1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <linux/units.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 /* Macros to iterate over CPU policies */ 37 #define for_each_suitable_policy(__policy, __active) \ 38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 39 if ((__active) == !policy_is_inactive(__policy)) 40 41 #define for_each_active_policy(__policy) \ 42 for_each_suitable_policy(__policy, true) 43 #define for_each_inactive_policy(__policy) \ 44 for_each_suitable_policy(__policy, false) 45 46 /* Iterate over governors */ 47 static LIST_HEAD(cpufreq_governor_list); 48 #define for_each_governor(__governor) \ 49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 50 51 static char default_governor[CPUFREQ_NAME_LEN]; 52 53 /* 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 63 bool cpufreq_supports_freq_invariance(void) 64 { 65 return static_branch_likely(&cpufreq_freq_invariance); 66 } 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 /* internal prototypes */ 77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 78 static int cpufreq_init_governor(struct cpufreq_policy *policy); 79 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 80 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 81 static int cpufreq_set_policy(struct cpufreq_policy *policy, 82 struct cpufreq_governor *new_gov, 83 unsigned int new_pol); 84 85 /* 86 * Two notifier lists: the "policy" list is involved in the 87 * validation process for a new CPU frequency policy; the 88 * "transition" list for kernel code that needs to handle 89 * changes to devices when the CPU clock speed changes. 90 * The mutex locks both lists. 91 */ 92 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 93 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 94 95 static int off __read_mostly; 96 static int cpufreq_disabled(void) 97 { 98 return off; 99 } 100 void disable_cpufreq(void) 101 { 102 off = 1; 103 } 104 static DEFINE_MUTEX(cpufreq_governor_mutex); 105 106 bool have_governor_per_policy(void) 107 { 108 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 109 } 110 EXPORT_SYMBOL_GPL(have_governor_per_policy); 111 112 static struct kobject *cpufreq_global_kobject; 113 114 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 115 { 116 if (have_governor_per_policy()) 117 return &policy->kobj; 118 else 119 return cpufreq_global_kobject; 120 } 121 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 122 123 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 124 { 125 struct kernel_cpustat kcpustat; 126 u64 cur_wall_time; 127 u64 idle_time; 128 u64 busy_time; 129 130 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 131 132 kcpustat_cpu_fetch(&kcpustat, cpu); 133 134 busy_time = kcpustat.cpustat[CPUTIME_USER]; 135 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 136 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 137 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 138 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 139 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 140 141 idle_time = cur_wall_time - busy_time; 142 if (wall) 143 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 144 145 return div_u64(idle_time, NSEC_PER_USEC); 146 } 147 148 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 149 { 150 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 151 152 if (idle_time == -1ULL) 153 return get_cpu_idle_time_jiffy(cpu, wall); 154 else if (!io_busy) 155 idle_time += get_cpu_iowait_time_us(cpu, wall); 156 157 return idle_time; 158 } 159 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 160 161 /* 162 * This is a generic cpufreq init() routine which can be used by cpufreq 163 * drivers of SMP systems. It will do following: 164 * - validate & show freq table passed 165 * - set policies transition latency 166 * - policy->cpus with all possible CPUs 167 */ 168 void cpufreq_generic_init(struct cpufreq_policy *policy, 169 struct cpufreq_frequency_table *table, 170 unsigned int transition_latency) 171 { 172 policy->freq_table = table; 173 policy->cpuinfo.transition_latency = transition_latency; 174 175 /* 176 * The driver only supports the SMP configuration where all processors 177 * share the clock and voltage and clock. 178 */ 179 cpumask_setall(policy->cpus); 180 } 181 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 182 183 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 184 { 185 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 186 187 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 188 } 189 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 190 191 unsigned int cpufreq_generic_get(unsigned int cpu) 192 { 193 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 194 195 if (!policy || IS_ERR(policy->clk)) { 196 pr_err("%s: No %s associated to cpu: %d\n", 197 __func__, policy ? "clk" : "policy", cpu); 198 return 0; 199 } 200 201 return clk_get_rate(policy->clk) / 1000; 202 } 203 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 204 205 /** 206 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 207 * @cpu: CPU to find the policy for. 208 * 209 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 210 * the kobject reference counter of that policy. Return a valid policy on 211 * success or NULL on failure. 212 * 213 * The policy returned by this function has to be released with the help of 214 * cpufreq_cpu_put() to balance its kobject reference counter properly. 215 */ 216 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 217 { 218 struct cpufreq_policy *policy = NULL; 219 unsigned long flags; 220 221 if (WARN_ON(cpu >= nr_cpu_ids)) 222 return NULL; 223 224 /* get the cpufreq driver */ 225 read_lock_irqsave(&cpufreq_driver_lock, flags); 226 227 if (cpufreq_driver) { 228 /* get the CPU */ 229 policy = cpufreq_cpu_get_raw(cpu); 230 if (policy) 231 kobject_get(&policy->kobj); 232 } 233 234 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 235 236 return policy; 237 } 238 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 239 240 /** 241 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 242 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 243 */ 244 void cpufreq_cpu_put(struct cpufreq_policy *policy) 245 { 246 kobject_put(&policy->kobj); 247 } 248 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 249 250 /** 251 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 252 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 253 */ 254 void cpufreq_cpu_release(struct cpufreq_policy *policy) 255 { 256 if (WARN_ON(!policy)) 257 return; 258 259 lockdep_assert_held(&policy->rwsem); 260 261 up_write(&policy->rwsem); 262 263 cpufreq_cpu_put(policy); 264 } 265 266 /** 267 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 268 * @cpu: CPU to find the policy for. 269 * 270 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 271 * if the policy returned by it is not NULL, acquire its rwsem for writing. 272 * Return the policy if it is active or release it and return NULL otherwise. 273 * 274 * The policy returned by this function has to be released with the help of 275 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 276 * counter properly. 277 */ 278 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 279 { 280 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 281 282 if (!policy) 283 return NULL; 284 285 down_write(&policy->rwsem); 286 287 if (policy_is_inactive(policy)) { 288 cpufreq_cpu_release(policy); 289 return NULL; 290 } 291 292 return policy; 293 } 294 295 /********************************************************************* 296 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 297 *********************************************************************/ 298 299 /** 300 * adjust_jiffies - Adjust the system "loops_per_jiffy". 301 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 302 * @ci: Frequency change information. 303 * 304 * This function alters the system "loops_per_jiffy" for the clock 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP 306 * systems as each CPU might be scaled differently. So, use the arch 307 * per-CPU loops_per_jiffy value wherever possible. 308 */ 309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 310 { 311 #ifndef CONFIG_SMP 312 static unsigned long l_p_j_ref; 313 static unsigned int l_p_j_ref_freq; 314 315 if (ci->flags & CPUFREQ_CONST_LOOPS) 316 return; 317 318 if (!l_p_j_ref_freq) { 319 l_p_j_ref = loops_per_jiffy; 320 l_p_j_ref_freq = ci->old; 321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 322 l_p_j_ref, l_p_j_ref_freq); 323 } 324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 326 ci->new); 327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 328 loops_per_jiffy, ci->new); 329 } 330 #endif 331 } 332 333 /** 334 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 335 * @policy: cpufreq policy to enable fast frequency switching for. 336 * @freqs: contain details of the frequency update. 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 338 * 339 * This function calls the transition notifiers and adjust_jiffies(). 340 * 341 * It is called twice on all CPU frequency changes that have external effects. 342 */ 343 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 344 struct cpufreq_freqs *freqs, 345 unsigned int state) 346 { 347 int cpu; 348 349 BUG_ON(irqs_disabled()); 350 351 if (cpufreq_disabled()) 352 return; 353 354 freqs->policy = policy; 355 freqs->flags = cpufreq_driver->flags; 356 pr_debug("notification %u of frequency transition to %u kHz\n", 357 state, freqs->new); 358 359 switch (state) { 360 case CPUFREQ_PRECHANGE: 361 /* 362 * Detect if the driver reported a value as "old frequency" 363 * which is not equal to what the cpufreq core thinks is 364 * "old frequency". 365 */ 366 if (policy->cur && policy->cur != freqs->old) { 367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 368 freqs->old, policy->cur); 369 freqs->old = policy->cur; 370 } 371 372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 373 CPUFREQ_PRECHANGE, freqs); 374 375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 376 break; 377 378 case CPUFREQ_POSTCHANGE: 379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 381 cpumask_pr_args(policy->cpus)); 382 383 for_each_cpu(cpu, policy->cpus) 384 trace_cpu_frequency(freqs->new, cpu); 385 386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 387 CPUFREQ_POSTCHANGE, freqs); 388 389 cpufreq_stats_record_transition(policy, freqs->new); 390 policy->cur = freqs->new; 391 } 392 } 393 394 /* Do post notifications when there are chances that transition has failed */ 395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 396 struct cpufreq_freqs *freqs, int transition_failed) 397 { 398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 399 if (!transition_failed) 400 return; 401 402 swap(freqs->old, freqs->new); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 } 406 407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 408 struct cpufreq_freqs *freqs) 409 { 410 411 /* 412 * Catch double invocations of _begin() which lead to self-deadlock. 413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 414 * doesn't invoke _begin() on their behalf, and hence the chances of 415 * double invocations are very low. Moreover, there are scenarios 416 * where these checks can emit false-positive warnings in these 417 * drivers; so we avoid that by skipping them altogether. 418 */ 419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 420 && current == policy->transition_task); 421 422 wait: 423 wait_event(policy->transition_wait, !policy->transition_ongoing); 424 425 spin_lock(&policy->transition_lock); 426 427 if (unlikely(policy->transition_ongoing)) { 428 spin_unlock(&policy->transition_lock); 429 goto wait; 430 } 431 432 policy->transition_ongoing = true; 433 policy->transition_task = current; 434 435 spin_unlock(&policy->transition_lock); 436 437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 438 } 439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 440 441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 442 struct cpufreq_freqs *freqs, int transition_failed) 443 { 444 if (WARN_ON(!policy->transition_ongoing)) 445 return; 446 447 cpufreq_notify_post_transition(policy, freqs, transition_failed); 448 449 arch_set_freq_scale(policy->related_cpus, 450 policy->cur, 451 policy->cpuinfo.max_freq); 452 453 policy->transition_ongoing = false; 454 policy->transition_task = NULL; 455 456 wake_up(&policy->transition_wait); 457 } 458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 459 460 /* 461 * Fast frequency switching status count. Positive means "enabled", negative 462 * means "disabled" and 0 means "not decided yet". 463 */ 464 static int cpufreq_fast_switch_count; 465 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 466 467 static void cpufreq_list_transition_notifiers(void) 468 { 469 struct notifier_block *nb; 470 471 pr_info("Registered transition notifiers:\n"); 472 473 mutex_lock(&cpufreq_transition_notifier_list.mutex); 474 475 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 476 pr_info("%pS\n", nb->notifier_call); 477 478 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 479 } 480 481 /** 482 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 483 * @policy: cpufreq policy to enable fast frequency switching for. 484 * 485 * Try to enable fast frequency switching for @policy. 486 * 487 * The attempt will fail if there is at least one transition notifier registered 488 * at this point, as fast frequency switching is quite fundamentally at odds 489 * with transition notifiers. Thus if successful, it will make registration of 490 * transition notifiers fail going forward. 491 */ 492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 493 { 494 lockdep_assert_held(&policy->rwsem); 495 496 if (!policy->fast_switch_possible) 497 return; 498 499 mutex_lock(&cpufreq_fast_switch_lock); 500 if (cpufreq_fast_switch_count >= 0) { 501 cpufreq_fast_switch_count++; 502 policy->fast_switch_enabled = true; 503 } else { 504 pr_warn("CPU%u: Fast frequency switching not enabled\n", 505 policy->cpu); 506 cpufreq_list_transition_notifiers(); 507 } 508 mutex_unlock(&cpufreq_fast_switch_lock); 509 } 510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 511 512 /** 513 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 514 * @policy: cpufreq policy to disable fast frequency switching for. 515 */ 516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 517 { 518 mutex_lock(&cpufreq_fast_switch_lock); 519 if (policy->fast_switch_enabled) { 520 policy->fast_switch_enabled = false; 521 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 522 cpufreq_fast_switch_count--; 523 } 524 mutex_unlock(&cpufreq_fast_switch_lock); 525 } 526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 527 528 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 529 unsigned int target_freq, unsigned int relation) 530 { 531 unsigned int idx; 532 533 target_freq = clamp_val(target_freq, policy->min, policy->max); 534 535 if (!cpufreq_driver->target_index) 536 return target_freq; 537 538 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 539 policy->cached_resolved_idx = idx; 540 policy->cached_target_freq = target_freq; 541 return policy->freq_table[idx].frequency; 542 } 543 544 /** 545 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 546 * one. 547 * @policy: associated policy to interrogate 548 * @target_freq: target frequency to resolve. 549 * 550 * The target to driver frequency mapping is cached in the policy. 551 * 552 * Return: Lowest driver-supported frequency greater than or equal to the 553 * given target_freq, subject to policy (min/max) and driver limitations. 554 */ 555 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 556 unsigned int target_freq) 557 { 558 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 559 } 560 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 561 562 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 563 { 564 unsigned int latency; 565 566 if (policy->transition_delay_us) 567 return policy->transition_delay_us; 568 569 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 570 if (latency) { 571 /* 572 * For platforms that can change the frequency very fast (< 10 573 * us), the above formula gives a decent transition delay. But 574 * for platforms where transition_latency is in milliseconds, it 575 * ends up giving unrealistic values. 576 * 577 * Cap the default transition delay to 10 ms, which seems to be 578 * a reasonable amount of time after which we should reevaluate 579 * the frequency. 580 */ 581 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 582 } 583 584 return LATENCY_MULTIPLIER; 585 } 586 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 587 588 /********************************************************************* 589 * SYSFS INTERFACE * 590 *********************************************************************/ 591 static ssize_t show_boost(struct kobject *kobj, 592 struct kobj_attribute *attr, char *buf) 593 { 594 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 595 } 596 597 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 598 const char *buf, size_t count) 599 { 600 int ret, enable; 601 602 ret = sscanf(buf, "%d", &enable); 603 if (ret != 1 || enable < 0 || enable > 1) 604 return -EINVAL; 605 606 if (cpufreq_boost_trigger_state(enable)) { 607 pr_err("%s: Cannot %s BOOST!\n", 608 __func__, enable ? "enable" : "disable"); 609 return -EINVAL; 610 } 611 612 pr_debug("%s: cpufreq BOOST %s\n", 613 __func__, enable ? "enabled" : "disabled"); 614 615 return count; 616 } 617 define_one_global_rw(boost); 618 619 static struct cpufreq_governor *find_governor(const char *str_governor) 620 { 621 struct cpufreq_governor *t; 622 623 for_each_governor(t) 624 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 625 return t; 626 627 return NULL; 628 } 629 630 static struct cpufreq_governor *get_governor(const char *str_governor) 631 { 632 struct cpufreq_governor *t; 633 634 mutex_lock(&cpufreq_governor_mutex); 635 t = find_governor(str_governor); 636 if (!t) 637 goto unlock; 638 639 if (!try_module_get(t->owner)) 640 t = NULL; 641 642 unlock: 643 mutex_unlock(&cpufreq_governor_mutex); 644 645 return t; 646 } 647 648 static unsigned int cpufreq_parse_policy(char *str_governor) 649 { 650 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 651 return CPUFREQ_POLICY_PERFORMANCE; 652 653 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 654 return CPUFREQ_POLICY_POWERSAVE; 655 656 return CPUFREQ_POLICY_UNKNOWN; 657 } 658 659 /** 660 * cpufreq_parse_governor - parse a governor string only for has_target() 661 * @str_governor: Governor name. 662 */ 663 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 664 { 665 struct cpufreq_governor *t; 666 667 t = get_governor(str_governor); 668 if (t) 669 return t; 670 671 if (request_module("cpufreq_%s", str_governor)) 672 return NULL; 673 674 return get_governor(str_governor); 675 } 676 677 /* 678 * cpufreq_per_cpu_attr_read() / show_##file_name() - 679 * print out cpufreq information 680 * 681 * Write out information from cpufreq_driver->policy[cpu]; object must be 682 * "unsigned int". 683 */ 684 685 #define show_one(file_name, object) \ 686 static ssize_t show_##file_name \ 687 (struct cpufreq_policy *policy, char *buf) \ 688 { \ 689 return sprintf(buf, "%u\n", policy->object); \ 690 } 691 692 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 693 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 694 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 695 show_one(scaling_min_freq, min); 696 show_one(scaling_max_freq, max); 697 698 __weak unsigned int arch_freq_get_on_cpu(int cpu) 699 { 700 return 0; 701 } 702 703 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 704 { 705 ssize_t ret; 706 unsigned int freq; 707 708 freq = arch_freq_get_on_cpu(policy->cpu); 709 if (freq) 710 ret = sprintf(buf, "%u\n", freq); 711 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 712 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 713 else 714 ret = sprintf(buf, "%u\n", policy->cur); 715 return ret; 716 } 717 718 /* 719 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 720 */ 721 #define store_one(file_name, object) \ 722 static ssize_t store_##file_name \ 723 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 724 { \ 725 unsigned long val; \ 726 int ret; \ 727 \ 728 ret = sscanf(buf, "%lu", &val); \ 729 if (ret != 1) \ 730 return -EINVAL; \ 731 \ 732 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 733 return ret >= 0 ? count : ret; \ 734 } 735 736 store_one(scaling_min_freq, min); 737 store_one(scaling_max_freq, max); 738 739 /* 740 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 741 */ 742 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 743 char *buf) 744 { 745 unsigned int cur_freq = __cpufreq_get(policy); 746 747 if (cur_freq) 748 return sprintf(buf, "%u\n", cur_freq); 749 750 return sprintf(buf, "<unknown>\n"); 751 } 752 753 /* 754 * show_scaling_governor - show the current policy for the specified CPU 755 */ 756 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 757 { 758 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 759 return sprintf(buf, "powersave\n"); 760 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 761 return sprintf(buf, "performance\n"); 762 else if (policy->governor) 763 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 764 policy->governor->name); 765 return -EINVAL; 766 } 767 768 /* 769 * store_scaling_governor - store policy for the specified CPU 770 */ 771 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 772 const char *buf, size_t count) 773 { 774 char str_governor[16]; 775 int ret; 776 777 ret = sscanf(buf, "%15s", str_governor); 778 if (ret != 1) 779 return -EINVAL; 780 781 if (cpufreq_driver->setpolicy) { 782 unsigned int new_pol; 783 784 new_pol = cpufreq_parse_policy(str_governor); 785 if (!new_pol) 786 return -EINVAL; 787 788 ret = cpufreq_set_policy(policy, NULL, new_pol); 789 } else { 790 struct cpufreq_governor *new_gov; 791 792 new_gov = cpufreq_parse_governor(str_governor); 793 if (!new_gov) 794 return -EINVAL; 795 796 ret = cpufreq_set_policy(policy, new_gov, 797 CPUFREQ_POLICY_UNKNOWN); 798 799 module_put(new_gov->owner); 800 } 801 802 return ret ? ret : count; 803 } 804 805 /* 806 * show_scaling_driver - show the cpufreq driver currently loaded 807 */ 808 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 809 { 810 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 811 } 812 813 /* 814 * show_scaling_available_governors - show the available CPUfreq governors 815 */ 816 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 817 char *buf) 818 { 819 ssize_t i = 0; 820 struct cpufreq_governor *t; 821 822 if (!has_target()) { 823 i += sprintf(buf, "performance powersave"); 824 goto out; 825 } 826 827 mutex_lock(&cpufreq_governor_mutex); 828 for_each_governor(t) { 829 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 830 - (CPUFREQ_NAME_LEN + 2))) 831 break; 832 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 833 } 834 mutex_unlock(&cpufreq_governor_mutex); 835 out: 836 i += sprintf(&buf[i], "\n"); 837 return i; 838 } 839 840 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 841 { 842 ssize_t i = 0; 843 unsigned int cpu; 844 845 for_each_cpu(cpu, mask) { 846 if (i) 847 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 848 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 849 if (i >= (PAGE_SIZE - 5)) 850 break; 851 } 852 i += sprintf(&buf[i], "\n"); 853 return i; 854 } 855 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 856 857 /* 858 * show_related_cpus - show the CPUs affected by each transition even if 859 * hw coordination is in use 860 */ 861 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 862 { 863 return cpufreq_show_cpus(policy->related_cpus, buf); 864 } 865 866 /* 867 * show_affected_cpus - show the CPUs affected by each transition 868 */ 869 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 870 { 871 return cpufreq_show_cpus(policy->cpus, buf); 872 } 873 874 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 875 const char *buf, size_t count) 876 { 877 unsigned int freq = 0; 878 unsigned int ret; 879 880 if (!policy->governor || !policy->governor->store_setspeed) 881 return -EINVAL; 882 883 ret = sscanf(buf, "%u", &freq); 884 if (ret != 1) 885 return -EINVAL; 886 887 policy->governor->store_setspeed(policy, freq); 888 889 return count; 890 } 891 892 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 893 { 894 if (!policy->governor || !policy->governor->show_setspeed) 895 return sprintf(buf, "<unsupported>\n"); 896 897 return policy->governor->show_setspeed(policy, buf); 898 } 899 900 /* 901 * show_bios_limit - show the current cpufreq HW/BIOS limitation 902 */ 903 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 904 { 905 unsigned int limit; 906 int ret; 907 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 908 if (!ret) 909 return sprintf(buf, "%u\n", limit); 910 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 911 } 912 913 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 914 cpufreq_freq_attr_ro(cpuinfo_min_freq); 915 cpufreq_freq_attr_ro(cpuinfo_max_freq); 916 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 917 cpufreq_freq_attr_ro(scaling_available_governors); 918 cpufreq_freq_attr_ro(scaling_driver); 919 cpufreq_freq_attr_ro(scaling_cur_freq); 920 cpufreq_freq_attr_ro(bios_limit); 921 cpufreq_freq_attr_ro(related_cpus); 922 cpufreq_freq_attr_ro(affected_cpus); 923 cpufreq_freq_attr_rw(scaling_min_freq); 924 cpufreq_freq_attr_rw(scaling_max_freq); 925 cpufreq_freq_attr_rw(scaling_governor); 926 cpufreq_freq_attr_rw(scaling_setspeed); 927 928 static struct attribute *cpufreq_attrs[] = { 929 &cpuinfo_min_freq.attr, 930 &cpuinfo_max_freq.attr, 931 &cpuinfo_transition_latency.attr, 932 &scaling_min_freq.attr, 933 &scaling_max_freq.attr, 934 &affected_cpus.attr, 935 &related_cpus.attr, 936 &scaling_governor.attr, 937 &scaling_driver.attr, 938 &scaling_available_governors.attr, 939 &scaling_setspeed.attr, 940 NULL 941 }; 942 ATTRIBUTE_GROUPS(cpufreq); 943 944 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 945 #define to_attr(a) container_of(a, struct freq_attr, attr) 946 947 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 948 { 949 struct cpufreq_policy *policy = to_policy(kobj); 950 struct freq_attr *fattr = to_attr(attr); 951 ssize_t ret; 952 953 if (!fattr->show) 954 return -EIO; 955 956 down_read(&policy->rwsem); 957 ret = fattr->show(policy, buf); 958 up_read(&policy->rwsem); 959 960 return ret; 961 } 962 963 static ssize_t store(struct kobject *kobj, struct attribute *attr, 964 const char *buf, size_t count) 965 { 966 struct cpufreq_policy *policy = to_policy(kobj); 967 struct freq_attr *fattr = to_attr(attr); 968 ssize_t ret = -EINVAL; 969 970 if (!fattr->store) 971 return -EIO; 972 973 /* 974 * cpus_read_trylock() is used here to work around a circular lock 975 * dependency problem with respect to the cpufreq_register_driver(). 976 */ 977 if (!cpus_read_trylock()) 978 return -EBUSY; 979 980 if (cpu_online(policy->cpu)) { 981 down_write(&policy->rwsem); 982 ret = fattr->store(policy, buf, count); 983 up_write(&policy->rwsem); 984 } 985 986 cpus_read_unlock(); 987 988 return ret; 989 } 990 991 static void cpufreq_sysfs_release(struct kobject *kobj) 992 { 993 struct cpufreq_policy *policy = to_policy(kobj); 994 pr_debug("last reference is dropped\n"); 995 complete(&policy->kobj_unregister); 996 } 997 998 static const struct sysfs_ops sysfs_ops = { 999 .show = show, 1000 .store = store, 1001 }; 1002 1003 static struct kobj_type ktype_cpufreq = { 1004 .sysfs_ops = &sysfs_ops, 1005 .default_groups = cpufreq_groups, 1006 .release = cpufreq_sysfs_release, 1007 }; 1008 1009 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1010 struct device *dev) 1011 { 1012 if (unlikely(!dev)) 1013 return; 1014 1015 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1016 return; 1017 1018 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1019 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1020 dev_err(dev, "cpufreq symlink creation failed\n"); 1021 } 1022 1023 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1024 struct device *dev) 1025 { 1026 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1027 sysfs_remove_link(&dev->kobj, "cpufreq"); 1028 cpumask_clear_cpu(cpu, policy->real_cpus); 1029 } 1030 1031 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1032 { 1033 struct freq_attr **drv_attr; 1034 int ret = 0; 1035 1036 /* set up files for this cpu device */ 1037 drv_attr = cpufreq_driver->attr; 1038 while (drv_attr && *drv_attr) { 1039 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1040 if (ret) 1041 return ret; 1042 drv_attr++; 1043 } 1044 if (cpufreq_driver->get) { 1045 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1046 if (ret) 1047 return ret; 1048 } 1049 1050 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1051 if (ret) 1052 return ret; 1053 1054 if (cpufreq_driver->bios_limit) { 1055 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1056 if (ret) 1057 return ret; 1058 } 1059 1060 return 0; 1061 } 1062 1063 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1064 { 1065 struct cpufreq_governor *gov = NULL; 1066 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1067 int ret; 1068 1069 if (has_target()) { 1070 /* Update policy governor to the one used before hotplug. */ 1071 gov = get_governor(policy->last_governor); 1072 if (gov) { 1073 pr_debug("Restoring governor %s for cpu %d\n", 1074 gov->name, policy->cpu); 1075 } else { 1076 gov = get_governor(default_governor); 1077 } 1078 1079 if (!gov) { 1080 gov = cpufreq_default_governor(); 1081 __module_get(gov->owner); 1082 } 1083 1084 } else { 1085 1086 /* Use the default policy if there is no last_policy. */ 1087 if (policy->last_policy) { 1088 pol = policy->last_policy; 1089 } else { 1090 pol = cpufreq_parse_policy(default_governor); 1091 /* 1092 * In case the default governor is neither "performance" 1093 * nor "powersave", fall back to the initial policy 1094 * value set by the driver. 1095 */ 1096 if (pol == CPUFREQ_POLICY_UNKNOWN) 1097 pol = policy->policy; 1098 } 1099 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1100 pol != CPUFREQ_POLICY_POWERSAVE) 1101 return -ENODATA; 1102 } 1103 1104 ret = cpufreq_set_policy(policy, gov, pol); 1105 if (gov) 1106 module_put(gov->owner); 1107 1108 return ret; 1109 } 1110 1111 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1112 { 1113 int ret = 0; 1114 1115 /* Has this CPU been taken care of already? */ 1116 if (cpumask_test_cpu(cpu, policy->cpus)) 1117 return 0; 1118 1119 down_write(&policy->rwsem); 1120 if (has_target()) 1121 cpufreq_stop_governor(policy); 1122 1123 cpumask_set_cpu(cpu, policy->cpus); 1124 1125 if (has_target()) { 1126 ret = cpufreq_start_governor(policy); 1127 if (ret) 1128 pr_err("%s: Failed to start governor\n", __func__); 1129 } 1130 up_write(&policy->rwsem); 1131 return ret; 1132 } 1133 1134 void refresh_frequency_limits(struct cpufreq_policy *policy) 1135 { 1136 if (!policy_is_inactive(policy)) { 1137 pr_debug("updating policy for CPU %u\n", policy->cpu); 1138 1139 cpufreq_set_policy(policy, policy->governor, policy->policy); 1140 } 1141 } 1142 EXPORT_SYMBOL(refresh_frequency_limits); 1143 1144 static void handle_update(struct work_struct *work) 1145 { 1146 struct cpufreq_policy *policy = 1147 container_of(work, struct cpufreq_policy, update); 1148 1149 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1150 down_write(&policy->rwsem); 1151 refresh_frequency_limits(policy); 1152 up_write(&policy->rwsem); 1153 } 1154 1155 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1156 void *data) 1157 { 1158 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1159 1160 schedule_work(&policy->update); 1161 return 0; 1162 } 1163 1164 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1165 void *data) 1166 { 1167 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1168 1169 schedule_work(&policy->update); 1170 return 0; 1171 } 1172 1173 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1174 { 1175 struct kobject *kobj; 1176 struct completion *cmp; 1177 1178 down_write(&policy->rwsem); 1179 cpufreq_stats_free_table(policy); 1180 kobj = &policy->kobj; 1181 cmp = &policy->kobj_unregister; 1182 up_write(&policy->rwsem); 1183 kobject_put(kobj); 1184 1185 /* 1186 * We need to make sure that the underlying kobj is 1187 * actually not referenced anymore by anybody before we 1188 * proceed with unloading. 1189 */ 1190 pr_debug("waiting for dropping of refcount\n"); 1191 wait_for_completion(cmp); 1192 pr_debug("wait complete\n"); 1193 } 1194 1195 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1196 { 1197 struct cpufreq_policy *policy; 1198 struct device *dev = get_cpu_device(cpu); 1199 int ret; 1200 1201 if (!dev) 1202 return NULL; 1203 1204 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1205 if (!policy) 1206 return NULL; 1207 1208 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1209 goto err_free_policy; 1210 1211 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1212 goto err_free_cpumask; 1213 1214 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1215 goto err_free_rcpumask; 1216 1217 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1218 cpufreq_global_kobject, "policy%u", cpu); 1219 if (ret) { 1220 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1221 /* 1222 * The entire policy object will be freed below, but the extra 1223 * memory allocated for the kobject name needs to be freed by 1224 * releasing the kobject. 1225 */ 1226 kobject_put(&policy->kobj); 1227 goto err_free_real_cpus; 1228 } 1229 1230 freq_constraints_init(&policy->constraints); 1231 1232 policy->nb_min.notifier_call = cpufreq_notifier_min; 1233 policy->nb_max.notifier_call = cpufreq_notifier_max; 1234 1235 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1236 &policy->nb_min); 1237 if (ret) { 1238 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1239 ret, cpumask_pr_args(policy->cpus)); 1240 goto err_kobj_remove; 1241 } 1242 1243 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1244 &policy->nb_max); 1245 if (ret) { 1246 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1247 ret, cpumask_pr_args(policy->cpus)); 1248 goto err_min_qos_notifier; 1249 } 1250 1251 INIT_LIST_HEAD(&policy->policy_list); 1252 init_rwsem(&policy->rwsem); 1253 spin_lock_init(&policy->transition_lock); 1254 init_waitqueue_head(&policy->transition_wait); 1255 init_completion(&policy->kobj_unregister); 1256 INIT_WORK(&policy->update, handle_update); 1257 1258 policy->cpu = cpu; 1259 return policy; 1260 1261 err_min_qos_notifier: 1262 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1263 &policy->nb_min); 1264 err_kobj_remove: 1265 cpufreq_policy_put_kobj(policy); 1266 err_free_real_cpus: 1267 free_cpumask_var(policy->real_cpus); 1268 err_free_rcpumask: 1269 free_cpumask_var(policy->related_cpus); 1270 err_free_cpumask: 1271 free_cpumask_var(policy->cpus); 1272 err_free_policy: 1273 kfree(policy); 1274 1275 return NULL; 1276 } 1277 1278 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1279 { 1280 unsigned long flags; 1281 int cpu; 1282 1283 /* Remove policy from list */ 1284 write_lock_irqsave(&cpufreq_driver_lock, flags); 1285 list_del(&policy->policy_list); 1286 1287 for_each_cpu(cpu, policy->related_cpus) 1288 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1289 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1290 1291 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1292 &policy->nb_max); 1293 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1294 &policy->nb_min); 1295 1296 /* Cancel any pending policy->update work before freeing the policy. */ 1297 cancel_work_sync(&policy->update); 1298 1299 if (policy->max_freq_req) { 1300 /* 1301 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1302 * notification, since CPUFREQ_CREATE_POLICY notification was 1303 * sent after adding max_freq_req earlier. 1304 */ 1305 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1306 CPUFREQ_REMOVE_POLICY, policy); 1307 freq_qos_remove_request(policy->max_freq_req); 1308 } 1309 1310 freq_qos_remove_request(policy->min_freq_req); 1311 kfree(policy->min_freq_req); 1312 1313 cpufreq_policy_put_kobj(policy); 1314 free_cpumask_var(policy->real_cpus); 1315 free_cpumask_var(policy->related_cpus); 1316 free_cpumask_var(policy->cpus); 1317 kfree(policy); 1318 } 1319 1320 static int cpufreq_online(unsigned int cpu) 1321 { 1322 struct cpufreq_policy *policy; 1323 bool new_policy; 1324 unsigned long flags; 1325 unsigned int j; 1326 int ret; 1327 1328 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1329 1330 /* Check if this CPU already has a policy to manage it */ 1331 policy = per_cpu(cpufreq_cpu_data, cpu); 1332 if (policy) { 1333 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1334 if (!policy_is_inactive(policy)) 1335 return cpufreq_add_policy_cpu(policy, cpu); 1336 1337 /* This is the only online CPU for the policy. Start over. */ 1338 new_policy = false; 1339 down_write(&policy->rwsem); 1340 policy->cpu = cpu; 1341 policy->governor = NULL; 1342 up_write(&policy->rwsem); 1343 } else { 1344 new_policy = true; 1345 policy = cpufreq_policy_alloc(cpu); 1346 if (!policy) 1347 return -ENOMEM; 1348 } 1349 1350 if (!new_policy && cpufreq_driver->online) { 1351 ret = cpufreq_driver->online(policy); 1352 if (ret) { 1353 pr_debug("%s: %d: initialization failed\n", __func__, 1354 __LINE__); 1355 goto out_exit_policy; 1356 } 1357 1358 /* Recover policy->cpus using related_cpus */ 1359 cpumask_copy(policy->cpus, policy->related_cpus); 1360 } else { 1361 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1362 1363 /* 1364 * Call driver. From then on the cpufreq must be able 1365 * to accept all calls to ->verify and ->setpolicy for this CPU. 1366 */ 1367 ret = cpufreq_driver->init(policy); 1368 if (ret) { 1369 pr_debug("%s: %d: initialization failed\n", __func__, 1370 __LINE__); 1371 goto out_free_policy; 1372 } 1373 1374 /* 1375 * The initialization has succeeded and the policy is online. 1376 * If there is a problem with its frequency table, take it 1377 * offline and drop it. 1378 */ 1379 ret = cpufreq_table_validate_and_sort(policy); 1380 if (ret) 1381 goto out_offline_policy; 1382 1383 /* related_cpus should at least include policy->cpus. */ 1384 cpumask_copy(policy->related_cpus, policy->cpus); 1385 } 1386 1387 down_write(&policy->rwsem); 1388 /* 1389 * affected cpus must always be the one, which are online. We aren't 1390 * managing offline cpus here. 1391 */ 1392 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1393 1394 if (new_policy) { 1395 for_each_cpu(j, policy->related_cpus) { 1396 per_cpu(cpufreq_cpu_data, j) = policy; 1397 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1398 } 1399 1400 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1401 GFP_KERNEL); 1402 if (!policy->min_freq_req) { 1403 ret = -ENOMEM; 1404 goto out_destroy_policy; 1405 } 1406 1407 ret = freq_qos_add_request(&policy->constraints, 1408 policy->min_freq_req, FREQ_QOS_MIN, 1409 FREQ_QOS_MIN_DEFAULT_VALUE); 1410 if (ret < 0) { 1411 /* 1412 * So we don't call freq_qos_remove_request() for an 1413 * uninitialized request. 1414 */ 1415 kfree(policy->min_freq_req); 1416 policy->min_freq_req = NULL; 1417 goto out_destroy_policy; 1418 } 1419 1420 /* 1421 * This must be initialized right here to avoid calling 1422 * freq_qos_remove_request() on uninitialized request in case 1423 * of errors. 1424 */ 1425 policy->max_freq_req = policy->min_freq_req + 1; 1426 1427 ret = freq_qos_add_request(&policy->constraints, 1428 policy->max_freq_req, FREQ_QOS_MAX, 1429 FREQ_QOS_MAX_DEFAULT_VALUE); 1430 if (ret < 0) { 1431 policy->max_freq_req = NULL; 1432 goto out_destroy_policy; 1433 } 1434 1435 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1436 CPUFREQ_CREATE_POLICY, policy); 1437 } 1438 1439 if (cpufreq_driver->get && has_target()) { 1440 policy->cur = cpufreq_driver->get(policy->cpu); 1441 if (!policy->cur) { 1442 ret = -EIO; 1443 pr_err("%s: ->get() failed\n", __func__); 1444 goto out_destroy_policy; 1445 } 1446 } 1447 1448 /* 1449 * Sometimes boot loaders set CPU frequency to a value outside of 1450 * frequency table present with cpufreq core. In such cases CPU might be 1451 * unstable if it has to run on that frequency for long duration of time 1452 * and so its better to set it to a frequency which is specified in 1453 * freq-table. This also makes cpufreq stats inconsistent as 1454 * cpufreq-stats would fail to register because current frequency of CPU 1455 * isn't found in freq-table. 1456 * 1457 * Because we don't want this change to effect boot process badly, we go 1458 * for the next freq which is >= policy->cur ('cur' must be set by now, 1459 * otherwise we will end up setting freq to lowest of the table as 'cur' 1460 * is initialized to zero). 1461 * 1462 * We are passing target-freq as "policy->cur - 1" otherwise 1463 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1464 * equal to target-freq. 1465 */ 1466 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1467 && has_target()) { 1468 unsigned int old_freq = policy->cur; 1469 1470 /* Are we running at unknown frequency ? */ 1471 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1472 if (ret == -EINVAL) { 1473 ret = __cpufreq_driver_target(policy, old_freq - 1, 1474 CPUFREQ_RELATION_L); 1475 1476 /* 1477 * Reaching here after boot in a few seconds may not 1478 * mean that system will remain stable at "unknown" 1479 * frequency for longer duration. Hence, a BUG_ON(). 1480 */ 1481 BUG_ON(ret); 1482 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1483 __func__, policy->cpu, old_freq, policy->cur); 1484 } 1485 } 1486 1487 if (new_policy) { 1488 ret = cpufreq_add_dev_interface(policy); 1489 if (ret) 1490 goto out_destroy_policy; 1491 1492 cpufreq_stats_create_table(policy); 1493 1494 write_lock_irqsave(&cpufreq_driver_lock, flags); 1495 list_add(&policy->policy_list, &cpufreq_policy_list); 1496 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1497 1498 /* 1499 * Register with the energy model before 1500 * sched_cpufreq_governor_change() is called, which will result 1501 * in rebuilding of the sched domains, which should only be done 1502 * once the energy model is properly initialized for the policy 1503 * first. 1504 * 1505 * Also, this should be called before the policy is registered 1506 * with cooling framework. 1507 */ 1508 if (cpufreq_driver->register_em) 1509 cpufreq_driver->register_em(policy); 1510 } 1511 1512 ret = cpufreq_init_policy(policy); 1513 if (ret) { 1514 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1515 __func__, cpu, ret); 1516 goto out_destroy_policy; 1517 } 1518 1519 up_write(&policy->rwsem); 1520 1521 kobject_uevent(&policy->kobj, KOBJ_ADD); 1522 1523 /* Callback for handling stuff after policy is ready */ 1524 if (cpufreq_driver->ready) 1525 cpufreq_driver->ready(policy); 1526 1527 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1528 policy->cdev = of_cpufreq_cooling_register(policy); 1529 1530 pr_debug("initialization complete\n"); 1531 1532 return 0; 1533 1534 out_destroy_policy: 1535 for_each_cpu(j, policy->real_cpus) 1536 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1537 1538 up_write(&policy->rwsem); 1539 1540 out_offline_policy: 1541 if (cpufreq_driver->offline) 1542 cpufreq_driver->offline(policy); 1543 1544 out_exit_policy: 1545 if (cpufreq_driver->exit) 1546 cpufreq_driver->exit(policy); 1547 1548 out_free_policy: 1549 cpufreq_policy_free(policy); 1550 return ret; 1551 } 1552 1553 /** 1554 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1555 * @dev: CPU device. 1556 * @sif: Subsystem interface structure pointer (not used) 1557 */ 1558 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1559 { 1560 struct cpufreq_policy *policy; 1561 unsigned cpu = dev->id; 1562 int ret; 1563 1564 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1565 1566 if (cpu_online(cpu)) { 1567 ret = cpufreq_online(cpu); 1568 if (ret) 1569 return ret; 1570 } 1571 1572 /* Create sysfs link on CPU registration */ 1573 policy = per_cpu(cpufreq_cpu_data, cpu); 1574 if (policy) 1575 add_cpu_dev_symlink(policy, cpu, dev); 1576 1577 return 0; 1578 } 1579 1580 static int cpufreq_offline(unsigned int cpu) 1581 { 1582 struct cpufreq_policy *policy; 1583 int ret; 1584 1585 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1586 1587 policy = cpufreq_cpu_get_raw(cpu); 1588 if (!policy) { 1589 pr_debug("%s: No cpu_data found\n", __func__); 1590 return 0; 1591 } 1592 1593 down_write(&policy->rwsem); 1594 if (has_target()) 1595 cpufreq_stop_governor(policy); 1596 1597 cpumask_clear_cpu(cpu, policy->cpus); 1598 1599 if (policy_is_inactive(policy)) { 1600 if (has_target()) 1601 strncpy(policy->last_governor, policy->governor->name, 1602 CPUFREQ_NAME_LEN); 1603 else 1604 policy->last_policy = policy->policy; 1605 } else if (cpu == policy->cpu) { 1606 /* Nominate new CPU */ 1607 policy->cpu = cpumask_any(policy->cpus); 1608 } 1609 1610 /* Start governor again for active policy */ 1611 if (!policy_is_inactive(policy)) { 1612 if (has_target()) { 1613 ret = cpufreq_start_governor(policy); 1614 if (ret) 1615 pr_err("%s: Failed to start governor\n", __func__); 1616 } 1617 1618 goto unlock; 1619 } 1620 1621 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1622 cpufreq_cooling_unregister(policy->cdev); 1623 policy->cdev = NULL; 1624 } 1625 1626 if (has_target()) 1627 cpufreq_exit_governor(policy); 1628 1629 /* 1630 * Perform the ->offline() during light-weight tear-down, as 1631 * that allows fast recovery when the CPU comes back. 1632 */ 1633 if (cpufreq_driver->offline) { 1634 cpufreq_driver->offline(policy); 1635 } else if (cpufreq_driver->exit) { 1636 cpufreq_driver->exit(policy); 1637 policy->freq_table = NULL; 1638 } 1639 1640 unlock: 1641 up_write(&policy->rwsem); 1642 return 0; 1643 } 1644 1645 /* 1646 * cpufreq_remove_dev - remove a CPU device 1647 * 1648 * Removes the cpufreq interface for a CPU device. 1649 */ 1650 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1651 { 1652 unsigned int cpu = dev->id; 1653 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1654 1655 if (!policy) 1656 return; 1657 1658 if (cpu_online(cpu)) 1659 cpufreq_offline(cpu); 1660 1661 remove_cpu_dev_symlink(policy, cpu, dev); 1662 1663 if (cpumask_empty(policy->real_cpus)) { 1664 /* We did light-weight exit earlier, do full tear down now */ 1665 if (cpufreq_driver->offline) 1666 cpufreq_driver->exit(policy); 1667 1668 cpufreq_policy_free(policy); 1669 } 1670 } 1671 1672 /** 1673 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1674 * @policy: Policy managing CPUs. 1675 * @new_freq: New CPU frequency. 1676 * 1677 * Adjust to the current frequency first and clean up later by either calling 1678 * cpufreq_update_policy(), or scheduling handle_update(). 1679 */ 1680 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1681 unsigned int new_freq) 1682 { 1683 struct cpufreq_freqs freqs; 1684 1685 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1686 policy->cur, new_freq); 1687 1688 freqs.old = policy->cur; 1689 freqs.new = new_freq; 1690 1691 cpufreq_freq_transition_begin(policy, &freqs); 1692 cpufreq_freq_transition_end(policy, &freqs, 0); 1693 } 1694 1695 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1696 { 1697 unsigned int new_freq; 1698 1699 new_freq = cpufreq_driver->get(policy->cpu); 1700 if (!new_freq) 1701 return 0; 1702 1703 /* 1704 * If fast frequency switching is used with the given policy, the check 1705 * against policy->cur is pointless, so skip it in that case. 1706 */ 1707 if (policy->fast_switch_enabled || !has_target()) 1708 return new_freq; 1709 1710 if (policy->cur != new_freq) { 1711 /* 1712 * For some platforms, the frequency returned by hardware may be 1713 * slightly different from what is provided in the frequency 1714 * table, for example hardware may return 499 MHz instead of 500 1715 * MHz. In such cases it is better to avoid getting into 1716 * unnecessary frequency updates. 1717 */ 1718 if (abs(policy->cur - new_freq) < HZ_PER_MHZ) 1719 return policy->cur; 1720 1721 cpufreq_out_of_sync(policy, new_freq); 1722 if (update) 1723 schedule_work(&policy->update); 1724 } 1725 1726 return new_freq; 1727 } 1728 1729 /** 1730 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1731 * @cpu: CPU number 1732 * 1733 * This is the last known freq, without actually getting it from the driver. 1734 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1735 */ 1736 unsigned int cpufreq_quick_get(unsigned int cpu) 1737 { 1738 struct cpufreq_policy *policy; 1739 unsigned int ret_freq = 0; 1740 unsigned long flags; 1741 1742 read_lock_irqsave(&cpufreq_driver_lock, flags); 1743 1744 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1745 ret_freq = cpufreq_driver->get(cpu); 1746 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1747 return ret_freq; 1748 } 1749 1750 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1751 1752 policy = cpufreq_cpu_get(cpu); 1753 if (policy) { 1754 ret_freq = policy->cur; 1755 cpufreq_cpu_put(policy); 1756 } 1757 1758 return ret_freq; 1759 } 1760 EXPORT_SYMBOL(cpufreq_quick_get); 1761 1762 /** 1763 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1764 * @cpu: CPU number 1765 * 1766 * Just return the max possible frequency for a given CPU. 1767 */ 1768 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1769 { 1770 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1771 unsigned int ret_freq = 0; 1772 1773 if (policy) { 1774 ret_freq = policy->max; 1775 cpufreq_cpu_put(policy); 1776 } 1777 1778 return ret_freq; 1779 } 1780 EXPORT_SYMBOL(cpufreq_quick_get_max); 1781 1782 /** 1783 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1784 * @cpu: CPU number 1785 * 1786 * The default return value is the max_freq field of cpuinfo. 1787 */ 1788 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1789 { 1790 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1791 unsigned int ret_freq = 0; 1792 1793 if (policy) { 1794 ret_freq = policy->cpuinfo.max_freq; 1795 cpufreq_cpu_put(policy); 1796 } 1797 1798 return ret_freq; 1799 } 1800 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1801 1802 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1803 { 1804 if (unlikely(policy_is_inactive(policy))) 1805 return 0; 1806 1807 return cpufreq_verify_current_freq(policy, true); 1808 } 1809 1810 /** 1811 * cpufreq_get - get the current CPU frequency (in kHz) 1812 * @cpu: CPU number 1813 * 1814 * Get the CPU current (static) CPU frequency 1815 */ 1816 unsigned int cpufreq_get(unsigned int cpu) 1817 { 1818 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1819 unsigned int ret_freq = 0; 1820 1821 if (policy) { 1822 down_read(&policy->rwsem); 1823 if (cpufreq_driver->get) 1824 ret_freq = __cpufreq_get(policy); 1825 up_read(&policy->rwsem); 1826 1827 cpufreq_cpu_put(policy); 1828 } 1829 1830 return ret_freq; 1831 } 1832 EXPORT_SYMBOL(cpufreq_get); 1833 1834 static struct subsys_interface cpufreq_interface = { 1835 .name = "cpufreq", 1836 .subsys = &cpu_subsys, 1837 .add_dev = cpufreq_add_dev, 1838 .remove_dev = cpufreq_remove_dev, 1839 }; 1840 1841 /* 1842 * In case platform wants some specific frequency to be configured 1843 * during suspend.. 1844 */ 1845 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1846 { 1847 int ret; 1848 1849 if (!policy->suspend_freq) { 1850 pr_debug("%s: suspend_freq not defined\n", __func__); 1851 return 0; 1852 } 1853 1854 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1855 policy->suspend_freq); 1856 1857 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1858 CPUFREQ_RELATION_H); 1859 if (ret) 1860 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1861 __func__, policy->suspend_freq, ret); 1862 1863 return ret; 1864 } 1865 EXPORT_SYMBOL(cpufreq_generic_suspend); 1866 1867 /** 1868 * cpufreq_suspend() - Suspend CPUFreq governors. 1869 * 1870 * Called during system wide Suspend/Hibernate cycles for suspending governors 1871 * as some platforms can't change frequency after this point in suspend cycle. 1872 * Because some of the devices (like: i2c, regulators, etc) they use for 1873 * changing frequency are suspended quickly after this point. 1874 */ 1875 void cpufreq_suspend(void) 1876 { 1877 struct cpufreq_policy *policy; 1878 1879 if (!cpufreq_driver) 1880 return; 1881 1882 if (!has_target() && !cpufreq_driver->suspend) 1883 goto suspend; 1884 1885 pr_debug("%s: Suspending Governors\n", __func__); 1886 1887 for_each_active_policy(policy) { 1888 if (has_target()) { 1889 down_write(&policy->rwsem); 1890 cpufreq_stop_governor(policy); 1891 up_write(&policy->rwsem); 1892 } 1893 1894 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1895 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1896 cpufreq_driver->name); 1897 } 1898 1899 suspend: 1900 cpufreq_suspended = true; 1901 } 1902 1903 /** 1904 * cpufreq_resume() - Resume CPUFreq governors. 1905 * 1906 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1907 * are suspended with cpufreq_suspend(). 1908 */ 1909 void cpufreq_resume(void) 1910 { 1911 struct cpufreq_policy *policy; 1912 int ret; 1913 1914 if (!cpufreq_driver) 1915 return; 1916 1917 if (unlikely(!cpufreq_suspended)) 1918 return; 1919 1920 cpufreq_suspended = false; 1921 1922 if (!has_target() && !cpufreq_driver->resume) 1923 return; 1924 1925 pr_debug("%s: Resuming Governors\n", __func__); 1926 1927 for_each_active_policy(policy) { 1928 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1929 pr_err("%s: Failed to resume driver: %p\n", __func__, 1930 policy); 1931 } else if (has_target()) { 1932 down_write(&policy->rwsem); 1933 ret = cpufreq_start_governor(policy); 1934 up_write(&policy->rwsem); 1935 1936 if (ret) 1937 pr_err("%s: Failed to start governor for policy: %p\n", 1938 __func__, policy); 1939 } 1940 } 1941 } 1942 1943 /** 1944 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 1945 * @flags: Flags to test against the current cpufreq driver's flags. 1946 * 1947 * Assumes that the driver is there, so callers must ensure that this is the 1948 * case. 1949 */ 1950 bool cpufreq_driver_test_flags(u16 flags) 1951 { 1952 return !!(cpufreq_driver->flags & flags); 1953 } 1954 1955 /** 1956 * cpufreq_get_current_driver - Return the current driver's name. 1957 * 1958 * Return the name string of the currently registered cpufreq driver or NULL if 1959 * none. 1960 */ 1961 const char *cpufreq_get_current_driver(void) 1962 { 1963 if (cpufreq_driver) 1964 return cpufreq_driver->name; 1965 1966 return NULL; 1967 } 1968 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1969 1970 /** 1971 * cpufreq_get_driver_data - Return current driver data. 1972 * 1973 * Return the private data of the currently registered cpufreq driver, or NULL 1974 * if no cpufreq driver has been registered. 1975 */ 1976 void *cpufreq_get_driver_data(void) 1977 { 1978 if (cpufreq_driver) 1979 return cpufreq_driver->driver_data; 1980 1981 return NULL; 1982 } 1983 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1984 1985 /********************************************************************* 1986 * NOTIFIER LISTS INTERFACE * 1987 *********************************************************************/ 1988 1989 /** 1990 * cpufreq_register_notifier - Register a notifier with cpufreq. 1991 * @nb: notifier function to register. 1992 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 1993 * 1994 * Add a notifier to one of two lists: either a list of notifiers that run on 1995 * clock rate changes (once before and once after every transition), or a list 1996 * of notifiers that ron on cpufreq policy changes. 1997 * 1998 * This function may sleep and it has the same return values as 1999 * blocking_notifier_chain_register(). 2000 */ 2001 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2002 { 2003 int ret; 2004 2005 if (cpufreq_disabled()) 2006 return -EINVAL; 2007 2008 switch (list) { 2009 case CPUFREQ_TRANSITION_NOTIFIER: 2010 mutex_lock(&cpufreq_fast_switch_lock); 2011 2012 if (cpufreq_fast_switch_count > 0) { 2013 mutex_unlock(&cpufreq_fast_switch_lock); 2014 return -EBUSY; 2015 } 2016 ret = srcu_notifier_chain_register( 2017 &cpufreq_transition_notifier_list, nb); 2018 if (!ret) 2019 cpufreq_fast_switch_count--; 2020 2021 mutex_unlock(&cpufreq_fast_switch_lock); 2022 break; 2023 case CPUFREQ_POLICY_NOTIFIER: 2024 ret = blocking_notifier_chain_register( 2025 &cpufreq_policy_notifier_list, nb); 2026 break; 2027 default: 2028 ret = -EINVAL; 2029 } 2030 2031 return ret; 2032 } 2033 EXPORT_SYMBOL(cpufreq_register_notifier); 2034 2035 /** 2036 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2037 * @nb: notifier block to be unregistered. 2038 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2039 * 2040 * Remove a notifier from one of the cpufreq notifier lists. 2041 * 2042 * This function may sleep and it has the same return values as 2043 * blocking_notifier_chain_unregister(). 2044 */ 2045 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2046 { 2047 int ret; 2048 2049 if (cpufreq_disabled()) 2050 return -EINVAL; 2051 2052 switch (list) { 2053 case CPUFREQ_TRANSITION_NOTIFIER: 2054 mutex_lock(&cpufreq_fast_switch_lock); 2055 2056 ret = srcu_notifier_chain_unregister( 2057 &cpufreq_transition_notifier_list, nb); 2058 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2059 cpufreq_fast_switch_count++; 2060 2061 mutex_unlock(&cpufreq_fast_switch_lock); 2062 break; 2063 case CPUFREQ_POLICY_NOTIFIER: 2064 ret = blocking_notifier_chain_unregister( 2065 &cpufreq_policy_notifier_list, nb); 2066 break; 2067 default: 2068 ret = -EINVAL; 2069 } 2070 2071 return ret; 2072 } 2073 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2074 2075 2076 /********************************************************************* 2077 * GOVERNORS * 2078 *********************************************************************/ 2079 2080 /** 2081 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2082 * @policy: cpufreq policy to switch the frequency for. 2083 * @target_freq: New frequency to set (may be approximate). 2084 * 2085 * Carry out a fast frequency switch without sleeping. 2086 * 2087 * The driver's ->fast_switch() callback invoked by this function must be 2088 * suitable for being called from within RCU-sched read-side critical sections 2089 * and it is expected to select the minimum available frequency greater than or 2090 * equal to @target_freq (CPUFREQ_RELATION_L). 2091 * 2092 * This function must not be called if policy->fast_switch_enabled is unset. 2093 * 2094 * Governors calling this function must guarantee that it will never be invoked 2095 * twice in parallel for the same policy and that it will never be called in 2096 * parallel with either ->target() or ->target_index() for the same policy. 2097 * 2098 * Returns the actual frequency set for the CPU. 2099 * 2100 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2101 * error condition, the hardware configuration must be preserved. 2102 */ 2103 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2104 unsigned int target_freq) 2105 { 2106 unsigned int freq; 2107 int cpu; 2108 2109 target_freq = clamp_val(target_freq, policy->min, policy->max); 2110 freq = cpufreq_driver->fast_switch(policy, target_freq); 2111 2112 if (!freq) 2113 return 0; 2114 2115 policy->cur = freq; 2116 arch_set_freq_scale(policy->related_cpus, freq, 2117 policy->cpuinfo.max_freq); 2118 cpufreq_stats_record_transition(policy, freq); 2119 2120 if (trace_cpu_frequency_enabled()) { 2121 for_each_cpu(cpu, policy->cpus) 2122 trace_cpu_frequency(freq, cpu); 2123 } 2124 2125 return freq; 2126 } 2127 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2128 2129 /** 2130 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2131 * @cpu: Target CPU. 2132 * @min_perf: Minimum (required) performance level (units of @capacity). 2133 * @target_perf: Target (desired) performance level (units of @capacity). 2134 * @capacity: Capacity of the target CPU. 2135 * 2136 * Carry out a fast performance level switch of @cpu without sleeping. 2137 * 2138 * The driver's ->adjust_perf() callback invoked by this function must be 2139 * suitable for being called from within RCU-sched read-side critical sections 2140 * and it is expected to select a suitable performance level equal to or above 2141 * @min_perf and preferably equal to or below @target_perf. 2142 * 2143 * This function must not be called if policy->fast_switch_enabled is unset. 2144 * 2145 * Governors calling this function must guarantee that it will never be invoked 2146 * twice in parallel for the same CPU and that it will never be called in 2147 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2148 * the same CPU. 2149 */ 2150 void cpufreq_driver_adjust_perf(unsigned int cpu, 2151 unsigned long min_perf, 2152 unsigned long target_perf, 2153 unsigned long capacity) 2154 { 2155 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2156 } 2157 2158 /** 2159 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2160 * 2161 * Return 'true' if the ->adjust_perf callback is present for the 2162 * current driver or 'false' otherwise. 2163 */ 2164 bool cpufreq_driver_has_adjust_perf(void) 2165 { 2166 return !!cpufreq_driver->adjust_perf; 2167 } 2168 2169 /* Must set freqs->new to intermediate frequency */ 2170 static int __target_intermediate(struct cpufreq_policy *policy, 2171 struct cpufreq_freqs *freqs, int index) 2172 { 2173 int ret; 2174 2175 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2176 2177 /* We don't need to switch to intermediate freq */ 2178 if (!freqs->new) 2179 return 0; 2180 2181 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2182 __func__, policy->cpu, freqs->old, freqs->new); 2183 2184 cpufreq_freq_transition_begin(policy, freqs); 2185 ret = cpufreq_driver->target_intermediate(policy, index); 2186 cpufreq_freq_transition_end(policy, freqs, ret); 2187 2188 if (ret) 2189 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2190 __func__, ret); 2191 2192 return ret; 2193 } 2194 2195 static int __target_index(struct cpufreq_policy *policy, int index) 2196 { 2197 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2198 unsigned int restore_freq, intermediate_freq = 0; 2199 unsigned int newfreq = policy->freq_table[index].frequency; 2200 int retval = -EINVAL; 2201 bool notify; 2202 2203 if (newfreq == policy->cur) 2204 return 0; 2205 2206 /* Save last value to restore later on errors */ 2207 restore_freq = policy->cur; 2208 2209 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2210 if (notify) { 2211 /* Handle switching to intermediate frequency */ 2212 if (cpufreq_driver->get_intermediate) { 2213 retval = __target_intermediate(policy, &freqs, index); 2214 if (retval) 2215 return retval; 2216 2217 intermediate_freq = freqs.new; 2218 /* Set old freq to intermediate */ 2219 if (intermediate_freq) 2220 freqs.old = freqs.new; 2221 } 2222 2223 freqs.new = newfreq; 2224 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2225 __func__, policy->cpu, freqs.old, freqs.new); 2226 2227 cpufreq_freq_transition_begin(policy, &freqs); 2228 } 2229 2230 retval = cpufreq_driver->target_index(policy, index); 2231 if (retval) 2232 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2233 retval); 2234 2235 if (notify) { 2236 cpufreq_freq_transition_end(policy, &freqs, retval); 2237 2238 /* 2239 * Failed after setting to intermediate freq? Driver should have 2240 * reverted back to initial frequency and so should we. Check 2241 * here for intermediate_freq instead of get_intermediate, in 2242 * case we haven't switched to intermediate freq at all. 2243 */ 2244 if (unlikely(retval && intermediate_freq)) { 2245 freqs.old = intermediate_freq; 2246 freqs.new = restore_freq; 2247 cpufreq_freq_transition_begin(policy, &freqs); 2248 cpufreq_freq_transition_end(policy, &freqs, 0); 2249 } 2250 } 2251 2252 return retval; 2253 } 2254 2255 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2256 unsigned int target_freq, 2257 unsigned int relation) 2258 { 2259 unsigned int old_target_freq = target_freq; 2260 2261 if (cpufreq_disabled()) 2262 return -ENODEV; 2263 2264 target_freq = __resolve_freq(policy, target_freq, relation); 2265 2266 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2267 policy->cpu, target_freq, relation, old_target_freq); 2268 2269 /* 2270 * This might look like a redundant call as we are checking it again 2271 * after finding index. But it is left intentionally for cases where 2272 * exactly same freq is called again and so we can save on few function 2273 * calls. 2274 */ 2275 if (target_freq == policy->cur && 2276 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2277 return 0; 2278 2279 if (cpufreq_driver->target) { 2280 /* 2281 * If the driver hasn't setup a single inefficient frequency, 2282 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2283 */ 2284 if (!policy->efficiencies_available) 2285 relation &= ~CPUFREQ_RELATION_E; 2286 2287 return cpufreq_driver->target(policy, target_freq, relation); 2288 } 2289 2290 if (!cpufreq_driver->target_index) 2291 return -EINVAL; 2292 2293 return __target_index(policy, policy->cached_resolved_idx); 2294 } 2295 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2296 2297 int cpufreq_driver_target(struct cpufreq_policy *policy, 2298 unsigned int target_freq, 2299 unsigned int relation) 2300 { 2301 int ret; 2302 2303 down_write(&policy->rwsem); 2304 2305 ret = __cpufreq_driver_target(policy, target_freq, relation); 2306 2307 up_write(&policy->rwsem); 2308 2309 return ret; 2310 } 2311 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2312 2313 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2314 { 2315 return NULL; 2316 } 2317 2318 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2319 { 2320 int ret; 2321 2322 /* Don't start any governor operations if we are entering suspend */ 2323 if (cpufreq_suspended) 2324 return 0; 2325 /* 2326 * Governor might not be initiated here if ACPI _PPC changed 2327 * notification happened, so check it. 2328 */ 2329 if (!policy->governor) 2330 return -EINVAL; 2331 2332 /* Platform doesn't want dynamic frequency switching ? */ 2333 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2334 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2335 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2336 2337 if (gov) { 2338 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2339 policy->governor->name, gov->name); 2340 policy->governor = gov; 2341 } else { 2342 return -EINVAL; 2343 } 2344 } 2345 2346 if (!try_module_get(policy->governor->owner)) 2347 return -EINVAL; 2348 2349 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2350 2351 if (policy->governor->init) { 2352 ret = policy->governor->init(policy); 2353 if (ret) { 2354 module_put(policy->governor->owner); 2355 return ret; 2356 } 2357 } 2358 2359 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2360 2361 return 0; 2362 } 2363 2364 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2365 { 2366 if (cpufreq_suspended || !policy->governor) 2367 return; 2368 2369 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2370 2371 if (policy->governor->exit) 2372 policy->governor->exit(policy); 2373 2374 module_put(policy->governor->owner); 2375 } 2376 2377 int cpufreq_start_governor(struct cpufreq_policy *policy) 2378 { 2379 int ret; 2380 2381 if (cpufreq_suspended) 2382 return 0; 2383 2384 if (!policy->governor) 2385 return -EINVAL; 2386 2387 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2388 2389 if (cpufreq_driver->get) 2390 cpufreq_verify_current_freq(policy, false); 2391 2392 if (policy->governor->start) { 2393 ret = policy->governor->start(policy); 2394 if (ret) 2395 return ret; 2396 } 2397 2398 if (policy->governor->limits) 2399 policy->governor->limits(policy); 2400 2401 return 0; 2402 } 2403 2404 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2405 { 2406 if (cpufreq_suspended || !policy->governor) 2407 return; 2408 2409 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2410 2411 if (policy->governor->stop) 2412 policy->governor->stop(policy); 2413 } 2414 2415 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2416 { 2417 if (cpufreq_suspended || !policy->governor) 2418 return; 2419 2420 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2421 2422 if (policy->governor->limits) 2423 policy->governor->limits(policy); 2424 } 2425 2426 int cpufreq_register_governor(struct cpufreq_governor *governor) 2427 { 2428 int err; 2429 2430 if (!governor) 2431 return -EINVAL; 2432 2433 if (cpufreq_disabled()) 2434 return -ENODEV; 2435 2436 mutex_lock(&cpufreq_governor_mutex); 2437 2438 err = -EBUSY; 2439 if (!find_governor(governor->name)) { 2440 err = 0; 2441 list_add(&governor->governor_list, &cpufreq_governor_list); 2442 } 2443 2444 mutex_unlock(&cpufreq_governor_mutex); 2445 return err; 2446 } 2447 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2448 2449 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2450 { 2451 struct cpufreq_policy *policy; 2452 unsigned long flags; 2453 2454 if (!governor) 2455 return; 2456 2457 if (cpufreq_disabled()) 2458 return; 2459 2460 /* clear last_governor for all inactive policies */ 2461 read_lock_irqsave(&cpufreq_driver_lock, flags); 2462 for_each_inactive_policy(policy) { 2463 if (!strcmp(policy->last_governor, governor->name)) { 2464 policy->governor = NULL; 2465 strcpy(policy->last_governor, "\0"); 2466 } 2467 } 2468 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2469 2470 mutex_lock(&cpufreq_governor_mutex); 2471 list_del(&governor->governor_list); 2472 mutex_unlock(&cpufreq_governor_mutex); 2473 } 2474 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2475 2476 2477 /********************************************************************* 2478 * POLICY INTERFACE * 2479 *********************************************************************/ 2480 2481 /** 2482 * cpufreq_get_policy - get the current cpufreq_policy 2483 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2484 * is written 2485 * @cpu: CPU to find the policy for 2486 * 2487 * Reads the current cpufreq policy. 2488 */ 2489 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2490 { 2491 struct cpufreq_policy *cpu_policy; 2492 if (!policy) 2493 return -EINVAL; 2494 2495 cpu_policy = cpufreq_cpu_get(cpu); 2496 if (!cpu_policy) 2497 return -EINVAL; 2498 2499 memcpy(policy, cpu_policy, sizeof(*policy)); 2500 2501 cpufreq_cpu_put(cpu_policy); 2502 return 0; 2503 } 2504 EXPORT_SYMBOL(cpufreq_get_policy); 2505 2506 /** 2507 * cpufreq_set_policy - Modify cpufreq policy parameters. 2508 * @policy: Policy object to modify. 2509 * @new_gov: Policy governor pointer. 2510 * @new_pol: Policy value (for drivers with built-in governors). 2511 * 2512 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2513 * limits to be set for the policy, update @policy with the verified limits 2514 * values and either invoke the driver's ->setpolicy() callback (if present) or 2515 * carry out a governor update for @policy. That is, run the current governor's 2516 * ->limits() callback (if @new_gov points to the same object as the one in 2517 * @policy) or replace the governor for @policy with @new_gov. 2518 * 2519 * The cpuinfo part of @policy is not updated by this function. 2520 */ 2521 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2522 struct cpufreq_governor *new_gov, 2523 unsigned int new_pol) 2524 { 2525 struct cpufreq_policy_data new_data; 2526 struct cpufreq_governor *old_gov; 2527 int ret; 2528 2529 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2530 new_data.freq_table = policy->freq_table; 2531 new_data.cpu = policy->cpu; 2532 /* 2533 * PM QoS framework collects all the requests from users and provide us 2534 * the final aggregated value here. 2535 */ 2536 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2537 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2538 2539 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2540 new_data.cpu, new_data.min, new_data.max); 2541 2542 /* 2543 * Verify that the CPU speed can be set within these limits and make sure 2544 * that min <= max. 2545 */ 2546 ret = cpufreq_driver->verify(&new_data); 2547 if (ret) 2548 return ret; 2549 2550 /* 2551 * Resolve policy min/max to available frequencies. It ensures 2552 * no frequency resolution will neither overshoot the requested maximum 2553 * nor undershoot the requested minimum. 2554 */ 2555 policy->min = new_data.min; 2556 policy->max = new_data.max; 2557 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2558 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2559 trace_cpu_frequency_limits(policy); 2560 2561 policy->cached_target_freq = UINT_MAX; 2562 2563 pr_debug("new min and max freqs are %u - %u kHz\n", 2564 policy->min, policy->max); 2565 2566 if (cpufreq_driver->setpolicy) { 2567 policy->policy = new_pol; 2568 pr_debug("setting range\n"); 2569 return cpufreq_driver->setpolicy(policy); 2570 } 2571 2572 if (new_gov == policy->governor) { 2573 pr_debug("governor limits update\n"); 2574 cpufreq_governor_limits(policy); 2575 return 0; 2576 } 2577 2578 pr_debug("governor switch\n"); 2579 2580 /* save old, working values */ 2581 old_gov = policy->governor; 2582 /* end old governor */ 2583 if (old_gov) { 2584 cpufreq_stop_governor(policy); 2585 cpufreq_exit_governor(policy); 2586 } 2587 2588 /* start new governor */ 2589 policy->governor = new_gov; 2590 ret = cpufreq_init_governor(policy); 2591 if (!ret) { 2592 ret = cpufreq_start_governor(policy); 2593 if (!ret) { 2594 pr_debug("governor change\n"); 2595 sched_cpufreq_governor_change(policy, old_gov); 2596 return 0; 2597 } 2598 cpufreq_exit_governor(policy); 2599 } 2600 2601 /* new governor failed, so re-start old one */ 2602 pr_debug("starting governor %s failed\n", policy->governor->name); 2603 if (old_gov) { 2604 policy->governor = old_gov; 2605 if (cpufreq_init_governor(policy)) 2606 policy->governor = NULL; 2607 else 2608 cpufreq_start_governor(policy); 2609 } 2610 2611 return ret; 2612 } 2613 2614 /** 2615 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2616 * @cpu: CPU to re-evaluate the policy for. 2617 * 2618 * Update the current frequency for the cpufreq policy of @cpu and use 2619 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2620 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2621 * for the policy in question, among other things. 2622 */ 2623 void cpufreq_update_policy(unsigned int cpu) 2624 { 2625 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2626 2627 if (!policy) 2628 return; 2629 2630 /* 2631 * BIOS might change freq behind our back 2632 * -> ask driver for current freq and notify governors about a change 2633 */ 2634 if (cpufreq_driver->get && has_target() && 2635 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2636 goto unlock; 2637 2638 refresh_frequency_limits(policy); 2639 2640 unlock: 2641 cpufreq_cpu_release(policy); 2642 } 2643 EXPORT_SYMBOL(cpufreq_update_policy); 2644 2645 /** 2646 * cpufreq_update_limits - Update policy limits for a given CPU. 2647 * @cpu: CPU to update the policy limits for. 2648 * 2649 * Invoke the driver's ->update_limits callback if present or call 2650 * cpufreq_update_policy() for @cpu. 2651 */ 2652 void cpufreq_update_limits(unsigned int cpu) 2653 { 2654 if (cpufreq_driver->update_limits) 2655 cpufreq_driver->update_limits(cpu); 2656 else 2657 cpufreq_update_policy(cpu); 2658 } 2659 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2660 2661 /********************************************************************* 2662 * BOOST * 2663 *********************************************************************/ 2664 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2665 { 2666 int ret; 2667 2668 if (!policy->freq_table) 2669 return -ENXIO; 2670 2671 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2672 if (ret) { 2673 pr_err("%s: Policy frequency update failed\n", __func__); 2674 return ret; 2675 } 2676 2677 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2678 if (ret < 0) 2679 return ret; 2680 2681 return 0; 2682 } 2683 2684 int cpufreq_boost_trigger_state(int state) 2685 { 2686 struct cpufreq_policy *policy; 2687 unsigned long flags; 2688 int ret = 0; 2689 2690 if (cpufreq_driver->boost_enabled == state) 2691 return 0; 2692 2693 write_lock_irqsave(&cpufreq_driver_lock, flags); 2694 cpufreq_driver->boost_enabled = state; 2695 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2696 2697 cpus_read_lock(); 2698 for_each_active_policy(policy) { 2699 ret = cpufreq_driver->set_boost(policy, state); 2700 if (ret) 2701 goto err_reset_state; 2702 } 2703 cpus_read_unlock(); 2704 2705 return 0; 2706 2707 err_reset_state: 2708 cpus_read_unlock(); 2709 2710 write_lock_irqsave(&cpufreq_driver_lock, flags); 2711 cpufreq_driver->boost_enabled = !state; 2712 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2713 2714 pr_err("%s: Cannot %s BOOST\n", 2715 __func__, state ? "enable" : "disable"); 2716 2717 return ret; 2718 } 2719 2720 static bool cpufreq_boost_supported(void) 2721 { 2722 return cpufreq_driver->set_boost; 2723 } 2724 2725 static int create_boost_sysfs_file(void) 2726 { 2727 int ret; 2728 2729 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2730 if (ret) 2731 pr_err("%s: cannot register global BOOST sysfs file\n", 2732 __func__); 2733 2734 return ret; 2735 } 2736 2737 static void remove_boost_sysfs_file(void) 2738 { 2739 if (cpufreq_boost_supported()) 2740 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2741 } 2742 2743 int cpufreq_enable_boost_support(void) 2744 { 2745 if (!cpufreq_driver) 2746 return -EINVAL; 2747 2748 if (cpufreq_boost_supported()) 2749 return 0; 2750 2751 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2752 2753 /* This will get removed on driver unregister */ 2754 return create_boost_sysfs_file(); 2755 } 2756 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2757 2758 int cpufreq_boost_enabled(void) 2759 { 2760 return cpufreq_driver->boost_enabled; 2761 } 2762 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2763 2764 /********************************************************************* 2765 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2766 *********************************************************************/ 2767 static enum cpuhp_state hp_online; 2768 2769 static int cpuhp_cpufreq_online(unsigned int cpu) 2770 { 2771 cpufreq_online(cpu); 2772 2773 return 0; 2774 } 2775 2776 static int cpuhp_cpufreq_offline(unsigned int cpu) 2777 { 2778 cpufreq_offline(cpu); 2779 2780 return 0; 2781 } 2782 2783 /** 2784 * cpufreq_register_driver - register a CPU Frequency driver 2785 * @driver_data: A struct cpufreq_driver containing the values# 2786 * submitted by the CPU Frequency driver. 2787 * 2788 * Registers a CPU Frequency driver to this core code. This code 2789 * returns zero on success, -EEXIST when another driver got here first 2790 * (and isn't unregistered in the meantime). 2791 * 2792 */ 2793 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2794 { 2795 unsigned long flags; 2796 int ret; 2797 2798 if (cpufreq_disabled()) 2799 return -ENODEV; 2800 2801 /* 2802 * The cpufreq core depends heavily on the availability of device 2803 * structure, make sure they are available before proceeding further. 2804 */ 2805 if (!get_cpu_device(0)) 2806 return -EPROBE_DEFER; 2807 2808 if (!driver_data || !driver_data->verify || !driver_data->init || 2809 !(driver_data->setpolicy || driver_data->target_index || 2810 driver_data->target) || 2811 (driver_data->setpolicy && (driver_data->target_index || 2812 driver_data->target)) || 2813 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2814 (!driver_data->online != !driver_data->offline)) 2815 return -EINVAL; 2816 2817 pr_debug("trying to register driver %s\n", driver_data->name); 2818 2819 /* Protect against concurrent CPU online/offline. */ 2820 cpus_read_lock(); 2821 2822 write_lock_irqsave(&cpufreq_driver_lock, flags); 2823 if (cpufreq_driver) { 2824 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2825 ret = -EEXIST; 2826 goto out; 2827 } 2828 cpufreq_driver = driver_data; 2829 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2830 2831 /* 2832 * Mark support for the scheduler's frequency invariance engine for 2833 * drivers that implement target(), target_index() or fast_switch(). 2834 */ 2835 if (!cpufreq_driver->setpolicy) { 2836 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2837 pr_debug("supports frequency invariance"); 2838 } 2839 2840 if (driver_data->setpolicy) 2841 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2842 2843 if (cpufreq_boost_supported()) { 2844 ret = create_boost_sysfs_file(); 2845 if (ret) 2846 goto err_null_driver; 2847 } 2848 2849 ret = subsys_interface_register(&cpufreq_interface); 2850 if (ret) 2851 goto err_boost_unreg; 2852 2853 if (unlikely(list_empty(&cpufreq_policy_list))) { 2854 /* if all ->init() calls failed, unregister */ 2855 ret = -ENODEV; 2856 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2857 driver_data->name); 2858 goto err_if_unreg; 2859 } 2860 2861 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2862 "cpufreq:online", 2863 cpuhp_cpufreq_online, 2864 cpuhp_cpufreq_offline); 2865 if (ret < 0) 2866 goto err_if_unreg; 2867 hp_online = ret; 2868 ret = 0; 2869 2870 pr_debug("driver %s up and running\n", driver_data->name); 2871 goto out; 2872 2873 err_if_unreg: 2874 subsys_interface_unregister(&cpufreq_interface); 2875 err_boost_unreg: 2876 remove_boost_sysfs_file(); 2877 err_null_driver: 2878 write_lock_irqsave(&cpufreq_driver_lock, flags); 2879 cpufreq_driver = NULL; 2880 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2881 out: 2882 cpus_read_unlock(); 2883 return ret; 2884 } 2885 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2886 2887 /* 2888 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2889 * 2890 * Unregister the current CPUFreq driver. Only call this if you have 2891 * the right to do so, i.e. if you have succeeded in initialising before! 2892 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2893 * currently not initialised. 2894 */ 2895 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2896 { 2897 unsigned long flags; 2898 2899 if (!cpufreq_driver || (driver != cpufreq_driver)) 2900 return -EINVAL; 2901 2902 pr_debug("unregistering driver %s\n", driver->name); 2903 2904 /* Protect against concurrent cpu hotplug */ 2905 cpus_read_lock(); 2906 subsys_interface_unregister(&cpufreq_interface); 2907 remove_boost_sysfs_file(); 2908 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2909 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2910 2911 write_lock_irqsave(&cpufreq_driver_lock, flags); 2912 2913 cpufreq_driver = NULL; 2914 2915 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2916 cpus_read_unlock(); 2917 2918 return 0; 2919 } 2920 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2921 2922 static int __init cpufreq_core_init(void) 2923 { 2924 struct cpufreq_governor *gov = cpufreq_default_governor(); 2925 2926 if (cpufreq_disabled()) 2927 return -ENODEV; 2928 2929 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2930 BUG_ON(!cpufreq_global_kobject); 2931 2932 if (!strlen(default_governor)) 2933 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2934 2935 return 0; 2936 } 2937 module_param(off, int, 0444); 2938 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2939 core_initcall(cpufreq_core_init); 2940