret) { 1823 register_hotcpu_notifier(&cpufreq_cpu_notifier); 1824 dprintk("driver %s up and running\n", driver_data->name); 1825 cpufreq_debug_enable_ratelimit(); 1826 } 1827 1828 return (ret); 1829 } 1830 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 1831 1832 1833 /** 1834 * cpufreq_unregister_driver - unregister the current CPUFreq driver 1835 * 1836 * Unregister the current CPUFreq driver. Only call this if you have 1837 * the right to do so, i.e. if you have succeeded in initialising before! 1838 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 1839 * currently not initialised. 1840 */ 1841 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 1842 { 1843 unsigned long flags; 1844 1845 cpufreq_debug_disable_ratelimit(); 1846 1847 if (!cpufreq_driver || (driver != cpufreq_driver)) { 1848 cpufreq_debug_enable_ratelimit(); 1849 return -EINVAL; 1850 } 1851 1852 dprintk("unregistering driver %s\n", driver->name); 1853 1854 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver); 1855 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 1856 1857 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1858 cpufreq_driver = NULL; 1859 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1860 1861 return 0; 1862 } 1863 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 1864 1865 static int __init cpufreq_core_init(void) 1866 { 1867 int cpu; 1868 1869 for_each_possible_cpu(cpu) { 1870 per_cpu(policy_cpu, cpu) = -1; 1871 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 1872 } 1873 return 0; 1874 } 1875 1876 core_initcall(cpufreq_core_init); 1877