xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 3a7e4fbbfd1a266ceea33e9b48f77f233ac994ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 static char default_governor[CPUFREQ_NAME_LEN];
54 
55 /**
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63 
64 /* Flag to suspend/resume CPUFreq governors */
65 static bool cpufreq_suspended;
66 
67 static inline bool has_target(void)
68 {
69 	return cpufreq_driver->target_index || cpufreq_driver->target;
70 }
71 
72 /* internal prototypes */
73 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
74 static int cpufreq_init_governor(struct cpufreq_policy *policy);
75 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
76 static int cpufreq_start_governor(struct cpufreq_policy *policy);
77 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
78 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
79 static int cpufreq_set_policy(struct cpufreq_policy *policy,
80 			      struct cpufreq_governor *new_gov,
81 			      unsigned int new_pol);
82 
83 /**
84  * Two notifier lists: the "policy" list is involved in the
85  * validation process for a new CPU frequency policy; the
86  * "transition" list for kernel code that needs to handle
87  * changes to devices when the CPU clock speed changes.
88  * The mutex locks both lists.
89  */
90 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
91 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
92 
93 static int off __read_mostly;
94 static int cpufreq_disabled(void)
95 {
96 	return off;
97 }
98 void disable_cpufreq(void)
99 {
100 	off = 1;
101 }
102 static DEFINE_MUTEX(cpufreq_governor_mutex);
103 
104 bool have_governor_per_policy(void)
105 {
106 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
107 }
108 EXPORT_SYMBOL_GPL(have_governor_per_policy);
109 
110 static struct kobject *cpufreq_global_kobject;
111 
112 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
113 {
114 	if (have_governor_per_policy())
115 		return &policy->kobj;
116 	else
117 		return cpufreq_global_kobject;
118 }
119 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
120 
121 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
122 {
123 	struct kernel_cpustat kcpustat;
124 	u64 cur_wall_time;
125 	u64 idle_time;
126 	u64 busy_time;
127 
128 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
129 
130 	kcpustat_cpu_fetch(&kcpustat, cpu);
131 
132 	busy_time = kcpustat.cpustat[CPUTIME_USER];
133 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
134 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
135 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
136 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
137 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
138 
139 	idle_time = cur_wall_time - busy_time;
140 	if (wall)
141 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
142 
143 	return div_u64(idle_time, NSEC_PER_USEC);
144 }
145 
146 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
147 {
148 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
149 
150 	if (idle_time == -1ULL)
151 		return get_cpu_idle_time_jiffy(cpu, wall);
152 	else if (!io_busy)
153 		idle_time += get_cpu_iowait_time_us(cpu, wall);
154 
155 	return idle_time;
156 }
157 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
158 
159 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
160 		unsigned long max_freq)
161 {
162 }
163 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
164 
165 /*
166  * This is a generic cpufreq init() routine which can be used by cpufreq
167  * drivers of SMP systems. It will do following:
168  * - validate & show freq table passed
169  * - set policies transition latency
170  * - policy->cpus with all possible CPUs
171  */
172 void cpufreq_generic_init(struct cpufreq_policy *policy,
173 		struct cpufreq_frequency_table *table,
174 		unsigned int transition_latency)
175 {
176 	policy->freq_table = table;
177 	policy->cpuinfo.transition_latency = transition_latency;
178 
179 	/*
180 	 * The driver only supports the SMP configuration where all processors
181 	 * share the clock and voltage and clock.
182 	 */
183 	cpumask_setall(policy->cpus);
184 }
185 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
186 
187 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
188 {
189 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
190 
191 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
194 
195 unsigned int cpufreq_generic_get(unsigned int cpu)
196 {
197 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
198 
199 	if (!policy || IS_ERR(policy->clk)) {
200 		pr_err("%s: No %s associated to cpu: %d\n",
201 		       __func__, policy ? "clk" : "policy", cpu);
202 		return 0;
203 	}
204 
205 	return clk_get_rate(policy->clk) / 1000;
206 }
207 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
208 
209 /**
210  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
211  * @cpu: CPU to find the policy for.
212  *
213  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
214  * the kobject reference counter of that policy.  Return a valid policy on
215  * success or NULL on failure.
216  *
217  * The policy returned by this function has to be released with the help of
218  * cpufreq_cpu_put() to balance its kobject reference counter properly.
219  */
220 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
221 {
222 	struct cpufreq_policy *policy = NULL;
223 	unsigned long flags;
224 
225 	if (WARN_ON(cpu >= nr_cpu_ids))
226 		return NULL;
227 
228 	/* get the cpufreq driver */
229 	read_lock_irqsave(&cpufreq_driver_lock, flags);
230 
231 	if (cpufreq_driver) {
232 		/* get the CPU */
233 		policy = cpufreq_cpu_get_raw(cpu);
234 		if (policy)
235 			kobject_get(&policy->kobj);
236 	}
237 
238 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
239 
240 	return policy;
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
243 
244 /**
245  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
246  * @policy: cpufreq policy returned by cpufreq_cpu_get().
247  */
248 void cpufreq_cpu_put(struct cpufreq_policy *policy)
249 {
250 	kobject_put(&policy->kobj);
251 }
252 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
253 
254 /**
255  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
256  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
257  */
258 void cpufreq_cpu_release(struct cpufreq_policy *policy)
259 {
260 	if (WARN_ON(!policy))
261 		return;
262 
263 	lockdep_assert_held(&policy->rwsem);
264 
265 	up_write(&policy->rwsem);
266 
267 	cpufreq_cpu_put(policy);
268 }
269 
270 /**
271  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
272  * @cpu: CPU to find the policy for.
273  *
274  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
275  * if the policy returned by it is not NULL, acquire its rwsem for writing.
276  * Return the policy if it is active or release it and return NULL otherwise.
277  *
278  * The policy returned by this function has to be released with the help of
279  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
280  * counter properly.
281  */
282 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
283 {
284 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
285 
286 	if (!policy)
287 		return NULL;
288 
289 	down_write(&policy->rwsem);
290 
291 	if (policy_is_inactive(policy)) {
292 		cpufreq_cpu_release(policy);
293 		return NULL;
294 	}
295 
296 	return policy;
297 }
298 
299 /*********************************************************************
300  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
301  *********************************************************************/
302 
303 /**
304  * adjust_jiffies - adjust the system "loops_per_jiffy"
305  *
306  * This function alters the system "loops_per_jiffy" for the clock
307  * speed change. Note that loops_per_jiffy cannot be updated on SMP
308  * systems as each CPU might be scaled differently. So, use the arch
309  * per-CPU loops_per_jiffy value wherever possible.
310  */
311 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
312 {
313 #ifndef CONFIG_SMP
314 	static unsigned long l_p_j_ref;
315 	static unsigned int l_p_j_ref_freq;
316 
317 	if (ci->flags & CPUFREQ_CONST_LOOPS)
318 		return;
319 
320 	if (!l_p_j_ref_freq) {
321 		l_p_j_ref = loops_per_jiffy;
322 		l_p_j_ref_freq = ci->old;
323 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
324 			 l_p_j_ref, l_p_j_ref_freq);
325 	}
326 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
327 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
328 								ci->new);
329 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
330 			 loops_per_jiffy, ci->new);
331 	}
332 #endif
333 }
334 
335 /**
336  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
337  * @policy: cpufreq policy to enable fast frequency switching for.
338  * @freqs: contain details of the frequency update.
339  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
340  *
341  * This function calls the transition notifiers and the "adjust_jiffies"
342  * function. It is called twice on all CPU frequency changes that have
343  * external effects.
344  */
345 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
346 				      struct cpufreq_freqs *freqs,
347 				      unsigned int state)
348 {
349 	int cpu;
350 
351 	BUG_ON(irqs_disabled());
352 
353 	if (cpufreq_disabled())
354 		return;
355 
356 	freqs->policy = policy;
357 	freqs->flags = cpufreq_driver->flags;
358 	pr_debug("notification %u of frequency transition to %u kHz\n",
359 		 state, freqs->new);
360 
361 	switch (state) {
362 	case CPUFREQ_PRECHANGE:
363 		/*
364 		 * Detect if the driver reported a value as "old frequency"
365 		 * which is not equal to what the cpufreq core thinks is
366 		 * "old frequency".
367 		 */
368 		if (policy->cur && policy->cur != freqs->old) {
369 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
370 				 freqs->old, policy->cur);
371 			freqs->old = policy->cur;
372 		}
373 
374 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
375 					 CPUFREQ_PRECHANGE, freqs);
376 
377 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
378 		break;
379 
380 	case CPUFREQ_POSTCHANGE:
381 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
382 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
383 			 cpumask_pr_args(policy->cpus));
384 
385 		for_each_cpu(cpu, policy->cpus)
386 			trace_cpu_frequency(freqs->new, cpu);
387 
388 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
389 					 CPUFREQ_POSTCHANGE, freqs);
390 
391 		cpufreq_stats_record_transition(policy, freqs->new);
392 		policy->cur = freqs->new;
393 	}
394 }
395 
396 /* Do post notifications when there are chances that transition has failed */
397 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
398 		struct cpufreq_freqs *freqs, int transition_failed)
399 {
400 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
401 	if (!transition_failed)
402 		return;
403 
404 	swap(freqs->old, freqs->new);
405 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
406 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
407 }
408 
409 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
410 		struct cpufreq_freqs *freqs)
411 {
412 
413 	/*
414 	 * Catch double invocations of _begin() which lead to self-deadlock.
415 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
416 	 * doesn't invoke _begin() on their behalf, and hence the chances of
417 	 * double invocations are very low. Moreover, there are scenarios
418 	 * where these checks can emit false-positive warnings in these
419 	 * drivers; so we avoid that by skipping them altogether.
420 	 */
421 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
422 				&& current == policy->transition_task);
423 
424 wait:
425 	wait_event(policy->transition_wait, !policy->transition_ongoing);
426 
427 	spin_lock(&policy->transition_lock);
428 
429 	if (unlikely(policy->transition_ongoing)) {
430 		spin_unlock(&policy->transition_lock);
431 		goto wait;
432 	}
433 
434 	policy->transition_ongoing = true;
435 	policy->transition_task = current;
436 
437 	spin_unlock(&policy->transition_lock);
438 
439 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
440 }
441 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
442 
443 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
444 		struct cpufreq_freqs *freqs, int transition_failed)
445 {
446 	if (WARN_ON(!policy->transition_ongoing))
447 		return;
448 
449 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
450 
451 	policy->transition_ongoing = false;
452 	policy->transition_task = NULL;
453 
454 	wake_up(&policy->transition_wait);
455 }
456 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
457 
458 /*
459  * Fast frequency switching status count.  Positive means "enabled", negative
460  * means "disabled" and 0 means "not decided yet".
461  */
462 static int cpufreq_fast_switch_count;
463 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
464 
465 static void cpufreq_list_transition_notifiers(void)
466 {
467 	struct notifier_block *nb;
468 
469 	pr_info("Registered transition notifiers:\n");
470 
471 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
472 
473 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
474 		pr_info("%pS\n", nb->notifier_call);
475 
476 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
477 }
478 
479 /**
480  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
481  * @policy: cpufreq policy to enable fast frequency switching for.
482  *
483  * Try to enable fast frequency switching for @policy.
484  *
485  * The attempt will fail if there is at least one transition notifier registered
486  * at this point, as fast frequency switching is quite fundamentally at odds
487  * with transition notifiers.  Thus if successful, it will make registration of
488  * transition notifiers fail going forward.
489  */
490 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
491 {
492 	lockdep_assert_held(&policy->rwsem);
493 
494 	if (!policy->fast_switch_possible)
495 		return;
496 
497 	mutex_lock(&cpufreq_fast_switch_lock);
498 	if (cpufreq_fast_switch_count >= 0) {
499 		cpufreq_fast_switch_count++;
500 		policy->fast_switch_enabled = true;
501 	} else {
502 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
503 			policy->cpu);
504 		cpufreq_list_transition_notifiers();
505 	}
506 	mutex_unlock(&cpufreq_fast_switch_lock);
507 }
508 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
509 
510 /**
511  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
512  * @policy: cpufreq policy to disable fast frequency switching for.
513  */
514 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
515 {
516 	mutex_lock(&cpufreq_fast_switch_lock);
517 	if (policy->fast_switch_enabled) {
518 		policy->fast_switch_enabled = false;
519 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
520 			cpufreq_fast_switch_count--;
521 	}
522 	mutex_unlock(&cpufreq_fast_switch_lock);
523 }
524 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
525 
526 /**
527  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
528  * one.
529  * @target_freq: target frequency to resolve.
530  *
531  * The target to driver frequency mapping is cached in the policy.
532  *
533  * Return: Lowest driver-supported frequency greater than or equal to the
534  * given target_freq, subject to policy (min/max) and driver limitations.
535  */
536 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
537 					 unsigned int target_freq)
538 {
539 	target_freq = clamp_val(target_freq, policy->min, policy->max);
540 	policy->cached_target_freq = target_freq;
541 
542 	if (cpufreq_driver->target_index) {
543 		int idx;
544 
545 		idx = cpufreq_frequency_table_target(policy, target_freq,
546 						     CPUFREQ_RELATION_L);
547 		policy->cached_resolved_idx = idx;
548 		return policy->freq_table[idx].frequency;
549 	}
550 
551 	if (cpufreq_driver->resolve_freq)
552 		return cpufreq_driver->resolve_freq(policy, target_freq);
553 
554 	return target_freq;
555 }
556 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
557 
558 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
559 {
560 	unsigned int latency;
561 
562 	if (policy->transition_delay_us)
563 		return policy->transition_delay_us;
564 
565 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
566 	if (latency) {
567 		/*
568 		 * For platforms that can change the frequency very fast (< 10
569 		 * us), the above formula gives a decent transition delay. But
570 		 * for platforms where transition_latency is in milliseconds, it
571 		 * ends up giving unrealistic values.
572 		 *
573 		 * Cap the default transition delay to 10 ms, which seems to be
574 		 * a reasonable amount of time after which we should reevaluate
575 		 * the frequency.
576 		 */
577 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
578 	}
579 
580 	return LATENCY_MULTIPLIER;
581 }
582 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
583 
584 /*********************************************************************
585  *                          SYSFS INTERFACE                          *
586  *********************************************************************/
587 static ssize_t show_boost(struct kobject *kobj,
588 			  struct kobj_attribute *attr, char *buf)
589 {
590 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
591 }
592 
593 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
594 			   const char *buf, size_t count)
595 {
596 	int ret, enable;
597 
598 	ret = sscanf(buf, "%d", &enable);
599 	if (ret != 1 || enable < 0 || enable > 1)
600 		return -EINVAL;
601 
602 	if (cpufreq_boost_trigger_state(enable)) {
603 		pr_err("%s: Cannot %s BOOST!\n",
604 		       __func__, enable ? "enable" : "disable");
605 		return -EINVAL;
606 	}
607 
608 	pr_debug("%s: cpufreq BOOST %s\n",
609 		 __func__, enable ? "enabled" : "disabled");
610 
611 	return count;
612 }
613 define_one_global_rw(boost);
614 
615 static struct cpufreq_governor *find_governor(const char *str_governor)
616 {
617 	struct cpufreq_governor *t;
618 
619 	for_each_governor(t)
620 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
621 			return t;
622 
623 	return NULL;
624 }
625 
626 static struct cpufreq_governor *get_governor(const char *str_governor)
627 {
628 	struct cpufreq_governor *t;
629 
630 	mutex_lock(&cpufreq_governor_mutex);
631 	t = find_governor(str_governor);
632 	if (!t)
633 		goto unlock;
634 
635 	if (!try_module_get(t->owner))
636 		t = NULL;
637 
638 unlock:
639 	mutex_unlock(&cpufreq_governor_mutex);
640 
641 	return t;
642 }
643 
644 static unsigned int cpufreq_parse_policy(char *str_governor)
645 {
646 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
647 		return CPUFREQ_POLICY_PERFORMANCE;
648 
649 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
650 		return CPUFREQ_POLICY_POWERSAVE;
651 
652 	return CPUFREQ_POLICY_UNKNOWN;
653 }
654 
655 /**
656  * cpufreq_parse_governor - parse a governor string only for has_target()
657  * @str_governor: Governor name.
658  */
659 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
660 {
661 	struct cpufreq_governor *t;
662 
663 	t = get_governor(str_governor);
664 	if (t)
665 		return t;
666 
667 	if (request_module("cpufreq_%s", str_governor))
668 		return NULL;
669 
670 	return get_governor(str_governor);
671 }
672 
673 /**
674  * cpufreq_per_cpu_attr_read() / show_##file_name() -
675  * print out cpufreq information
676  *
677  * Write out information from cpufreq_driver->policy[cpu]; object must be
678  * "unsigned int".
679  */
680 
681 #define show_one(file_name, object)			\
682 static ssize_t show_##file_name				\
683 (struct cpufreq_policy *policy, char *buf)		\
684 {							\
685 	return sprintf(buf, "%u\n", policy->object);	\
686 }
687 
688 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
689 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
690 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
691 show_one(scaling_min_freq, min);
692 show_one(scaling_max_freq, max);
693 
694 __weak unsigned int arch_freq_get_on_cpu(int cpu)
695 {
696 	return 0;
697 }
698 
699 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
700 {
701 	ssize_t ret;
702 	unsigned int freq;
703 
704 	freq = arch_freq_get_on_cpu(policy->cpu);
705 	if (freq)
706 		ret = sprintf(buf, "%u\n", freq);
707 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
708 			cpufreq_driver->get)
709 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
710 	else
711 		ret = sprintf(buf, "%u\n", policy->cur);
712 	return ret;
713 }
714 
715 /**
716  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
717  */
718 #define store_one(file_name, object)			\
719 static ssize_t store_##file_name					\
720 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
721 {									\
722 	unsigned long val;						\
723 	int ret;							\
724 									\
725 	ret = sscanf(buf, "%lu", &val);					\
726 	if (ret != 1)							\
727 		return -EINVAL;						\
728 									\
729 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
730 	return ret >= 0 ? count : ret;					\
731 }
732 
733 store_one(scaling_min_freq, min);
734 store_one(scaling_max_freq, max);
735 
736 /**
737  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
738  */
739 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
740 					char *buf)
741 {
742 	unsigned int cur_freq = __cpufreq_get(policy);
743 
744 	if (cur_freq)
745 		return sprintf(buf, "%u\n", cur_freq);
746 
747 	return sprintf(buf, "<unknown>\n");
748 }
749 
750 /**
751  * show_scaling_governor - show the current policy for the specified CPU
752  */
753 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
754 {
755 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
756 		return sprintf(buf, "powersave\n");
757 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
758 		return sprintf(buf, "performance\n");
759 	else if (policy->governor)
760 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
761 				policy->governor->name);
762 	return -EINVAL;
763 }
764 
765 /**
766  * store_scaling_governor - store policy for the specified CPU
767  */
768 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
769 					const char *buf, size_t count)
770 {
771 	char str_governor[16];
772 	int ret;
773 
774 	ret = sscanf(buf, "%15s", str_governor);
775 	if (ret != 1)
776 		return -EINVAL;
777 
778 	if (cpufreq_driver->setpolicy) {
779 		unsigned int new_pol;
780 
781 		new_pol = cpufreq_parse_policy(str_governor);
782 		if (!new_pol)
783 			return -EINVAL;
784 
785 		ret = cpufreq_set_policy(policy, NULL, new_pol);
786 	} else {
787 		struct cpufreq_governor *new_gov;
788 
789 		new_gov = cpufreq_parse_governor(str_governor);
790 		if (!new_gov)
791 			return -EINVAL;
792 
793 		ret = cpufreq_set_policy(policy, new_gov,
794 					 CPUFREQ_POLICY_UNKNOWN);
795 
796 		module_put(new_gov->owner);
797 	}
798 
799 	return ret ? ret : count;
800 }
801 
802 /**
803  * show_scaling_driver - show the cpufreq driver currently loaded
804  */
805 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
806 {
807 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
808 }
809 
810 /**
811  * show_scaling_available_governors - show the available CPUfreq governors
812  */
813 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
814 						char *buf)
815 {
816 	ssize_t i = 0;
817 	struct cpufreq_governor *t;
818 
819 	if (!has_target()) {
820 		i += sprintf(buf, "performance powersave");
821 		goto out;
822 	}
823 
824 	mutex_lock(&cpufreq_governor_mutex);
825 	for_each_governor(t) {
826 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
827 		    - (CPUFREQ_NAME_LEN + 2)))
828 			break;
829 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
830 	}
831 	mutex_unlock(&cpufreq_governor_mutex);
832 out:
833 	i += sprintf(&buf[i], "\n");
834 	return i;
835 }
836 
837 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
838 {
839 	ssize_t i = 0;
840 	unsigned int cpu;
841 
842 	for_each_cpu(cpu, mask) {
843 		if (i)
844 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
845 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
846 		if (i >= (PAGE_SIZE - 5))
847 			break;
848 	}
849 	i += sprintf(&buf[i], "\n");
850 	return i;
851 }
852 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
853 
854 /**
855  * show_related_cpus - show the CPUs affected by each transition even if
856  * hw coordination is in use
857  */
858 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
859 {
860 	return cpufreq_show_cpus(policy->related_cpus, buf);
861 }
862 
863 /**
864  * show_affected_cpus - show the CPUs affected by each transition
865  */
866 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
867 {
868 	return cpufreq_show_cpus(policy->cpus, buf);
869 }
870 
871 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
872 					const char *buf, size_t count)
873 {
874 	unsigned int freq = 0;
875 	unsigned int ret;
876 
877 	if (!policy->governor || !policy->governor->store_setspeed)
878 		return -EINVAL;
879 
880 	ret = sscanf(buf, "%u", &freq);
881 	if (ret != 1)
882 		return -EINVAL;
883 
884 	policy->governor->store_setspeed(policy, freq);
885 
886 	return count;
887 }
888 
889 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
890 {
891 	if (!policy->governor || !policy->governor->show_setspeed)
892 		return sprintf(buf, "<unsupported>\n");
893 
894 	return policy->governor->show_setspeed(policy, buf);
895 }
896 
897 /**
898  * show_bios_limit - show the current cpufreq HW/BIOS limitation
899  */
900 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
901 {
902 	unsigned int limit;
903 	int ret;
904 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
905 	if (!ret)
906 		return sprintf(buf, "%u\n", limit);
907 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
908 }
909 
910 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
911 cpufreq_freq_attr_ro(cpuinfo_min_freq);
912 cpufreq_freq_attr_ro(cpuinfo_max_freq);
913 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
914 cpufreq_freq_attr_ro(scaling_available_governors);
915 cpufreq_freq_attr_ro(scaling_driver);
916 cpufreq_freq_attr_ro(scaling_cur_freq);
917 cpufreq_freq_attr_ro(bios_limit);
918 cpufreq_freq_attr_ro(related_cpus);
919 cpufreq_freq_attr_ro(affected_cpus);
920 cpufreq_freq_attr_rw(scaling_min_freq);
921 cpufreq_freq_attr_rw(scaling_max_freq);
922 cpufreq_freq_attr_rw(scaling_governor);
923 cpufreq_freq_attr_rw(scaling_setspeed);
924 
925 static struct attribute *default_attrs[] = {
926 	&cpuinfo_min_freq.attr,
927 	&cpuinfo_max_freq.attr,
928 	&cpuinfo_transition_latency.attr,
929 	&scaling_min_freq.attr,
930 	&scaling_max_freq.attr,
931 	&affected_cpus.attr,
932 	&related_cpus.attr,
933 	&scaling_governor.attr,
934 	&scaling_driver.attr,
935 	&scaling_available_governors.attr,
936 	&scaling_setspeed.attr,
937 	NULL
938 };
939 
940 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
941 #define to_attr(a) container_of(a, struct freq_attr, attr)
942 
943 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
944 {
945 	struct cpufreq_policy *policy = to_policy(kobj);
946 	struct freq_attr *fattr = to_attr(attr);
947 	ssize_t ret;
948 
949 	if (!fattr->show)
950 		return -EIO;
951 
952 	down_read(&policy->rwsem);
953 	ret = fattr->show(policy, buf);
954 	up_read(&policy->rwsem);
955 
956 	return ret;
957 }
958 
959 static ssize_t store(struct kobject *kobj, struct attribute *attr,
960 		     const char *buf, size_t count)
961 {
962 	struct cpufreq_policy *policy = to_policy(kobj);
963 	struct freq_attr *fattr = to_attr(attr);
964 	ssize_t ret = -EINVAL;
965 
966 	if (!fattr->store)
967 		return -EIO;
968 
969 	/*
970 	 * cpus_read_trylock() is used here to work around a circular lock
971 	 * dependency problem with respect to the cpufreq_register_driver().
972 	 */
973 	if (!cpus_read_trylock())
974 		return -EBUSY;
975 
976 	if (cpu_online(policy->cpu)) {
977 		down_write(&policy->rwsem);
978 		ret = fattr->store(policy, buf, count);
979 		up_write(&policy->rwsem);
980 	}
981 
982 	cpus_read_unlock();
983 
984 	return ret;
985 }
986 
987 static void cpufreq_sysfs_release(struct kobject *kobj)
988 {
989 	struct cpufreq_policy *policy = to_policy(kobj);
990 	pr_debug("last reference is dropped\n");
991 	complete(&policy->kobj_unregister);
992 }
993 
994 static const struct sysfs_ops sysfs_ops = {
995 	.show	= show,
996 	.store	= store,
997 };
998 
999 static struct kobj_type ktype_cpufreq = {
1000 	.sysfs_ops	= &sysfs_ops,
1001 	.default_attrs	= default_attrs,
1002 	.release	= cpufreq_sysfs_release,
1003 };
1004 
1005 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1006 {
1007 	struct device *dev = get_cpu_device(cpu);
1008 
1009 	if (unlikely(!dev))
1010 		return;
1011 
1012 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1013 		return;
1014 
1015 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1016 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1017 		dev_err(dev, "cpufreq symlink creation failed\n");
1018 }
1019 
1020 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1021 				   struct device *dev)
1022 {
1023 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1024 	sysfs_remove_link(&dev->kobj, "cpufreq");
1025 }
1026 
1027 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1028 {
1029 	struct freq_attr **drv_attr;
1030 	int ret = 0;
1031 
1032 	/* set up files for this cpu device */
1033 	drv_attr = cpufreq_driver->attr;
1034 	while (drv_attr && *drv_attr) {
1035 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1036 		if (ret)
1037 			return ret;
1038 		drv_attr++;
1039 	}
1040 	if (cpufreq_driver->get) {
1041 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1042 		if (ret)
1043 			return ret;
1044 	}
1045 
1046 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1047 	if (ret)
1048 		return ret;
1049 
1050 	if (cpufreq_driver->bios_limit) {
1051 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1052 		if (ret)
1053 			return ret;
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1060 {
1061 	struct cpufreq_governor *gov = NULL;
1062 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1063 	int ret;
1064 
1065 	if (has_target()) {
1066 		/* Update policy governor to the one used before hotplug. */
1067 		gov = get_governor(policy->last_governor);
1068 		if (gov) {
1069 			pr_debug("Restoring governor %s for cpu %d\n",
1070 				 gov->name, policy->cpu);
1071 		} else {
1072 			gov = get_governor(default_governor);
1073 		}
1074 
1075 		if (!gov) {
1076 			gov = cpufreq_default_governor();
1077 			__module_get(gov->owner);
1078 		}
1079 
1080 	} else {
1081 
1082 		/* Use the default policy if there is no last_policy. */
1083 		if (policy->last_policy) {
1084 			pol = policy->last_policy;
1085 		} else {
1086 			pol = cpufreq_parse_policy(default_governor);
1087 			/*
1088 			 * In case the default governor is neither "performance"
1089 			 * nor "powersave", fall back to the initial policy
1090 			 * value set by the driver.
1091 			 */
1092 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1093 				pol = policy->policy;
1094 		}
1095 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1096 		    pol != CPUFREQ_POLICY_POWERSAVE)
1097 			return -ENODATA;
1098 	}
1099 
1100 	ret = cpufreq_set_policy(policy, gov, pol);
1101 	if (gov)
1102 		module_put(gov->owner);
1103 
1104 	return ret;
1105 }
1106 
1107 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1108 {
1109 	int ret = 0;
1110 
1111 	/* Has this CPU been taken care of already? */
1112 	if (cpumask_test_cpu(cpu, policy->cpus))
1113 		return 0;
1114 
1115 	down_write(&policy->rwsem);
1116 	if (has_target())
1117 		cpufreq_stop_governor(policy);
1118 
1119 	cpumask_set_cpu(cpu, policy->cpus);
1120 
1121 	if (has_target()) {
1122 		ret = cpufreq_start_governor(policy);
1123 		if (ret)
1124 			pr_err("%s: Failed to start governor\n", __func__);
1125 	}
1126 	up_write(&policy->rwsem);
1127 	return ret;
1128 }
1129 
1130 void refresh_frequency_limits(struct cpufreq_policy *policy)
1131 {
1132 	if (!policy_is_inactive(policy)) {
1133 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1134 
1135 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1136 	}
1137 }
1138 EXPORT_SYMBOL(refresh_frequency_limits);
1139 
1140 static void handle_update(struct work_struct *work)
1141 {
1142 	struct cpufreq_policy *policy =
1143 		container_of(work, struct cpufreq_policy, update);
1144 
1145 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1146 	down_write(&policy->rwsem);
1147 	refresh_frequency_limits(policy);
1148 	up_write(&policy->rwsem);
1149 }
1150 
1151 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1152 				void *data)
1153 {
1154 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1155 
1156 	schedule_work(&policy->update);
1157 	return 0;
1158 }
1159 
1160 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1161 				void *data)
1162 {
1163 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1164 
1165 	schedule_work(&policy->update);
1166 	return 0;
1167 }
1168 
1169 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1170 {
1171 	struct kobject *kobj;
1172 	struct completion *cmp;
1173 
1174 	down_write(&policy->rwsem);
1175 	cpufreq_stats_free_table(policy);
1176 	kobj = &policy->kobj;
1177 	cmp = &policy->kobj_unregister;
1178 	up_write(&policy->rwsem);
1179 	kobject_put(kobj);
1180 
1181 	/*
1182 	 * We need to make sure that the underlying kobj is
1183 	 * actually not referenced anymore by anybody before we
1184 	 * proceed with unloading.
1185 	 */
1186 	pr_debug("waiting for dropping of refcount\n");
1187 	wait_for_completion(cmp);
1188 	pr_debug("wait complete\n");
1189 }
1190 
1191 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1192 {
1193 	struct cpufreq_policy *policy;
1194 	struct device *dev = get_cpu_device(cpu);
1195 	int ret;
1196 
1197 	if (!dev)
1198 		return NULL;
1199 
1200 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1201 	if (!policy)
1202 		return NULL;
1203 
1204 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1205 		goto err_free_policy;
1206 
1207 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1208 		goto err_free_cpumask;
1209 
1210 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1211 		goto err_free_rcpumask;
1212 
1213 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1214 				   cpufreq_global_kobject, "policy%u", cpu);
1215 	if (ret) {
1216 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1217 		/*
1218 		 * The entire policy object will be freed below, but the extra
1219 		 * memory allocated for the kobject name needs to be freed by
1220 		 * releasing the kobject.
1221 		 */
1222 		kobject_put(&policy->kobj);
1223 		goto err_free_real_cpus;
1224 	}
1225 
1226 	freq_constraints_init(&policy->constraints);
1227 
1228 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1229 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1230 
1231 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1232 				    &policy->nb_min);
1233 	if (ret) {
1234 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1235 			ret, cpumask_pr_args(policy->cpus));
1236 		goto err_kobj_remove;
1237 	}
1238 
1239 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1240 				    &policy->nb_max);
1241 	if (ret) {
1242 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1243 			ret, cpumask_pr_args(policy->cpus));
1244 		goto err_min_qos_notifier;
1245 	}
1246 
1247 	INIT_LIST_HEAD(&policy->policy_list);
1248 	init_rwsem(&policy->rwsem);
1249 	spin_lock_init(&policy->transition_lock);
1250 	init_waitqueue_head(&policy->transition_wait);
1251 	init_completion(&policy->kobj_unregister);
1252 	INIT_WORK(&policy->update, handle_update);
1253 
1254 	policy->cpu = cpu;
1255 	return policy;
1256 
1257 err_min_qos_notifier:
1258 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1259 				 &policy->nb_min);
1260 err_kobj_remove:
1261 	cpufreq_policy_put_kobj(policy);
1262 err_free_real_cpus:
1263 	free_cpumask_var(policy->real_cpus);
1264 err_free_rcpumask:
1265 	free_cpumask_var(policy->related_cpus);
1266 err_free_cpumask:
1267 	free_cpumask_var(policy->cpus);
1268 err_free_policy:
1269 	kfree(policy);
1270 
1271 	return NULL;
1272 }
1273 
1274 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1275 {
1276 	unsigned long flags;
1277 	int cpu;
1278 
1279 	/* Remove policy from list */
1280 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1281 	list_del(&policy->policy_list);
1282 
1283 	for_each_cpu(cpu, policy->related_cpus)
1284 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1285 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1286 
1287 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1288 				 &policy->nb_max);
1289 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1290 				 &policy->nb_min);
1291 
1292 	/* Cancel any pending policy->update work before freeing the policy. */
1293 	cancel_work_sync(&policy->update);
1294 
1295 	if (policy->max_freq_req) {
1296 		/*
1297 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1298 		 * successfully adding max_freq_req request.
1299 		 */
1300 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1301 					     CPUFREQ_REMOVE_POLICY, policy);
1302 		freq_qos_remove_request(policy->max_freq_req);
1303 	}
1304 
1305 	freq_qos_remove_request(policy->min_freq_req);
1306 	kfree(policy->min_freq_req);
1307 
1308 	cpufreq_policy_put_kobj(policy);
1309 	free_cpumask_var(policy->real_cpus);
1310 	free_cpumask_var(policy->related_cpus);
1311 	free_cpumask_var(policy->cpus);
1312 	kfree(policy);
1313 }
1314 
1315 static int cpufreq_online(unsigned int cpu)
1316 {
1317 	struct cpufreq_policy *policy;
1318 	bool new_policy;
1319 	unsigned long flags;
1320 	unsigned int j;
1321 	int ret;
1322 
1323 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1324 
1325 	/* Check if this CPU already has a policy to manage it */
1326 	policy = per_cpu(cpufreq_cpu_data, cpu);
1327 	if (policy) {
1328 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1329 		if (!policy_is_inactive(policy))
1330 			return cpufreq_add_policy_cpu(policy, cpu);
1331 
1332 		/* This is the only online CPU for the policy.  Start over. */
1333 		new_policy = false;
1334 		down_write(&policy->rwsem);
1335 		policy->cpu = cpu;
1336 		policy->governor = NULL;
1337 		up_write(&policy->rwsem);
1338 	} else {
1339 		new_policy = true;
1340 		policy = cpufreq_policy_alloc(cpu);
1341 		if (!policy)
1342 			return -ENOMEM;
1343 	}
1344 
1345 	if (!new_policy && cpufreq_driver->online) {
1346 		ret = cpufreq_driver->online(policy);
1347 		if (ret) {
1348 			pr_debug("%s: %d: initialization failed\n", __func__,
1349 				 __LINE__);
1350 			goto out_exit_policy;
1351 		}
1352 
1353 		/* Recover policy->cpus using related_cpus */
1354 		cpumask_copy(policy->cpus, policy->related_cpus);
1355 	} else {
1356 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1357 
1358 		/*
1359 		 * Call driver. From then on the cpufreq must be able
1360 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1361 		 */
1362 		ret = cpufreq_driver->init(policy);
1363 		if (ret) {
1364 			pr_debug("%s: %d: initialization failed\n", __func__,
1365 				 __LINE__);
1366 			goto out_free_policy;
1367 		}
1368 
1369 		ret = cpufreq_table_validate_and_sort(policy);
1370 		if (ret)
1371 			goto out_exit_policy;
1372 
1373 		/* related_cpus should at least include policy->cpus. */
1374 		cpumask_copy(policy->related_cpus, policy->cpus);
1375 	}
1376 
1377 	down_write(&policy->rwsem);
1378 	/*
1379 	 * affected cpus must always be the one, which are online. We aren't
1380 	 * managing offline cpus here.
1381 	 */
1382 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1383 
1384 	if (new_policy) {
1385 		for_each_cpu(j, policy->related_cpus) {
1386 			per_cpu(cpufreq_cpu_data, j) = policy;
1387 			add_cpu_dev_symlink(policy, j);
1388 		}
1389 
1390 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1391 					       GFP_KERNEL);
1392 		if (!policy->min_freq_req)
1393 			goto out_destroy_policy;
1394 
1395 		ret = freq_qos_add_request(&policy->constraints,
1396 					   policy->min_freq_req, FREQ_QOS_MIN,
1397 					   policy->min);
1398 		if (ret < 0) {
1399 			/*
1400 			 * So we don't call freq_qos_remove_request() for an
1401 			 * uninitialized request.
1402 			 */
1403 			kfree(policy->min_freq_req);
1404 			policy->min_freq_req = NULL;
1405 			goto out_destroy_policy;
1406 		}
1407 
1408 		/*
1409 		 * This must be initialized right here to avoid calling
1410 		 * freq_qos_remove_request() on uninitialized request in case
1411 		 * of errors.
1412 		 */
1413 		policy->max_freq_req = policy->min_freq_req + 1;
1414 
1415 		ret = freq_qos_add_request(&policy->constraints,
1416 					   policy->max_freq_req, FREQ_QOS_MAX,
1417 					   policy->max);
1418 		if (ret < 0) {
1419 			policy->max_freq_req = NULL;
1420 			goto out_destroy_policy;
1421 		}
1422 
1423 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1424 				CPUFREQ_CREATE_POLICY, policy);
1425 	}
1426 
1427 	if (cpufreq_driver->get && has_target()) {
1428 		policy->cur = cpufreq_driver->get(policy->cpu);
1429 		if (!policy->cur) {
1430 			pr_err("%s: ->get() failed\n", __func__);
1431 			goto out_destroy_policy;
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * Sometimes boot loaders set CPU frequency to a value outside of
1437 	 * frequency table present with cpufreq core. In such cases CPU might be
1438 	 * unstable if it has to run on that frequency for long duration of time
1439 	 * and so its better to set it to a frequency which is specified in
1440 	 * freq-table. This also makes cpufreq stats inconsistent as
1441 	 * cpufreq-stats would fail to register because current frequency of CPU
1442 	 * isn't found in freq-table.
1443 	 *
1444 	 * Because we don't want this change to effect boot process badly, we go
1445 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1446 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1447 	 * is initialized to zero).
1448 	 *
1449 	 * We are passing target-freq as "policy->cur - 1" otherwise
1450 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1451 	 * equal to target-freq.
1452 	 */
1453 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1454 	    && has_target()) {
1455 		/* Are we running at unknown frequency ? */
1456 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1457 		if (ret == -EINVAL) {
1458 			/* Warn user and fix it */
1459 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1460 				__func__, policy->cpu, policy->cur);
1461 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1462 				CPUFREQ_RELATION_L);
1463 
1464 			/*
1465 			 * Reaching here after boot in a few seconds may not
1466 			 * mean that system will remain stable at "unknown"
1467 			 * frequency for longer duration. Hence, a BUG_ON().
1468 			 */
1469 			BUG_ON(ret);
1470 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1471 				__func__, policy->cpu, policy->cur);
1472 		}
1473 	}
1474 
1475 	if (new_policy) {
1476 		ret = cpufreq_add_dev_interface(policy);
1477 		if (ret)
1478 			goto out_destroy_policy;
1479 
1480 		cpufreq_stats_create_table(policy);
1481 
1482 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1483 		list_add(&policy->policy_list, &cpufreq_policy_list);
1484 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1485 	}
1486 
1487 	ret = cpufreq_init_policy(policy);
1488 	if (ret) {
1489 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1490 		       __func__, cpu, ret);
1491 		goto out_destroy_policy;
1492 	}
1493 
1494 	up_write(&policy->rwsem);
1495 
1496 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1497 
1498 	/* Callback for handling stuff after policy is ready */
1499 	if (cpufreq_driver->ready)
1500 		cpufreq_driver->ready(policy);
1501 
1502 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1503 		policy->cdev = of_cpufreq_cooling_register(policy);
1504 
1505 	pr_debug("initialization complete\n");
1506 
1507 	return 0;
1508 
1509 out_destroy_policy:
1510 	for_each_cpu(j, policy->real_cpus)
1511 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1512 
1513 	up_write(&policy->rwsem);
1514 
1515 out_exit_policy:
1516 	if (cpufreq_driver->exit)
1517 		cpufreq_driver->exit(policy);
1518 
1519 out_free_policy:
1520 	cpufreq_policy_free(policy);
1521 	return ret;
1522 }
1523 
1524 /**
1525  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1526  * @dev: CPU device.
1527  * @sif: Subsystem interface structure pointer (not used)
1528  */
1529 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1530 {
1531 	struct cpufreq_policy *policy;
1532 	unsigned cpu = dev->id;
1533 	int ret;
1534 
1535 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1536 
1537 	if (cpu_online(cpu)) {
1538 		ret = cpufreq_online(cpu);
1539 		if (ret)
1540 			return ret;
1541 	}
1542 
1543 	/* Create sysfs link on CPU registration */
1544 	policy = per_cpu(cpufreq_cpu_data, cpu);
1545 	if (policy)
1546 		add_cpu_dev_symlink(policy, cpu);
1547 
1548 	return 0;
1549 }
1550 
1551 static int cpufreq_offline(unsigned int cpu)
1552 {
1553 	struct cpufreq_policy *policy;
1554 	int ret;
1555 
1556 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1557 
1558 	policy = cpufreq_cpu_get_raw(cpu);
1559 	if (!policy) {
1560 		pr_debug("%s: No cpu_data found\n", __func__);
1561 		return 0;
1562 	}
1563 
1564 	down_write(&policy->rwsem);
1565 	if (has_target())
1566 		cpufreq_stop_governor(policy);
1567 
1568 	cpumask_clear_cpu(cpu, policy->cpus);
1569 
1570 	if (policy_is_inactive(policy)) {
1571 		if (has_target())
1572 			strncpy(policy->last_governor, policy->governor->name,
1573 				CPUFREQ_NAME_LEN);
1574 		else
1575 			policy->last_policy = policy->policy;
1576 	} else if (cpu == policy->cpu) {
1577 		/* Nominate new CPU */
1578 		policy->cpu = cpumask_any(policy->cpus);
1579 	}
1580 
1581 	/* Start governor again for active policy */
1582 	if (!policy_is_inactive(policy)) {
1583 		if (has_target()) {
1584 			ret = cpufreq_start_governor(policy);
1585 			if (ret)
1586 				pr_err("%s: Failed to start governor\n", __func__);
1587 		}
1588 
1589 		goto unlock;
1590 	}
1591 
1592 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1593 		cpufreq_cooling_unregister(policy->cdev);
1594 		policy->cdev = NULL;
1595 	}
1596 
1597 	if (cpufreq_driver->stop_cpu)
1598 		cpufreq_driver->stop_cpu(policy);
1599 
1600 	if (has_target())
1601 		cpufreq_exit_governor(policy);
1602 
1603 	/*
1604 	 * Perform the ->offline() during light-weight tear-down, as
1605 	 * that allows fast recovery when the CPU comes back.
1606 	 */
1607 	if (cpufreq_driver->offline) {
1608 		cpufreq_driver->offline(policy);
1609 	} else if (cpufreq_driver->exit) {
1610 		cpufreq_driver->exit(policy);
1611 		policy->freq_table = NULL;
1612 	}
1613 
1614 unlock:
1615 	up_write(&policy->rwsem);
1616 	return 0;
1617 }
1618 
1619 /**
1620  * cpufreq_remove_dev - remove a CPU device
1621  *
1622  * Removes the cpufreq interface for a CPU device.
1623  */
1624 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1625 {
1626 	unsigned int cpu = dev->id;
1627 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1628 
1629 	if (!policy)
1630 		return;
1631 
1632 	if (cpu_online(cpu))
1633 		cpufreq_offline(cpu);
1634 
1635 	cpumask_clear_cpu(cpu, policy->real_cpus);
1636 	remove_cpu_dev_symlink(policy, dev);
1637 
1638 	if (cpumask_empty(policy->real_cpus)) {
1639 		/* We did light-weight exit earlier, do full tear down now */
1640 		if (cpufreq_driver->offline)
1641 			cpufreq_driver->exit(policy);
1642 
1643 		cpufreq_policy_free(policy);
1644 	}
1645 }
1646 
1647 /**
1648  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1649  *	in deep trouble.
1650  *	@policy: policy managing CPUs
1651  *	@new_freq: CPU frequency the CPU actually runs at
1652  *
1653  *	We adjust to current frequency first, and need to clean up later.
1654  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1655  */
1656 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1657 				unsigned int new_freq)
1658 {
1659 	struct cpufreq_freqs freqs;
1660 
1661 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1662 		 policy->cur, new_freq);
1663 
1664 	freqs.old = policy->cur;
1665 	freqs.new = new_freq;
1666 
1667 	cpufreq_freq_transition_begin(policy, &freqs);
1668 	cpufreq_freq_transition_end(policy, &freqs, 0);
1669 }
1670 
1671 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1672 {
1673 	unsigned int new_freq;
1674 
1675 	new_freq = cpufreq_driver->get(policy->cpu);
1676 	if (!new_freq)
1677 		return 0;
1678 
1679 	/*
1680 	 * If fast frequency switching is used with the given policy, the check
1681 	 * against policy->cur is pointless, so skip it in that case.
1682 	 */
1683 	if (policy->fast_switch_enabled || !has_target())
1684 		return new_freq;
1685 
1686 	if (policy->cur != new_freq) {
1687 		cpufreq_out_of_sync(policy, new_freq);
1688 		if (update)
1689 			schedule_work(&policy->update);
1690 	}
1691 
1692 	return new_freq;
1693 }
1694 
1695 /**
1696  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1697  * @cpu: CPU number
1698  *
1699  * This is the last known freq, without actually getting it from the driver.
1700  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1701  */
1702 unsigned int cpufreq_quick_get(unsigned int cpu)
1703 {
1704 	struct cpufreq_policy *policy;
1705 	unsigned int ret_freq = 0;
1706 	unsigned long flags;
1707 
1708 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1709 
1710 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1711 		ret_freq = cpufreq_driver->get(cpu);
1712 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1713 		return ret_freq;
1714 	}
1715 
1716 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1717 
1718 	policy = cpufreq_cpu_get(cpu);
1719 	if (policy) {
1720 		ret_freq = policy->cur;
1721 		cpufreq_cpu_put(policy);
1722 	}
1723 
1724 	return ret_freq;
1725 }
1726 EXPORT_SYMBOL(cpufreq_quick_get);
1727 
1728 /**
1729  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1730  * @cpu: CPU number
1731  *
1732  * Just return the max possible frequency for a given CPU.
1733  */
1734 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1735 {
1736 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1737 	unsigned int ret_freq = 0;
1738 
1739 	if (policy) {
1740 		ret_freq = policy->max;
1741 		cpufreq_cpu_put(policy);
1742 	}
1743 
1744 	return ret_freq;
1745 }
1746 EXPORT_SYMBOL(cpufreq_quick_get_max);
1747 
1748 /**
1749  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1750  * @cpu: CPU number
1751  *
1752  * The default return value is the max_freq field of cpuinfo.
1753  */
1754 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1755 {
1756 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1757 	unsigned int ret_freq = 0;
1758 
1759 	if (policy) {
1760 		ret_freq = policy->cpuinfo.max_freq;
1761 		cpufreq_cpu_put(policy);
1762 	}
1763 
1764 	return ret_freq;
1765 }
1766 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1767 
1768 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1769 {
1770 	if (unlikely(policy_is_inactive(policy)))
1771 		return 0;
1772 
1773 	return cpufreq_verify_current_freq(policy, true);
1774 }
1775 
1776 /**
1777  * cpufreq_get - get the current CPU frequency (in kHz)
1778  * @cpu: CPU number
1779  *
1780  * Get the CPU current (static) CPU frequency
1781  */
1782 unsigned int cpufreq_get(unsigned int cpu)
1783 {
1784 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1785 	unsigned int ret_freq = 0;
1786 
1787 	if (policy) {
1788 		down_read(&policy->rwsem);
1789 		if (cpufreq_driver->get)
1790 			ret_freq = __cpufreq_get(policy);
1791 		up_read(&policy->rwsem);
1792 
1793 		cpufreq_cpu_put(policy);
1794 	}
1795 
1796 	return ret_freq;
1797 }
1798 EXPORT_SYMBOL(cpufreq_get);
1799 
1800 static struct subsys_interface cpufreq_interface = {
1801 	.name		= "cpufreq",
1802 	.subsys		= &cpu_subsys,
1803 	.add_dev	= cpufreq_add_dev,
1804 	.remove_dev	= cpufreq_remove_dev,
1805 };
1806 
1807 /*
1808  * In case platform wants some specific frequency to be configured
1809  * during suspend..
1810  */
1811 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1812 {
1813 	int ret;
1814 
1815 	if (!policy->suspend_freq) {
1816 		pr_debug("%s: suspend_freq not defined\n", __func__);
1817 		return 0;
1818 	}
1819 
1820 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1821 			policy->suspend_freq);
1822 
1823 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1824 			CPUFREQ_RELATION_H);
1825 	if (ret)
1826 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1827 				__func__, policy->suspend_freq, ret);
1828 
1829 	return ret;
1830 }
1831 EXPORT_SYMBOL(cpufreq_generic_suspend);
1832 
1833 /**
1834  * cpufreq_suspend() - Suspend CPUFreq governors
1835  *
1836  * Called during system wide Suspend/Hibernate cycles for suspending governors
1837  * as some platforms can't change frequency after this point in suspend cycle.
1838  * Because some of the devices (like: i2c, regulators, etc) they use for
1839  * changing frequency are suspended quickly after this point.
1840  */
1841 void cpufreq_suspend(void)
1842 {
1843 	struct cpufreq_policy *policy;
1844 
1845 	if (!cpufreq_driver)
1846 		return;
1847 
1848 	if (!has_target() && !cpufreq_driver->suspend)
1849 		goto suspend;
1850 
1851 	pr_debug("%s: Suspending Governors\n", __func__);
1852 
1853 	for_each_active_policy(policy) {
1854 		if (has_target()) {
1855 			down_write(&policy->rwsem);
1856 			cpufreq_stop_governor(policy);
1857 			up_write(&policy->rwsem);
1858 		}
1859 
1860 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1861 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1862 				cpufreq_driver->name);
1863 	}
1864 
1865 suspend:
1866 	cpufreq_suspended = true;
1867 }
1868 
1869 /**
1870  * cpufreq_resume() - Resume CPUFreq governors
1871  *
1872  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1873  * are suspended with cpufreq_suspend().
1874  */
1875 void cpufreq_resume(void)
1876 {
1877 	struct cpufreq_policy *policy;
1878 	int ret;
1879 
1880 	if (!cpufreq_driver)
1881 		return;
1882 
1883 	if (unlikely(!cpufreq_suspended))
1884 		return;
1885 
1886 	cpufreq_suspended = false;
1887 
1888 	if (!has_target() && !cpufreq_driver->resume)
1889 		return;
1890 
1891 	pr_debug("%s: Resuming Governors\n", __func__);
1892 
1893 	for_each_active_policy(policy) {
1894 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1895 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1896 				policy);
1897 		} else if (has_target()) {
1898 			down_write(&policy->rwsem);
1899 			ret = cpufreq_start_governor(policy);
1900 			up_write(&policy->rwsem);
1901 
1902 			if (ret)
1903 				pr_err("%s: Failed to start governor for policy: %p\n",
1904 				       __func__, policy);
1905 		}
1906 	}
1907 }
1908 
1909 /**
1910  *	cpufreq_get_current_driver - return current driver's name
1911  *
1912  *	Return the name string of the currently loaded cpufreq driver
1913  *	or NULL, if none.
1914  */
1915 const char *cpufreq_get_current_driver(void)
1916 {
1917 	if (cpufreq_driver)
1918 		return cpufreq_driver->name;
1919 
1920 	return NULL;
1921 }
1922 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1923 
1924 /**
1925  *	cpufreq_get_driver_data - return current driver data
1926  *
1927  *	Return the private data of the currently loaded cpufreq
1928  *	driver, or NULL if no cpufreq driver is loaded.
1929  */
1930 void *cpufreq_get_driver_data(void)
1931 {
1932 	if (cpufreq_driver)
1933 		return cpufreq_driver->driver_data;
1934 
1935 	return NULL;
1936 }
1937 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1938 
1939 /*********************************************************************
1940  *                     NOTIFIER LISTS INTERFACE                      *
1941  *********************************************************************/
1942 
1943 /**
1944  *	cpufreq_register_notifier - register a driver with cpufreq
1945  *	@nb: notifier function to register
1946  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1947  *
1948  *	Add a driver to one of two lists: either a list of drivers that
1949  *      are notified about clock rate changes (once before and once after
1950  *      the transition), or a list of drivers that are notified about
1951  *      changes in cpufreq policy.
1952  *
1953  *	This function may sleep, and has the same return conditions as
1954  *	blocking_notifier_chain_register.
1955  */
1956 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1957 {
1958 	int ret;
1959 
1960 	if (cpufreq_disabled())
1961 		return -EINVAL;
1962 
1963 	switch (list) {
1964 	case CPUFREQ_TRANSITION_NOTIFIER:
1965 		mutex_lock(&cpufreq_fast_switch_lock);
1966 
1967 		if (cpufreq_fast_switch_count > 0) {
1968 			mutex_unlock(&cpufreq_fast_switch_lock);
1969 			return -EBUSY;
1970 		}
1971 		ret = srcu_notifier_chain_register(
1972 				&cpufreq_transition_notifier_list, nb);
1973 		if (!ret)
1974 			cpufreq_fast_switch_count--;
1975 
1976 		mutex_unlock(&cpufreq_fast_switch_lock);
1977 		break;
1978 	case CPUFREQ_POLICY_NOTIFIER:
1979 		ret = blocking_notifier_chain_register(
1980 				&cpufreq_policy_notifier_list, nb);
1981 		break;
1982 	default:
1983 		ret = -EINVAL;
1984 	}
1985 
1986 	return ret;
1987 }
1988 EXPORT_SYMBOL(cpufreq_register_notifier);
1989 
1990 /**
1991  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1992  *	@nb: notifier block to be unregistered
1993  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1994  *
1995  *	Remove a driver from the CPU frequency notifier list.
1996  *
1997  *	This function may sleep, and has the same return conditions as
1998  *	blocking_notifier_chain_unregister.
1999  */
2000 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2001 {
2002 	int ret;
2003 
2004 	if (cpufreq_disabled())
2005 		return -EINVAL;
2006 
2007 	switch (list) {
2008 	case CPUFREQ_TRANSITION_NOTIFIER:
2009 		mutex_lock(&cpufreq_fast_switch_lock);
2010 
2011 		ret = srcu_notifier_chain_unregister(
2012 				&cpufreq_transition_notifier_list, nb);
2013 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2014 			cpufreq_fast_switch_count++;
2015 
2016 		mutex_unlock(&cpufreq_fast_switch_lock);
2017 		break;
2018 	case CPUFREQ_POLICY_NOTIFIER:
2019 		ret = blocking_notifier_chain_unregister(
2020 				&cpufreq_policy_notifier_list, nb);
2021 		break;
2022 	default:
2023 		ret = -EINVAL;
2024 	}
2025 
2026 	return ret;
2027 }
2028 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2029 
2030 
2031 /*********************************************************************
2032  *                              GOVERNORS                            *
2033  *********************************************************************/
2034 
2035 /**
2036  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2037  * @policy: cpufreq policy to switch the frequency for.
2038  * @target_freq: New frequency to set (may be approximate).
2039  *
2040  * Carry out a fast frequency switch without sleeping.
2041  *
2042  * The driver's ->fast_switch() callback invoked by this function must be
2043  * suitable for being called from within RCU-sched read-side critical sections
2044  * and it is expected to select the minimum available frequency greater than or
2045  * equal to @target_freq (CPUFREQ_RELATION_L).
2046  *
2047  * This function must not be called if policy->fast_switch_enabled is unset.
2048  *
2049  * Governors calling this function must guarantee that it will never be invoked
2050  * twice in parallel for the same policy and that it will never be called in
2051  * parallel with either ->target() or ->target_index() for the same policy.
2052  *
2053  * Returns the actual frequency set for the CPU.
2054  *
2055  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2056  * error condition, the hardware configuration must be preserved.
2057  */
2058 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2059 					unsigned int target_freq)
2060 {
2061 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2062 
2063 	return cpufreq_driver->fast_switch(policy, target_freq);
2064 }
2065 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2066 
2067 /* Must set freqs->new to intermediate frequency */
2068 static int __target_intermediate(struct cpufreq_policy *policy,
2069 				 struct cpufreq_freqs *freqs, int index)
2070 {
2071 	int ret;
2072 
2073 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2074 
2075 	/* We don't need to switch to intermediate freq */
2076 	if (!freqs->new)
2077 		return 0;
2078 
2079 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2080 		 __func__, policy->cpu, freqs->old, freqs->new);
2081 
2082 	cpufreq_freq_transition_begin(policy, freqs);
2083 	ret = cpufreq_driver->target_intermediate(policy, index);
2084 	cpufreq_freq_transition_end(policy, freqs, ret);
2085 
2086 	if (ret)
2087 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2088 		       __func__, ret);
2089 
2090 	return ret;
2091 }
2092 
2093 static int __target_index(struct cpufreq_policy *policy, int index)
2094 {
2095 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2096 	unsigned int intermediate_freq = 0;
2097 	unsigned int newfreq = policy->freq_table[index].frequency;
2098 	int retval = -EINVAL;
2099 	bool notify;
2100 
2101 	if (newfreq == policy->cur)
2102 		return 0;
2103 
2104 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2105 	if (notify) {
2106 		/* Handle switching to intermediate frequency */
2107 		if (cpufreq_driver->get_intermediate) {
2108 			retval = __target_intermediate(policy, &freqs, index);
2109 			if (retval)
2110 				return retval;
2111 
2112 			intermediate_freq = freqs.new;
2113 			/* Set old freq to intermediate */
2114 			if (intermediate_freq)
2115 				freqs.old = freqs.new;
2116 		}
2117 
2118 		freqs.new = newfreq;
2119 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2120 			 __func__, policy->cpu, freqs.old, freqs.new);
2121 
2122 		cpufreq_freq_transition_begin(policy, &freqs);
2123 	}
2124 
2125 	retval = cpufreq_driver->target_index(policy, index);
2126 	if (retval)
2127 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2128 		       retval);
2129 
2130 	if (notify) {
2131 		cpufreq_freq_transition_end(policy, &freqs, retval);
2132 
2133 		/*
2134 		 * Failed after setting to intermediate freq? Driver should have
2135 		 * reverted back to initial frequency and so should we. Check
2136 		 * here for intermediate_freq instead of get_intermediate, in
2137 		 * case we haven't switched to intermediate freq at all.
2138 		 */
2139 		if (unlikely(retval && intermediate_freq)) {
2140 			freqs.old = intermediate_freq;
2141 			freqs.new = policy->restore_freq;
2142 			cpufreq_freq_transition_begin(policy, &freqs);
2143 			cpufreq_freq_transition_end(policy, &freqs, 0);
2144 		}
2145 	}
2146 
2147 	return retval;
2148 }
2149 
2150 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2151 			    unsigned int target_freq,
2152 			    unsigned int relation)
2153 {
2154 	unsigned int old_target_freq = target_freq;
2155 	int index;
2156 
2157 	if (cpufreq_disabled())
2158 		return -ENODEV;
2159 
2160 	/* Make sure that target_freq is within supported range */
2161 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2162 
2163 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2164 		 policy->cpu, target_freq, relation, old_target_freq);
2165 
2166 	/*
2167 	 * This might look like a redundant call as we are checking it again
2168 	 * after finding index. But it is left intentionally for cases where
2169 	 * exactly same freq is called again and so we can save on few function
2170 	 * calls.
2171 	 */
2172 	if (target_freq == policy->cur)
2173 		return 0;
2174 
2175 	/* Save last value to restore later on errors */
2176 	policy->restore_freq = policy->cur;
2177 
2178 	if (cpufreq_driver->target)
2179 		return cpufreq_driver->target(policy, target_freq, relation);
2180 
2181 	if (!cpufreq_driver->target_index)
2182 		return -EINVAL;
2183 
2184 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2185 
2186 	return __target_index(policy, index);
2187 }
2188 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2189 
2190 int cpufreq_driver_target(struct cpufreq_policy *policy,
2191 			  unsigned int target_freq,
2192 			  unsigned int relation)
2193 {
2194 	int ret;
2195 
2196 	down_write(&policy->rwsem);
2197 
2198 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2199 
2200 	up_write(&policy->rwsem);
2201 
2202 	return ret;
2203 }
2204 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2205 
2206 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2207 {
2208 	return NULL;
2209 }
2210 
2211 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2212 {
2213 	int ret;
2214 
2215 	/* Don't start any governor operations if we are entering suspend */
2216 	if (cpufreq_suspended)
2217 		return 0;
2218 	/*
2219 	 * Governor might not be initiated here if ACPI _PPC changed
2220 	 * notification happened, so check it.
2221 	 */
2222 	if (!policy->governor)
2223 		return -EINVAL;
2224 
2225 	/* Platform doesn't want dynamic frequency switching ? */
2226 	if (policy->governor->dynamic_switching &&
2227 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2228 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2229 
2230 		if (gov) {
2231 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2232 				policy->governor->name, gov->name);
2233 			policy->governor = gov;
2234 		} else {
2235 			return -EINVAL;
2236 		}
2237 	}
2238 
2239 	if (!try_module_get(policy->governor->owner))
2240 		return -EINVAL;
2241 
2242 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2243 
2244 	if (policy->governor->init) {
2245 		ret = policy->governor->init(policy);
2246 		if (ret) {
2247 			module_put(policy->governor->owner);
2248 			return ret;
2249 		}
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2256 {
2257 	if (cpufreq_suspended || !policy->governor)
2258 		return;
2259 
2260 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2261 
2262 	if (policy->governor->exit)
2263 		policy->governor->exit(policy);
2264 
2265 	module_put(policy->governor->owner);
2266 }
2267 
2268 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2269 {
2270 	int ret;
2271 
2272 	if (cpufreq_suspended)
2273 		return 0;
2274 
2275 	if (!policy->governor)
2276 		return -EINVAL;
2277 
2278 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2279 
2280 	if (cpufreq_driver->get)
2281 		cpufreq_verify_current_freq(policy, false);
2282 
2283 	if (policy->governor->start) {
2284 		ret = policy->governor->start(policy);
2285 		if (ret)
2286 			return ret;
2287 	}
2288 
2289 	if (policy->governor->limits)
2290 		policy->governor->limits(policy);
2291 
2292 	return 0;
2293 }
2294 
2295 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2296 {
2297 	if (cpufreq_suspended || !policy->governor)
2298 		return;
2299 
2300 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2301 
2302 	if (policy->governor->stop)
2303 		policy->governor->stop(policy);
2304 }
2305 
2306 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2307 {
2308 	if (cpufreq_suspended || !policy->governor)
2309 		return;
2310 
2311 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2312 
2313 	if (policy->governor->limits)
2314 		policy->governor->limits(policy);
2315 }
2316 
2317 int cpufreq_register_governor(struct cpufreq_governor *governor)
2318 {
2319 	int err;
2320 
2321 	if (!governor)
2322 		return -EINVAL;
2323 
2324 	if (cpufreq_disabled())
2325 		return -ENODEV;
2326 
2327 	mutex_lock(&cpufreq_governor_mutex);
2328 
2329 	err = -EBUSY;
2330 	if (!find_governor(governor->name)) {
2331 		err = 0;
2332 		list_add(&governor->governor_list, &cpufreq_governor_list);
2333 	}
2334 
2335 	mutex_unlock(&cpufreq_governor_mutex);
2336 	return err;
2337 }
2338 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2339 
2340 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2341 {
2342 	struct cpufreq_policy *policy;
2343 	unsigned long flags;
2344 
2345 	if (!governor)
2346 		return;
2347 
2348 	if (cpufreq_disabled())
2349 		return;
2350 
2351 	/* clear last_governor for all inactive policies */
2352 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2353 	for_each_inactive_policy(policy) {
2354 		if (!strcmp(policy->last_governor, governor->name)) {
2355 			policy->governor = NULL;
2356 			strcpy(policy->last_governor, "\0");
2357 		}
2358 	}
2359 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2360 
2361 	mutex_lock(&cpufreq_governor_mutex);
2362 	list_del(&governor->governor_list);
2363 	mutex_unlock(&cpufreq_governor_mutex);
2364 }
2365 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2366 
2367 
2368 /*********************************************************************
2369  *                          POLICY INTERFACE                         *
2370  *********************************************************************/
2371 
2372 /**
2373  * cpufreq_get_policy - get the current cpufreq_policy
2374  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2375  *	is written
2376  *
2377  * Reads the current cpufreq policy.
2378  */
2379 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2380 {
2381 	struct cpufreq_policy *cpu_policy;
2382 	if (!policy)
2383 		return -EINVAL;
2384 
2385 	cpu_policy = cpufreq_cpu_get(cpu);
2386 	if (!cpu_policy)
2387 		return -EINVAL;
2388 
2389 	memcpy(policy, cpu_policy, sizeof(*policy));
2390 
2391 	cpufreq_cpu_put(cpu_policy);
2392 	return 0;
2393 }
2394 EXPORT_SYMBOL(cpufreq_get_policy);
2395 
2396 /**
2397  * cpufreq_set_policy - Modify cpufreq policy parameters.
2398  * @policy: Policy object to modify.
2399  * @new_gov: Policy governor pointer.
2400  * @new_pol: Policy value (for drivers with built-in governors).
2401  *
2402  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2403  * limits to be set for the policy, update @policy with the verified limits
2404  * values and either invoke the driver's ->setpolicy() callback (if present) or
2405  * carry out a governor update for @policy.  That is, run the current governor's
2406  * ->limits() callback (if @new_gov points to the same object as the one in
2407  * @policy) or replace the governor for @policy with @new_gov.
2408  *
2409  * The cpuinfo part of @policy is not updated by this function.
2410  */
2411 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2412 			      struct cpufreq_governor *new_gov,
2413 			      unsigned int new_pol)
2414 {
2415 	struct cpufreq_policy_data new_data;
2416 	struct cpufreq_governor *old_gov;
2417 	int ret;
2418 
2419 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2420 	new_data.freq_table = policy->freq_table;
2421 	new_data.cpu = policy->cpu;
2422 	/*
2423 	 * PM QoS framework collects all the requests from users and provide us
2424 	 * the final aggregated value here.
2425 	 */
2426 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2427 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2428 
2429 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2430 		 new_data.cpu, new_data.min, new_data.max);
2431 
2432 	/*
2433 	 * Verify that the CPU speed can be set within these limits and make sure
2434 	 * that min <= max.
2435 	 */
2436 	ret = cpufreq_driver->verify(&new_data);
2437 	if (ret)
2438 		return ret;
2439 
2440 	policy->min = new_data.min;
2441 	policy->max = new_data.max;
2442 	trace_cpu_frequency_limits(policy);
2443 
2444 	policy->cached_target_freq = UINT_MAX;
2445 
2446 	pr_debug("new min and max freqs are %u - %u kHz\n",
2447 		 policy->min, policy->max);
2448 
2449 	if (cpufreq_driver->setpolicy) {
2450 		policy->policy = new_pol;
2451 		pr_debug("setting range\n");
2452 		return cpufreq_driver->setpolicy(policy);
2453 	}
2454 
2455 	if (new_gov == policy->governor) {
2456 		pr_debug("governor limits update\n");
2457 		cpufreq_governor_limits(policy);
2458 		return 0;
2459 	}
2460 
2461 	pr_debug("governor switch\n");
2462 
2463 	/* save old, working values */
2464 	old_gov = policy->governor;
2465 	/* end old governor */
2466 	if (old_gov) {
2467 		cpufreq_stop_governor(policy);
2468 		cpufreq_exit_governor(policy);
2469 	}
2470 
2471 	/* start new governor */
2472 	policy->governor = new_gov;
2473 	ret = cpufreq_init_governor(policy);
2474 	if (!ret) {
2475 		ret = cpufreq_start_governor(policy);
2476 		if (!ret) {
2477 			pr_debug("governor change\n");
2478 			sched_cpufreq_governor_change(policy, old_gov);
2479 			return 0;
2480 		}
2481 		cpufreq_exit_governor(policy);
2482 	}
2483 
2484 	/* new governor failed, so re-start old one */
2485 	pr_debug("starting governor %s failed\n", policy->governor->name);
2486 	if (old_gov) {
2487 		policy->governor = old_gov;
2488 		if (cpufreq_init_governor(policy))
2489 			policy->governor = NULL;
2490 		else
2491 			cpufreq_start_governor(policy);
2492 	}
2493 
2494 	return ret;
2495 }
2496 
2497 /**
2498  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2499  * @cpu: CPU to re-evaluate the policy for.
2500  *
2501  * Update the current frequency for the cpufreq policy of @cpu and use
2502  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2503  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2504  * for the policy in question, among other things.
2505  */
2506 void cpufreq_update_policy(unsigned int cpu)
2507 {
2508 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2509 
2510 	if (!policy)
2511 		return;
2512 
2513 	/*
2514 	 * BIOS might change freq behind our back
2515 	 * -> ask driver for current freq and notify governors about a change
2516 	 */
2517 	if (cpufreq_driver->get && has_target() &&
2518 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2519 		goto unlock;
2520 
2521 	refresh_frequency_limits(policy);
2522 
2523 unlock:
2524 	cpufreq_cpu_release(policy);
2525 }
2526 EXPORT_SYMBOL(cpufreq_update_policy);
2527 
2528 /**
2529  * cpufreq_update_limits - Update policy limits for a given CPU.
2530  * @cpu: CPU to update the policy limits for.
2531  *
2532  * Invoke the driver's ->update_limits callback if present or call
2533  * cpufreq_update_policy() for @cpu.
2534  */
2535 void cpufreq_update_limits(unsigned int cpu)
2536 {
2537 	if (cpufreq_driver->update_limits)
2538 		cpufreq_driver->update_limits(cpu);
2539 	else
2540 		cpufreq_update_policy(cpu);
2541 }
2542 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2543 
2544 /*********************************************************************
2545  *               BOOST						     *
2546  *********************************************************************/
2547 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2548 {
2549 	int ret;
2550 
2551 	if (!policy->freq_table)
2552 		return -ENXIO;
2553 
2554 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2555 	if (ret) {
2556 		pr_err("%s: Policy frequency update failed\n", __func__);
2557 		return ret;
2558 	}
2559 
2560 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2561 	if (ret < 0)
2562 		return ret;
2563 
2564 	return 0;
2565 }
2566 
2567 int cpufreq_boost_trigger_state(int state)
2568 {
2569 	struct cpufreq_policy *policy;
2570 	unsigned long flags;
2571 	int ret = 0;
2572 
2573 	if (cpufreq_driver->boost_enabled == state)
2574 		return 0;
2575 
2576 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2577 	cpufreq_driver->boost_enabled = state;
2578 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2579 
2580 	get_online_cpus();
2581 	for_each_active_policy(policy) {
2582 		ret = cpufreq_driver->set_boost(policy, state);
2583 		if (ret)
2584 			goto err_reset_state;
2585 	}
2586 	put_online_cpus();
2587 
2588 	return 0;
2589 
2590 err_reset_state:
2591 	put_online_cpus();
2592 
2593 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2594 	cpufreq_driver->boost_enabled = !state;
2595 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2596 
2597 	pr_err("%s: Cannot %s BOOST\n",
2598 	       __func__, state ? "enable" : "disable");
2599 
2600 	return ret;
2601 }
2602 
2603 static bool cpufreq_boost_supported(void)
2604 {
2605 	return cpufreq_driver->set_boost;
2606 }
2607 
2608 static int create_boost_sysfs_file(void)
2609 {
2610 	int ret;
2611 
2612 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2613 	if (ret)
2614 		pr_err("%s: cannot register global BOOST sysfs file\n",
2615 		       __func__);
2616 
2617 	return ret;
2618 }
2619 
2620 static void remove_boost_sysfs_file(void)
2621 {
2622 	if (cpufreq_boost_supported())
2623 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2624 }
2625 
2626 int cpufreq_enable_boost_support(void)
2627 {
2628 	if (!cpufreq_driver)
2629 		return -EINVAL;
2630 
2631 	if (cpufreq_boost_supported())
2632 		return 0;
2633 
2634 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2635 
2636 	/* This will get removed on driver unregister */
2637 	return create_boost_sysfs_file();
2638 }
2639 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2640 
2641 int cpufreq_boost_enabled(void)
2642 {
2643 	return cpufreq_driver->boost_enabled;
2644 }
2645 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2646 
2647 /*********************************************************************
2648  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2649  *********************************************************************/
2650 static enum cpuhp_state hp_online;
2651 
2652 static int cpuhp_cpufreq_online(unsigned int cpu)
2653 {
2654 	cpufreq_online(cpu);
2655 
2656 	return 0;
2657 }
2658 
2659 static int cpuhp_cpufreq_offline(unsigned int cpu)
2660 {
2661 	cpufreq_offline(cpu);
2662 
2663 	return 0;
2664 }
2665 
2666 /**
2667  * cpufreq_register_driver - register a CPU Frequency driver
2668  * @driver_data: A struct cpufreq_driver containing the values#
2669  * submitted by the CPU Frequency driver.
2670  *
2671  * Registers a CPU Frequency driver to this core code. This code
2672  * returns zero on success, -EEXIST when another driver got here first
2673  * (and isn't unregistered in the meantime).
2674  *
2675  */
2676 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2677 {
2678 	unsigned long flags;
2679 	int ret;
2680 
2681 	if (cpufreq_disabled())
2682 		return -ENODEV;
2683 
2684 	/*
2685 	 * The cpufreq core depends heavily on the availability of device
2686 	 * structure, make sure they are available before proceeding further.
2687 	 */
2688 	if (!get_cpu_device(0))
2689 		return -EPROBE_DEFER;
2690 
2691 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2692 	    !(driver_data->setpolicy || driver_data->target_index ||
2693 		    driver_data->target) ||
2694 	     (driver_data->setpolicy && (driver_data->target_index ||
2695 		    driver_data->target)) ||
2696 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2697 	     (!driver_data->online != !driver_data->offline))
2698 		return -EINVAL;
2699 
2700 	pr_debug("trying to register driver %s\n", driver_data->name);
2701 
2702 	/* Protect against concurrent CPU online/offline. */
2703 	cpus_read_lock();
2704 
2705 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2706 	if (cpufreq_driver) {
2707 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2708 		ret = -EEXIST;
2709 		goto out;
2710 	}
2711 	cpufreq_driver = driver_data;
2712 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2713 
2714 	if (driver_data->setpolicy)
2715 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2716 
2717 	if (cpufreq_boost_supported()) {
2718 		ret = create_boost_sysfs_file();
2719 		if (ret)
2720 			goto err_null_driver;
2721 	}
2722 
2723 	ret = subsys_interface_register(&cpufreq_interface);
2724 	if (ret)
2725 		goto err_boost_unreg;
2726 
2727 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2728 	    list_empty(&cpufreq_policy_list)) {
2729 		/* if all ->init() calls failed, unregister */
2730 		ret = -ENODEV;
2731 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2732 			 driver_data->name);
2733 		goto err_if_unreg;
2734 	}
2735 
2736 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2737 						   "cpufreq:online",
2738 						   cpuhp_cpufreq_online,
2739 						   cpuhp_cpufreq_offline);
2740 	if (ret < 0)
2741 		goto err_if_unreg;
2742 	hp_online = ret;
2743 	ret = 0;
2744 
2745 	pr_debug("driver %s up and running\n", driver_data->name);
2746 	goto out;
2747 
2748 err_if_unreg:
2749 	subsys_interface_unregister(&cpufreq_interface);
2750 err_boost_unreg:
2751 	remove_boost_sysfs_file();
2752 err_null_driver:
2753 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2754 	cpufreq_driver = NULL;
2755 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2756 out:
2757 	cpus_read_unlock();
2758 	return ret;
2759 }
2760 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2761 
2762 /**
2763  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2764  *
2765  * Unregister the current CPUFreq driver. Only call this if you have
2766  * the right to do so, i.e. if you have succeeded in initialising before!
2767  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2768  * currently not initialised.
2769  */
2770 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2771 {
2772 	unsigned long flags;
2773 
2774 	if (!cpufreq_driver || (driver != cpufreq_driver))
2775 		return -EINVAL;
2776 
2777 	pr_debug("unregistering driver %s\n", driver->name);
2778 
2779 	/* Protect against concurrent cpu hotplug */
2780 	cpus_read_lock();
2781 	subsys_interface_unregister(&cpufreq_interface);
2782 	remove_boost_sysfs_file();
2783 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2784 
2785 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2786 
2787 	cpufreq_driver = NULL;
2788 
2789 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2790 	cpus_read_unlock();
2791 
2792 	return 0;
2793 }
2794 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2795 
2796 static int __init cpufreq_core_init(void)
2797 {
2798 	struct cpufreq_governor *gov = cpufreq_default_governor();
2799 
2800 	if (cpufreq_disabled())
2801 		return -ENODEV;
2802 
2803 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2804 	BUG_ON(!cpufreq_global_kobject);
2805 
2806 	if (!strlen(default_governor))
2807 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2808 
2809 	return 0;
2810 }
2811 module_param(off, int, 0444);
2812 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2813 core_initcall(cpufreq_core_init);
2814