xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 6019d23a73c79fe4b0f531b0e968b14e1d6f50f1)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 	return cpumask_empty(policy->cpus);
39 }
40 
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active)			 \
43 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 		if ((__active) == !policy_is_inactive(__policy))
45 
46 #define for_each_active_policy(__policy)		\
47 	for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy)		\
49 	for_each_suitable_policy(__policy, false)
50 
51 #define for_each_policy(__policy)			\
52 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53 
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor)				\
57 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58 
59 /**
60  * The "cpufreq driver" - the arch- or hardware-dependent low
61  * level driver of CPUFreq support, and its spinlock. This lock
62  * also protects the cpufreq_cpu_data array.
63  */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67 DEFINE_MUTEX(cpufreq_governor_lock);
68 
69 /* Flag to suspend/resume CPUFreq governors */
70 static bool cpufreq_suspended;
71 
72 static inline bool has_target(void)
73 {
74 	return cpufreq_driver->target_index || cpufreq_driver->target;
75 }
76 
77 /* internal prototypes */
78 static int __cpufreq_governor(struct cpufreq_policy *policy,
79 		unsigned int event);
80 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
81 static void handle_update(struct work_struct *work);
82 
83 /**
84  * Two notifier lists: the "policy" list is involved in the
85  * validation process for a new CPU frequency policy; the
86  * "transition" list for kernel code that needs to handle
87  * changes to devices when the CPU clock speed changes.
88  * The mutex locks both lists.
89  */
90 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
91 static struct srcu_notifier_head cpufreq_transition_notifier_list;
92 
93 static bool init_cpufreq_transition_notifier_list_called;
94 static int __init init_cpufreq_transition_notifier_list(void)
95 {
96 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
97 	init_cpufreq_transition_notifier_list_called = true;
98 	return 0;
99 }
100 pure_initcall(init_cpufreq_transition_notifier_list);
101 
102 static int off __read_mostly;
103 static int cpufreq_disabled(void)
104 {
105 	return off;
106 }
107 void disable_cpufreq(void)
108 {
109 	off = 1;
110 }
111 static DEFINE_MUTEX(cpufreq_governor_mutex);
112 
113 bool have_governor_per_policy(void)
114 {
115 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
116 }
117 EXPORT_SYMBOL_GPL(have_governor_per_policy);
118 
119 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
120 {
121 	if (have_governor_per_policy())
122 		return &policy->kobj;
123 	else
124 		return cpufreq_global_kobject;
125 }
126 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
127 
128 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
129 {
130 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
131 
132 	return policy && !policy_is_inactive(policy) ?
133 		policy->freq_table : NULL;
134 }
135 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);
136 
137 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
138 {
139 	u64 idle_time;
140 	u64 cur_wall_time;
141 	u64 busy_time;
142 
143 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
144 
145 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
146 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
147 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
148 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
149 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
150 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
151 
152 	idle_time = cur_wall_time - busy_time;
153 	if (wall)
154 		*wall = cputime_to_usecs(cur_wall_time);
155 
156 	return cputime_to_usecs(idle_time);
157 }
158 
159 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
160 {
161 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
162 
163 	if (idle_time == -1ULL)
164 		return get_cpu_idle_time_jiffy(cpu, wall);
165 	else if (!io_busy)
166 		idle_time += get_cpu_iowait_time_us(cpu, wall);
167 
168 	return idle_time;
169 }
170 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
171 
172 /*
173  * This is a generic cpufreq init() routine which can be used by cpufreq
174  * drivers of SMP systems. It will do following:
175  * - validate & show freq table passed
176  * - set policies transition latency
177  * - policy->cpus with all possible CPUs
178  */
179 int cpufreq_generic_init(struct cpufreq_policy *policy,
180 		struct cpufreq_frequency_table *table,
181 		unsigned int transition_latency)
182 {
183 	int ret;
184 
185 	ret = cpufreq_table_validate_and_show(policy, table);
186 	if (ret) {
187 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
188 		return ret;
189 	}
190 
191 	policy->cpuinfo.transition_latency = transition_latency;
192 
193 	/*
194 	 * The driver only supports the SMP configuration where all processors
195 	 * share the clock and voltage and clock.
196 	 */
197 	cpumask_setall(policy->cpus);
198 
199 	return 0;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
202 
203 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
204 {
205 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
206 
207 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
208 }
209 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
210 
211 unsigned int cpufreq_generic_get(unsigned int cpu)
212 {
213 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
214 
215 	if (!policy || IS_ERR(policy->clk)) {
216 		pr_err("%s: No %s associated to cpu: %d\n",
217 		       __func__, policy ? "clk" : "policy", cpu);
218 		return 0;
219 	}
220 
221 	return clk_get_rate(policy->clk) / 1000;
222 }
223 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
224 
225 /**
226  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
227  *
228  * @cpu: cpu to find policy for.
229  *
230  * This returns policy for 'cpu', returns NULL if it doesn't exist.
231  * It also increments the kobject reference count to mark it busy and so would
232  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
233  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
234  * freed as that depends on the kobj count.
235  *
236  * Return: A valid policy on success, otherwise NULL on failure.
237  */
238 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
239 {
240 	struct cpufreq_policy *policy = NULL;
241 	unsigned long flags;
242 
243 	if (WARN_ON(cpu >= nr_cpu_ids))
244 		return NULL;
245 
246 	/* get the cpufreq driver */
247 	read_lock_irqsave(&cpufreq_driver_lock, flags);
248 
249 	if (cpufreq_driver) {
250 		/* get the CPU */
251 		policy = cpufreq_cpu_get_raw(cpu);
252 		if (policy)
253 			kobject_get(&policy->kobj);
254 	}
255 
256 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
257 
258 	return policy;
259 }
260 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
261 
262 /**
263  * cpufreq_cpu_put: Decrements the usage count of a policy
264  *
265  * @policy: policy earlier returned by cpufreq_cpu_get().
266  *
267  * This decrements the kobject reference count incremented earlier by calling
268  * cpufreq_cpu_get().
269  */
270 void cpufreq_cpu_put(struct cpufreq_policy *policy)
271 {
272 	kobject_put(&policy->kobj);
273 }
274 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
275 
276 /*********************************************************************
277  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
278  *********************************************************************/
279 
280 /**
281  * adjust_jiffies - adjust the system "loops_per_jiffy"
282  *
283  * This function alters the system "loops_per_jiffy" for the clock
284  * speed change. Note that loops_per_jiffy cannot be updated on SMP
285  * systems as each CPU might be scaled differently. So, use the arch
286  * per-CPU loops_per_jiffy value wherever possible.
287  */
288 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
289 {
290 #ifndef CONFIG_SMP
291 	static unsigned long l_p_j_ref;
292 	static unsigned int l_p_j_ref_freq;
293 
294 	if (ci->flags & CPUFREQ_CONST_LOOPS)
295 		return;
296 
297 	if (!l_p_j_ref_freq) {
298 		l_p_j_ref = loops_per_jiffy;
299 		l_p_j_ref_freq = ci->old;
300 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
301 			 l_p_j_ref, l_p_j_ref_freq);
302 	}
303 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
304 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
305 								ci->new);
306 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
307 			 loops_per_jiffy, ci->new);
308 	}
309 #endif
310 }
311 
312 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
313 		struct cpufreq_freqs *freqs, unsigned int state)
314 {
315 	BUG_ON(irqs_disabled());
316 
317 	if (cpufreq_disabled())
318 		return;
319 
320 	freqs->flags = cpufreq_driver->flags;
321 	pr_debug("notification %u of frequency transition to %u kHz\n",
322 		 state, freqs->new);
323 
324 	switch (state) {
325 
326 	case CPUFREQ_PRECHANGE:
327 		/* detect if the driver reported a value as "old frequency"
328 		 * which is not equal to what the cpufreq core thinks is
329 		 * "old frequency".
330 		 */
331 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
332 			if ((policy) && (policy->cpu == freqs->cpu) &&
333 			    (policy->cur) && (policy->cur != freqs->old)) {
334 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
335 					 freqs->old, policy->cur);
336 				freqs->old = policy->cur;
337 			}
338 		}
339 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
340 				CPUFREQ_PRECHANGE, freqs);
341 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
342 		break;
343 
344 	case CPUFREQ_POSTCHANGE:
345 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
346 		pr_debug("FREQ: %lu - CPU: %lu\n",
347 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
348 		trace_cpu_frequency(freqs->new, freqs->cpu);
349 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
350 				CPUFREQ_POSTCHANGE, freqs);
351 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
352 			policy->cur = freqs->new;
353 		break;
354 	}
355 }
356 
357 /**
358  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
359  * on frequency transition.
360  *
361  * This function calls the transition notifiers and the "adjust_jiffies"
362  * function. It is called twice on all CPU frequency changes that have
363  * external effects.
364  */
365 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
366 		struct cpufreq_freqs *freqs, unsigned int state)
367 {
368 	for_each_cpu(freqs->cpu, policy->cpus)
369 		__cpufreq_notify_transition(policy, freqs, state);
370 }
371 
372 /* Do post notifications when there are chances that transition has failed */
373 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
374 		struct cpufreq_freqs *freqs, int transition_failed)
375 {
376 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
377 	if (!transition_failed)
378 		return;
379 
380 	swap(freqs->old, freqs->new);
381 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
382 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
383 }
384 
385 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
386 		struct cpufreq_freqs *freqs)
387 {
388 
389 	/*
390 	 * Catch double invocations of _begin() which lead to self-deadlock.
391 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
392 	 * doesn't invoke _begin() on their behalf, and hence the chances of
393 	 * double invocations are very low. Moreover, there are scenarios
394 	 * where these checks can emit false-positive warnings in these
395 	 * drivers; so we avoid that by skipping them altogether.
396 	 */
397 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
398 				&& current == policy->transition_task);
399 
400 wait:
401 	wait_event(policy->transition_wait, !policy->transition_ongoing);
402 
403 	spin_lock(&policy->transition_lock);
404 
405 	if (unlikely(policy->transition_ongoing)) {
406 		spin_unlock(&policy->transition_lock);
407 		goto wait;
408 	}
409 
410 	policy->transition_ongoing = true;
411 	policy->transition_task = current;
412 
413 	spin_unlock(&policy->transition_lock);
414 
415 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
416 }
417 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
418 
419 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
420 		struct cpufreq_freqs *freqs, int transition_failed)
421 {
422 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
423 		return;
424 
425 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
426 
427 	policy->transition_ongoing = false;
428 	policy->transition_task = NULL;
429 
430 	wake_up(&policy->transition_wait);
431 }
432 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
433 
434 
435 /*********************************************************************
436  *                          SYSFS INTERFACE                          *
437  *********************************************************************/
438 static ssize_t show_boost(struct kobject *kobj,
439 				 struct attribute *attr, char *buf)
440 {
441 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
442 }
443 
444 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
445 				  const char *buf, size_t count)
446 {
447 	int ret, enable;
448 
449 	ret = sscanf(buf, "%d", &enable);
450 	if (ret != 1 || enable < 0 || enable > 1)
451 		return -EINVAL;
452 
453 	if (cpufreq_boost_trigger_state(enable)) {
454 		pr_err("%s: Cannot %s BOOST!\n",
455 		       __func__, enable ? "enable" : "disable");
456 		return -EINVAL;
457 	}
458 
459 	pr_debug("%s: cpufreq BOOST %s\n",
460 		 __func__, enable ? "enabled" : "disabled");
461 
462 	return count;
463 }
464 define_one_global_rw(boost);
465 
466 static struct cpufreq_governor *find_governor(const char *str_governor)
467 {
468 	struct cpufreq_governor *t;
469 
470 	for_each_governor(t)
471 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
472 			return t;
473 
474 	return NULL;
475 }
476 
477 /**
478  * cpufreq_parse_governor - parse a governor string
479  */
480 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
481 				struct cpufreq_governor **governor)
482 {
483 	int err = -EINVAL;
484 
485 	if (cpufreq_driver->setpolicy) {
486 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
487 			*policy = CPUFREQ_POLICY_PERFORMANCE;
488 			err = 0;
489 		} else if (!strncasecmp(str_governor, "powersave",
490 						CPUFREQ_NAME_LEN)) {
491 			*policy = CPUFREQ_POLICY_POWERSAVE;
492 			err = 0;
493 		}
494 	} else {
495 		struct cpufreq_governor *t;
496 
497 		mutex_lock(&cpufreq_governor_mutex);
498 
499 		t = find_governor(str_governor);
500 
501 		if (t == NULL) {
502 			int ret;
503 
504 			mutex_unlock(&cpufreq_governor_mutex);
505 			ret = request_module("cpufreq_%s", str_governor);
506 			mutex_lock(&cpufreq_governor_mutex);
507 
508 			if (ret == 0)
509 				t = find_governor(str_governor);
510 		}
511 
512 		if (t != NULL) {
513 			*governor = t;
514 			err = 0;
515 		}
516 
517 		mutex_unlock(&cpufreq_governor_mutex);
518 	}
519 	return err;
520 }
521 
522 /**
523  * cpufreq_per_cpu_attr_read() / show_##file_name() -
524  * print out cpufreq information
525  *
526  * Write out information from cpufreq_driver->policy[cpu]; object must be
527  * "unsigned int".
528  */
529 
530 #define show_one(file_name, object)			\
531 static ssize_t show_##file_name				\
532 (struct cpufreq_policy *policy, char *buf)		\
533 {							\
534 	return sprintf(buf, "%u\n", policy->object);	\
535 }
536 
537 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
538 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
539 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
540 show_one(scaling_min_freq, min);
541 show_one(scaling_max_freq, max);
542 
543 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
544 {
545 	ssize_t ret;
546 
547 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
548 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
549 	else
550 		ret = sprintf(buf, "%u\n", policy->cur);
551 	return ret;
552 }
553 
554 static int cpufreq_set_policy(struct cpufreq_policy *policy,
555 				struct cpufreq_policy *new_policy);
556 
557 /**
558  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
559  */
560 #define store_one(file_name, object)			\
561 static ssize_t store_##file_name					\
562 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
563 {									\
564 	int ret, temp;							\
565 	struct cpufreq_policy new_policy;				\
566 									\
567 	memcpy(&new_policy, policy, sizeof(*policy));			\
568 									\
569 	ret = sscanf(buf, "%u", &new_policy.object);			\
570 	if (ret != 1)							\
571 		return -EINVAL;						\
572 									\
573 	temp = new_policy.object;					\
574 	ret = cpufreq_set_policy(policy, &new_policy);		\
575 	if (!ret)							\
576 		policy->user_policy.object = temp;			\
577 									\
578 	return ret ? ret : count;					\
579 }
580 
581 store_one(scaling_min_freq, min);
582 store_one(scaling_max_freq, max);
583 
584 /**
585  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
586  */
587 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
588 					char *buf)
589 {
590 	unsigned int cur_freq = __cpufreq_get(policy);
591 	if (!cur_freq)
592 		return sprintf(buf, "<unknown>");
593 	return sprintf(buf, "%u\n", cur_freq);
594 }
595 
596 /**
597  * show_scaling_governor - show the current policy for the specified CPU
598  */
599 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
600 {
601 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
602 		return sprintf(buf, "powersave\n");
603 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
604 		return sprintf(buf, "performance\n");
605 	else if (policy->governor)
606 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
607 				policy->governor->name);
608 	return -EINVAL;
609 }
610 
611 /**
612  * store_scaling_governor - store policy for the specified CPU
613  */
614 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
615 					const char *buf, size_t count)
616 {
617 	int ret;
618 	char	str_governor[16];
619 	struct cpufreq_policy new_policy;
620 
621 	memcpy(&new_policy, policy, sizeof(*policy));
622 
623 	ret = sscanf(buf, "%15s", str_governor);
624 	if (ret != 1)
625 		return -EINVAL;
626 
627 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
628 						&new_policy.governor))
629 		return -EINVAL;
630 
631 	ret = cpufreq_set_policy(policy, &new_policy);
632 	return ret ? ret : count;
633 }
634 
635 /**
636  * show_scaling_driver - show the cpufreq driver currently loaded
637  */
638 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
639 {
640 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
641 }
642 
643 /**
644  * show_scaling_available_governors - show the available CPUfreq governors
645  */
646 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
647 						char *buf)
648 {
649 	ssize_t i = 0;
650 	struct cpufreq_governor *t;
651 
652 	if (!has_target()) {
653 		i += sprintf(buf, "performance powersave");
654 		goto out;
655 	}
656 
657 	for_each_governor(t) {
658 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
659 		    - (CPUFREQ_NAME_LEN + 2)))
660 			goto out;
661 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
662 	}
663 out:
664 	i += sprintf(&buf[i], "\n");
665 	return i;
666 }
667 
668 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
669 {
670 	ssize_t i = 0;
671 	unsigned int cpu;
672 
673 	for_each_cpu(cpu, mask) {
674 		if (i)
675 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
676 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
677 		if (i >= (PAGE_SIZE - 5))
678 			break;
679 	}
680 	i += sprintf(&buf[i], "\n");
681 	return i;
682 }
683 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
684 
685 /**
686  * show_related_cpus - show the CPUs affected by each transition even if
687  * hw coordination is in use
688  */
689 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
690 {
691 	return cpufreq_show_cpus(policy->related_cpus, buf);
692 }
693 
694 /**
695  * show_affected_cpus - show the CPUs affected by each transition
696  */
697 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
698 {
699 	return cpufreq_show_cpus(policy->cpus, buf);
700 }
701 
702 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
703 					const char *buf, size_t count)
704 {
705 	unsigned int freq = 0;
706 	unsigned int ret;
707 
708 	if (!policy->governor || !policy->governor->store_setspeed)
709 		return -EINVAL;
710 
711 	ret = sscanf(buf, "%u", &freq);
712 	if (ret != 1)
713 		return -EINVAL;
714 
715 	policy->governor->store_setspeed(policy, freq);
716 
717 	return count;
718 }
719 
720 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
721 {
722 	if (!policy->governor || !policy->governor->show_setspeed)
723 		return sprintf(buf, "<unsupported>\n");
724 
725 	return policy->governor->show_setspeed(policy, buf);
726 }
727 
728 /**
729  * show_bios_limit - show the current cpufreq HW/BIOS limitation
730  */
731 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
732 {
733 	unsigned int limit;
734 	int ret;
735 	if (cpufreq_driver->bios_limit) {
736 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
737 		if (!ret)
738 			return sprintf(buf, "%u\n", limit);
739 	}
740 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
741 }
742 
743 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
744 cpufreq_freq_attr_ro(cpuinfo_min_freq);
745 cpufreq_freq_attr_ro(cpuinfo_max_freq);
746 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
747 cpufreq_freq_attr_ro(scaling_available_governors);
748 cpufreq_freq_attr_ro(scaling_driver);
749 cpufreq_freq_attr_ro(scaling_cur_freq);
750 cpufreq_freq_attr_ro(bios_limit);
751 cpufreq_freq_attr_ro(related_cpus);
752 cpufreq_freq_attr_ro(affected_cpus);
753 cpufreq_freq_attr_rw(scaling_min_freq);
754 cpufreq_freq_attr_rw(scaling_max_freq);
755 cpufreq_freq_attr_rw(scaling_governor);
756 cpufreq_freq_attr_rw(scaling_setspeed);
757 
758 static struct attribute *default_attrs[] = {
759 	&cpuinfo_min_freq.attr,
760 	&cpuinfo_max_freq.attr,
761 	&cpuinfo_transition_latency.attr,
762 	&scaling_min_freq.attr,
763 	&scaling_max_freq.attr,
764 	&affected_cpus.attr,
765 	&related_cpus.attr,
766 	&scaling_governor.attr,
767 	&scaling_driver.attr,
768 	&scaling_available_governors.attr,
769 	&scaling_setspeed.attr,
770 	NULL
771 };
772 
773 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
774 #define to_attr(a) container_of(a, struct freq_attr, attr)
775 
776 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
777 {
778 	struct cpufreq_policy *policy = to_policy(kobj);
779 	struct freq_attr *fattr = to_attr(attr);
780 	ssize_t ret;
781 
782 	down_read(&policy->rwsem);
783 	ret = fattr->show(policy, buf);
784 	up_read(&policy->rwsem);
785 
786 	return ret;
787 }
788 
789 static ssize_t store(struct kobject *kobj, struct attribute *attr,
790 		     const char *buf, size_t count)
791 {
792 	struct cpufreq_policy *policy = to_policy(kobj);
793 	struct freq_attr *fattr = to_attr(attr);
794 	ssize_t ret = -EINVAL;
795 
796 	get_online_cpus();
797 
798 	if (cpu_online(policy->cpu)) {
799 		down_write(&policy->rwsem);
800 		ret = fattr->store(policy, buf, count);
801 		up_write(&policy->rwsem);
802 	}
803 
804 	put_online_cpus();
805 
806 	return ret;
807 }
808 
809 static void cpufreq_sysfs_release(struct kobject *kobj)
810 {
811 	struct cpufreq_policy *policy = to_policy(kobj);
812 	pr_debug("last reference is dropped\n");
813 	complete(&policy->kobj_unregister);
814 }
815 
816 static const struct sysfs_ops sysfs_ops = {
817 	.show	= show,
818 	.store	= store,
819 };
820 
821 static struct kobj_type ktype_cpufreq = {
822 	.sysfs_ops	= &sysfs_ops,
823 	.default_attrs	= default_attrs,
824 	.release	= cpufreq_sysfs_release,
825 };
826 
827 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
828 {
829 	struct device *cpu_dev;
830 
831 	pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
832 
833 	if (!policy)
834 		return 0;
835 
836 	cpu_dev = get_cpu_device(cpu);
837 	if (WARN_ON(!cpu_dev))
838 		return 0;
839 
840 	return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
841 }
842 
843 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
844 {
845 	struct device *cpu_dev;
846 
847 	pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
848 
849 	cpu_dev = get_cpu_device(cpu);
850 	if (WARN_ON(!cpu_dev))
851 		return;
852 
853 	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
854 }
855 
856 /* Add/remove symlinks for all related CPUs */
857 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
858 {
859 	unsigned int j;
860 	int ret = 0;
861 
862 	/* Some related CPUs might not be present (physically hotplugged) */
863 	for_each_cpu(j, policy->real_cpus) {
864 		ret = add_cpu_dev_symlink(policy, j);
865 		if (ret)
866 			break;
867 	}
868 
869 	return ret;
870 }
871 
872 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
873 {
874 	unsigned int j;
875 
876 	/* Some related CPUs might not be present (physically hotplugged) */
877 	for_each_cpu(j, policy->real_cpus)
878 		remove_cpu_dev_symlink(policy, j);
879 }
880 
881 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
882 {
883 	struct freq_attr **drv_attr;
884 	int ret = 0;
885 
886 	/* set up files for this cpu device */
887 	drv_attr = cpufreq_driver->attr;
888 	while (drv_attr && *drv_attr) {
889 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
890 		if (ret)
891 			return ret;
892 		drv_attr++;
893 	}
894 	if (cpufreq_driver->get) {
895 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
896 		if (ret)
897 			return ret;
898 	}
899 
900 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
901 	if (ret)
902 		return ret;
903 
904 	if (cpufreq_driver->bios_limit) {
905 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
906 		if (ret)
907 			return ret;
908 	}
909 
910 	return cpufreq_add_dev_symlink(policy);
911 }
912 
913 __weak struct cpufreq_governor *cpufreq_default_governor(void)
914 {
915 	return NULL;
916 }
917 
918 static int cpufreq_init_policy(struct cpufreq_policy *policy)
919 {
920 	struct cpufreq_governor *gov = NULL;
921 	struct cpufreq_policy new_policy;
922 
923 	memcpy(&new_policy, policy, sizeof(*policy));
924 
925 	/* Update governor of new_policy to the governor used before hotplug */
926 	gov = find_governor(policy->last_governor);
927 	if (gov) {
928 		pr_debug("Restoring governor %s for cpu %d\n",
929 				policy->governor->name, policy->cpu);
930 	} else {
931 		gov = cpufreq_default_governor();
932 		if (!gov)
933 			return -ENODATA;
934 	}
935 
936 	new_policy.governor = gov;
937 
938 	/* Use the default policy if there is no last_policy. */
939 	if (cpufreq_driver->setpolicy) {
940 		if (policy->last_policy)
941 			new_policy.policy = policy->last_policy;
942 		else
943 			cpufreq_parse_governor(gov->name, &new_policy.policy,
944 					       NULL);
945 	}
946 	/* set default policy */
947 	return cpufreq_set_policy(policy, &new_policy);
948 }
949 
950 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
951 {
952 	int ret = 0;
953 
954 	/* Has this CPU been taken care of already? */
955 	if (cpumask_test_cpu(cpu, policy->cpus))
956 		return 0;
957 
958 	if (has_target()) {
959 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
960 		if (ret) {
961 			pr_err("%s: Failed to stop governor\n", __func__);
962 			return ret;
963 		}
964 	}
965 
966 	down_write(&policy->rwsem);
967 	cpumask_set_cpu(cpu, policy->cpus);
968 	up_write(&policy->rwsem);
969 
970 	if (has_target()) {
971 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
972 		if (!ret)
973 			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
974 
975 		if (ret) {
976 			pr_err("%s: Failed to start governor\n", __func__);
977 			return ret;
978 		}
979 	}
980 
981 	return 0;
982 }
983 
984 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
985 {
986 	struct device *dev = get_cpu_device(cpu);
987 	struct cpufreq_policy *policy;
988 
989 	if (WARN_ON(!dev))
990 		return NULL;
991 
992 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
993 	if (!policy)
994 		return NULL;
995 
996 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
997 		goto err_free_policy;
998 
999 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1000 		goto err_free_cpumask;
1001 
1002 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1003 		goto err_free_rcpumask;
1004 
1005 	kobject_init(&policy->kobj, &ktype_cpufreq);
1006 	INIT_LIST_HEAD(&policy->policy_list);
1007 	init_rwsem(&policy->rwsem);
1008 	spin_lock_init(&policy->transition_lock);
1009 	init_waitqueue_head(&policy->transition_wait);
1010 	init_completion(&policy->kobj_unregister);
1011 	INIT_WORK(&policy->update, handle_update);
1012 
1013 	policy->cpu = cpu;
1014 	return policy;
1015 
1016 err_free_rcpumask:
1017 	free_cpumask_var(policy->related_cpus);
1018 err_free_cpumask:
1019 	free_cpumask_var(policy->cpus);
1020 err_free_policy:
1021 	kfree(policy);
1022 
1023 	return NULL;
1024 }
1025 
1026 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1027 {
1028 	struct kobject *kobj;
1029 	struct completion *cmp;
1030 
1031 	if (notify)
1032 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1033 					     CPUFREQ_REMOVE_POLICY, policy);
1034 
1035 	down_write(&policy->rwsem);
1036 	cpufreq_remove_dev_symlink(policy);
1037 	kobj = &policy->kobj;
1038 	cmp = &policy->kobj_unregister;
1039 	up_write(&policy->rwsem);
1040 	kobject_put(kobj);
1041 
1042 	/*
1043 	 * We need to make sure that the underlying kobj is
1044 	 * actually not referenced anymore by anybody before we
1045 	 * proceed with unloading.
1046 	 */
1047 	pr_debug("waiting for dropping of refcount\n");
1048 	wait_for_completion(cmp);
1049 	pr_debug("wait complete\n");
1050 }
1051 
1052 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1053 {
1054 	unsigned long flags;
1055 	int cpu;
1056 
1057 	/* Remove policy from list */
1058 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1059 	list_del(&policy->policy_list);
1060 
1061 	for_each_cpu(cpu, policy->related_cpus)
1062 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1063 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1064 
1065 	cpufreq_policy_put_kobj(policy, notify);
1066 	free_cpumask_var(policy->real_cpus);
1067 	free_cpumask_var(policy->related_cpus);
1068 	free_cpumask_var(policy->cpus);
1069 	kfree(policy);
1070 }
1071 
1072 static int cpufreq_online(unsigned int cpu)
1073 {
1074 	struct cpufreq_policy *policy;
1075 	bool new_policy;
1076 	unsigned long flags;
1077 	unsigned int j;
1078 	int ret;
1079 
1080 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1081 
1082 	/* Check if this CPU already has a policy to manage it */
1083 	policy = per_cpu(cpufreq_cpu_data, cpu);
1084 	if (policy) {
1085 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1086 		if (!policy_is_inactive(policy))
1087 			return cpufreq_add_policy_cpu(policy, cpu);
1088 
1089 		/* This is the only online CPU for the policy.  Start over. */
1090 		new_policy = false;
1091 		down_write(&policy->rwsem);
1092 		policy->cpu = cpu;
1093 		policy->governor = NULL;
1094 		up_write(&policy->rwsem);
1095 	} else {
1096 		new_policy = true;
1097 		policy = cpufreq_policy_alloc(cpu);
1098 		if (!policy)
1099 			return -ENOMEM;
1100 	}
1101 
1102 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1103 
1104 	/* call driver. From then on the cpufreq must be able
1105 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1106 	 */
1107 	ret = cpufreq_driver->init(policy);
1108 	if (ret) {
1109 		pr_debug("initialization failed\n");
1110 		goto out_free_policy;
1111 	}
1112 
1113 	down_write(&policy->rwsem);
1114 
1115 	if (new_policy) {
1116 		/* related_cpus should at least include policy->cpus. */
1117 		cpumask_copy(policy->related_cpus, policy->cpus);
1118 		/* Remember CPUs present at the policy creation time. */
1119 		cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1120 
1121 		/* Name and add the kobject */
1122 		ret = kobject_add(&policy->kobj, cpufreq_global_kobject,
1123 				  "policy%u",
1124 				  cpumask_first(policy->related_cpus));
1125 		if (ret) {
1126 			pr_err("%s: failed to add policy->kobj: %d\n", __func__,
1127 			       ret);
1128 			goto out_exit_policy;
1129 		}
1130 	}
1131 
1132 	/*
1133 	 * affected cpus must always be the one, which are online. We aren't
1134 	 * managing offline cpus here.
1135 	 */
1136 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1137 
1138 	if (new_policy) {
1139 		policy->user_policy.min = policy->min;
1140 		policy->user_policy.max = policy->max;
1141 
1142 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1143 		for_each_cpu(j, policy->related_cpus)
1144 			per_cpu(cpufreq_cpu_data, j) = policy;
1145 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1146 	}
1147 
1148 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1149 		policy->cur = cpufreq_driver->get(policy->cpu);
1150 		if (!policy->cur) {
1151 			pr_err("%s: ->get() failed\n", __func__);
1152 			goto out_exit_policy;
1153 		}
1154 	}
1155 
1156 	/*
1157 	 * Sometimes boot loaders set CPU frequency to a value outside of
1158 	 * frequency table present with cpufreq core. In such cases CPU might be
1159 	 * unstable if it has to run on that frequency for long duration of time
1160 	 * and so its better to set it to a frequency which is specified in
1161 	 * freq-table. This also makes cpufreq stats inconsistent as
1162 	 * cpufreq-stats would fail to register because current frequency of CPU
1163 	 * isn't found in freq-table.
1164 	 *
1165 	 * Because we don't want this change to effect boot process badly, we go
1166 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1167 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1168 	 * is initialized to zero).
1169 	 *
1170 	 * We are passing target-freq as "policy->cur - 1" otherwise
1171 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1172 	 * equal to target-freq.
1173 	 */
1174 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1175 	    && has_target()) {
1176 		/* Are we running at unknown frequency ? */
1177 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1178 		if (ret == -EINVAL) {
1179 			/* Warn user and fix it */
1180 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1181 				__func__, policy->cpu, policy->cur);
1182 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1183 				CPUFREQ_RELATION_L);
1184 
1185 			/*
1186 			 * Reaching here after boot in a few seconds may not
1187 			 * mean that system will remain stable at "unknown"
1188 			 * frequency for longer duration. Hence, a BUG_ON().
1189 			 */
1190 			BUG_ON(ret);
1191 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1192 				__func__, policy->cpu, policy->cur);
1193 		}
1194 	}
1195 
1196 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1197 				     CPUFREQ_START, policy);
1198 
1199 	if (new_policy) {
1200 		ret = cpufreq_add_dev_interface(policy);
1201 		if (ret)
1202 			goto out_exit_policy;
1203 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1204 				CPUFREQ_CREATE_POLICY, policy);
1205 
1206 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1207 		list_add(&policy->policy_list, &cpufreq_policy_list);
1208 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1209 	}
1210 
1211 	ret = cpufreq_init_policy(policy);
1212 	if (ret) {
1213 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1214 		       __func__, cpu, ret);
1215 		/* cpufreq_policy_free() will notify based on this */
1216 		new_policy = false;
1217 		goto out_exit_policy;
1218 	}
1219 
1220 	up_write(&policy->rwsem);
1221 
1222 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1223 
1224 	/* Callback for handling stuff after policy is ready */
1225 	if (cpufreq_driver->ready)
1226 		cpufreq_driver->ready(policy);
1227 
1228 	pr_debug("initialization complete\n");
1229 
1230 	return 0;
1231 
1232 out_exit_policy:
1233 	up_write(&policy->rwsem);
1234 
1235 	if (cpufreq_driver->exit)
1236 		cpufreq_driver->exit(policy);
1237 out_free_policy:
1238 	cpufreq_policy_free(policy, !new_policy);
1239 	return ret;
1240 }
1241 
1242 /**
1243  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1244  * @dev: CPU device.
1245  * @sif: Subsystem interface structure pointer (not used)
1246  */
1247 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1248 {
1249 	unsigned cpu = dev->id;
1250 	int ret;
1251 
1252 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1253 
1254 	if (cpu_online(cpu)) {
1255 		ret = cpufreq_online(cpu);
1256 	} else {
1257 		/*
1258 		 * A hotplug notifier will follow and we will handle it as CPU
1259 		 * online then.  For now, just create the sysfs link, unless
1260 		 * there is no policy or the link is already present.
1261 		 */
1262 		struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1263 
1264 		ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
1265 			? add_cpu_dev_symlink(policy, cpu) : 0;
1266 	}
1267 
1268 	return ret;
1269 }
1270 
1271 static void cpufreq_offline_prepare(unsigned int cpu)
1272 {
1273 	struct cpufreq_policy *policy;
1274 
1275 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1276 
1277 	policy = cpufreq_cpu_get_raw(cpu);
1278 	if (!policy) {
1279 		pr_debug("%s: No cpu_data found\n", __func__);
1280 		return;
1281 	}
1282 
1283 	if (has_target()) {
1284 		int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1285 		if (ret)
1286 			pr_err("%s: Failed to stop governor\n", __func__);
1287 	}
1288 
1289 	down_write(&policy->rwsem);
1290 	cpumask_clear_cpu(cpu, policy->cpus);
1291 
1292 	if (policy_is_inactive(policy)) {
1293 		if (has_target())
1294 			strncpy(policy->last_governor, policy->governor->name,
1295 				CPUFREQ_NAME_LEN);
1296 		else
1297 			policy->last_policy = policy->policy;
1298 	} else if (cpu == policy->cpu) {
1299 		/* Nominate new CPU */
1300 		policy->cpu = cpumask_any(policy->cpus);
1301 	}
1302 	up_write(&policy->rwsem);
1303 
1304 	/* Start governor again for active policy */
1305 	if (!policy_is_inactive(policy)) {
1306 		if (has_target()) {
1307 			int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1308 			if (!ret)
1309 				ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1310 
1311 			if (ret)
1312 				pr_err("%s: Failed to start governor\n", __func__);
1313 		}
1314 	} else if (cpufreq_driver->stop_cpu) {
1315 		cpufreq_driver->stop_cpu(policy);
1316 	}
1317 }
1318 
1319 static void cpufreq_offline_finish(unsigned int cpu)
1320 {
1321 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1322 
1323 	if (!policy) {
1324 		pr_debug("%s: No cpu_data found\n", __func__);
1325 		return;
1326 	}
1327 
1328 	/* Only proceed for inactive policies */
1329 	if (!policy_is_inactive(policy))
1330 		return;
1331 
1332 	/* If cpu is last user of policy, free policy */
1333 	if (has_target()) {
1334 		int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
1335 		if (ret)
1336 			pr_err("%s: Failed to exit governor\n", __func__);
1337 	}
1338 
1339 	/*
1340 	 * Perform the ->exit() even during light-weight tear-down,
1341 	 * since this is a core component, and is essential for the
1342 	 * subsequent light-weight ->init() to succeed.
1343 	 */
1344 	if (cpufreq_driver->exit) {
1345 		cpufreq_driver->exit(policy);
1346 		policy->freq_table = NULL;
1347 	}
1348 }
1349 
1350 /**
1351  * cpufreq_remove_dev - remove a CPU device
1352  *
1353  * Removes the cpufreq interface for a CPU device.
1354  */
1355 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1356 {
1357 	unsigned int cpu = dev->id;
1358 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1359 
1360 	if (!policy)
1361 		return;
1362 
1363 	if (cpu_online(cpu)) {
1364 		cpufreq_offline_prepare(cpu);
1365 		cpufreq_offline_finish(cpu);
1366 	}
1367 
1368 	cpumask_clear_cpu(cpu, policy->real_cpus);
1369 	remove_cpu_dev_symlink(policy, cpu);
1370 
1371 	if (cpumask_empty(policy->real_cpus))
1372 		cpufreq_policy_free(policy, true);
1373 }
1374 
1375 static void handle_update(struct work_struct *work)
1376 {
1377 	struct cpufreq_policy *policy =
1378 		container_of(work, struct cpufreq_policy, update);
1379 	unsigned int cpu = policy->cpu;
1380 	pr_debug("handle_update for cpu %u called\n", cpu);
1381 	cpufreq_update_policy(cpu);
1382 }
1383 
1384 /**
1385  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1386  *	in deep trouble.
1387  *	@policy: policy managing CPUs
1388  *	@new_freq: CPU frequency the CPU actually runs at
1389  *
1390  *	We adjust to current frequency first, and need to clean up later.
1391  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1392  */
1393 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1394 				unsigned int new_freq)
1395 {
1396 	struct cpufreq_freqs freqs;
1397 
1398 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1399 		 policy->cur, new_freq);
1400 
1401 	freqs.old = policy->cur;
1402 	freqs.new = new_freq;
1403 
1404 	cpufreq_freq_transition_begin(policy, &freqs);
1405 	cpufreq_freq_transition_end(policy, &freqs, 0);
1406 }
1407 
1408 /**
1409  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1410  * @cpu: CPU number
1411  *
1412  * This is the last known freq, without actually getting it from the driver.
1413  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1414  */
1415 unsigned int cpufreq_quick_get(unsigned int cpu)
1416 {
1417 	struct cpufreq_policy *policy;
1418 	unsigned int ret_freq = 0;
1419 
1420 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1421 		return cpufreq_driver->get(cpu);
1422 
1423 	policy = cpufreq_cpu_get(cpu);
1424 	if (policy) {
1425 		ret_freq = policy->cur;
1426 		cpufreq_cpu_put(policy);
1427 	}
1428 
1429 	return ret_freq;
1430 }
1431 EXPORT_SYMBOL(cpufreq_quick_get);
1432 
1433 /**
1434  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1435  * @cpu: CPU number
1436  *
1437  * Just return the max possible frequency for a given CPU.
1438  */
1439 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1440 {
1441 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1442 	unsigned int ret_freq = 0;
1443 
1444 	if (policy) {
1445 		ret_freq = policy->max;
1446 		cpufreq_cpu_put(policy);
1447 	}
1448 
1449 	return ret_freq;
1450 }
1451 EXPORT_SYMBOL(cpufreq_quick_get_max);
1452 
1453 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1454 {
1455 	unsigned int ret_freq = 0;
1456 
1457 	if (!cpufreq_driver->get)
1458 		return ret_freq;
1459 
1460 	ret_freq = cpufreq_driver->get(policy->cpu);
1461 
1462 	/* Updating inactive policies is invalid, so avoid doing that. */
1463 	if (unlikely(policy_is_inactive(policy)))
1464 		return ret_freq;
1465 
1466 	if (ret_freq && policy->cur &&
1467 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1468 		/* verify no discrepancy between actual and
1469 					saved value exists */
1470 		if (unlikely(ret_freq != policy->cur)) {
1471 			cpufreq_out_of_sync(policy, ret_freq);
1472 			schedule_work(&policy->update);
1473 		}
1474 	}
1475 
1476 	return ret_freq;
1477 }
1478 
1479 /**
1480  * cpufreq_get - get the current CPU frequency (in kHz)
1481  * @cpu: CPU number
1482  *
1483  * Get the CPU current (static) CPU frequency
1484  */
1485 unsigned int cpufreq_get(unsigned int cpu)
1486 {
1487 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1488 	unsigned int ret_freq = 0;
1489 
1490 	if (policy) {
1491 		down_read(&policy->rwsem);
1492 		ret_freq = __cpufreq_get(policy);
1493 		up_read(&policy->rwsem);
1494 
1495 		cpufreq_cpu_put(policy);
1496 	}
1497 
1498 	return ret_freq;
1499 }
1500 EXPORT_SYMBOL(cpufreq_get);
1501 
1502 static struct subsys_interface cpufreq_interface = {
1503 	.name		= "cpufreq",
1504 	.subsys		= &cpu_subsys,
1505 	.add_dev	= cpufreq_add_dev,
1506 	.remove_dev	= cpufreq_remove_dev,
1507 };
1508 
1509 /*
1510  * In case platform wants some specific frequency to be configured
1511  * during suspend..
1512  */
1513 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1514 {
1515 	int ret;
1516 
1517 	if (!policy->suspend_freq) {
1518 		pr_debug("%s: suspend_freq not defined\n", __func__);
1519 		return 0;
1520 	}
1521 
1522 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1523 			policy->suspend_freq);
1524 
1525 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1526 			CPUFREQ_RELATION_H);
1527 	if (ret)
1528 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1529 				__func__, policy->suspend_freq, ret);
1530 
1531 	return ret;
1532 }
1533 EXPORT_SYMBOL(cpufreq_generic_suspend);
1534 
1535 /**
1536  * cpufreq_suspend() - Suspend CPUFreq governors
1537  *
1538  * Called during system wide Suspend/Hibernate cycles for suspending governors
1539  * as some platforms can't change frequency after this point in suspend cycle.
1540  * Because some of the devices (like: i2c, regulators, etc) they use for
1541  * changing frequency are suspended quickly after this point.
1542  */
1543 void cpufreq_suspend(void)
1544 {
1545 	struct cpufreq_policy *policy;
1546 
1547 	if (!cpufreq_driver)
1548 		return;
1549 
1550 	if (!has_target())
1551 		goto suspend;
1552 
1553 	pr_debug("%s: Suspending Governors\n", __func__);
1554 
1555 	for_each_active_policy(policy) {
1556 		if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1557 			pr_err("%s: Failed to stop governor for policy: %p\n",
1558 				__func__, policy);
1559 		else if (cpufreq_driver->suspend
1560 		    && cpufreq_driver->suspend(policy))
1561 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1562 				policy);
1563 	}
1564 
1565 suspend:
1566 	cpufreq_suspended = true;
1567 }
1568 
1569 /**
1570  * cpufreq_resume() - Resume CPUFreq governors
1571  *
1572  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1573  * are suspended with cpufreq_suspend().
1574  */
1575 void cpufreq_resume(void)
1576 {
1577 	struct cpufreq_policy *policy;
1578 
1579 	if (!cpufreq_driver)
1580 		return;
1581 
1582 	cpufreq_suspended = false;
1583 
1584 	if (!has_target())
1585 		return;
1586 
1587 	pr_debug("%s: Resuming Governors\n", __func__);
1588 
1589 	for_each_active_policy(policy) {
1590 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1591 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1592 				policy);
1593 		else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1594 		    || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1595 			pr_err("%s: Failed to start governor for policy: %p\n",
1596 				__func__, policy);
1597 	}
1598 
1599 	/*
1600 	 * schedule call cpufreq_update_policy() for first-online CPU, as that
1601 	 * wouldn't be hotplugged-out on suspend. It will verify that the
1602 	 * current freq is in sync with what we believe it to be.
1603 	 */
1604 	policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask));
1605 	if (WARN_ON(!policy))
1606 		return;
1607 
1608 	schedule_work(&policy->update);
1609 }
1610 
1611 /**
1612  *	cpufreq_get_current_driver - return current driver's name
1613  *
1614  *	Return the name string of the currently loaded cpufreq driver
1615  *	or NULL, if none.
1616  */
1617 const char *cpufreq_get_current_driver(void)
1618 {
1619 	if (cpufreq_driver)
1620 		return cpufreq_driver->name;
1621 
1622 	return NULL;
1623 }
1624 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1625 
1626 /**
1627  *	cpufreq_get_driver_data - return current driver data
1628  *
1629  *	Return the private data of the currently loaded cpufreq
1630  *	driver, or NULL if no cpufreq driver is loaded.
1631  */
1632 void *cpufreq_get_driver_data(void)
1633 {
1634 	if (cpufreq_driver)
1635 		return cpufreq_driver->driver_data;
1636 
1637 	return NULL;
1638 }
1639 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1640 
1641 /*********************************************************************
1642  *                     NOTIFIER LISTS INTERFACE                      *
1643  *********************************************************************/
1644 
1645 /**
1646  *	cpufreq_register_notifier - register a driver with cpufreq
1647  *	@nb: notifier function to register
1648  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1649  *
1650  *	Add a driver to one of two lists: either a list of drivers that
1651  *      are notified about clock rate changes (once before and once after
1652  *      the transition), or a list of drivers that are notified about
1653  *      changes in cpufreq policy.
1654  *
1655  *	This function may sleep, and has the same return conditions as
1656  *	blocking_notifier_chain_register.
1657  */
1658 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1659 {
1660 	int ret;
1661 
1662 	if (cpufreq_disabled())
1663 		return -EINVAL;
1664 
1665 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1666 
1667 	switch (list) {
1668 	case CPUFREQ_TRANSITION_NOTIFIER:
1669 		ret = srcu_notifier_chain_register(
1670 				&cpufreq_transition_notifier_list, nb);
1671 		break;
1672 	case CPUFREQ_POLICY_NOTIFIER:
1673 		ret = blocking_notifier_chain_register(
1674 				&cpufreq_policy_notifier_list, nb);
1675 		break;
1676 	default:
1677 		ret = -EINVAL;
1678 	}
1679 
1680 	return ret;
1681 }
1682 EXPORT_SYMBOL(cpufreq_register_notifier);
1683 
1684 /**
1685  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1686  *	@nb: notifier block to be unregistered
1687  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1688  *
1689  *	Remove a driver from the CPU frequency notifier list.
1690  *
1691  *	This function may sleep, and has the same return conditions as
1692  *	blocking_notifier_chain_unregister.
1693  */
1694 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1695 {
1696 	int ret;
1697 
1698 	if (cpufreq_disabled())
1699 		return -EINVAL;
1700 
1701 	switch (list) {
1702 	case CPUFREQ_TRANSITION_NOTIFIER:
1703 		ret = srcu_notifier_chain_unregister(
1704 				&cpufreq_transition_notifier_list, nb);
1705 		break;
1706 	case CPUFREQ_POLICY_NOTIFIER:
1707 		ret = blocking_notifier_chain_unregister(
1708 				&cpufreq_policy_notifier_list, nb);
1709 		break;
1710 	default:
1711 		ret = -EINVAL;
1712 	}
1713 
1714 	return ret;
1715 }
1716 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1717 
1718 
1719 /*********************************************************************
1720  *                              GOVERNORS                            *
1721  *********************************************************************/
1722 
1723 /* Must set freqs->new to intermediate frequency */
1724 static int __target_intermediate(struct cpufreq_policy *policy,
1725 				 struct cpufreq_freqs *freqs, int index)
1726 {
1727 	int ret;
1728 
1729 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1730 
1731 	/* We don't need to switch to intermediate freq */
1732 	if (!freqs->new)
1733 		return 0;
1734 
1735 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1736 		 __func__, policy->cpu, freqs->old, freqs->new);
1737 
1738 	cpufreq_freq_transition_begin(policy, freqs);
1739 	ret = cpufreq_driver->target_intermediate(policy, index);
1740 	cpufreq_freq_transition_end(policy, freqs, ret);
1741 
1742 	if (ret)
1743 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1744 		       __func__, ret);
1745 
1746 	return ret;
1747 }
1748 
1749 static int __target_index(struct cpufreq_policy *policy,
1750 			  struct cpufreq_frequency_table *freq_table, int index)
1751 {
1752 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1753 	unsigned int intermediate_freq = 0;
1754 	int retval = -EINVAL;
1755 	bool notify;
1756 
1757 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1758 	if (notify) {
1759 		/* Handle switching to intermediate frequency */
1760 		if (cpufreq_driver->get_intermediate) {
1761 			retval = __target_intermediate(policy, &freqs, index);
1762 			if (retval)
1763 				return retval;
1764 
1765 			intermediate_freq = freqs.new;
1766 			/* Set old freq to intermediate */
1767 			if (intermediate_freq)
1768 				freqs.old = freqs.new;
1769 		}
1770 
1771 		freqs.new = freq_table[index].frequency;
1772 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1773 			 __func__, policy->cpu, freqs.old, freqs.new);
1774 
1775 		cpufreq_freq_transition_begin(policy, &freqs);
1776 	}
1777 
1778 	retval = cpufreq_driver->target_index(policy, index);
1779 	if (retval)
1780 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1781 		       retval);
1782 
1783 	if (notify) {
1784 		cpufreq_freq_transition_end(policy, &freqs, retval);
1785 
1786 		/*
1787 		 * Failed after setting to intermediate freq? Driver should have
1788 		 * reverted back to initial frequency and so should we. Check
1789 		 * here for intermediate_freq instead of get_intermediate, in
1790 		 * case we haven't switched to intermediate freq at all.
1791 		 */
1792 		if (unlikely(retval && intermediate_freq)) {
1793 			freqs.old = intermediate_freq;
1794 			freqs.new = policy->restore_freq;
1795 			cpufreq_freq_transition_begin(policy, &freqs);
1796 			cpufreq_freq_transition_end(policy, &freqs, 0);
1797 		}
1798 	}
1799 
1800 	return retval;
1801 }
1802 
1803 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1804 			    unsigned int target_freq,
1805 			    unsigned int relation)
1806 {
1807 	unsigned int old_target_freq = target_freq;
1808 	struct cpufreq_frequency_table *freq_table;
1809 	int index, retval;
1810 
1811 	if (cpufreq_disabled())
1812 		return -ENODEV;
1813 
1814 	/* Make sure that target_freq is within supported range */
1815 	if (target_freq > policy->max)
1816 		target_freq = policy->max;
1817 	if (target_freq < policy->min)
1818 		target_freq = policy->min;
1819 
1820 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1821 		 policy->cpu, target_freq, relation, old_target_freq);
1822 
1823 	/*
1824 	 * This might look like a redundant call as we are checking it again
1825 	 * after finding index. But it is left intentionally for cases where
1826 	 * exactly same freq is called again and so we can save on few function
1827 	 * calls.
1828 	 */
1829 	if (target_freq == policy->cur)
1830 		return 0;
1831 
1832 	/* Save last value to restore later on errors */
1833 	policy->restore_freq = policy->cur;
1834 
1835 	if (cpufreq_driver->target)
1836 		return cpufreq_driver->target(policy, target_freq, relation);
1837 
1838 	if (!cpufreq_driver->target_index)
1839 		return -EINVAL;
1840 
1841 	freq_table = cpufreq_frequency_get_table(policy->cpu);
1842 	if (unlikely(!freq_table)) {
1843 		pr_err("%s: Unable to find freq_table\n", __func__);
1844 		return -EINVAL;
1845 	}
1846 
1847 	retval = cpufreq_frequency_table_target(policy, freq_table, target_freq,
1848 						relation, &index);
1849 	if (unlikely(retval)) {
1850 		pr_err("%s: Unable to find matching freq\n", __func__);
1851 		return retval;
1852 	}
1853 
1854 	if (freq_table[index].frequency == policy->cur)
1855 		return 0;
1856 
1857 	return __target_index(policy, freq_table, index);
1858 }
1859 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1860 
1861 int cpufreq_driver_target(struct cpufreq_policy *policy,
1862 			  unsigned int target_freq,
1863 			  unsigned int relation)
1864 {
1865 	int ret = -EINVAL;
1866 
1867 	down_write(&policy->rwsem);
1868 
1869 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1870 
1871 	up_write(&policy->rwsem);
1872 
1873 	return ret;
1874 }
1875 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1876 
1877 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1878 {
1879 	return NULL;
1880 }
1881 
1882 static int __cpufreq_governor(struct cpufreq_policy *policy,
1883 					unsigned int event)
1884 {
1885 	int ret;
1886 
1887 	/* Don't start any governor operations if we are entering suspend */
1888 	if (cpufreq_suspended)
1889 		return 0;
1890 	/*
1891 	 * Governor might not be initiated here if ACPI _PPC changed
1892 	 * notification happened, so check it.
1893 	 */
1894 	if (!policy->governor)
1895 		return -EINVAL;
1896 
1897 	if (policy->governor->max_transition_latency &&
1898 	    policy->cpuinfo.transition_latency >
1899 	    policy->governor->max_transition_latency) {
1900 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
1901 
1902 		if (gov) {
1903 			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1904 				policy->governor->name, gov->name);
1905 			policy->governor = gov;
1906 		} else {
1907 			return -EINVAL;
1908 		}
1909 	}
1910 
1911 	if (event == CPUFREQ_GOV_POLICY_INIT)
1912 		if (!try_module_get(policy->governor->owner))
1913 			return -EINVAL;
1914 
1915 	pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
1916 
1917 	mutex_lock(&cpufreq_governor_lock);
1918 	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1919 	    || (!policy->governor_enabled
1920 	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1921 		mutex_unlock(&cpufreq_governor_lock);
1922 		return -EBUSY;
1923 	}
1924 
1925 	if (event == CPUFREQ_GOV_STOP)
1926 		policy->governor_enabled = false;
1927 	else if (event == CPUFREQ_GOV_START)
1928 		policy->governor_enabled = true;
1929 
1930 	mutex_unlock(&cpufreq_governor_lock);
1931 
1932 	ret = policy->governor->governor(policy, event);
1933 
1934 	if (!ret) {
1935 		if (event == CPUFREQ_GOV_POLICY_INIT)
1936 			policy->governor->initialized++;
1937 		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1938 			policy->governor->initialized--;
1939 	} else {
1940 		/* Restore original values */
1941 		mutex_lock(&cpufreq_governor_lock);
1942 		if (event == CPUFREQ_GOV_STOP)
1943 			policy->governor_enabled = true;
1944 		else if (event == CPUFREQ_GOV_START)
1945 			policy->governor_enabled = false;
1946 		mutex_unlock(&cpufreq_governor_lock);
1947 	}
1948 
1949 	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1950 			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1951 		module_put(policy->governor->owner);
1952 
1953 	return ret;
1954 }
1955 
1956 int cpufreq_register_governor(struct cpufreq_governor *governor)
1957 {
1958 	int err;
1959 
1960 	if (!governor)
1961 		return -EINVAL;
1962 
1963 	if (cpufreq_disabled())
1964 		return -ENODEV;
1965 
1966 	mutex_lock(&cpufreq_governor_mutex);
1967 
1968 	governor->initialized = 0;
1969 	err = -EBUSY;
1970 	if (!find_governor(governor->name)) {
1971 		err = 0;
1972 		list_add(&governor->governor_list, &cpufreq_governor_list);
1973 	}
1974 
1975 	mutex_unlock(&cpufreq_governor_mutex);
1976 	return err;
1977 }
1978 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1979 
1980 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1981 {
1982 	struct cpufreq_policy *policy;
1983 	unsigned long flags;
1984 
1985 	if (!governor)
1986 		return;
1987 
1988 	if (cpufreq_disabled())
1989 		return;
1990 
1991 	/* clear last_governor for all inactive policies */
1992 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1993 	for_each_inactive_policy(policy) {
1994 		if (!strcmp(policy->last_governor, governor->name)) {
1995 			policy->governor = NULL;
1996 			strcpy(policy->last_governor, "\0");
1997 		}
1998 	}
1999 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2000 
2001 	mutex_lock(&cpufreq_governor_mutex);
2002 	list_del(&governor->governor_list);
2003 	mutex_unlock(&cpufreq_governor_mutex);
2004 	return;
2005 }
2006 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2007 
2008 
2009 /*********************************************************************
2010  *                          POLICY INTERFACE                         *
2011  *********************************************************************/
2012 
2013 /**
2014  * cpufreq_get_policy - get the current cpufreq_policy
2015  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2016  *	is written
2017  *
2018  * Reads the current cpufreq policy.
2019  */
2020 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2021 {
2022 	struct cpufreq_policy *cpu_policy;
2023 	if (!policy)
2024 		return -EINVAL;
2025 
2026 	cpu_policy = cpufreq_cpu_get(cpu);
2027 	if (!cpu_policy)
2028 		return -EINVAL;
2029 
2030 	memcpy(policy, cpu_policy, sizeof(*policy));
2031 
2032 	cpufreq_cpu_put(cpu_policy);
2033 	return 0;
2034 }
2035 EXPORT_SYMBOL(cpufreq_get_policy);
2036 
2037 /*
2038  * policy : current policy.
2039  * new_policy: policy to be set.
2040  */
2041 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2042 				struct cpufreq_policy *new_policy)
2043 {
2044 	struct cpufreq_governor *old_gov;
2045 	int ret;
2046 
2047 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2048 		 new_policy->cpu, new_policy->min, new_policy->max);
2049 
2050 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2051 
2052 	/*
2053 	* This check works well when we store new min/max freq attributes,
2054 	* because new_policy is a copy of policy with one field updated.
2055 	*/
2056 	if (new_policy->min > new_policy->max)
2057 		return -EINVAL;
2058 
2059 	/* verify the cpu speed can be set within this limit */
2060 	ret = cpufreq_driver->verify(new_policy);
2061 	if (ret)
2062 		return ret;
2063 
2064 	/* adjust if necessary - all reasons */
2065 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2066 			CPUFREQ_ADJUST, new_policy);
2067 
2068 	/*
2069 	 * verify the cpu speed can be set within this limit, which might be
2070 	 * different to the first one
2071 	 */
2072 	ret = cpufreq_driver->verify(new_policy);
2073 	if (ret)
2074 		return ret;
2075 
2076 	/* notification of the new policy */
2077 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2078 			CPUFREQ_NOTIFY, new_policy);
2079 
2080 	policy->min = new_policy->min;
2081 	policy->max = new_policy->max;
2082 
2083 	pr_debug("new min and max freqs are %u - %u kHz\n",
2084 		 policy->min, policy->max);
2085 
2086 	if (cpufreq_driver->setpolicy) {
2087 		policy->policy = new_policy->policy;
2088 		pr_debug("setting range\n");
2089 		return cpufreq_driver->setpolicy(new_policy);
2090 	}
2091 
2092 	if (new_policy->governor == policy->governor)
2093 		goto out;
2094 
2095 	pr_debug("governor switch\n");
2096 
2097 	/* save old, working values */
2098 	old_gov = policy->governor;
2099 	/* end old governor */
2100 	if (old_gov) {
2101 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2102 		if (ret) {
2103 			/* This can happen due to race with other operations */
2104 			pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
2105 				 __func__, old_gov->name, ret);
2106 			return ret;
2107 		}
2108 
2109 		up_write(&policy->rwsem);
2110 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2111 		down_write(&policy->rwsem);
2112 
2113 		if (ret) {
2114 			pr_err("%s: Failed to Exit Governor: %s (%d)\n",
2115 			       __func__, old_gov->name, ret);
2116 			return ret;
2117 		}
2118 	}
2119 
2120 	/* start new governor */
2121 	policy->governor = new_policy->governor;
2122 	ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2123 	if (!ret) {
2124 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
2125 		if (!ret)
2126 			goto out;
2127 
2128 		up_write(&policy->rwsem);
2129 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2130 		down_write(&policy->rwsem);
2131 	}
2132 
2133 	/* new governor failed, so re-start old one */
2134 	pr_debug("starting governor %s failed\n", policy->governor->name);
2135 	if (old_gov) {
2136 		policy->governor = old_gov;
2137 		if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
2138 			policy->governor = NULL;
2139 		else
2140 			__cpufreq_governor(policy, CPUFREQ_GOV_START);
2141 	}
2142 
2143 	return ret;
2144 
2145  out:
2146 	pr_debug("governor: change or update limits\n");
2147 	return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2148 }
2149 
2150 /**
2151  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2152  *	@cpu: CPU which shall be re-evaluated
2153  *
2154  *	Useful for policy notifiers which have different necessities
2155  *	at different times.
2156  */
2157 int cpufreq_update_policy(unsigned int cpu)
2158 {
2159 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2160 	struct cpufreq_policy new_policy;
2161 	int ret;
2162 
2163 	if (!policy)
2164 		return -ENODEV;
2165 
2166 	down_write(&policy->rwsem);
2167 
2168 	pr_debug("updating policy for CPU %u\n", cpu);
2169 	memcpy(&new_policy, policy, sizeof(*policy));
2170 	new_policy.min = policy->user_policy.min;
2171 	new_policy.max = policy->user_policy.max;
2172 
2173 	/*
2174 	 * BIOS might change freq behind our back
2175 	 * -> ask driver for current freq and notify governors about a change
2176 	 */
2177 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2178 		new_policy.cur = cpufreq_driver->get(cpu);
2179 		if (WARN_ON(!new_policy.cur)) {
2180 			ret = -EIO;
2181 			goto unlock;
2182 		}
2183 
2184 		if (!policy->cur) {
2185 			pr_debug("Driver did not initialize current freq\n");
2186 			policy->cur = new_policy.cur;
2187 		} else {
2188 			if (policy->cur != new_policy.cur && has_target())
2189 				cpufreq_out_of_sync(policy, new_policy.cur);
2190 		}
2191 	}
2192 
2193 	ret = cpufreq_set_policy(policy, &new_policy);
2194 
2195 unlock:
2196 	up_write(&policy->rwsem);
2197 
2198 	cpufreq_cpu_put(policy);
2199 	return ret;
2200 }
2201 EXPORT_SYMBOL(cpufreq_update_policy);
2202 
2203 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2204 					unsigned long action, void *hcpu)
2205 {
2206 	unsigned int cpu = (unsigned long)hcpu;
2207 
2208 	switch (action & ~CPU_TASKS_FROZEN) {
2209 	case CPU_ONLINE:
2210 		cpufreq_online(cpu);
2211 		break;
2212 
2213 	case CPU_DOWN_PREPARE:
2214 		cpufreq_offline_prepare(cpu);
2215 		break;
2216 
2217 	case CPU_POST_DEAD:
2218 		cpufreq_offline_finish(cpu);
2219 		break;
2220 
2221 	case CPU_DOWN_FAILED:
2222 		cpufreq_online(cpu);
2223 		break;
2224 	}
2225 	return NOTIFY_OK;
2226 }
2227 
2228 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2229 	.notifier_call = cpufreq_cpu_callback,
2230 };
2231 
2232 /*********************************************************************
2233  *               BOOST						     *
2234  *********************************************************************/
2235 static int cpufreq_boost_set_sw(int state)
2236 {
2237 	struct cpufreq_frequency_table *freq_table;
2238 	struct cpufreq_policy *policy;
2239 	int ret = -EINVAL;
2240 
2241 	for_each_active_policy(policy) {
2242 		freq_table = cpufreq_frequency_get_table(policy->cpu);
2243 		if (freq_table) {
2244 			ret = cpufreq_frequency_table_cpuinfo(policy,
2245 							freq_table);
2246 			if (ret) {
2247 				pr_err("%s: Policy frequency update failed\n",
2248 				       __func__);
2249 				break;
2250 			}
2251 			policy->user_policy.max = policy->max;
2252 			__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2253 		}
2254 	}
2255 
2256 	return ret;
2257 }
2258 
2259 int cpufreq_boost_trigger_state(int state)
2260 {
2261 	unsigned long flags;
2262 	int ret = 0;
2263 
2264 	if (cpufreq_driver->boost_enabled == state)
2265 		return 0;
2266 
2267 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2268 	cpufreq_driver->boost_enabled = state;
2269 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2270 
2271 	ret = cpufreq_driver->set_boost(state);
2272 	if (ret) {
2273 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2274 		cpufreq_driver->boost_enabled = !state;
2275 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2276 
2277 		pr_err("%s: Cannot %s BOOST\n",
2278 		       __func__, state ? "enable" : "disable");
2279 	}
2280 
2281 	return ret;
2282 }
2283 
2284 static bool cpufreq_boost_supported(void)
2285 {
2286 	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2287 }
2288 
2289 static int create_boost_sysfs_file(void)
2290 {
2291 	int ret;
2292 
2293 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2294 	if (ret)
2295 		pr_err("%s: cannot register global BOOST sysfs file\n",
2296 		       __func__);
2297 
2298 	return ret;
2299 }
2300 
2301 static void remove_boost_sysfs_file(void)
2302 {
2303 	if (cpufreq_boost_supported())
2304 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2305 }
2306 
2307 int cpufreq_enable_boost_support(void)
2308 {
2309 	if (!cpufreq_driver)
2310 		return -EINVAL;
2311 
2312 	if (cpufreq_boost_supported())
2313 		return 0;
2314 
2315 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2316 
2317 	/* This will get removed on driver unregister */
2318 	return create_boost_sysfs_file();
2319 }
2320 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2321 
2322 int cpufreq_boost_enabled(void)
2323 {
2324 	return cpufreq_driver->boost_enabled;
2325 }
2326 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2327 
2328 /*********************************************************************
2329  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2330  *********************************************************************/
2331 
2332 /**
2333  * cpufreq_register_driver - register a CPU Frequency driver
2334  * @driver_data: A struct cpufreq_driver containing the values#
2335  * submitted by the CPU Frequency driver.
2336  *
2337  * Registers a CPU Frequency driver to this core code. This code
2338  * returns zero on success, -EEXIST when another driver got here first
2339  * (and isn't unregistered in the meantime).
2340  *
2341  */
2342 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2343 {
2344 	unsigned long flags;
2345 	int ret;
2346 
2347 	if (cpufreq_disabled())
2348 		return -ENODEV;
2349 
2350 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2351 	    !(driver_data->setpolicy || driver_data->target_index ||
2352 		    driver_data->target) ||
2353 	     (driver_data->setpolicy && (driver_data->target_index ||
2354 		    driver_data->target)) ||
2355 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2356 		return -EINVAL;
2357 
2358 	pr_debug("trying to register driver %s\n", driver_data->name);
2359 
2360 	/* Protect against concurrent CPU online/offline. */
2361 	get_online_cpus();
2362 
2363 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2364 	if (cpufreq_driver) {
2365 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2366 		ret = -EEXIST;
2367 		goto out;
2368 	}
2369 	cpufreq_driver = driver_data;
2370 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2371 
2372 	if (driver_data->setpolicy)
2373 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2374 
2375 	if (cpufreq_boost_supported()) {
2376 		ret = create_boost_sysfs_file();
2377 		if (ret)
2378 			goto err_null_driver;
2379 	}
2380 
2381 	ret = subsys_interface_register(&cpufreq_interface);
2382 	if (ret)
2383 		goto err_boost_unreg;
2384 
2385 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2386 	    list_empty(&cpufreq_policy_list)) {
2387 		/* if all ->init() calls failed, unregister */
2388 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2389 			 driver_data->name);
2390 		goto err_if_unreg;
2391 	}
2392 
2393 	register_hotcpu_notifier(&cpufreq_cpu_notifier);
2394 	pr_debug("driver %s up and running\n", driver_data->name);
2395 
2396 out:
2397 	put_online_cpus();
2398 	return ret;
2399 
2400 err_if_unreg:
2401 	subsys_interface_unregister(&cpufreq_interface);
2402 err_boost_unreg:
2403 	remove_boost_sysfs_file();
2404 err_null_driver:
2405 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2406 	cpufreq_driver = NULL;
2407 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2408 	goto out;
2409 }
2410 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2411 
2412 /**
2413  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2414  *
2415  * Unregister the current CPUFreq driver. Only call this if you have
2416  * the right to do so, i.e. if you have succeeded in initialising before!
2417  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2418  * currently not initialised.
2419  */
2420 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2421 {
2422 	unsigned long flags;
2423 
2424 	if (!cpufreq_driver || (driver != cpufreq_driver))
2425 		return -EINVAL;
2426 
2427 	pr_debug("unregistering driver %s\n", driver->name);
2428 
2429 	/* Protect against concurrent cpu hotplug */
2430 	get_online_cpus();
2431 	subsys_interface_unregister(&cpufreq_interface);
2432 	remove_boost_sysfs_file();
2433 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2434 
2435 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2436 
2437 	cpufreq_driver = NULL;
2438 
2439 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2440 	put_online_cpus();
2441 
2442 	return 0;
2443 }
2444 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2445 
2446 /*
2447  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2448  * or mutexes when secondary CPUs are halted.
2449  */
2450 static struct syscore_ops cpufreq_syscore_ops = {
2451 	.shutdown = cpufreq_suspend,
2452 };
2453 
2454 struct kobject *cpufreq_global_kobject;
2455 EXPORT_SYMBOL(cpufreq_global_kobject);
2456 
2457 static int __init cpufreq_core_init(void)
2458 {
2459 	if (cpufreq_disabled())
2460 		return -ENODEV;
2461 
2462 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2463 	BUG_ON(!cpufreq_global_kobject);
2464 
2465 	register_syscore_ops(&cpufreq_syscore_ops);
2466 
2467 	return 0;
2468 }
2469 core_initcall(cpufreq_core_init);
2470