1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 /* Macros to iterate over CPU policies */ 42 #define for_each_suitable_policy(__policy, __active) \ 43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 44 if ((__active) == !policy_is_inactive(__policy)) 45 46 #define for_each_active_policy(__policy) \ 47 for_each_suitable_policy(__policy, true) 48 #define for_each_inactive_policy(__policy) \ 49 for_each_suitable_policy(__policy, false) 50 51 #define for_each_policy(__policy) \ 52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 53 54 /* Iterate over governors */ 55 static LIST_HEAD(cpufreq_governor_list); 56 #define for_each_governor(__governor) \ 57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 58 59 /** 60 * The "cpufreq driver" - the arch- or hardware-dependent low 61 * level driver of CPUFreq support, and its spinlock. This lock 62 * also protects the cpufreq_cpu_data array. 63 */ 64 static struct cpufreq_driver *cpufreq_driver; 65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 66 static DEFINE_RWLOCK(cpufreq_driver_lock); 67 DEFINE_MUTEX(cpufreq_governor_lock); 68 69 /* Flag to suspend/resume CPUFreq governors */ 70 static bool cpufreq_suspended; 71 72 static inline bool has_target(void) 73 { 74 return cpufreq_driver->target_index || cpufreq_driver->target; 75 } 76 77 /* internal prototypes */ 78 static int __cpufreq_governor(struct cpufreq_policy *policy, 79 unsigned int event); 80 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 81 static void handle_update(struct work_struct *work); 82 83 /** 84 * Two notifier lists: the "policy" list is involved in the 85 * validation process for a new CPU frequency policy; the 86 * "transition" list for kernel code that needs to handle 87 * changes to devices when the CPU clock speed changes. 88 * The mutex locks both lists. 89 */ 90 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 91 static struct srcu_notifier_head cpufreq_transition_notifier_list; 92 93 static bool init_cpufreq_transition_notifier_list_called; 94 static int __init init_cpufreq_transition_notifier_list(void) 95 { 96 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 97 init_cpufreq_transition_notifier_list_called = true; 98 return 0; 99 } 100 pure_initcall(init_cpufreq_transition_notifier_list); 101 102 static int off __read_mostly; 103 static int cpufreq_disabled(void) 104 { 105 return off; 106 } 107 void disable_cpufreq(void) 108 { 109 off = 1; 110 } 111 static DEFINE_MUTEX(cpufreq_governor_mutex); 112 113 bool have_governor_per_policy(void) 114 { 115 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 116 } 117 EXPORT_SYMBOL_GPL(have_governor_per_policy); 118 119 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 120 { 121 if (have_governor_per_policy()) 122 return &policy->kobj; 123 else 124 return cpufreq_global_kobject; 125 } 126 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 127 128 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu) 129 { 130 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 131 132 return policy && !policy_is_inactive(policy) ? 133 policy->freq_table : NULL; 134 } 135 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table); 136 137 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 138 { 139 u64 idle_time; 140 u64 cur_wall_time; 141 u64 busy_time; 142 143 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 144 145 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 146 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 147 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 148 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 149 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 150 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 151 152 idle_time = cur_wall_time - busy_time; 153 if (wall) 154 *wall = cputime_to_usecs(cur_wall_time); 155 156 return cputime_to_usecs(idle_time); 157 } 158 159 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 160 { 161 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 162 163 if (idle_time == -1ULL) 164 return get_cpu_idle_time_jiffy(cpu, wall); 165 else if (!io_busy) 166 idle_time += get_cpu_iowait_time_us(cpu, wall); 167 168 return idle_time; 169 } 170 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 171 172 /* 173 * This is a generic cpufreq init() routine which can be used by cpufreq 174 * drivers of SMP systems. It will do following: 175 * - validate & show freq table passed 176 * - set policies transition latency 177 * - policy->cpus with all possible CPUs 178 */ 179 int cpufreq_generic_init(struct cpufreq_policy *policy, 180 struct cpufreq_frequency_table *table, 181 unsigned int transition_latency) 182 { 183 int ret; 184 185 ret = cpufreq_table_validate_and_show(policy, table); 186 if (ret) { 187 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 188 return ret; 189 } 190 191 policy->cpuinfo.transition_latency = transition_latency; 192 193 /* 194 * The driver only supports the SMP configuration where all processors 195 * share the clock and voltage and clock. 196 */ 197 cpumask_setall(policy->cpus); 198 199 return 0; 200 } 201 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 202 203 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 204 { 205 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 206 207 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 208 } 209 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 210 211 unsigned int cpufreq_generic_get(unsigned int cpu) 212 { 213 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 214 215 if (!policy || IS_ERR(policy->clk)) { 216 pr_err("%s: No %s associated to cpu: %d\n", 217 __func__, policy ? "clk" : "policy", cpu); 218 return 0; 219 } 220 221 return clk_get_rate(policy->clk) / 1000; 222 } 223 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 224 225 /** 226 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 227 * 228 * @cpu: cpu to find policy for. 229 * 230 * This returns policy for 'cpu', returns NULL if it doesn't exist. 231 * It also increments the kobject reference count to mark it busy and so would 232 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 233 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 234 * freed as that depends on the kobj count. 235 * 236 * Return: A valid policy on success, otherwise NULL on failure. 237 */ 238 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 239 { 240 struct cpufreq_policy *policy = NULL; 241 unsigned long flags; 242 243 if (WARN_ON(cpu >= nr_cpu_ids)) 244 return NULL; 245 246 /* get the cpufreq driver */ 247 read_lock_irqsave(&cpufreq_driver_lock, flags); 248 249 if (cpufreq_driver) { 250 /* get the CPU */ 251 policy = cpufreq_cpu_get_raw(cpu); 252 if (policy) 253 kobject_get(&policy->kobj); 254 } 255 256 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 257 258 return policy; 259 } 260 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 261 262 /** 263 * cpufreq_cpu_put: Decrements the usage count of a policy 264 * 265 * @policy: policy earlier returned by cpufreq_cpu_get(). 266 * 267 * This decrements the kobject reference count incremented earlier by calling 268 * cpufreq_cpu_get(). 269 */ 270 void cpufreq_cpu_put(struct cpufreq_policy *policy) 271 { 272 kobject_put(&policy->kobj); 273 } 274 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 275 276 /********************************************************************* 277 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 278 *********************************************************************/ 279 280 /** 281 * adjust_jiffies - adjust the system "loops_per_jiffy" 282 * 283 * This function alters the system "loops_per_jiffy" for the clock 284 * speed change. Note that loops_per_jiffy cannot be updated on SMP 285 * systems as each CPU might be scaled differently. So, use the arch 286 * per-CPU loops_per_jiffy value wherever possible. 287 */ 288 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 289 { 290 #ifndef CONFIG_SMP 291 static unsigned long l_p_j_ref; 292 static unsigned int l_p_j_ref_freq; 293 294 if (ci->flags & CPUFREQ_CONST_LOOPS) 295 return; 296 297 if (!l_p_j_ref_freq) { 298 l_p_j_ref = loops_per_jiffy; 299 l_p_j_ref_freq = ci->old; 300 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 301 l_p_j_ref, l_p_j_ref_freq); 302 } 303 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 304 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 305 ci->new); 306 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 307 loops_per_jiffy, ci->new); 308 } 309 #endif 310 } 311 312 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 313 struct cpufreq_freqs *freqs, unsigned int state) 314 { 315 BUG_ON(irqs_disabled()); 316 317 if (cpufreq_disabled()) 318 return; 319 320 freqs->flags = cpufreq_driver->flags; 321 pr_debug("notification %u of frequency transition to %u kHz\n", 322 state, freqs->new); 323 324 switch (state) { 325 326 case CPUFREQ_PRECHANGE: 327 /* detect if the driver reported a value as "old frequency" 328 * which is not equal to what the cpufreq core thinks is 329 * "old frequency". 330 */ 331 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 332 if ((policy) && (policy->cpu == freqs->cpu) && 333 (policy->cur) && (policy->cur != freqs->old)) { 334 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 335 freqs->old, policy->cur); 336 freqs->old = policy->cur; 337 } 338 } 339 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 340 CPUFREQ_PRECHANGE, freqs); 341 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 342 break; 343 344 case CPUFREQ_POSTCHANGE: 345 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 346 pr_debug("FREQ: %lu - CPU: %lu\n", 347 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 348 trace_cpu_frequency(freqs->new, freqs->cpu); 349 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 350 CPUFREQ_POSTCHANGE, freqs); 351 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 352 policy->cur = freqs->new; 353 break; 354 } 355 } 356 357 /** 358 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 359 * on frequency transition. 360 * 361 * This function calls the transition notifiers and the "adjust_jiffies" 362 * function. It is called twice on all CPU frequency changes that have 363 * external effects. 364 */ 365 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 366 struct cpufreq_freqs *freqs, unsigned int state) 367 { 368 for_each_cpu(freqs->cpu, policy->cpus) 369 __cpufreq_notify_transition(policy, freqs, state); 370 } 371 372 /* Do post notifications when there are chances that transition has failed */ 373 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 374 struct cpufreq_freqs *freqs, int transition_failed) 375 { 376 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 377 if (!transition_failed) 378 return; 379 380 swap(freqs->old, freqs->new); 381 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 382 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 383 } 384 385 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 386 struct cpufreq_freqs *freqs) 387 { 388 389 /* 390 * Catch double invocations of _begin() which lead to self-deadlock. 391 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 392 * doesn't invoke _begin() on their behalf, and hence the chances of 393 * double invocations are very low. Moreover, there are scenarios 394 * where these checks can emit false-positive warnings in these 395 * drivers; so we avoid that by skipping them altogether. 396 */ 397 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 398 && current == policy->transition_task); 399 400 wait: 401 wait_event(policy->transition_wait, !policy->transition_ongoing); 402 403 spin_lock(&policy->transition_lock); 404 405 if (unlikely(policy->transition_ongoing)) { 406 spin_unlock(&policy->transition_lock); 407 goto wait; 408 } 409 410 policy->transition_ongoing = true; 411 policy->transition_task = current; 412 413 spin_unlock(&policy->transition_lock); 414 415 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 416 } 417 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 418 419 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 420 struct cpufreq_freqs *freqs, int transition_failed) 421 { 422 if (unlikely(WARN_ON(!policy->transition_ongoing))) 423 return; 424 425 cpufreq_notify_post_transition(policy, freqs, transition_failed); 426 427 policy->transition_ongoing = false; 428 policy->transition_task = NULL; 429 430 wake_up(&policy->transition_wait); 431 } 432 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 433 434 435 /********************************************************************* 436 * SYSFS INTERFACE * 437 *********************************************************************/ 438 static ssize_t show_boost(struct kobject *kobj, 439 struct attribute *attr, char *buf) 440 { 441 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 442 } 443 444 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 445 const char *buf, size_t count) 446 { 447 int ret, enable; 448 449 ret = sscanf(buf, "%d", &enable); 450 if (ret != 1 || enable < 0 || enable > 1) 451 return -EINVAL; 452 453 if (cpufreq_boost_trigger_state(enable)) { 454 pr_err("%s: Cannot %s BOOST!\n", 455 __func__, enable ? "enable" : "disable"); 456 return -EINVAL; 457 } 458 459 pr_debug("%s: cpufreq BOOST %s\n", 460 __func__, enable ? "enabled" : "disabled"); 461 462 return count; 463 } 464 define_one_global_rw(boost); 465 466 static struct cpufreq_governor *find_governor(const char *str_governor) 467 { 468 struct cpufreq_governor *t; 469 470 for_each_governor(t) 471 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 472 return t; 473 474 return NULL; 475 } 476 477 /** 478 * cpufreq_parse_governor - parse a governor string 479 */ 480 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 481 struct cpufreq_governor **governor) 482 { 483 int err = -EINVAL; 484 485 if (cpufreq_driver->setpolicy) { 486 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 487 *policy = CPUFREQ_POLICY_PERFORMANCE; 488 err = 0; 489 } else if (!strncasecmp(str_governor, "powersave", 490 CPUFREQ_NAME_LEN)) { 491 *policy = CPUFREQ_POLICY_POWERSAVE; 492 err = 0; 493 } 494 } else { 495 struct cpufreq_governor *t; 496 497 mutex_lock(&cpufreq_governor_mutex); 498 499 t = find_governor(str_governor); 500 501 if (t == NULL) { 502 int ret; 503 504 mutex_unlock(&cpufreq_governor_mutex); 505 ret = request_module("cpufreq_%s", str_governor); 506 mutex_lock(&cpufreq_governor_mutex); 507 508 if (ret == 0) 509 t = find_governor(str_governor); 510 } 511 512 if (t != NULL) { 513 *governor = t; 514 err = 0; 515 } 516 517 mutex_unlock(&cpufreq_governor_mutex); 518 } 519 return err; 520 } 521 522 /** 523 * cpufreq_per_cpu_attr_read() / show_##file_name() - 524 * print out cpufreq information 525 * 526 * Write out information from cpufreq_driver->policy[cpu]; object must be 527 * "unsigned int". 528 */ 529 530 #define show_one(file_name, object) \ 531 static ssize_t show_##file_name \ 532 (struct cpufreq_policy *policy, char *buf) \ 533 { \ 534 return sprintf(buf, "%u\n", policy->object); \ 535 } 536 537 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 538 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 539 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 540 show_one(scaling_min_freq, min); 541 show_one(scaling_max_freq, max); 542 543 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 544 { 545 ssize_t ret; 546 547 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 548 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 549 else 550 ret = sprintf(buf, "%u\n", policy->cur); 551 return ret; 552 } 553 554 static int cpufreq_set_policy(struct cpufreq_policy *policy, 555 struct cpufreq_policy *new_policy); 556 557 /** 558 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 559 */ 560 #define store_one(file_name, object) \ 561 static ssize_t store_##file_name \ 562 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 563 { \ 564 int ret, temp; \ 565 struct cpufreq_policy new_policy; \ 566 \ 567 memcpy(&new_policy, policy, sizeof(*policy)); \ 568 \ 569 ret = sscanf(buf, "%u", &new_policy.object); \ 570 if (ret != 1) \ 571 return -EINVAL; \ 572 \ 573 temp = new_policy.object; \ 574 ret = cpufreq_set_policy(policy, &new_policy); \ 575 if (!ret) \ 576 policy->user_policy.object = temp; \ 577 \ 578 return ret ? ret : count; \ 579 } 580 581 store_one(scaling_min_freq, min); 582 store_one(scaling_max_freq, max); 583 584 /** 585 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 586 */ 587 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 588 char *buf) 589 { 590 unsigned int cur_freq = __cpufreq_get(policy); 591 if (!cur_freq) 592 return sprintf(buf, "<unknown>"); 593 return sprintf(buf, "%u\n", cur_freq); 594 } 595 596 /** 597 * show_scaling_governor - show the current policy for the specified CPU 598 */ 599 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 600 { 601 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 602 return sprintf(buf, "powersave\n"); 603 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 604 return sprintf(buf, "performance\n"); 605 else if (policy->governor) 606 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 607 policy->governor->name); 608 return -EINVAL; 609 } 610 611 /** 612 * store_scaling_governor - store policy for the specified CPU 613 */ 614 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 615 const char *buf, size_t count) 616 { 617 int ret; 618 char str_governor[16]; 619 struct cpufreq_policy new_policy; 620 621 memcpy(&new_policy, policy, sizeof(*policy)); 622 623 ret = sscanf(buf, "%15s", str_governor); 624 if (ret != 1) 625 return -EINVAL; 626 627 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 628 &new_policy.governor)) 629 return -EINVAL; 630 631 ret = cpufreq_set_policy(policy, &new_policy); 632 return ret ? ret : count; 633 } 634 635 /** 636 * show_scaling_driver - show the cpufreq driver currently loaded 637 */ 638 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 639 { 640 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 641 } 642 643 /** 644 * show_scaling_available_governors - show the available CPUfreq governors 645 */ 646 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 647 char *buf) 648 { 649 ssize_t i = 0; 650 struct cpufreq_governor *t; 651 652 if (!has_target()) { 653 i += sprintf(buf, "performance powersave"); 654 goto out; 655 } 656 657 for_each_governor(t) { 658 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 659 - (CPUFREQ_NAME_LEN + 2))) 660 goto out; 661 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 662 } 663 out: 664 i += sprintf(&buf[i], "\n"); 665 return i; 666 } 667 668 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 669 { 670 ssize_t i = 0; 671 unsigned int cpu; 672 673 for_each_cpu(cpu, mask) { 674 if (i) 675 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 676 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 677 if (i >= (PAGE_SIZE - 5)) 678 break; 679 } 680 i += sprintf(&buf[i], "\n"); 681 return i; 682 } 683 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 684 685 /** 686 * show_related_cpus - show the CPUs affected by each transition even if 687 * hw coordination is in use 688 */ 689 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 690 { 691 return cpufreq_show_cpus(policy->related_cpus, buf); 692 } 693 694 /** 695 * show_affected_cpus - show the CPUs affected by each transition 696 */ 697 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 698 { 699 return cpufreq_show_cpus(policy->cpus, buf); 700 } 701 702 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 703 const char *buf, size_t count) 704 { 705 unsigned int freq = 0; 706 unsigned int ret; 707 708 if (!policy->governor || !policy->governor->store_setspeed) 709 return -EINVAL; 710 711 ret = sscanf(buf, "%u", &freq); 712 if (ret != 1) 713 return -EINVAL; 714 715 policy->governor->store_setspeed(policy, freq); 716 717 return count; 718 } 719 720 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 721 { 722 if (!policy->governor || !policy->governor->show_setspeed) 723 return sprintf(buf, "<unsupported>\n"); 724 725 return policy->governor->show_setspeed(policy, buf); 726 } 727 728 /** 729 * show_bios_limit - show the current cpufreq HW/BIOS limitation 730 */ 731 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 732 { 733 unsigned int limit; 734 int ret; 735 if (cpufreq_driver->bios_limit) { 736 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 737 if (!ret) 738 return sprintf(buf, "%u\n", limit); 739 } 740 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 741 } 742 743 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 744 cpufreq_freq_attr_ro(cpuinfo_min_freq); 745 cpufreq_freq_attr_ro(cpuinfo_max_freq); 746 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 747 cpufreq_freq_attr_ro(scaling_available_governors); 748 cpufreq_freq_attr_ro(scaling_driver); 749 cpufreq_freq_attr_ro(scaling_cur_freq); 750 cpufreq_freq_attr_ro(bios_limit); 751 cpufreq_freq_attr_ro(related_cpus); 752 cpufreq_freq_attr_ro(affected_cpus); 753 cpufreq_freq_attr_rw(scaling_min_freq); 754 cpufreq_freq_attr_rw(scaling_max_freq); 755 cpufreq_freq_attr_rw(scaling_governor); 756 cpufreq_freq_attr_rw(scaling_setspeed); 757 758 static struct attribute *default_attrs[] = { 759 &cpuinfo_min_freq.attr, 760 &cpuinfo_max_freq.attr, 761 &cpuinfo_transition_latency.attr, 762 &scaling_min_freq.attr, 763 &scaling_max_freq.attr, 764 &affected_cpus.attr, 765 &related_cpus.attr, 766 &scaling_governor.attr, 767 &scaling_driver.attr, 768 &scaling_available_governors.attr, 769 &scaling_setspeed.attr, 770 NULL 771 }; 772 773 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 774 #define to_attr(a) container_of(a, struct freq_attr, attr) 775 776 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 777 { 778 struct cpufreq_policy *policy = to_policy(kobj); 779 struct freq_attr *fattr = to_attr(attr); 780 ssize_t ret; 781 782 down_read(&policy->rwsem); 783 ret = fattr->show(policy, buf); 784 up_read(&policy->rwsem); 785 786 return ret; 787 } 788 789 static ssize_t store(struct kobject *kobj, struct attribute *attr, 790 const char *buf, size_t count) 791 { 792 struct cpufreq_policy *policy = to_policy(kobj); 793 struct freq_attr *fattr = to_attr(attr); 794 ssize_t ret = -EINVAL; 795 796 get_online_cpus(); 797 798 if (cpu_online(policy->cpu)) { 799 down_write(&policy->rwsem); 800 ret = fattr->store(policy, buf, count); 801 up_write(&policy->rwsem); 802 } 803 804 put_online_cpus(); 805 806 return ret; 807 } 808 809 static void cpufreq_sysfs_release(struct kobject *kobj) 810 { 811 struct cpufreq_policy *policy = to_policy(kobj); 812 pr_debug("last reference is dropped\n"); 813 complete(&policy->kobj_unregister); 814 } 815 816 static const struct sysfs_ops sysfs_ops = { 817 .show = show, 818 .store = store, 819 }; 820 821 static struct kobj_type ktype_cpufreq = { 822 .sysfs_ops = &sysfs_ops, 823 .default_attrs = default_attrs, 824 .release = cpufreq_sysfs_release, 825 }; 826 827 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 828 { 829 struct device *cpu_dev; 830 831 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu); 832 833 if (!policy) 834 return 0; 835 836 cpu_dev = get_cpu_device(cpu); 837 if (WARN_ON(!cpu_dev)) 838 return 0; 839 840 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq"); 841 } 842 843 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 844 { 845 struct device *cpu_dev; 846 847 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu); 848 849 cpu_dev = get_cpu_device(cpu); 850 if (WARN_ON(!cpu_dev)) 851 return; 852 853 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 854 } 855 856 /* Add/remove symlinks for all related CPUs */ 857 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 858 { 859 unsigned int j; 860 int ret = 0; 861 862 /* Some related CPUs might not be present (physically hotplugged) */ 863 for_each_cpu(j, policy->real_cpus) { 864 ret = add_cpu_dev_symlink(policy, j); 865 if (ret) 866 break; 867 } 868 869 return ret; 870 } 871 872 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy) 873 { 874 unsigned int j; 875 876 /* Some related CPUs might not be present (physically hotplugged) */ 877 for_each_cpu(j, policy->real_cpus) 878 remove_cpu_dev_symlink(policy, j); 879 } 880 881 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 882 { 883 struct freq_attr **drv_attr; 884 int ret = 0; 885 886 /* set up files for this cpu device */ 887 drv_attr = cpufreq_driver->attr; 888 while (drv_attr && *drv_attr) { 889 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 890 if (ret) 891 return ret; 892 drv_attr++; 893 } 894 if (cpufreq_driver->get) { 895 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 896 if (ret) 897 return ret; 898 } 899 900 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 901 if (ret) 902 return ret; 903 904 if (cpufreq_driver->bios_limit) { 905 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 906 if (ret) 907 return ret; 908 } 909 910 return cpufreq_add_dev_symlink(policy); 911 } 912 913 __weak struct cpufreq_governor *cpufreq_default_governor(void) 914 { 915 return NULL; 916 } 917 918 static int cpufreq_init_policy(struct cpufreq_policy *policy) 919 { 920 struct cpufreq_governor *gov = NULL; 921 struct cpufreq_policy new_policy; 922 923 memcpy(&new_policy, policy, sizeof(*policy)); 924 925 /* Update governor of new_policy to the governor used before hotplug */ 926 gov = find_governor(policy->last_governor); 927 if (gov) { 928 pr_debug("Restoring governor %s for cpu %d\n", 929 policy->governor->name, policy->cpu); 930 } else { 931 gov = cpufreq_default_governor(); 932 if (!gov) 933 return -ENODATA; 934 } 935 936 new_policy.governor = gov; 937 938 /* Use the default policy if there is no last_policy. */ 939 if (cpufreq_driver->setpolicy) { 940 if (policy->last_policy) 941 new_policy.policy = policy->last_policy; 942 else 943 cpufreq_parse_governor(gov->name, &new_policy.policy, 944 NULL); 945 } 946 /* set default policy */ 947 return cpufreq_set_policy(policy, &new_policy); 948 } 949 950 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 951 { 952 int ret = 0; 953 954 /* Has this CPU been taken care of already? */ 955 if (cpumask_test_cpu(cpu, policy->cpus)) 956 return 0; 957 958 if (has_target()) { 959 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 960 if (ret) { 961 pr_err("%s: Failed to stop governor\n", __func__); 962 return ret; 963 } 964 } 965 966 down_write(&policy->rwsem); 967 cpumask_set_cpu(cpu, policy->cpus); 968 up_write(&policy->rwsem); 969 970 if (has_target()) { 971 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 972 if (!ret) 973 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 974 975 if (ret) { 976 pr_err("%s: Failed to start governor\n", __func__); 977 return ret; 978 } 979 } 980 981 return 0; 982 } 983 984 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 985 { 986 struct device *dev = get_cpu_device(cpu); 987 struct cpufreq_policy *policy; 988 989 if (WARN_ON(!dev)) 990 return NULL; 991 992 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 993 if (!policy) 994 return NULL; 995 996 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 997 goto err_free_policy; 998 999 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1000 goto err_free_cpumask; 1001 1002 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1003 goto err_free_rcpumask; 1004 1005 kobject_init(&policy->kobj, &ktype_cpufreq); 1006 INIT_LIST_HEAD(&policy->policy_list); 1007 init_rwsem(&policy->rwsem); 1008 spin_lock_init(&policy->transition_lock); 1009 init_waitqueue_head(&policy->transition_wait); 1010 init_completion(&policy->kobj_unregister); 1011 INIT_WORK(&policy->update, handle_update); 1012 1013 policy->cpu = cpu; 1014 return policy; 1015 1016 err_free_rcpumask: 1017 free_cpumask_var(policy->related_cpus); 1018 err_free_cpumask: 1019 free_cpumask_var(policy->cpus); 1020 err_free_policy: 1021 kfree(policy); 1022 1023 return NULL; 1024 } 1025 1026 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify) 1027 { 1028 struct kobject *kobj; 1029 struct completion *cmp; 1030 1031 if (notify) 1032 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1033 CPUFREQ_REMOVE_POLICY, policy); 1034 1035 down_write(&policy->rwsem); 1036 cpufreq_remove_dev_symlink(policy); 1037 kobj = &policy->kobj; 1038 cmp = &policy->kobj_unregister; 1039 up_write(&policy->rwsem); 1040 kobject_put(kobj); 1041 1042 /* 1043 * We need to make sure that the underlying kobj is 1044 * actually not referenced anymore by anybody before we 1045 * proceed with unloading. 1046 */ 1047 pr_debug("waiting for dropping of refcount\n"); 1048 wait_for_completion(cmp); 1049 pr_debug("wait complete\n"); 1050 } 1051 1052 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify) 1053 { 1054 unsigned long flags; 1055 int cpu; 1056 1057 /* Remove policy from list */ 1058 write_lock_irqsave(&cpufreq_driver_lock, flags); 1059 list_del(&policy->policy_list); 1060 1061 for_each_cpu(cpu, policy->related_cpus) 1062 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1063 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1064 1065 cpufreq_policy_put_kobj(policy, notify); 1066 free_cpumask_var(policy->real_cpus); 1067 free_cpumask_var(policy->related_cpus); 1068 free_cpumask_var(policy->cpus); 1069 kfree(policy); 1070 } 1071 1072 static int cpufreq_online(unsigned int cpu) 1073 { 1074 struct cpufreq_policy *policy; 1075 bool new_policy; 1076 unsigned long flags; 1077 unsigned int j; 1078 int ret; 1079 1080 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1081 1082 /* Check if this CPU already has a policy to manage it */ 1083 policy = per_cpu(cpufreq_cpu_data, cpu); 1084 if (policy) { 1085 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1086 if (!policy_is_inactive(policy)) 1087 return cpufreq_add_policy_cpu(policy, cpu); 1088 1089 /* This is the only online CPU for the policy. Start over. */ 1090 new_policy = false; 1091 down_write(&policy->rwsem); 1092 policy->cpu = cpu; 1093 policy->governor = NULL; 1094 up_write(&policy->rwsem); 1095 } else { 1096 new_policy = true; 1097 policy = cpufreq_policy_alloc(cpu); 1098 if (!policy) 1099 return -ENOMEM; 1100 } 1101 1102 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1103 1104 /* call driver. From then on the cpufreq must be able 1105 * to accept all calls to ->verify and ->setpolicy for this CPU 1106 */ 1107 ret = cpufreq_driver->init(policy); 1108 if (ret) { 1109 pr_debug("initialization failed\n"); 1110 goto out_free_policy; 1111 } 1112 1113 down_write(&policy->rwsem); 1114 1115 if (new_policy) { 1116 /* related_cpus should at least include policy->cpus. */ 1117 cpumask_copy(policy->related_cpus, policy->cpus); 1118 /* Remember CPUs present at the policy creation time. */ 1119 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask); 1120 1121 /* Name and add the kobject */ 1122 ret = kobject_add(&policy->kobj, cpufreq_global_kobject, 1123 "policy%u", 1124 cpumask_first(policy->related_cpus)); 1125 if (ret) { 1126 pr_err("%s: failed to add policy->kobj: %d\n", __func__, 1127 ret); 1128 goto out_exit_policy; 1129 } 1130 } 1131 1132 /* 1133 * affected cpus must always be the one, which are online. We aren't 1134 * managing offline cpus here. 1135 */ 1136 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1137 1138 if (new_policy) { 1139 policy->user_policy.min = policy->min; 1140 policy->user_policy.max = policy->max; 1141 1142 write_lock_irqsave(&cpufreq_driver_lock, flags); 1143 for_each_cpu(j, policy->related_cpus) 1144 per_cpu(cpufreq_cpu_data, j) = policy; 1145 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1146 } 1147 1148 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1149 policy->cur = cpufreq_driver->get(policy->cpu); 1150 if (!policy->cur) { 1151 pr_err("%s: ->get() failed\n", __func__); 1152 goto out_exit_policy; 1153 } 1154 } 1155 1156 /* 1157 * Sometimes boot loaders set CPU frequency to a value outside of 1158 * frequency table present with cpufreq core. In such cases CPU might be 1159 * unstable if it has to run on that frequency for long duration of time 1160 * and so its better to set it to a frequency which is specified in 1161 * freq-table. This also makes cpufreq stats inconsistent as 1162 * cpufreq-stats would fail to register because current frequency of CPU 1163 * isn't found in freq-table. 1164 * 1165 * Because we don't want this change to effect boot process badly, we go 1166 * for the next freq which is >= policy->cur ('cur' must be set by now, 1167 * otherwise we will end up setting freq to lowest of the table as 'cur' 1168 * is initialized to zero). 1169 * 1170 * We are passing target-freq as "policy->cur - 1" otherwise 1171 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1172 * equal to target-freq. 1173 */ 1174 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1175 && has_target()) { 1176 /* Are we running at unknown frequency ? */ 1177 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1178 if (ret == -EINVAL) { 1179 /* Warn user and fix it */ 1180 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1181 __func__, policy->cpu, policy->cur); 1182 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1183 CPUFREQ_RELATION_L); 1184 1185 /* 1186 * Reaching here after boot in a few seconds may not 1187 * mean that system will remain stable at "unknown" 1188 * frequency for longer duration. Hence, a BUG_ON(). 1189 */ 1190 BUG_ON(ret); 1191 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1192 __func__, policy->cpu, policy->cur); 1193 } 1194 } 1195 1196 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1197 CPUFREQ_START, policy); 1198 1199 if (new_policy) { 1200 ret = cpufreq_add_dev_interface(policy); 1201 if (ret) 1202 goto out_exit_policy; 1203 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1204 CPUFREQ_CREATE_POLICY, policy); 1205 1206 write_lock_irqsave(&cpufreq_driver_lock, flags); 1207 list_add(&policy->policy_list, &cpufreq_policy_list); 1208 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1209 } 1210 1211 ret = cpufreq_init_policy(policy); 1212 if (ret) { 1213 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1214 __func__, cpu, ret); 1215 /* cpufreq_policy_free() will notify based on this */ 1216 new_policy = false; 1217 goto out_exit_policy; 1218 } 1219 1220 up_write(&policy->rwsem); 1221 1222 kobject_uevent(&policy->kobj, KOBJ_ADD); 1223 1224 /* Callback for handling stuff after policy is ready */ 1225 if (cpufreq_driver->ready) 1226 cpufreq_driver->ready(policy); 1227 1228 pr_debug("initialization complete\n"); 1229 1230 return 0; 1231 1232 out_exit_policy: 1233 up_write(&policy->rwsem); 1234 1235 if (cpufreq_driver->exit) 1236 cpufreq_driver->exit(policy); 1237 out_free_policy: 1238 cpufreq_policy_free(policy, !new_policy); 1239 return ret; 1240 } 1241 1242 /** 1243 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1244 * @dev: CPU device. 1245 * @sif: Subsystem interface structure pointer (not used) 1246 */ 1247 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1248 { 1249 unsigned cpu = dev->id; 1250 int ret; 1251 1252 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1253 1254 if (cpu_online(cpu)) { 1255 ret = cpufreq_online(cpu); 1256 } else { 1257 /* 1258 * A hotplug notifier will follow and we will handle it as CPU 1259 * online then. For now, just create the sysfs link, unless 1260 * there is no policy or the link is already present. 1261 */ 1262 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1263 1264 ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus) 1265 ? add_cpu_dev_symlink(policy, cpu) : 0; 1266 } 1267 1268 return ret; 1269 } 1270 1271 static void cpufreq_offline_prepare(unsigned int cpu) 1272 { 1273 struct cpufreq_policy *policy; 1274 1275 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1276 1277 policy = cpufreq_cpu_get_raw(cpu); 1278 if (!policy) { 1279 pr_debug("%s: No cpu_data found\n", __func__); 1280 return; 1281 } 1282 1283 if (has_target()) { 1284 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1285 if (ret) 1286 pr_err("%s: Failed to stop governor\n", __func__); 1287 } 1288 1289 down_write(&policy->rwsem); 1290 cpumask_clear_cpu(cpu, policy->cpus); 1291 1292 if (policy_is_inactive(policy)) { 1293 if (has_target()) 1294 strncpy(policy->last_governor, policy->governor->name, 1295 CPUFREQ_NAME_LEN); 1296 else 1297 policy->last_policy = policy->policy; 1298 } else if (cpu == policy->cpu) { 1299 /* Nominate new CPU */ 1300 policy->cpu = cpumask_any(policy->cpus); 1301 } 1302 up_write(&policy->rwsem); 1303 1304 /* Start governor again for active policy */ 1305 if (!policy_is_inactive(policy)) { 1306 if (has_target()) { 1307 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1308 if (!ret) 1309 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1310 1311 if (ret) 1312 pr_err("%s: Failed to start governor\n", __func__); 1313 } 1314 } else if (cpufreq_driver->stop_cpu) { 1315 cpufreq_driver->stop_cpu(policy); 1316 } 1317 } 1318 1319 static void cpufreq_offline_finish(unsigned int cpu) 1320 { 1321 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1322 1323 if (!policy) { 1324 pr_debug("%s: No cpu_data found\n", __func__); 1325 return; 1326 } 1327 1328 /* Only proceed for inactive policies */ 1329 if (!policy_is_inactive(policy)) 1330 return; 1331 1332 /* If cpu is last user of policy, free policy */ 1333 if (has_target()) { 1334 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 1335 if (ret) 1336 pr_err("%s: Failed to exit governor\n", __func__); 1337 } 1338 1339 /* 1340 * Perform the ->exit() even during light-weight tear-down, 1341 * since this is a core component, and is essential for the 1342 * subsequent light-weight ->init() to succeed. 1343 */ 1344 if (cpufreq_driver->exit) { 1345 cpufreq_driver->exit(policy); 1346 policy->freq_table = NULL; 1347 } 1348 } 1349 1350 /** 1351 * cpufreq_remove_dev - remove a CPU device 1352 * 1353 * Removes the cpufreq interface for a CPU device. 1354 */ 1355 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1356 { 1357 unsigned int cpu = dev->id; 1358 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1359 1360 if (!policy) 1361 return; 1362 1363 if (cpu_online(cpu)) { 1364 cpufreq_offline_prepare(cpu); 1365 cpufreq_offline_finish(cpu); 1366 } 1367 1368 cpumask_clear_cpu(cpu, policy->real_cpus); 1369 remove_cpu_dev_symlink(policy, cpu); 1370 1371 if (cpumask_empty(policy->real_cpus)) 1372 cpufreq_policy_free(policy, true); 1373 } 1374 1375 static void handle_update(struct work_struct *work) 1376 { 1377 struct cpufreq_policy *policy = 1378 container_of(work, struct cpufreq_policy, update); 1379 unsigned int cpu = policy->cpu; 1380 pr_debug("handle_update for cpu %u called\n", cpu); 1381 cpufreq_update_policy(cpu); 1382 } 1383 1384 /** 1385 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1386 * in deep trouble. 1387 * @policy: policy managing CPUs 1388 * @new_freq: CPU frequency the CPU actually runs at 1389 * 1390 * We adjust to current frequency first, and need to clean up later. 1391 * So either call to cpufreq_update_policy() or schedule handle_update()). 1392 */ 1393 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1394 unsigned int new_freq) 1395 { 1396 struct cpufreq_freqs freqs; 1397 1398 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1399 policy->cur, new_freq); 1400 1401 freqs.old = policy->cur; 1402 freqs.new = new_freq; 1403 1404 cpufreq_freq_transition_begin(policy, &freqs); 1405 cpufreq_freq_transition_end(policy, &freqs, 0); 1406 } 1407 1408 /** 1409 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1410 * @cpu: CPU number 1411 * 1412 * This is the last known freq, without actually getting it from the driver. 1413 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1414 */ 1415 unsigned int cpufreq_quick_get(unsigned int cpu) 1416 { 1417 struct cpufreq_policy *policy; 1418 unsigned int ret_freq = 0; 1419 1420 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1421 return cpufreq_driver->get(cpu); 1422 1423 policy = cpufreq_cpu_get(cpu); 1424 if (policy) { 1425 ret_freq = policy->cur; 1426 cpufreq_cpu_put(policy); 1427 } 1428 1429 return ret_freq; 1430 } 1431 EXPORT_SYMBOL(cpufreq_quick_get); 1432 1433 /** 1434 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1435 * @cpu: CPU number 1436 * 1437 * Just return the max possible frequency for a given CPU. 1438 */ 1439 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1440 { 1441 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1442 unsigned int ret_freq = 0; 1443 1444 if (policy) { 1445 ret_freq = policy->max; 1446 cpufreq_cpu_put(policy); 1447 } 1448 1449 return ret_freq; 1450 } 1451 EXPORT_SYMBOL(cpufreq_quick_get_max); 1452 1453 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1454 { 1455 unsigned int ret_freq = 0; 1456 1457 if (!cpufreq_driver->get) 1458 return ret_freq; 1459 1460 ret_freq = cpufreq_driver->get(policy->cpu); 1461 1462 /* Updating inactive policies is invalid, so avoid doing that. */ 1463 if (unlikely(policy_is_inactive(policy))) 1464 return ret_freq; 1465 1466 if (ret_freq && policy->cur && 1467 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1468 /* verify no discrepancy between actual and 1469 saved value exists */ 1470 if (unlikely(ret_freq != policy->cur)) { 1471 cpufreq_out_of_sync(policy, ret_freq); 1472 schedule_work(&policy->update); 1473 } 1474 } 1475 1476 return ret_freq; 1477 } 1478 1479 /** 1480 * cpufreq_get - get the current CPU frequency (in kHz) 1481 * @cpu: CPU number 1482 * 1483 * Get the CPU current (static) CPU frequency 1484 */ 1485 unsigned int cpufreq_get(unsigned int cpu) 1486 { 1487 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1488 unsigned int ret_freq = 0; 1489 1490 if (policy) { 1491 down_read(&policy->rwsem); 1492 ret_freq = __cpufreq_get(policy); 1493 up_read(&policy->rwsem); 1494 1495 cpufreq_cpu_put(policy); 1496 } 1497 1498 return ret_freq; 1499 } 1500 EXPORT_SYMBOL(cpufreq_get); 1501 1502 static struct subsys_interface cpufreq_interface = { 1503 .name = "cpufreq", 1504 .subsys = &cpu_subsys, 1505 .add_dev = cpufreq_add_dev, 1506 .remove_dev = cpufreq_remove_dev, 1507 }; 1508 1509 /* 1510 * In case platform wants some specific frequency to be configured 1511 * during suspend.. 1512 */ 1513 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1514 { 1515 int ret; 1516 1517 if (!policy->suspend_freq) { 1518 pr_debug("%s: suspend_freq not defined\n", __func__); 1519 return 0; 1520 } 1521 1522 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1523 policy->suspend_freq); 1524 1525 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1526 CPUFREQ_RELATION_H); 1527 if (ret) 1528 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1529 __func__, policy->suspend_freq, ret); 1530 1531 return ret; 1532 } 1533 EXPORT_SYMBOL(cpufreq_generic_suspend); 1534 1535 /** 1536 * cpufreq_suspend() - Suspend CPUFreq governors 1537 * 1538 * Called during system wide Suspend/Hibernate cycles for suspending governors 1539 * as some platforms can't change frequency after this point in suspend cycle. 1540 * Because some of the devices (like: i2c, regulators, etc) they use for 1541 * changing frequency are suspended quickly after this point. 1542 */ 1543 void cpufreq_suspend(void) 1544 { 1545 struct cpufreq_policy *policy; 1546 1547 if (!cpufreq_driver) 1548 return; 1549 1550 if (!has_target()) 1551 goto suspend; 1552 1553 pr_debug("%s: Suspending Governors\n", __func__); 1554 1555 for_each_active_policy(policy) { 1556 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP)) 1557 pr_err("%s: Failed to stop governor for policy: %p\n", 1558 __func__, policy); 1559 else if (cpufreq_driver->suspend 1560 && cpufreq_driver->suspend(policy)) 1561 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1562 policy); 1563 } 1564 1565 suspend: 1566 cpufreq_suspended = true; 1567 } 1568 1569 /** 1570 * cpufreq_resume() - Resume CPUFreq governors 1571 * 1572 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1573 * are suspended with cpufreq_suspend(). 1574 */ 1575 void cpufreq_resume(void) 1576 { 1577 struct cpufreq_policy *policy; 1578 1579 if (!cpufreq_driver) 1580 return; 1581 1582 cpufreq_suspended = false; 1583 1584 if (!has_target()) 1585 return; 1586 1587 pr_debug("%s: Resuming Governors\n", __func__); 1588 1589 for_each_active_policy(policy) { 1590 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) 1591 pr_err("%s: Failed to resume driver: %p\n", __func__, 1592 policy); 1593 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START) 1594 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS)) 1595 pr_err("%s: Failed to start governor for policy: %p\n", 1596 __func__, policy); 1597 } 1598 1599 /* 1600 * schedule call cpufreq_update_policy() for first-online CPU, as that 1601 * wouldn't be hotplugged-out on suspend. It will verify that the 1602 * current freq is in sync with what we believe it to be. 1603 */ 1604 policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask)); 1605 if (WARN_ON(!policy)) 1606 return; 1607 1608 schedule_work(&policy->update); 1609 } 1610 1611 /** 1612 * cpufreq_get_current_driver - return current driver's name 1613 * 1614 * Return the name string of the currently loaded cpufreq driver 1615 * or NULL, if none. 1616 */ 1617 const char *cpufreq_get_current_driver(void) 1618 { 1619 if (cpufreq_driver) 1620 return cpufreq_driver->name; 1621 1622 return NULL; 1623 } 1624 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1625 1626 /** 1627 * cpufreq_get_driver_data - return current driver data 1628 * 1629 * Return the private data of the currently loaded cpufreq 1630 * driver, or NULL if no cpufreq driver is loaded. 1631 */ 1632 void *cpufreq_get_driver_data(void) 1633 { 1634 if (cpufreq_driver) 1635 return cpufreq_driver->driver_data; 1636 1637 return NULL; 1638 } 1639 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1640 1641 /********************************************************************* 1642 * NOTIFIER LISTS INTERFACE * 1643 *********************************************************************/ 1644 1645 /** 1646 * cpufreq_register_notifier - register a driver with cpufreq 1647 * @nb: notifier function to register 1648 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1649 * 1650 * Add a driver to one of two lists: either a list of drivers that 1651 * are notified about clock rate changes (once before and once after 1652 * the transition), or a list of drivers that are notified about 1653 * changes in cpufreq policy. 1654 * 1655 * This function may sleep, and has the same return conditions as 1656 * blocking_notifier_chain_register. 1657 */ 1658 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1659 { 1660 int ret; 1661 1662 if (cpufreq_disabled()) 1663 return -EINVAL; 1664 1665 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1666 1667 switch (list) { 1668 case CPUFREQ_TRANSITION_NOTIFIER: 1669 ret = srcu_notifier_chain_register( 1670 &cpufreq_transition_notifier_list, nb); 1671 break; 1672 case CPUFREQ_POLICY_NOTIFIER: 1673 ret = blocking_notifier_chain_register( 1674 &cpufreq_policy_notifier_list, nb); 1675 break; 1676 default: 1677 ret = -EINVAL; 1678 } 1679 1680 return ret; 1681 } 1682 EXPORT_SYMBOL(cpufreq_register_notifier); 1683 1684 /** 1685 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1686 * @nb: notifier block to be unregistered 1687 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1688 * 1689 * Remove a driver from the CPU frequency notifier list. 1690 * 1691 * This function may sleep, and has the same return conditions as 1692 * blocking_notifier_chain_unregister. 1693 */ 1694 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1695 { 1696 int ret; 1697 1698 if (cpufreq_disabled()) 1699 return -EINVAL; 1700 1701 switch (list) { 1702 case CPUFREQ_TRANSITION_NOTIFIER: 1703 ret = srcu_notifier_chain_unregister( 1704 &cpufreq_transition_notifier_list, nb); 1705 break; 1706 case CPUFREQ_POLICY_NOTIFIER: 1707 ret = blocking_notifier_chain_unregister( 1708 &cpufreq_policy_notifier_list, nb); 1709 break; 1710 default: 1711 ret = -EINVAL; 1712 } 1713 1714 return ret; 1715 } 1716 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1717 1718 1719 /********************************************************************* 1720 * GOVERNORS * 1721 *********************************************************************/ 1722 1723 /* Must set freqs->new to intermediate frequency */ 1724 static int __target_intermediate(struct cpufreq_policy *policy, 1725 struct cpufreq_freqs *freqs, int index) 1726 { 1727 int ret; 1728 1729 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1730 1731 /* We don't need to switch to intermediate freq */ 1732 if (!freqs->new) 1733 return 0; 1734 1735 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1736 __func__, policy->cpu, freqs->old, freqs->new); 1737 1738 cpufreq_freq_transition_begin(policy, freqs); 1739 ret = cpufreq_driver->target_intermediate(policy, index); 1740 cpufreq_freq_transition_end(policy, freqs, ret); 1741 1742 if (ret) 1743 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1744 __func__, ret); 1745 1746 return ret; 1747 } 1748 1749 static int __target_index(struct cpufreq_policy *policy, 1750 struct cpufreq_frequency_table *freq_table, int index) 1751 { 1752 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1753 unsigned int intermediate_freq = 0; 1754 int retval = -EINVAL; 1755 bool notify; 1756 1757 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1758 if (notify) { 1759 /* Handle switching to intermediate frequency */ 1760 if (cpufreq_driver->get_intermediate) { 1761 retval = __target_intermediate(policy, &freqs, index); 1762 if (retval) 1763 return retval; 1764 1765 intermediate_freq = freqs.new; 1766 /* Set old freq to intermediate */ 1767 if (intermediate_freq) 1768 freqs.old = freqs.new; 1769 } 1770 1771 freqs.new = freq_table[index].frequency; 1772 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1773 __func__, policy->cpu, freqs.old, freqs.new); 1774 1775 cpufreq_freq_transition_begin(policy, &freqs); 1776 } 1777 1778 retval = cpufreq_driver->target_index(policy, index); 1779 if (retval) 1780 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1781 retval); 1782 1783 if (notify) { 1784 cpufreq_freq_transition_end(policy, &freqs, retval); 1785 1786 /* 1787 * Failed after setting to intermediate freq? Driver should have 1788 * reverted back to initial frequency and so should we. Check 1789 * here for intermediate_freq instead of get_intermediate, in 1790 * case we haven't switched to intermediate freq at all. 1791 */ 1792 if (unlikely(retval && intermediate_freq)) { 1793 freqs.old = intermediate_freq; 1794 freqs.new = policy->restore_freq; 1795 cpufreq_freq_transition_begin(policy, &freqs); 1796 cpufreq_freq_transition_end(policy, &freqs, 0); 1797 } 1798 } 1799 1800 return retval; 1801 } 1802 1803 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1804 unsigned int target_freq, 1805 unsigned int relation) 1806 { 1807 unsigned int old_target_freq = target_freq; 1808 struct cpufreq_frequency_table *freq_table; 1809 int index, retval; 1810 1811 if (cpufreq_disabled()) 1812 return -ENODEV; 1813 1814 /* Make sure that target_freq is within supported range */ 1815 if (target_freq > policy->max) 1816 target_freq = policy->max; 1817 if (target_freq < policy->min) 1818 target_freq = policy->min; 1819 1820 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1821 policy->cpu, target_freq, relation, old_target_freq); 1822 1823 /* 1824 * This might look like a redundant call as we are checking it again 1825 * after finding index. But it is left intentionally for cases where 1826 * exactly same freq is called again and so we can save on few function 1827 * calls. 1828 */ 1829 if (target_freq == policy->cur) 1830 return 0; 1831 1832 /* Save last value to restore later on errors */ 1833 policy->restore_freq = policy->cur; 1834 1835 if (cpufreq_driver->target) 1836 return cpufreq_driver->target(policy, target_freq, relation); 1837 1838 if (!cpufreq_driver->target_index) 1839 return -EINVAL; 1840 1841 freq_table = cpufreq_frequency_get_table(policy->cpu); 1842 if (unlikely(!freq_table)) { 1843 pr_err("%s: Unable to find freq_table\n", __func__); 1844 return -EINVAL; 1845 } 1846 1847 retval = cpufreq_frequency_table_target(policy, freq_table, target_freq, 1848 relation, &index); 1849 if (unlikely(retval)) { 1850 pr_err("%s: Unable to find matching freq\n", __func__); 1851 return retval; 1852 } 1853 1854 if (freq_table[index].frequency == policy->cur) 1855 return 0; 1856 1857 return __target_index(policy, freq_table, index); 1858 } 1859 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1860 1861 int cpufreq_driver_target(struct cpufreq_policy *policy, 1862 unsigned int target_freq, 1863 unsigned int relation) 1864 { 1865 int ret = -EINVAL; 1866 1867 down_write(&policy->rwsem); 1868 1869 ret = __cpufreq_driver_target(policy, target_freq, relation); 1870 1871 up_write(&policy->rwsem); 1872 1873 return ret; 1874 } 1875 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1876 1877 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 1878 { 1879 return NULL; 1880 } 1881 1882 static int __cpufreq_governor(struct cpufreq_policy *policy, 1883 unsigned int event) 1884 { 1885 int ret; 1886 1887 /* Don't start any governor operations if we are entering suspend */ 1888 if (cpufreq_suspended) 1889 return 0; 1890 /* 1891 * Governor might not be initiated here if ACPI _PPC changed 1892 * notification happened, so check it. 1893 */ 1894 if (!policy->governor) 1895 return -EINVAL; 1896 1897 if (policy->governor->max_transition_latency && 1898 policy->cpuinfo.transition_latency > 1899 policy->governor->max_transition_latency) { 1900 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 1901 1902 if (gov) { 1903 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 1904 policy->governor->name, gov->name); 1905 policy->governor = gov; 1906 } else { 1907 return -EINVAL; 1908 } 1909 } 1910 1911 if (event == CPUFREQ_GOV_POLICY_INIT) 1912 if (!try_module_get(policy->governor->owner)) 1913 return -EINVAL; 1914 1915 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event); 1916 1917 mutex_lock(&cpufreq_governor_lock); 1918 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 1919 || (!policy->governor_enabled 1920 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 1921 mutex_unlock(&cpufreq_governor_lock); 1922 return -EBUSY; 1923 } 1924 1925 if (event == CPUFREQ_GOV_STOP) 1926 policy->governor_enabled = false; 1927 else if (event == CPUFREQ_GOV_START) 1928 policy->governor_enabled = true; 1929 1930 mutex_unlock(&cpufreq_governor_lock); 1931 1932 ret = policy->governor->governor(policy, event); 1933 1934 if (!ret) { 1935 if (event == CPUFREQ_GOV_POLICY_INIT) 1936 policy->governor->initialized++; 1937 else if (event == CPUFREQ_GOV_POLICY_EXIT) 1938 policy->governor->initialized--; 1939 } else { 1940 /* Restore original values */ 1941 mutex_lock(&cpufreq_governor_lock); 1942 if (event == CPUFREQ_GOV_STOP) 1943 policy->governor_enabled = true; 1944 else if (event == CPUFREQ_GOV_START) 1945 policy->governor_enabled = false; 1946 mutex_unlock(&cpufreq_governor_lock); 1947 } 1948 1949 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 1950 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 1951 module_put(policy->governor->owner); 1952 1953 return ret; 1954 } 1955 1956 int cpufreq_register_governor(struct cpufreq_governor *governor) 1957 { 1958 int err; 1959 1960 if (!governor) 1961 return -EINVAL; 1962 1963 if (cpufreq_disabled()) 1964 return -ENODEV; 1965 1966 mutex_lock(&cpufreq_governor_mutex); 1967 1968 governor->initialized = 0; 1969 err = -EBUSY; 1970 if (!find_governor(governor->name)) { 1971 err = 0; 1972 list_add(&governor->governor_list, &cpufreq_governor_list); 1973 } 1974 1975 mutex_unlock(&cpufreq_governor_mutex); 1976 return err; 1977 } 1978 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1979 1980 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1981 { 1982 struct cpufreq_policy *policy; 1983 unsigned long flags; 1984 1985 if (!governor) 1986 return; 1987 1988 if (cpufreq_disabled()) 1989 return; 1990 1991 /* clear last_governor for all inactive policies */ 1992 read_lock_irqsave(&cpufreq_driver_lock, flags); 1993 for_each_inactive_policy(policy) { 1994 if (!strcmp(policy->last_governor, governor->name)) { 1995 policy->governor = NULL; 1996 strcpy(policy->last_governor, "\0"); 1997 } 1998 } 1999 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2000 2001 mutex_lock(&cpufreq_governor_mutex); 2002 list_del(&governor->governor_list); 2003 mutex_unlock(&cpufreq_governor_mutex); 2004 return; 2005 } 2006 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2007 2008 2009 /********************************************************************* 2010 * POLICY INTERFACE * 2011 *********************************************************************/ 2012 2013 /** 2014 * cpufreq_get_policy - get the current cpufreq_policy 2015 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2016 * is written 2017 * 2018 * Reads the current cpufreq policy. 2019 */ 2020 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2021 { 2022 struct cpufreq_policy *cpu_policy; 2023 if (!policy) 2024 return -EINVAL; 2025 2026 cpu_policy = cpufreq_cpu_get(cpu); 2027 if (!cpu_policy) 2028 return -EINVAL; 2029 2030 memcpy(policy, cpu_policy, sizeof(*policy)); 2031 2032 cpufreq_cpu_put(cpu_policy); 2033 return 0; 2034 } 2035 EXPORT_SYMBOL(cpufreq_get_policy); 2036 2037 /* 2038 * policy : current policy. 2039 * new_policy: policy to be set. 2040 */ 2041 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2042 struct cpufreq_policy *new_policy) 2043 { 2044 struct cpufreq_governor *old_gov; 2045 int ret; 2046 2047 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2048 new_policy->cpu, new_policy->min, new_policy->max); 2049 2050 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2051 2052 /* 2053 * This check works well when we store new min/max freq attributes, 2054 * because new_policy is a copy of policy with one field updated. 2055 */ 2056 if (new_policy->min > new_policy->max) 2057 return -EINVAL; 2058 2059 /* verify the cpu speed can be set within this limit */ 2060 ret = cpufreq_driver->verify(new_policy); 2061 if (ret) 2062 return ret; 2063 2064 /* adjust if necessary - all reasons */ 2065 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2066 CPUFREQ_ADJUST, new_policy); 2067 2068 /* 2069 * verify the cpu speed can be set within this limit, which might be 2070 * different to the first one 2071 */ 2072 ret = cpufreq_driver->verify(new_policy); 2073 if (ret) 2074 return ret; 2075 2076 /* notification of the new policy */ 2077 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2078 CPUFREQ_NOTIFY, new_policy); 2079 2080 policy->min = new_policy->min; 2081 policy->max = new_policy->max; 2082 2083 pr_debug("new min and max freqs are %u - %u kHz\n", 2084 policy->min, policy->max); 2085 2086 if (cpufreq_driver->setpolicy) { 2087 policy->policy = new_policy->policy; 2088 pr_debug("setting range\n"); 2089 return cpufreq_driver->setpolicy(new_policy); 2090 } 2091 2092 if (new_policy->governor == policy->governor) 2093 goto out; 2094 2095 pr_debug("governor switch\n"); 2096 2097 /* save old, working values */ 2098 old_gov = policy->governor; 2099 /* end old governor */ 2100 if (old_gov) { 2101 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2102 if (ret) { 2103 /* This can happen due to race with other operations */ 2104 pr_debug("%s: Failed to Stop Governor: %s (%d)\n", 2105 __func__, old_gov->name, ret); 2106 return ret; 2107 } 2108 2109 up_write(&policy->rwsem); 2110 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2111 down_write(&policy->rwsem); 2112 2113 if (ret) { 2114 pr_err("%s: Failed to Exit Governor: %s (%d)\n", 2115 __func__, old_gov->name, ret); 2116 return ret; 2117 } 2118 } 2119 2120 /* start new governor */ 2121 policy->governor = new_policy->governor; 2122 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2123 if (!ret) { 2124 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 2125 if (!ret) 2126 goto out; 2127 2128 up_write(&policy->rwsem); 2129 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2130 down_write(&policy->rwsem); 2131 } 2132 2133 /* new governor failed, so re-start old one */ 2134 pr_debug("starting governor %s failed\n", policy->governor->name); 2135 if (old_gov) { 2136 policy->governor = old_gov; 2137 if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) 2138 policy->governor = NULL; 2139 else 2140 __cpufreq_governor(policy, CPUFREQ_GOV_START); 2141 } 2142 2143 return ret; 2144 2145 out: 2146 pr_debug("governor: change or update limits\n"); 2147 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2148 } 2149 2150 /** 2151 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2152 * @cpu: CPU which shall be re-evaluated 2153 * 2154 * Useful for policy notifiers which have different necessities 2155 * at different times. 2156 */ 2157 int cpufreq_update_policy(unsigned int cpu) 2158 { 2159 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2160 struct cpufreq_policy new_policy; 2161 int ret; 2162 2163 if (!policy) 2164 return -ENODEV; 2165 2166 down_write(&policy->rwsem); 2167 2168 pr_debug("updating policy for CPU %u\n", cpu); 2169 memcpy(&new_policy, policy, sizeof(*policy)); 2170 new_policy.min = policy->user_policy.min; 2171 new_policy.max = policy->user_policy.max; 2172 2173 /* 2174 * BIOS might change freq behind our back 2175 * -> ask driver for current freq and notify governors about a change 2176 */ 2177 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2178 new_policy.cur = cpufreq_driver->get(cpu); 2179 if (WARN_ON(!new_policy.cur)) { 2180 ret = -EIO; 2181 goto unlock; 2182 } 2183 2184 if (!policy->cur) { 2185 pr_debug("Driver did not initialize current freq\n"); 2186 policy->cur = new_policy.cur; 2187 } else { 2188 if (policy->cur != new_policy.cur && has_target()) 2189 cpufreq_out_of_sync(policy, new_policy.cur); 2190 } 2191 } 2192 2193 ret = cpufreq_set_policy(policy, &new_policy); 2194 2195 unlock: 2196 up_write(&policy->rwsem); 2197 2198 cpufreq_cpu_put(policy); 2199 return ret; 2200 } 2201 EXPORT_SYMBOL(cpufreq_update_policy); 2202 2203 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2204 unsigned long action, void *hcpu) 2205 { 2206 unsigned int cpu = (unsigned long)hcpu; 2207 2208 switch (action & ~CPU_TASKS_FROZEN) { 2209 case CPU_ONLINE: 2210 cpufreq_online(cpu); 2211 break; 2212 2213 case CPU_DOWN_PREPARE: 2214 cpufreq_offline_prepare(cpu); 2215 break; 2216 2217 case CPU_POST_DEAD: 2218 cpufreq_offline_finish(cpu); 2219 break; 2220 2221 case CPU_DOWN_FAILED: 2222 cpufreq_online(cpu); 2223 break; 2224 } 2225 return NOTIFY_OK; 2226 } 2227 2228 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2229 .notifier_call = cpufreq_cpu_callback, 2230 }; 2231 2232 /********************************************************************* 2233 * BOOST * 2234 *********************************************************************/ 2235 static int cpufreq_boost_set_sw(int state) 2236 { 2237 struct cpufreq_frequency_table *freq_table; 2238 struct cpufreq_policy *policy; 2239 int ret = -EINVAL; 2240 2241 for_each_active_policy(policy) { 2242 freq_table = cpufreq_frequency_get_table(policy->cpu); 2243 if (freq_table) { 2244 ret = cpufreq_frequency_table_cpuinfo(policy, 2245 freq_table); 2246 if (ret) { 2247 pr_err("%s: Policy frequency update failed\n", 2248 __func__); 2249 break; 2250 } 2251 policy->user_policy.max = policy->max; 2252 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2253 } 2254 } 2255 2256 return ret; 2257 } 2258 2259 int cpufreq_boost_trigger_state(int state) 2260 { 2261 unsigned long flags; 2262 int ret = 0; 2263 2264 if (cpufreq_driver->boost_enabled == state) 2265 return 0; 2266 2267 write_lock_irqsave(&cpufreq_driver_lock, flags); 2268 cpufreq_driver->boost_enabled = state; 2269 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2270 2271 ret = cpufreq_driver->set_boost(state); 2272 if (ret) { 2273 write_lock_irqsave(&cpufreq_driver_lock, flags); 2274 cpufreq_driver->boost_enabled = !state; 2275 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2276 2277 pr_err("%s: Cannot %s BOOST\n", 2278 __func__, state ? "enable" : "disable"); 2279 } 2280 2281 return ret; 2282 } 2283 2284 static bool cpufreq_boost_supported(void) 2285 { 2286 return likely(cpufreq_driver) && cpufreq_driver->set_boost; 2287 } 2288 2289 static int create_boost_sysfs_file(void) 2290 { 2291 int ret; 2292 2293 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2294 if (ret) 2295 pr_err("%s: cannot register global BOOST sysfs file\n", 2296 __func__); 2297 2298 return ret; 2299 } 2300 2301 static void remove_boost_sysfs_file(void) 2302 { 2303 if (cpufreq_boost_supported()) 2304 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2305 } 2306 2307 int cpufreq_enable_boost_support(void) 2308 { 2309 if (!cpufreq_driver) 2310 return -EINVAL; 2311 2312 if (cpufreq_boost_supported()) 2313 return 0; 2314 2315 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2316 2317 /* This will get removed on driver unregister */ 2318 return create_boost_sysfs_file(); 2319 } 2320 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2321 2322 int cpufreq_boost_enabled(void) 2323 { 2324 return cpufreq_driver->boost_enabled; 2325 } 2326 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2327 2328 /********************************************************************* 2329 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2330 *********************************************************************/ 2331 2332 /** 2333 * cpufreq_register_driver - register a CPU Frequency driver 2334 * @driver_data: A struct cpufreq_driver containing the values# 2335 * submitted by the CPU Frequency driver. 2336 * 2337 * Registers a CPU Frequency driver to this core code. This code 2338 * returns zero on success, -EEXIST when another driver got here first 2339 * (and isn't unregistered in the meantime). 2340 * 2341 */ 2342 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2343 { 2344 unsigned long flags; 2345 int ret; 2346 2347 if (cpufreq_disabled()) 2348 return -ENODEV; 2349 2350 if (!driver_data || !driver_data->verify || !driver_data->init || 2351 !(driver_data->setpolicy || driver_data->target_index || 2352 driver_data->target) || 2353 (driver_data->setpolicy && (driver_data->target_index || 2354 driver_data->target)) || 2355 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2356 return -EINVAL; 2357 2358 pr_debug("trying to register driver %s\n", driver_data->name); 2359 2360 /* Protect against concurrent CPU online/offline. */ 2361 get_online_cpus(); 2362 2363 write_lock_irqsave(&cpufreq_driver_lock, flags); 2364 if (cpufreq_driver) { 2365 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2366 ret = -EEXIST; 2367 goto out; 2368 } 2369 cpufreq_driver = driver_data; 2370 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2371 2372 if (driver_data->setpolicy) 2373 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2374 2375 if (cpufreq_boost_supported()) { 2376 ret = create_boost_sysfs_file(); 2377 if (ret) 2378 goto err_null_driver; 2379 } 2380 2381 ret = subsys_interface_register(&cpufreq_interface); 2382 if (ret) 2383 goto err_boost_unreg; 2384 2385 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2386 list_empty(&cpufreq_policy_list)) { 2387 /* if all ->init() calls failed, unregister */ 2388 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2389 driver_data->name); 2390 goto err_if_unreg; 2391 } 2392 2393 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2394 pr_debug("driver %s up and running\n", driver_data->name); 2395 2396 out: 2397 put_online_cpus(); 2398 return ret; 2399 2400 err_if_unreg: 2401 subsys_interface_unregister(&cpufreq_interface); 2402 err_boost_unreg: 2403 remove_boost_sysfs_file(); 2404 err_null_driver: 2405 write_lock_irqsave(&cpufreq_driver_lock, flags); 2406 cpufreq_driver = NULL; 2407 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2408 goto out; 2409 } 2410 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2411 2412 /** 2413 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2414 * 2415 * Unregister the current CPUFreq driver. Only call this if you have 2416 * the right to do so, i.e. if you have succeeded in initialising before! 2417 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2418 * currently not initialised. 2419 */ 2420 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2421 { 2422 unsigned long flags; 2423 2424 if (!cpufreq_driver || (driver != cpufreq_driver)) 2425 return -EINVAL; 2426 2427 pr_debug("unregistering driver %s\n", driver->name); 2428 2429 /* Protect against concurrent cpu hotplug */ 2430 get_online_cpus(); 2431 subsys_interface_unregister(&cpufreq_interface); 2432 remove_boost_sysfs_file(); 2433 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2434 2435 write_lock_irqsave(&cpufreq_driver_lock, flags); 2436 2437 cpufreq_driver = NULL; 2438 2439 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2440 put_online_cpus(); 2441 2442 return 0; 2443 } 2444 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2445 2446 /* 2447 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2448 * or mutexes when secondary CPUs are halted. 2449 */ 2450 static struct syscore_ops cpufreq_syscore_ops = { 2451 .shutdown = cpufreq_suspend, 2452 }; 2453 2454 struct kobject *cpufreq_global_kobject; 2455 EXPORT_SYMBOL(cpufreq_global_kobject); 2456 2457 static int __init cpufreq_core_init(void) 2458 { 2459 if (cpufreq_disabled()) 2460 return -ENODEV; 2461 2462 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2463 BUG_ON(!cpufreq_global_kobject); 2464 2465 register_syscore_ops(&cpufreq_syscore_ops); 2466 2467 return 0; 2468 } 2469 core_initcall(cpufreq_core_init); 2470