xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 2bb4059e075dcb8d5a2f8689bb661aa76c487ab0)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/cpu_cooling.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/slab.h>
30 #include <linux/suspend.h>
31 #include <linux/syscore_ops.h>
32 #include <linux/tick.h>
33 #include <trace/events/power.h>
34 
35 static LIST_HEAD(cpufreq_policy_list);
36 
37 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
38 {
39 	return cpumask_empty(policy->cpus);
40 }
41 
42 /* Macros to iterate over CPU policies */
43 #define for_each_suitable_policy(__policy, __active)			 \
44 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
45 		if ((__active) == !policy_is_inactive(__policy))
46 
47 #define for_each_active_policy(__policy)		\
48 	for_each_suitable_policy(__policy, true)
49 #define for_each_inactive_policy(__policy)		\
50 	for_each_suitable_policy(__policy, false)
51 
52 #define for_each_policy(__policy)			\
53 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
54 
55 /* Iterate over governors */
56 static LIST_HEAD(cpufreq_governor_list);
57 #define for_each_governor(__governor)				\
58 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
59 
60 /**
61  * The "cpufreq driver" - the arch- or hardware-dependent low
62  * level driver of CPUFreq support, and its spinlock. This lock
63  * also protects the cpufreq_cpu_data array.
64  */
65 static struct cpufreq_driver *cpufreq_driver;
66 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
67 static DEFINE_RWLOCK(cpufreq_driver_lock);
68 
69 /* Flag to suspend/resume CPUFreq governors */
70 static bool cpufreq_suspended;
71 
72 static inline bool has_target(void)
73 {
74 	return cpufreq_driver->target_index || cpufreq_driver->target;
75 }
76 
77 /* internal prototypes */
78 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
79 static int cpufreq_init_governor(struct cpufreq_policy *policy);
80 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
81 static int cpufreq_start_governor(struct cpufreq_policy *policy);
82 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
83 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
84 
85 /**
86  * Two notifier lists: the "policy" list is involved in the
87  * validation process for a new CPU frequency policy; the
88  * "transition" list for kernel code that needs to handle
89  * changes to devices when the CPU clock speed changes.
90  * The mutex locks both lists.
91  */
92 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
93 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
94 
95 static int off __read_mostly;
96 static int cpufreq_disabled(void)
97 {
98 	return off;
99 }
100 void disable_cpufreq(void)
101 {
102 	off = 1;
103 }
104 static DEFINE_MUTEX(cpufreq_governor_mutex);
105 
106 bool have_governor_per_policy(void)
107 {
108 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
109 }
110 EXPORT_SYMBOL_GPL(have_governor_per_policy);
111 
112 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
113 {
114 	if (have_governor_per_policy())
115 		return &policy->kobj;
116 	else
117 		return cpufreq_global_kobject;
118 }
119 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
120 
121 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
122 {
123 	u64 idle_time;
124 	u64 cur_wall_time;
125 	u64 busy_time;
126 
127 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
128 
129 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
130 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
131 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
132 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
133 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
134 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
135 
136 	idle_time = cur_wall_time - busy_time;
137 	if (wall)
138 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
139 
140 	return div_u64(idle_time, NSEC_PER_USEC);
141 }
142 
143 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
144 {
145 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
146 
147 	if (idle_time == -1ULL)
148 		return get_cpu_idle_time_jiffy(cpu, wall);
149 	else if (!io_busy)
150 		idle_time += get_cpu_iowait_time_us(cpu, wall);
151 
152 	return idle_time;
153 }
154 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
155 
156 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
157 		unsigned long max_freq)
158 {
159 }
160 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
161 
162 /*
163  * This is a generic cpufreq init() routine which can be used by cpufreq
164  * drivers of SMP systems. It will do following:
165  * - validate & show freq table passed
166  * - set policies transition latency
167  * - policy->cpus with all possible CPUs
168  */
169 int cpufreq_generic_init(struct cpufreq_policy *policy,
170 		struct cpufreq_frequency_table *table,
171 		unsigned int transition_latency)
172 {
173 	policy->freq_table = table;
174 	policy->cpuinfo.transition_latency = transition_latency;
175 
176 	/*
177 	 * The driver only supports the SMP configuration where all processors
178 	 * share the clock and voltage and clock.
179 	 */
180 	cpumask_setall(policy->cpus);
181 
182 	return 0;
183 }
184 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
185 
186 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
187 {
188 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
189 
190 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
191 }
192 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
193 
194 unsigned int cpufreq_generic_get(unsigned int cpu)
195 {
196 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
197 
198 	if (!policy || IS_ERR(policy->clk)) {
199 		pr_err("%s: No %s associated to cpu: %d\n",
200 		       __func__, policy ? "clk" : "policy", cpu);
201 		return 0;
202 	}
203 
204 	return clk_get_rate(policy->clk) / 1000;
205 }
206 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
207 
208 /**
209  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
210  *
211  * @cpu: cpu to find policy for.
212  *
213  * This returns policy for 'cpu', returns NULL if it doesn't exist.
214  * It also increments the kobject reference count to mark it busy and so would
215  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
216  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
217  * freed as that depends on the kobj count.
218  *
219  * Return: A valid policy on success, otherwise NULL on failure.
220  */
221 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
222 {
223 	struct cpufreq_policy *policy = NULL;
224 	unsigned long flags;
225 
226 	if (WARN_ON(cpu >= nr_cpu_ids))
227 		return NULL;
228 
229 	/* get the cpufreq driver */
230 	read_lock_irqsave(&cpufreq_driver_lock, flags);
231 
232 	if (cpufreq_driver) {
233 		/* get the CPU */
234 		policy = cpufreq_cpu_get_raw(cpu);
235 		if (policy)
236 			kobject_get(&policy->kobj);
237 	}
238 
239 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
240 
241 	return policy;
242 }
243 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
244 
245 /**
246  * cpufreq_cpu_put: Decrements the usage count of a policy
247  *
248  * @policy: policy earlier returned by cpufreq_cpu_get().
249  *
250  * This decrements the kobject reference count incremented earlier by calling
251  * cpufreq_cpu_get().
252  */
253 void cpufreq_cpu_put(struct cpufreq_policy *policy)
254 {
255 	kobject_put(&policy->kobj);
256 }
257 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
258 
259 /*********************************************************************
260  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
261  *********************************************************************/
262 
263 /**
264  * adjust_jiffies - adjust the system "loops_per_jiffy"
265  *
266  * This function alters the system "loops_per_jiffy" for the clock
267  * speed change. Note that loops_per_jiffy cannot be updated on SMP
268  * systems as each CPU might be scaled differently. So, use the arch
269  * per-CPU loops_per_jiffy value wherever possible.
270  */
271 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
272 {
273 #ifndef CONFIG_SMP
274 	static unsigned long l_p_j_ref;
275 	static unsigned int l_p_j_ref_freq;
276 
277 	if (ci->flags & CPUFREQ_CONST_LOOPS)
278 		return;
279 
280 	if (!l_p_j_ref_freq) {
281 		l_p_j_ref = loops_per_jiffy;
282 		l_p_j_ref_freq = ci->old;
283 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
284 			 l_p_j_ref, l_p_j_ref_freq);
285 	}
286 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
287 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
288 								ci->new);
289 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
290 			 loops_per_jiffy, ci->new);
291 	}
292 #endif
293 }
294 
295 /**
296  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
297  * @policy: cpufreq policy to enable fast frequency switching for.
298  * @freqs: contain details of the frequency update.
299  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
300  *
301  * This function calls the transition notifiers and the "adjust_jiffies"
302  * function. It is called twice on all CPU frequency changes that have
303  * external effects.
304  */
305 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
306 				      struct cpufreq_freqs *freqs,
307 				      unsigned int state)
308 {
309 	BUG_ON(irqs_disabled());
310 
311 	if (cpufreq_disabled())
312 		return;
313 
314 	freqs->flags = cpufreq_driver->flags;
315 	pr_debug("notification %u of frequency transition to %u kHz\n",
316 		 state, freqs->new);
317 
318 	switch (state) {
319 	case CPUFREQ_PRECHANGE:
320 		/*
321 		 * Detect if the driver reported a value as "old frequency"
322 		 * which is not equal to what the cpufreq core thinks is
323 		 * "old frequency".
324 		 */
325 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
326 			if (policy->cur && (policy->cur != freqs->old)) {
327 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
328 					 freqs->old, policy->cur);
329 				freqs->old = policy->cur;
330 			}
331 		}
332 
333 		for_each_cpu(freqs->cpu, policy->cpus) {
334 			srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
335 						 CPUFREQ_PRECHANGE, freqs);
336 		}
337 
338 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
339 		break;
340 
341 	case CPUFREQ_POSTCHANGE:
342 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
343 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
344 			 cpumask_pr_args(policy->cpus));
345 
346 		for_each_cpu(freqs->cpu, policy->cpus) {
347 			trace_cpu_frequency(freqs->new, freqs->cpu);
348 			srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
349 						 CPUFREQ_POSTCHANGE, freqs);
350 		}
351 
352 		cpufreq_stats_record_transition(policy, freqs->new);
353 		policy->cur = freqs->new;
354 	}
355 }
356 
357 /* Do post notifications when there are chances that transition has failed */
358 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
359 		struct cpufreq_freqs *freqs, int transition_failed)
360 {
361 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
362 	if (!transition_failed)
363 		return;
364 
365 	swap(freqs->old, freqs->new);
366 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
367 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
368 }
369 
370 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
371 		struct cpufreq_freqs *freqs)
372 {
373 
374 	/*
375 	 * Catch double invocations of _begin() which lead to self-deadlock.
376 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
377 	 * doesn't invoke _begin() on their behalf, and hence the chances of
378 	 * double invocations are very low. Moreover, there are scenarios
379 	 * where these checks can emit false-positive warnings in these
380 	 * drivers; so we avoid that by skipping them altogether.
381 	 */
382 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
383 				&& current == policy->transition_task);
384 
385 wait:
386 	wait_event(policy->transition_wait, !policy->transition_ongoing);
387 
388 	spin_lock(&policy->transition_lock);
389 
390 	if (unlikely(policy->transition_ongoing)) {
391 		spin_unlock(&policy->transition_lock);
392 		goto wait;
393 	}
394 
395 	policy->transition_ongoing = true;
396 	policy->transition_task = current;
397 
398 	spin_unlock(&policy->transition_lock);
399 
400 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
401 }
402 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
403 
404 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
405 		struct cpufreq_freqs *freqs, int transition_failed)
406 {
407 	if (WARN_ON(!policy->transition_ongoing))
408 		return;
409 
410 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
411 
412 	policy->transition_ongoing = false;
413 	policy->transition_task = NULL;
414 
415 	wake_up(&policy->transition_wait);
416 }
417 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
418 
419 /*
420  * Fast frequency switching status count.  Positive means "enabled", negative
421  * means "disabled" and 0 means "not decided yet".
422  */
423 static int cpufreq_fast_switch_count;
424 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
425 
426 static void cpufreq_list_transition_notifiers(void)
427 {
428 	struct notifier_block *nb;
429 
430 	pr_info("Registered transition notifiers:\n");
431 
432 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
433 
434 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
435 		pr_info("%pF\n", nb->notifier_call);
436 
437 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
438 }
439 
440 /**
441  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
442  * @policy: cpufreq policy to enable fast frequency switching for.
443  *
444  * Try to enable fast frequency switching for @policy.
445  *
446  * The attempt will fail if there is at least one transition notifier registered
447  * at this point, as fast frequency switching is quite fundamentally at odds
448  * with transition notifiers.  Thus if successful, it will make registration of
449  * transition notifiers fail going forward.
450  */
451 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
452 {
453 	lockdep_assert_held(&policy->rwsem);
454 
455 	if (!policy->fast_switch_possible)
456 		return;
457 
458 	mutex_lock(&cpufreq_fast_switch_lock);
459 	if (cpufreq_fast_switch_count >= 0) {
460 		cpufreq_fast_switch_count++;
461 		policy->fast_switch_enabled = true;
462 	} else {
463 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
464 			policy->cpu);
465 		cpufreq_list_transition_notifiers();
466 	}
467 	mutex_unlock(&cpufreq_fast_switch_lock);
468 }
469 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
470 
471 /**
472  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
473  * @policy: cpufreq policy to disable fast frequency switching for.
474  */
475 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
476 {
477 	mutex_lock(&cpufreq_fast_switch_lock);
478 	if (policy->fast_switch_enabled) {
479 		policy->fast_switch_enabled = false;
480 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
481 			cpufreq_fast_switch_count--;
482 	}
483 	mutex_unlock(&cpufreq_fast_switch_lock);
484 }
485 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
486 
487 /**
488  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
489  * one.
490  * @target_freq: target frequency to resolve.
491  *
492  * The target to driver frequency mapping is cached in the policy.
493  *
494  * Return: Lowest driver-supported frequency greater than or equal to the
495  * given target_freq, subject to policy (min/max) and driver limitations.
496  */
497 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
498 					 unsigned int target_freq)
499 {
500 	target_freq = clamp_val(target_freq, policy->min, policy->max);
501 	policy->cached_target_freq = target_freq;
502 
503 	if (cpufreq_driver->target_index) {
504 		int idx;
505 
506 		idx = cpufreq_frequency_table_target(policy, target_freq,
507 						     CPUFREQ_RELATION_L);
508 		policy->cached_resolved_idx = idx;
509 		return policy->freq_table[idx].frequency;
510 	}
511 
512 	if (cpufreq_driver->resolve_freq)
513 		return cpufreq_driver->resolve_freq(policy, target_freq);
514 
515 	return target_freq;
516 }
517 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
518 
519 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
520 {
521 	unsigned int latency;
522 
523 	if (policy->transition_delay_us)
524 		return policy->transition_delay_us;
525 
526 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
527 	if (latency) {
528 		/*
529 		 * For platforms that can change the frequency very fast (< 10
530 		 * us), the above formula gives a decent transition delay. But
531 		 * for platforms where transition_latency is in milliseconds, it
532 		 * ends up giving unrealistic values.
533 		 *
534 		 * Cap the default transition delay to 10 ms, which seems to be
535 		 * a reasonable amount of time after which we should reevaluate
536 		 * the frequency.
537 		 */
538 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
539 	}
540 
541 	return LATENCY_MULTIPLIER;
542 }
543 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
544 
545 /*********************************************************************
546  *                          SYSFS INTERFACE                          *
547  *********************************************************************/
548 static ssize_t show_boost(struct kobject *kobj,
549 			  struct kobj_attribute *attr, char *buf)
550 {
551 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
552 }
553 
554 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
555 			   const char *buf, size_t count)
556 {
557 	int ret, enable;
558 
559 	ret = sscanf(buf, "%d", &enable);
560 	if (ret != 1 || enable < 0 || enable > 1)
561 		return -EINVAL;
562 
563 	if (cpufreq_boost_trigger_state(enable)) {
564 		pr_err("%s: Cannot %s BOOST!\n",
565 		       __func__, enable ? "enable" : "disable");
566 		return -EINVAL;
567 	}
568 
569 	pr_debug("%s: cpufreq BOOST %s\n",
570 		 __func__, enable ? "enabled" : "disabled");
571 
572 	return count;
573 }
574 define_one_global_rw(boost);
575 
576 static struct cpufreq_governor *find_governor(const char *str_governor)
577 {
578 	struct cpufreq_governor *t;
579 
580 	for_each_governor(t)
581 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
582 			return t;
583 
584 	return NULL;
585 }
586 
587 /**
588  * cpufreq_parse_governor - parse a governor string
589  */
590 static int cpufreq_parse_governor(char *str_governor,
591 				  struct cpufreq_policy *policy)
592 {
593 	if (cpufreq_driver->setpolicy) {
594 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
595 			policy->policy = CPUFREQ_POLICY_PERFORMANCE;
596 			return 0;
597 		}
598 
599 		if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
600 			policy->policy = CPUFREQ_POLICY_POWERSAVE;
601 			return 0;
602 		}
603 	} else {
604 		struct cpufreq_governor *t;
605 
606 		mutex_lock(&cpufreq_governor_mutex);
607 
608 		t = find_governor(str_governor);
609 		if (!t) {
610 			int ret;
611 
612 			mutex_unlock(&cpufreq_governor_mutex);
613 
614 			ret = request_module("cpufreq_%s", str_governor);
615 			if (ret)
616 				return -EINVAL;
617 
618 			mutex_lock(&cpufreq_governor_mutex);
619 
620 			t = find_governor(str_governor);
621 		}
622 		if (t && !try_module_get(t->owner))
623 			t = NULL;
624 
625 		mutex_unlock(&cpufreq_governor_mutex);
626 
627 		if (t) {
628 			policy->governor = t;
629 			return 0;
630 		}
631 	}
632 
633 	return -EINVAL;
634 }
635 
636 /**
637  * cpufreq_per_cpu_attr_read() / show_##file_name() -
638  * print out cpufreq information
639  *
640  * Write out information from cpufreq_driver->policy[cpu]; object must be
641  * "unsigned int".
642  */
643 
644 #define show_one(file_name, object)			\
645 static ssize_t show_##file_name				\
646 (struct cpufreq_policy *policy, char *buf)		\
647 {							\
648 	return sprintf(buf, "%u\n", policy->object);	\
649 }
650 
651 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
652 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
653 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
654 show_one(scaling_min_freq, min);
655 show_one(scaling_max_freq, max);
656 
657 __weak unsigned int arch_freq_get_on_cpu(int cpu)
658 {
659 	return 0;
660 }
661 
662 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
663 {
664 	ssize_t ret;
665 	unsigned int freq;
666 
667 	freq = arch_freq_get_on_cpu(policy->cpu);
668 	if (freq)
669 		ret = sprintf(buf, "%u\n", freq);
670 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
671 			cpufreq_driver->get)
672 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
673 	else
674 		ret = sprintf(buf, "%u\n", policy->cur);
675 	return ret;
676 }
677 
678 static int cpufreq_set_policy(struct cpufreq_policy *policy,
679 				struct cpufreq_policy *new_policy);
680 
681 /**
682  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
683  */
684 #define store_one(file_name, object)			\
685 static ssize_t store_##file_name					\
686 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
687 {									\
688 	int ret, temp;							\
689 	struct cpufreq_policy new_policy;				\
690 									\
691 	memcpy(&new_policy, policy, sizeof(*policy));			\
692 	new_policy.min = policy->user_policy.min;			\
693 	new_policy.max = policy->user_policy.max;			\
694 									\
695 	ret = sscanf(buf, "%u", &new_policy.object);			\
696 	if (ret != 1)							\
697 		return -EINVAL;						\
698 									\
699 	temp = new_policy.object;					\
700 	ret = cpufreq_set_policy(policy, &new_policy);		\
701 	if (!ret)							\
702 		policy->user_policy.object = temp;			\
703 									\
704 	return ret ? ret : count;					\
705 }
706 
707 store_one(scaling_min_freq, min);
708 store_one(scaling_max_freq, max);
709 
710 /**
711  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
712  */
713 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
714 					char *buf)
715 {
716 	unsigned int cur_freq = __cpufreq_get(policy);
717 
718 	if (cur_freq)
719 		return sprintf(buf, "%u\n", cur_freq);
720 
721 	return sprintf(buf, "<unknown>\n");
722 }
723 
724 /**
725  * show_scaling_governor - show the current policy for the specified CPU
726  */
727 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
728 {
729 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
730 		return sprintf(buf, "powersave\n");
731 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
732 		return sprintf(buf, "performance\n");
733 	else if (policy->governor)
734 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
735 				policy->governor->name);
736 	return -EINVAL;
737 }
738 
739 /**
740  * store_scaling_governor - store policy for the specified CPU
741  */
742 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
743 					const char *buf, size_t count)
744 {
745 	int ret;
746 	char	str_governor[16];
747 	struct cpufreq_policy new_policy;
748 
749 	memcpy(&new_policy, policy, sizeof(*policy));
750 
751 	ret = sscanf(buf, "%15s", str_governor);
752 	if (ret != 1)
753 		return -EINVAL;
754 
755 	if (cpufreq_parse_governor(str_governor, &new_policy))
756 		return -EINVAL;
757 
758 	ret = cpufreq_set_policy(policy, &new_policy);
759 
760 	if (new_policy.governor)
761 		module_put(new_policy.governor->owner);
762 
763 	return ret ? ret : count;
764 }
765 
766 /**
767  * show_scaling_driver - show the cpufreq driver currently loaded
768  */
769 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
770 {
771 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
772 }
773 
774 /**
775  * show_scaling_available_governors - show the available CPUfreq governors
776  */
777 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
778 						char *buf)
779 {
780 	ssize_t i = 0;
781 	struct cpufreq_governor *t;
782 
783 	if (!has_target()) {
784 		i += sprintf(buf, "performance powersave");
785 		goto out;
786 	}
787 
788 	for_each_governor(t) {
789 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
790 		    - (CPUFREQ_NAME_LEN + 2)))
791 			goto out;
792 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
793 	}
794 out:
795 	i += sprintf(&buf[i], "\n");
796 	return i;
797 }
798 
799 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
800 {
801 	ssize_t i = 0;
802 	unsigned int cpu;
803 
804 	for_each_cpu(cpu, mask) {
805 		if (i)
806 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
807 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
808 		if (i >= (PAGE_SIZE - 5))
809 			break;
810 	}
811 	i += sprintf(&buf[i], "\n");
812 	return i;
813 }
814 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
815 
816 /**
817  * show_related_cpus - show the CPUs affected by each transition even if
818  * hw coordination is in use
819  */
820 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
821 {
822 	return cpufreq_show_cpus(policy->related_cpus, buf);
823 }
824 
825 /**
826  * show_affected_cpus - show the CPUs affected by each transition
827  */
828 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
829 {
830 	return cpufreq_show_cpus(policy->cpus, buf);
831 }
832 
833 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
834 					const char *buf, size_t count)
835 {
836 	unsigned int freq = 0;
837 	unsigned int ret;
838 
839 	if (!policy->governor || !policy->governor->store_setspeed)
840 		return -EINVAL;
841 
842 	ret = sscanf(buf, "%u", &freq);
843 	if (ret != 1)
844 		return -EINVAL;
845 
846 	policy->governor->store_setspeed(policy, freq);
847 
848 	return count;
849 }
850 
851 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
852 {
853 	if (!policy->governor || !policy->governor->show_setspeed)
854 		return sprintf(buf, "<unsupported>\n");
855 
856 	return policy->governor->show_setspeed(policy, buf);
857 }
858 
859 /**
860  * show_bios_limit - show the current cpufreq HW/BIOS limitation
861  */
862 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
863 {
864 	unsigned int limit;
865 	int ret;
866 	if (cpufreq_driver->bios_limit) {
867 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
868 		if (!ret)
869 			return sprintf(buf, "%u\n", limit);
870 	}
871 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
872 }
873 
874 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
875 cpufreq_freq_attr_ro(cpuinfo_min_freq);
876 cpufreq_freq_attr_ro(cpuinfo_max_freq);
877 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
878 cpufreq_freq_attr_ro(scaling_available_governors);
879 cpufreq_freq_attr_ro(scaling_driver);
880 cpufreq_freq_attr_ro(scaling_cur_freq);
881 cpufreq_freq_attr_ro(bios_limit);
882 cpufreq_freq_attr_ro(related_cpus);
883 cpufreq_freq_attr_ro(affected_cpus);
884 cpufreq_freq_attr_rw(scaling_min_freq);
885 cpufreq_freq_attr_rw(scaling_max_freq);
886 cpufreq_freq_attr_rw(scaling_governor);
887 cpufreq_freq_attr_rw(scaling_setspeed);
888 
889 static struct attribute *default_attrs[] = {
890 	&cpuinfo_min_freq.attr,
891 	&cpuinfo_max_freq.attr,
892 	&cpuinfo_transition_latency.attr,
893 	&scaling_min_freq.attr,
894 	&scaling_max_freq.attr,
895 	&affected_cpus.attr,
896 	&related_cpus.attr,
897 	&scaling_governor.attr,
898 	&scaling_driver.attr,
899 	&scaling_available_governors.attr,
900 	&scaling_setspeed.attr,
901 	NULL
902 };
903 
904 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
905 #define to_attr(a) container_of(a, struct freq_attr, attr)
906 
907 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
908 {
909 	struct cpufreq_policy *policy = to_policy(kobj);
910 	struct freq_attr *fattr = to_attr(attr);
911 	ssize_t ret;
912 
913 	down_read(&policy->rwsem);
914 	ret = fattr->show(policy, buf);
915 	up_read(&policy->rwsem);
916 
917 	return ret;
918 }
919 
920 static ssize_t store(struct kobject *kobj, struct attribute *attr,
921 		     const char *buf, size_t count)
922 {
923 	struct cpufreq_policy *policy = to_policy(kobj);
924 	struct freq_attr *fattr = to_attr(attr);
925 	ssize_t ret = -EINVAL;
926 
927 	/*
928 	 * cpus_read_trylock() is used here to work around a circular lock
929 	 * dependency problem with respect to the cpufreq_register_driver().
930 	 */
931 	if (!cpus_read_trylock())
932 		return -EBUSY;
933 
934 	if (cpu_online(policy->cpu)) {
935 		down_write(&policy->rwsem);
936 		ret = fattr->store(policy, buf, count);
937 		up_write(&policy->rwsem);
938 	}
939 
940 	cpus_read_unlock();
941 
942 	return ret;
943 }
944 
945 static void cpufreq_sysfs_release(struct kobject *kobj)
946 {
947 	struct cpufreq_policy *policy = to_policy(kobj);
948 	pr_debug("last reference is dropped\n");
949 	complete(&policy->kobj_unregister);
950 }
951 
952 static const struct sysfs_ops sysfs_ops = {
953 	.show	= show,
954 	.store	= store,
955 };
956 
957 static struct kobj_type ktype_cpufreq = {
958 	.sysfs_ops	= &sysfs_ops,
959 	.default_attrs	= default_attrs,
960 	.release	= cpufreq_sysfs_release,
961 };
962 
963 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
964 {
965 	struct device *dev = get_cpu_device(cpu);
966 
967 	if (!dev)
968 		return;
969 
970 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
971 		return;
972 
973 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
974 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
975 		dev_err(dev, "cpufreq symlink creation failed\n");
976 }
977 
978 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
979 				   struct device *dev)
980 {
981 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
982 	sysfs_remove_link(&dev->kobj, "cpufreq");
983 }
984 
985 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
986 {
987 	struct freq_attr **drv_attr;
988 	int ret = 0;
989 
990 	/* set up files for this cpu device */
991 	drv_attr = cpufreq_driver->attr;
992 	while (drv_attr && *drv_attr) {
993 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
994 		if (ret)
995 			return ret;
996 		drv_attr++;
997 	}
998 	if (cpufreq_driver->get) {
999 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1000 		if (ret)
1001 			return ret;
1002 	}
1003 
1004 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1005 	if (ret)
1006 		return ret;
1007 
1008 	if (cpufreq_driver->bios_limit) {
1009 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1010 		if (ret)
1011 			return ret;
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1018 {
1019 	return NULL;
1020 }
1021 
1022 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1023 {
1024 	struct cpufreq_governor *gov = NULL;
1025 	struct cpufreq_policy new_policy;
1026 
1027 	memcpy(&new_policy, policy, sizeof(*policy));
1028 
1029 	/* Update governor of new_policy to the governor used before hotplug */
1030 	gov = find_governor(policy->last_governor);
1031 	if (gov) {
1032 		pr_debug("Restoring governor %s for cpu %d\n",
1033 				policy->governor->name, policy->cpu);
1034 	} else {
1035 		gov = cpufreq_default_governor();
1036 		if (!gov)
1037 			return -ENODATA;
1038 	}
1039 
1040 	new_policy.governor = gov;
1041 
1042 	/* Use the default policy if there is no last_policy. */
1043 	if (cpufreq_driver->setpolicy) {
1044 		if (policy->last_policy)
1045 			new_policy.policy = policy->last_policy;
1046 		else
1047 			cpufreq_parse_governor(gov->name, &new_policy);
1048 	}
1049 	/* set default policy */
1050 	return cpufreq_set_policy(policy, &new_policy);
1051 }
1052 
1053 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1054 {
1055 	int ret = 0;
1056 
1057 	/* Has this CPU been taken care of already? */
1058 	if (cpumask_test_cpu(cpu, policy->cpus))
1059 		return 0;
1060 
1061 	down_write(&policy->rwsem);
1062 	if (has_target())
1063 		cpufreq_stop_governor(policy);
1064 
1065 	cpumask_set_cpu(cpu, policy->cpus);
1066 
1067 	if (has_target()) {
1068 		ret = cpufreq_start_governor(policy);
1069 		if (ret)
1070 			pr_err("%s: Failed to start governor\n", __func__);
1071 	}
1072 	up_write(&policy->rwsem);
1073 	return ret;
1074 }
1075 
1076 static void handle_update(struct work_struct *work)
1077 {
1078 	struct cpufreq_policy *policy =
1079 		container_of(work, struct cpufreq_policy, update);
1080 	unsigned int cpu = policy->cpu;
1081 	pr_debug("handle_update for cpu %u called\n", cpu);
1082 	cpufreq_update_policy(cpu);
1083 }
1084 
1085 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1086 {
1087 	struct cpufreq_policy *policy;
1088 	int ret;
1089 
1090 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1091 	if (!policy)
1092 		return NULL;
1093 
1094 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1095 		goto err_free_policy;
1096 
1097 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1098 		goto err_free_cpumask;
1099 
1100 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1101 		goto err_free_rcpumask;
1102 
1103 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1104 				   cpufreq_global_kobject, "policy%u", cpu);
1105 	if (ret) {
1106 		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1107 		goto err_free_real_cpus;
1108 	}
1109 
1110 	INIT_LIST_HEAD(&policy->policy_list);
1111 	init_rwsem(&policy->rwsem);
1112 	spin_lock_init(&policy->transition_lock);
1113 	init_waitqueue_head(&policy->transition_wait);
1114 	init_completion(&policy->kobj_unregister);
1115 	INIT_WORK(&policy->update, handle_update);
1116 
1117 	policy->cpu = cpu;
1118 	return policy;
1119 
1120 err_free_real_cpus:
1121 	free_cpumask_var(policy->real_cpus);
1122 err_free_rcpumask:
1123 	free_cpumask_var(policy->related_cpus);
1124 err_free_cpumask:
1125 	free_cpumask_var(policy->cpus);
1126 err_free_policy:
1127 	kfree(policy);
1128 
1129 	return NULL;
1130 }
1131 
1132 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1133 {
1134 	struct kobject *kobj;
1135 	struct completion *cmp;
1136 
1137 	down_write(&policy->rwsem);
1138 	cpufreq_stats_free_table(policy);
1139 	kobj = &policy->kobj;
1140 	cmp = &policy->kobj_unregister;
1141 	up_write(&policy->rwsem);
1142 	kobject_put(kobj);
1143 
1144 	/*
1145 	 * We need to make sure that the underlying kobj is
1146 	 * actually not referenced anymore by anybody before we
1147 	 * proceed with unloading.
1148 	 */
1149 	pr_debug("waiting for dropping of refcount\n");
1150 	wait_for_completion(cmp);
1151 	pr_debug("wait complete\n");
1152 }
1153 
1154 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1155 {
1156 	unsigned long flags;
1157 	int cpu;
1158 
1159 	/* Remove policy from list */
1160 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1161 	list_del(&policy->policy_list);
1162 
1163 	for_each_cpu(cpu, policy->related_cpus)
1164 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1165 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1166 
1167 	cpufreq_policy_put_kobj(policy);
1168 	free_cpumask_var(policy->real_cpus);
1169 	free_cpumask_var(policy->related_cpus);
1170 	free_cpumask_var(policy->cpus);
1171 	kfree(policy);
1172 }
1173 
1174 static int cpufreq_online(unsigned int cpu)
1175 {
1176 	struct cpufreq_policy *policy;
1177 	bool new_policy;
1178 	unsigned long flags;
1179 	unsigned int j;
1180 	int ret;
1181 
1182 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1183 
1184 	/* Check if this CPU already has a policy to manage it */
1185 	policy = per_cpu(cpufreq_cpu_data, cpu);
1186 	if (policy) {
1187 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1188 		if (!policy_is_inactive(policy))
1189 			return cpufreq_add_policy_cpu(policy, cpu);
1190 
1191 		/* This is the only online CPU for the policy.  Start over. */
1192 		new_policy = false;
1193 		down_write(&policy->rwsem);
1194 		policy->cpu = cpu;
1195 		policy->governor = NULL;
1196 		up_write(&policy->rwsem);
1197 	} else {
1198 		new_policy = true;
1199 		policy = cpufreq_policy_alloc(cpu);
1200 		if (!policy)
1201 			return -ENOMEM;
1202 	}
1203 
1204 	if (!new_policy && cpufreq_driver->online) {
1205 		ret = cpufreq_driver->online(policy);
1206 		if (ret) {
1207 			pr_debug("%s: %d: initialization failed\n", __func__,
1208 				 __LINE__);
1209 			goto out_exit_policy;
1210 		}
1211 
1212 		/* Recover policy->cpus using related_cpus */
1213 		cpumask_copy(policy->cpus, policy->related_cpus);
1214 	} else {
1215 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1216 
1217 		/*
1218 		 * Call driver. From then on the cpufreq must be able
1219 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1220 		 */
1221 		ret = cpufreq_driver->init(policy);
1222 		if (ret) {
1223 			pr_debug("%s: %d: initialization failed\n", __func__,
1224 				 __LINE__);
1225 			goto out_free_policy;
1226 		}
1227 
1228 		ret = cpufreq_table_validate_and_sort(policy);
1229 		if (ret)
1230 			goto out_exit_policy;
1231 
1232 		/* related_cpus should at least include policy->cpus. */
1233 		cpumask_copy(policy->related_cpus, policy->cpus);
1234 	}
1235 
1236 	down_write(&policy->rwsem);
1237 	/*
1238 	 * affected cpus must always be the one, which are online. We aren't
1239 	 * managing offline cpus here.
1240 	 */
1241 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1242 
1243 	if (new_policy) {
1244 		policy->user_policy.min = policy->min;
1245 		policy->user_policy.max = policy->max;
1246 
1247 		for_each_cpu(j, policy->related_cpus) {
1248 			per_cpu(cpufreq_cpu_data, j) = policy;
1249 			add_cpu_dev_symlink(policy, j);
1250 		}
1251 	} else {
1252 		policy->min = policy->user_policy.min;
1253 		policy->max = policy->user_policy.max;
1254 	}
1255 
1256 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1257 		policy->cur = cpufreq_driver->get(policy->cpu);
1258 		if (!policy->cur) {
1259 			pr_err("%s: ->get() failed\n", __func__);
1260 			goto out_destroy_policy;
1261 		}
1262 	}
1263 
1264 	/*
1265 	 * Sometimes boot loaders set CPU frequency to a value outside of
1266 	 * frequency table present with cpufreq core. In such cases CPU might be
1267 	 * unstable if it has to run on that frequency for long duration of time
1268 	 * and so its better to set it to a frequency which is specified in
1269 	 * freq-table. This also makes cpufreq stats inconsistent as
1270 	 * cpufreq-stats would fail to register because current frequency of CPU
1271 	 * isn't found in freq-table.
1272 	 *
1273 	 * Because we don't want this change to effect boot process badly, we go
1274 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1275 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1276 	 * is initialized to zero).
1277 	 *
1278 	 * We are passing target-freq as "policy->cur - 1" otherwise
1279 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1280 	 * equal to target-freq.
1281 	 */
1282 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1283 	    && has_target()) {
1284 		/* Are we running at unknown frequency ? */
1285 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1286 		if (ret == -EINVAL) {
1287 			/* Warn user and fix it */
1288 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1289 				__func__, policy->cpu, policy->cur);
1290 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1291 				CPUFREQ_RELATION_L);
1292 
1293 			/*
1294 			 * Reaching here after boot in a few seconds may not
1295 			 * mean that system will remain stable at "unknown"
1296 			 * frequency for longer duration. Hence, a BUG_ON().
1297 			 */
1298 			BUG_ON(ret);
1299 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1300 				__func__, policy->cpu, policy->cur);
1301 		}
1302 	}
1303 
1304 	if (new_policy) {
1305 		ret = cpufreq_add_dev_interface(policy);
1306 		if (ret)
1307 			goto out_destroy_policy;
1308 
1309 		cpufreq_stats_create_table(policy);
1310 
1311 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1312 		list_add(&policy->policy_list, &cpufreq_policy_list);
1313 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1314 	}
1315 
1316 	ret = cpufreq_init_policy(policy);
1317 	if (ret) {
1318 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1319 		       __func__, cpu, ret);
1320 		goto out_destroy_policy;
1321 	}
1322 
1323 	up_write(&policy->rwsem);
1324 
1325 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1326 
1327 	/* Callback for handling stuff after policy is ready */
1328 	if (cpufreq_driver->ready)
1329 		cpufreq_driver->ready(policy);
1330 
1331 	if (IS_ENABLED(CONFIG_CPU_THERMAL) &&
1332 	    cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV)
1333 		policy->cdev = of_cpufreq_cooling_register(policy);
1334 
1335 	pr_debug("initialization complete\n");
1336 
1337 	return 0;
1338 
1339 out_destroy_policy:
1340 	for_each_cpu(j, policy->real_cpus)
1341 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1342 
1343 	up_write(&policy->rwsem);
1344 
1345 out_exit_policy:
1346 	if (cpufreq_driver->exit)
1347 		cpufreq_driver->exit(policy);
1348 
1349 out_free_policy:
1350 	cpufreq_policy_free(policy);
1351 	return ret;
1352 }
1353 
1354 /**
1355  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1356  * @dev: CPU device.
1357  * @sif: Subsystem interface structure pointer (not used)
1358  */
1359 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1360 {
1361 	struct cpufreq_policy *policy;
1362 	unsigned cpu = dev->id;
1363 	int ret;
1364 
1365 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1366 
1367 	if (cpu_online(cpu)) {
1368 		ret = cpufreq_online(cpu);
1369 		if (ret)
1370 			return ret;
1371 	}
1372 
1373 	/* Create sysfs link on CPU registration */
1374 	policy = per_cpu(cpufreq_cpu_data, cpu);
1375 	if (policy)
1376 		add_cpu_dev_symlink(policy, cpu);
1377 
1378 	return 0;
1379 }
1380 
1381 static int cpufreq_offline(unsigned int cpu)
1382 {
1383 	struct cpufreq_policy *policy;
1384 	int ret;
1385 
1386 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1387 
1388 	policy = cpufreq_cpu_get_raw(cpu);
1389 	if (!policy) {
1390 		pr_debug("%s: No cpu_data found\n", __func__);
1391 		return 0;
1392 	}
1393 
1394 	down_write(&policy->rwsem);
1395 	if (has_target())
1396 		cpufreq_stop_governor(policy);
1397 
1398 	cpumask_clear_cpu(cpu, policy->cpus);
1399 
1400 	if (policy_is_inactive(policy)) {
1401 		if (has_target())
1402 			strncpy(policy->last_governor, policy->governor->name,
1403 				CPUFREQ_NAME_LEN);
1404 		else
1405 			policy->last_policy = policy->policy;
1406 	} else if (cpu == policy->cpu) {
1407 		/* Nominate new CPU */
1408 		policy->cpu = cpumask_any(policy->cpus);
1409 	}
1410 
1411 	/* Start governor again for active policy */
1412 	if (!policy_is_inactive(policy)) {
1413 		if (has_target()) {
1414 			ret = cpufreq_start_governor(policy);
1415 			if (ret)
1416 				pr_err("%s: Failed to start governor\n", __func__);
1417 		}
1418 
1419 		goto unlock;
1420 	}
1421 
1422 	if (IS_ENABLED(CONFIG_CPU_THERMAL) &&
1423 	    cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV) {
1424 		cpufreq_cooling_unregister(policy->cdev);
1425 		policy->cdev = NULL;
1426 	}
1427 
1428 	if (cpufreq_driver->stop_cpu)
1429 		cpufreq_driver->stop_cpu(policy);
1430 
1431 	if (has_target())
1432 		cpufreq_exit_governor(policy);
1433 
1434 	/*
1435 	 * Perform the ->offline() during light-weight tear-down, as
1436 	 * that allows fast recovery when the CPU comes back.
1437 	 */
1438 	if (cpufreq_driver->offline) {
1439 		cpufreq_driver->offline(policy);
1440 	} else if (cpufreq_driver->exit) {
1441 		cpufreq_driver->exit(policy);
1442 		policy->freq_table = NULL;
1443 	}
1444 
1445 unlock:
1446 	up_write(&policy->rwsem);
1447 	return 0;
1448 }
1449 
1450 /**
1451  * cpufreq_remove_dev - remove a CPU device
1452  *
1453  * Removes the cpufreq interface for a CPU device.
1454  */
1455 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1456 {
1457 	unsigned int cpu = dev->id;
1458 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1459 
1460 	if (!policy)
1461 		return;
1462 
1463 	if (cpu_online(cpu))
1464 		cpufreq_offline(cpu);
1465 
1466 	cpumask_clear_cpu(cpu, policy->real_cpus);
1467 	remove_cpu_dev_symlink(policy, dev);
1468 
1469 	if (cpumask_empty(policy->real_cpus)) {
1470 		/* We did light-weight exit earlier, do full tear down now */
1471 		if (cpufreq_driver->offline)
1472 			cpufreq_driver->exit(policy);
1473 
1474 		cpufreq_policy_free(policy);
1475 	}
1476 }
1477 
1478 /**
1479  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1480  *	in deep trouble.
1481  *	@policy: policy managing CPUs
1482  *	@new_freq: CPU frequency the CPU actually runs at
1483  *
1484  *	We adjust to current frequency first, and need to clean up later.
1485  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1486  */
1487 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1488 				unsigned int new_freq)
1489 {
1490 	struct cpufreq_freqs freqs;
1491 
1492 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1493 		 policy->cur, new_freq);
1494 
1495 	freqs.old = policy->cur;
1496 	freqs.new = new_freq;
1497 
1498 	cpufreq_freq_transition_begin(policy, &freqs);
1499 	cpufreq_freq_transition_end(policy, &freqs, 0);
1500 }
1501 
1502 /**
1503  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1504  * @cpu: CPU number
1505  *
1506  * This is the last known freq, without actually getting it from the driver.
1507  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1508  */
1509 unsigned int cpufreq_quick_get(unsigned int cpu)
1510 {
1511 	struct cpufreq_policy *policy;
1512 	unsigned int ret_freq = 0;
1513 	unsigned long flags;
1514 
1515 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1516 
1517 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1518 		ret_freq = cpufreq_driver->get(cpu);
1519 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1520 		return ret_freq;
1521 	}
1522 
1523 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1524 
1525 	policy = cpufreq_cpu_get(cpu);
1526 	if (policy) {
1527 		ret_freq = policy->cur;
1528 		cpufreq_cpu_put(policy);
1529 	}
1530 
1531 	return ret_freq;
1532 }
1533 EXPORT_SYMBOL(cpufreq_quick_get);
1534 
1535 /**
1536  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1537  * @cpu: CPU number
1538  *
1539  * Just return the max possible frequency for a given CPU.
1540  */
1541 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1542 {
1543 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1544 	unsigned int ret_freq = 0;
1545 
1546 	if (policy) {
1547 		ret_freq = policy->max;
1548 		cpufreq_cpu_put(policy);
1549 	}
1550 
1551 	return ret_freq;
1552 }
1553 EXPORT_SYMBOL(cpufreq_quick_get_max);
1554 
1555 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1556 {
1557 	unsigned int ret_freq = 0;
1558 
1559 	if (unlikely(policy_is_inactive(policy)) || !cpufreq_driver->get)
1560 		return ret_freq;
1561 
1562 	ret_freq = cpufreq_driver->get(policy->cpu);
1563 
1564 	/*
1565 	 * If fast frequency switching is used with the given policy, the check
1566 	 * against policy->cur is pointless, so skip it in that case too.
1567 	 */
1568 	if (policy->fast_switch_enabled)
1569 		return ret_freq;
1570 
1571 	if (ret_freq && policy->cur &&
1572 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1573 		/* verify no discrepancy between actual and
1574 					saved value exists */
1575 		if (unlikely(ret_freq != policy->cur)) {
1576 			cpufreq_out_of_sync(policy, ret_freq);
1577 			schedule_work(&policy->update);
1578 		}
1579 	}
1580 
1581 	return ret_freq;
1582 }
1583 
1584 /**
1585  * cpufreq_get - get the current CPU frequency (in kHz)
1586  * @cpu: CPU number
1587  *
1588  * Get the CPU current (static) CPU frequency
1589  */
1590 unsigned int cpufreq_get(unsigned int cpu)
1591 {
1592 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1593 	unsigned int ret_freq = 0;
1594 
1595 	if (policy) {
1596 		down_read(&policy->rwsem);
1597 		ret_freq = __cpufreq_get(policy);
1598 		up_read(&policy->rwsem);
1599 
1600 		cpufreq_cpu_put(policy);
1601 	}
1602 
1603 	return ret_freq;
1604 }
1605 EXPORT_SYMBOL(cpufreq_get);
1606 
1607 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1608 {
1609 	unsigned int new_freq;
1610 
1611 	new_freq = cpufreq_driver->get(policy->cpu);
1612 	if (!new_freq)
1613 		return 0;
1614 
1615 	if (!policy->cur) {
1616 		pr_debug("cpufreq: Driver did not initialize current freq\n");
1617 		policy->cur = new_freq;
1618 	} else if (policy->cur != new_freq && has_target()) {
1619 		cpufreq_out_of_sync(policy, new_freq);
1620 	}
1621 
1622 	return new_freq;
1623 }
1624 
1625 static struct subsys_interface cpufreq_interface = {
1626 	.name		= "cpufreq",
1627 	.subsys		= &cpu_subsys,
1628 	.add_dev	= cpufreq_add_dev,
1629 	.remove_dev	= cpufreq_remove_dev,
1630 };
1631 
1632 /*
1633  * In case platform wants some specific frequency to be configured
1634  * during suspend..
1635  */
1636 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1637 {
1638 	int ret;
1639 
1640 	if (!policy->suspend_freq) {
1641 		pr_debug("%s: suspend_freq not defined\n", __func__);
1642 		return 0;
1643 	}
1644 
1645 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1646 			policy->suspend_freq);
1647 
1648 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1649 			CPUFREQ_RELATION_H);
1650 	if (ret)
1651 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1652 				__func__, policy->suspend_freq, ret);
1653 
1654 	return ret;
1655 }
1656 EXPORT_SYMBOL(cpufreq_generic_suspend);
1657 
1658 /**
1659  * cpufreq_suspend() - Suspend CPUFreq governors
1660  *
1661  * Called during system wide Suspend/Hibernate cycles for suspending governors
1662  * as some platforms can't change frequency after this point in suspend cycle.
1663  * Because some of the devices (like: i2c, regulators, etc) they use for
1664  * changing frequency are suspended quickly after this point.
1665  */
1666 void cpufreq_suspend(void)
1667 {
1668 	struct cpufreq_policy *policy;
1669 
1670 	if (!cpufreq_driver)
1671 		return;
1672 
1673 	if (!has_target() && !cpufreq_driver->suspend)
1674 		goto suspend;
1675 
1676 	pr_debug("%s: Suspending Governors\n", __func__);
1677 
1678 	for_each_active_policy(policy) {
1679 		if (has_target()) {
1680 			down_write(&policy->rwsem);
1681 			cpufreq_stop_governor(policy);
1682 			up_write(&policy->rwsem);
1683 		}
1684 
1685 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1686 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1687 				policy);
1688 	}
1689 
1690 suspend:
1691 	cpufreq_suspended = true;
1692 }
1693 
1694 /**
1695  * cpufreq_resume() - Resume CPUFreq governors
1696  *
1697  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1698  * are suspended with cpufreq_suspend().
1699  */
1700 void cpufreq_resume(void)
1701 {
1702 	struct cpufreq_policy *policy;
1703 	int ret;
1704 
1705 	if (!cpufreq_driver)
1706 		return;
1707 
1708 	if (unlikely(!cpufreq_suspended))
1709 		return;
1710 
1711 	cpufreq_suspended = false;
1712 
1713 	if (!has_target() && !cpufreq_driver->resume)
1714 		return;
1715 
1716 	pr_debug("%s: Resuming Governors\n", __func__);
1717 
1718 	for_each_active_policy(policy) {
1719 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1720 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1721 				policy);
1722 		} else if (has_target()) {
1723 			down_write(&policy->rwsem);
1724 			ret = cpufreq_start_governor(policy);
1725 			up_write(&policy->rwsem);
1726 
1727 			if (ret)
1728 				pr_err("%s: Failed to start governor for policy: %p\n",
1729 				       __func__, policy);
1730 		}
1731 	}
1732 }
1733 
1734 /**
1735  *	cpufreq_get_current_driver - return current driver's name
1736  *
1737  *	Return the name string of the currently loaded cpufreq driver
1738  *	or NULL, if none.
1739  */
1740 const char *cpufreq_get_current_driver(void)
1741 {
1742 	if (cpufreq_driver)
1743 		return cpufreq_driver->name;
1744 
1745 	return NULL;
1746 }
1747 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1748 
1749 /**
1750  *	cpufreq_get_driver_data - return current driver data
1751  *
1752  *	Return the private data of the currently loaded cpufreq
1753  *	driver, or NULL if no cpufreq driver is loaded.
1754  */
1755 void *cpufreq_get_driver_data(void)
1756 {
1757 	if (cpufreq_driver)
1758 		return cpufreq_driver->driver_data;
1759 
1760 	return NULL;
1761 }
1762 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1763 
1764 /*********************************************************************
1765  *                     NOTIFIER LISTS INTERFACE                      *
1766  *********************************************************************/
1767 
1768 /**
1769  *	cpufreq_register_notifier - register a driver with cpufreq
1770  *	@nb: notifier function to register
1771  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1772  *
1773  *	Add a driver to one of two lists: either a list of drivers that
1774  *      are notified about clock rate changes (once before and once after
1775  *      the transition), or a list of drivers that are notified about
1776  *      changes in cpufreq policy.
1777  *
1778  *	This function may sleep, and has the same return conditions as
1779  *	blocking_notifier_chain_register.
1780  */
1781 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1782 {
1783 	int ret;
1784 
1785 	if (cpufreq_disabled())
1786 		return -EINVAL;
1787 
1788 	switch (list) {
1789 	case CPUFREQ_TRANSITION_NOTIFIER:
1790 		mutex_lock(&cpufreq_fast_switch_lock);
1791 
1792 		if (cpufreq_fast_switch_count > 0) {
1793 			mutex_unlock(&cpufreq_fast_switch_lock);
1794 			return -EBUSY;
1795 		}
1796 		ret = srcu_notifier_chain_register(
1797 				&cpufreq_transition_notifier_list, nb);
1798 		if (!ret)
1799 			cpufreq_fast_switch_count--;
1800 
1801 		mutex_unlock(&cpufreq_fast_switch_lock);
1802 		break;
1803 	case CPUFREQ_POLICY_NOTIFIER:
1804 		ret = blocking_notifier_chain_register(
1805 				&cpufreq_policy_notifier_list, nb);
1806 		break;
1807 	default:
1808 		ret = -EINVAL;
1809 	}
1810 
1811 	return ret;
1812 }
1813 EXPORT_SYMBOL(cpufreq_register_notifier);
1814 
1815 /**
1816  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1817  *	@nb: notifier block to be unregistered
1818  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1819  *
1820  *	Remove a driver from the CPU frequency notifier list.
1821  *
1822  *	This function may sleep, and has the same return conditions as
1823  *	blocking_notifier_chain_unregister.
1824  */
1825 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1826 {
1827 	int ret;
1828 
1829 	if (cpufreq_disabled())
1830 		return -EINVAL;
1831 
1832 	switch (list) {
1833 	case CPUFREQ_TRANSITION_NOTIFIER:
1834 		mutex_lock(&cpufreq_fast_switch_lock);
1835 
1836 		ret = srcu_notifier_chain_unregister(
1837 				&cpufreq_transition_notifier_list, nb);
1838 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1839 			cpufreq_fast_switch_count++;
1840 
1841 		mutex_unlock(&cpufreq_fast_switch_lock);
1842 		break;
1843 	case CPUFREQ_POLICY_NOTIFIER:
1844 		ret = blocking_notifier_chain_unregister(
1845 				&cpufreq_policy_notifier_list, nb);
1846 		break;
1847 	default:
1848 		ret = -EINVAL;
1849 	}
1850 
1851 	return ret;
1852 }
1853 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1854 
1855 
1856 /*********************************************************************
1857  *                              GOVERNORS                            *
1858  *********************************************************************/
1859 
1860 /**
1861  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1862  * @policy: cpufreq policy to switch the frequency for.
1863  * @target_freq: New frequency to set (may be approximate).
1864  *
1865  * Carry out a fast frequency switch without sleeping.
1866  *
1867  * The driver's ->fast_switch() callback invoked by this function must be
1868  * suitable for being called from within RCU-sched read-side critical sections
1869  * and it is expected to select the minimum available frequency greater than or
1870  * equal to @target_freq (CPUFREQ_RELATION_L).
1871  *
1872  * This function must not be called if policy->fast_switch_enabled is unset.
1873  *
1874  * Governors calling this function must guarantee that it will never be invoked
1875  * twice in parallel for the same policy and that it will never be called in
1876  * parallel with either ->target() or ->target_index() for the same policy.
1877  *
1878  * Returns the actual frequency set for the CPU.
1879  *
1880  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1881  * error condition, the hardware configuration must be preserved.
1882  */
1883 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1884 					unsigned int target_freq)
1885 {
1886 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1887 
1888 	return cpufreq_driver->fast_switch(policy, target_freq);
1889 }
1890 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1891 
1892 /* Must set freqs->new to intermediate frequency */
1893 static int __target_intermediate(struct cpufreq_policy *policy,
1894 				 struct cpufreq_freqs *freqs, int index)
1895 {
1896 	int ret;
1897 
1898 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1899 
1900 	/* We don't need to switch to intermediate freq */
1901 	if (!freqs->new)
1902 		return 0;
1903 
1904 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1905 		 __func__, policy->cpu, freqs->old, freqs->new);
1906 
1907 	cpufreq_freq_transition_begin(policy, freqs);
1908 	ret = cpufreq_driver->target_intermediate(policy, index);
1909 	cpufreq_freq_transition_end(policy, freqs, ret);
1910 
1911 	if (ret)
1912 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1913 		       __func__, ret);
1914 
1915 	return ret;
1916 }
1917 
1918 static int __target_index(struct cpufreq_policy *policy, int index)
1919 {
1920 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1921 	unsigned int intermediate_freq = 0;
1922 	unsigned int newfreq = policy->freq_table[index].frequency;
1923 	int retval = -EINVAL;
1924 	bool notify;
1925 
1926 	if (newfreq == policy->cur)
1927 		return 0;
1928 
1929 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1930 	if (notify) {
1931 		/* Handle switching to intermediate frequency */
1932 		if (cpufreq_driver->get_intermediate) {
1933 			retval = __target_intermediate(policy, &freqs, index);
1934 			if (retval)
1935 				return retval;
1936 
1937 			intermediate_freq = freqs.new;
1938 			/* Set old freq to intermediate */
1939 			if (intermediate_freq)
1940 				freqs.old = freqs.new;
1941 		}
1942 
1943 		freqs.new = newfreq;
1944 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1945 			 __func__, policy->cpu, freqs.old, freqs.new);
1946 
1947 		cpufreq_freq_transition_begin(policy, &freqs);
1948 	}
1949 
1950 	retval = cpufreq_driver->target_index(policy, index);
1951 	if (retval)
1952 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1953 		       retval);
1954 
1955 	if (notify) {
1956 		cpufreq_freq_transition_end(policy, &freqs, retval);
1957 
1958 		/*
1959 		 * Failed after setting to intermediate freq? Driver should have
1960 		 * reverted back to initial frequency and so should we. Check
1961 		 * here for intermediate_freq instead of get_intermediate, in
1962 		 * case we haven't switched to intermediate freq at all.
1963 		 */
1964 		if (unlikely(retval && intermediate_freq)) {
1965 			freqs.old = intermediate_freq;
1966 			freqs.new = policy->restore_freq;
1967 			cpufreq_freq_transition_begin(policy, &freqs);
1968 			cpufreq_freq_transition_end(policy, &freqs, 0);
1969 		}
1970 	}
1971 
1972 	return retval;
1973 }
1974 
1975 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1976 			    unsigned int target_freq,
1977 			    unsigned int relation)
1978 {
1979 	unsigned int old_target_freq = target_freq;
1980 	int index;
1981 
1982 	if (cpufreq_disabled())
1983 		return -ENODEV;
1984 
1985 	/* Make sure that target_freq is within supported range */
1986 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1987 
1988 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1989 		 policy->cpu, target_freq, relation, old_target_freq);
1990 
1991 	/*
1992 	 * This might look like a redundant call as we are checking it again
1993 	 * after finding index. But it is left intentionally for cases where
1994 	 * exactly same freq is called again and so we can save on few function
1995 	 * calls.
1996 	 */
1997 	if (target_freq == policy->cur)
1998 		return 0;
1999 
2000 	/* Save last value to restore later on errors */
2001 	policy->restore_freq = policy->cur;
2002 
2003 	if (cpufreq_driver->target)
2004 		return cpufreq_driver->target(policy, target_freq, relation);
2005 
2006 	if (!cpufreq_driver->target_index)
2007 		return -EINVAL;
2008 
2009 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2010 
2011 	return __target_index(policy, index);
2012 }
2013 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2014 
2015 int cpufreq_driver_target(struct cpufreq_policy *policy,
2016 			  unsigned int target_freq,
2017 			  unsigned int relation)
2018 {
2019 	int ret = -EINVAL;
2020 
2021 	down_write(&policy->rwsem);
2022 
2023 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2024 
2025 	up_write(&policy->rwsem);
2026 
2027 	return ret;
2028 }
2029 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2030 
2031 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2032 {
2033 	return NULL;
2034 }
2035 
2036 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2037 {
2038 	int ret;
2039 
2040 	/* Don't start any governor operations if we are entering suspend */
2041 	if (cpufreq_suspended)
2042 		return 0;
2043 	/*
2044 	 * Governor might not be initiated here if ACPI _PPC changed
2045 	 * notification happened, so check it.
2046 	 */
2047 	if (!policy->governor)
2048 		return -EINVAL;
2049 
2050 	/* Platform doesn't want dynamic frequency switching ? */
2051 	if (policy->governor->dynamic_switching &&
2052 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2053 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2054 
2055 		if (gov) {
2056 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2057 				policy->governor->name, gov->name);
2058 			policy->governor = gov;
2059 		} else {
2060 			return -EINVAL;
2061 		}
2062 	}
2063 
2064 	if (!try_module_get(policy->governor->owner))
2065 		return -EINVAL;
2066 
2067 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2068 
2069 	if (policy->governor->init) {
2070 		ret = policy->governor->init(policy);
2071 		if (ret) {
2072 			module_put(policy->governor->owner);
2073 			return ret;
2074 		}
2075 	}
2076 
2077 	return 0;
2078 }
2079 
2080 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2081 {
2082 	if (cpufreq_suspended || !policy->governor)
2083 		return;
2084 
2085 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2086 
2087 	if (policy->governor->exit)
2088 		policy->governor->exit(policy);
2089 
2090 	module_put(policy->governor->owner);
2091 }
2092 
2093 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2094 {
2095 	int ret;
2096 
2097 	if (cpufreq_suspended)
2098 		return 0;
2099 
2100 	if (!policy->governor)
2101 		return -EINVAL;
2102 
2103 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2104 
2105 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2106 		cpufreq_update_current_freq(policy);
2107 
2108 	if (policy->governor->start) {
2109 		ret = policy->governor->start(policy);
2110 		if (ret)
2111 			return ret;
2112 	}
2113 
2114 	if (policy->governor->limits)
2115 		policy->governor->limits(policy);
2116 
2117 	return 0;
2118 }
2119 
2120 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2121 {
2122 	if (cpufreq_suspended || !policy->governor)
2123 		return;
2124 
2125 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2126 
2127 	if (policy->governor->stop)
2128 		policy->governor->stop(policy);
2129 }
2130 
2131 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2132 {
2133 	if (cpufreq_suspended || !policy->governor)
2134 		return;
2135 
2136 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2137 
2138 	if (policy->governor->limits)
2139 		policy->governor->limits(policy);
2140 }
2141 
2142 int cpufreq_register_governor(struct cpufreq_governor *governor)
2143 {
2144 	int err;
2145 
2146 	if (!governor)
2147 		return -EINVAL;
2148 
2149 	if (cpufreq_disabled())
2150 		return -ENODEV;
2151 
2152 	mutex_lock(&cpufreq_governor_mutex);
2153 
2154 	err = -EBUSY;
2155 	if (!find_governor(governor->name)) {
2156 		err = 0;
2157 		list_add(&governor->governor_list, &cpufreq_governor_list);
2158 	}
2159 
2160 	mutex_unlock(&cpufreq_governor_mutex);
2161 	return err;
2162 }
2163 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2164 
2165 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2166 {
2167 	struct cpufreq_policy *policy;
2168 	unsigned long flags;
2169 
2170 	if (!governor)
2171 		return;
2172 
2173 	if (cpufreq_disabled())
2174 		return;
2175 
2176 	/* clear last_governor for all inactive policies */
2177 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2178 	for_each_inactive_policy(policy) {
2179 		if (!strcmp(policy->last_governor, governor->name)) {
2180 			policy->governor = NULL;
2181 			strcpy(policy->last_governor, "\0");
2182 		}
2183 	}
2184 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2185 
2186 	mutex_lock(&cpufreq_governor_mutex);
2187 	list_del(&governor->governor_list);
2188 	mutex_unlock(&cpufreq_governor_mutex);
2189 }
2190 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2191 
2192 
2193 /*********************************************************************
2194  *                          POLICY INTERFACE                         *
2195  *********************************************************************/
2196 
2197 /**
2198  * cpufreq_get_policy - get the current cpufreq_policy
2199  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2200  *	is written
2201  *
2202  * Reads the current cpufreq policy.
2203  */
2204 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2205 {
2206 	struct cpufreq_policy *cpu_policy;
2207 	if (!policy)
2208 		return -EINVAL;
2209 
2210 	cpu_policy = cpufreq_cpu_get(cpu);
2211 	if (!cpu_policy)
2212 		return -EINVAL;
2213 
2214 	memcpy(policy, cpu_policy, sizeof(*policy));
2215 
2216 	cpufreq_cpu_put(cpu_policy);
2217 	return 0;
2218 }
2219 EXPORT_SYMBOL(cpufreq_get_policy);
2220 
2221 /**
2222  * cpufreq_set_policy - Modify cpufreq policy parameters.
2223  * @policy: Policy object to modify.
2224  * @new_policy: New policy data.
2225  *
2226  * Pass @new_policy to the cpufreq driver's ->verify() callback, run the
2227  * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to
2228  * the driver's ->verify() callback again and run the notifiers for it again
2229  * with the CPUFREQ_NOTIFY value.  Next, copy the min and max parameters
2230  * of @new_policy to @policy and either invoke the driver's ->setpolicy()
2231  * callback (if present) or carry out a governor update for @policy.  That is,
2232  * run the current governor's ->limits() callback (if the governor field in
2233  * @new_policy points to the same object as the one in @policy) or replace the
2234  * governor for @policy with the new one stored in @new_policy.
2235  *
2236  * The cpuinfo part of @policy is not updated by this function.
2237  */
2238 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2239 			      struct cpufreq_policy *new_policy)
2240 {
2241 	struct cpufreq_governor *old_gov;
2242 	int ret;
2243 
2244 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2245 		 new_policy->cpu, new_policy->min, new_policy->max);
2246 
2247 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2248 
2249 	/*
2250 	* This check works well when we store new min/max freq attributes,
2251 	* because new_policy is a copy of policy with one field updated.
2252 	*/
2253 	if (new_policy->min > new_policy->max)
2254 		return -EINVAL;
2255 
2256 	/* verify the cpu speed can be set within this limit */
2257 	ret = cpufreq_driver->verify(new_policy);
2258 	if (ret)
2259 		return ret;
2260 
2261 	/* adjust if necessary - all reasons */
2262 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2263 			CPUFREQ_ADJUST, new_policy);
2264 
2265 	/*
2266 	 * verify the cpu speed can be set within this limit, which might be
2267 	 * different to the first one
2268 	 */
2269 	ret = cpufreq_driver->verify(new_policy);
2270 	if (ret)
2271 		return ret;
2272 
2273 	/* notification of the new policy */
2274 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2275 			CPUFREQ_NOTIFY, new_policy);
2276 
2277 	policy->min = new_policy->min;
2278 	policy->max = new_policy->max;
2279 	trace_cpu_frequency_limits(policy);
2280 
2281 	policy->cached_target_freq = UINT_MAX;
2282 
2283 	pr_debug("new min and max freqs are %u - %u kHz\n",
2284 		 policy->min, policy->max);
2285 
2286 	if (cpufreq_driver->setpolicy) {
2287 		policy->policy = new_policy->policy;
2288 		pr_debug("setting range\n");
2289 		return cpufreq_driver->setpolicy(new_policy);
2290 	}
2291 
2292 	if (new_policy->governor == policy->governor) {
2293 		pr_debug("governor limits update\n");
2294 		cpufreq_governor_limits(policy);
2295 		return 0;
2296 	}
2297 
2298 	pr_debug("governor switch\n");
2299 
2300 	/* save old, working values */
2301 	old_gov = policy->governor;
2302 	/* end old governor */
2303 	if (old_gov) {
2304 		cpufreq_stop_governor(policy);
2305 		cpufreq_exit_governor(policy);
2306 	}
2307 
2308 	/* start new governor */
2309 	policy->governor = new_policy->governor;
2310 	ret = cpufreq_init_governor(policy);
2311 	if (!ret) {
2312 		ret = cpufreq_start_governor(policy);
2313 		if (!ret) {
2314 			pr_debug("governor change\n");
2315 			sched_cpufreq_governor_change(policy, old_gov);
2316 			return 0;
2317 		}
2318 		cpufreq_exit_governor(policy);
2319 	}
2320 
2321 	/* new governor failed, so re-start old one */
2322 	pr_debug("starting governor %s failed\n", policy->governor->name);
2323 	if (old_gov) {
2324 		policy->governor = old_gov;
2325 		if (cpufreq_init_governor(policy))
2326 			policy->governor = NULL;
2327 		else
2328 			cpufreq_start_governor(policy);
2329 	}
2330 
2331 	return ret;
2332 }
2333 
2334 /**
2335  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2336  * @cpu: CPU to re-evaluate the policy for.
2337  *
2338  * Update the current frequency for the cpufreq policy of @cpu and use
2339  * cpufreq_set_policy() to re-apply the min and max limits saved in the
2340  * user_policy sub-structure of that policy, which triggers the evaluation
2341  * of policy notifiers and the cpufreq driver's ->verify() callback for the
2342  * policy in question, among other things.
2343  */
2344 void cpufreq_update_policy(unsigned int cpu)
2345 {
2346 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2347 	struct cpufreq_policy new_policy;
2348 
2349 	if (!policy)
2350 		return;
2351 
2352 	down_write(&policy->rwsem);
2353 
2354 	if (policy_is_inactive(policy))
2355 		goto unlock;
2356 
2357 	/*
2358 	 * BIOS might change freq behind our back
2359 	 * -> ask driver for current freq and notify governors about a change
2360 	 */
2361 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy &&
2362 	    (cpufreq_suspended || WARN_ON(!cpufreq_update_current_freq(policy))))
2363 		goto unlock;
2364 
2365 	pr_debug("updating policy for CPU %u\n", cpu);
2366 	memcpy(&new_policy, policy, sizeof(*policy));
2367 	new_policy.min = policy->user_policy.min;
2368 	new_policy.max = policy->user_policy.max;
2369 
2370 	cpufreq_set_policy(policy, &new_policy);
2371 
2372 unlock:
2373 	up_write(&policy->rwsem);
2374 
2375 	cpufreq_cpu_put(policy);
2376 }
2377 EXPORT_SYMBOL(cpufreq_update_policy);
2378 
2379 /*********************************************************************
2380  *               BOOST						     *
2381  *********************************************************************/
2382 static int cpufreq_boost_set_sw(int state)
2383 {
2384 	struct cpufreq_policy *policy;
2385 	int ret = -EINVAL;
2386 
2387 	for_each_active_policy(policy) {
2388 		if (!policy->freq_table)
2389 			continue;
2390 
2391 		ret = cpufreq_frequency_table_cpuinfo(policy,
2392 						      policy->freq_table);
2393 		if (ret) {
2394 			pr_err("%s: Policy frequency update failed\n",
2395 			       __func__);
2396 			break;
2397 		}
2398 
2399 		down_write(&policy->rwsem);
2400 		policy->user_policy.max = policy->max;
2401 		cpufreq_governor_limits(policy);
2402 		up_write(&policy->rwsem);
2403 	}
2404 
2405 	return ret;
2406 }
2407 
2408 int cpufreq_boost_trigger_state(int state)
2409 {
2410 	unsigned long flags;
2411 	int ret = 0;
2412 
2413 	if (cpufreq_driver->boost_enabled == state)
2414 		return 0;
2415 
2416 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2417 	cpufreq_driver->boost_enabled = state;
2418 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2419 
2420 	ret = cpufreq_driver->set_boost(state);
2421 	if (ret) {
2422 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2423 		cpufreq_driver->boost_enabled = !state;
2424 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2425 
2426 		pr_err("%s: Cannot %s BOOST\n",
2427 		       __func__, state ? "enable" : "disable");
2428 	}
2429 
2430 	return ret;
2431 }
2432 
2433 static bool cpufreq_boost_supported(void)
2434 {
2435 	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2436 }
2437 
2438 static int create_boost_sysfs_file(void)
2439 {
2440 	int ret;
2441 
2442 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2443 	if (ret)
2444 		pr_err("%s: cannot register global BOOST sysfs file\n",
2445 		       __func__);
2446 
2447 	return ret;
2448 }
2449 
2450 static void remove_boost_sysfs_file(void)
2451 {
2452 	if (cpufreq_boost_supported())
2453 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2454 }
2455 
2456 int cpufreq_enable_boost_support(void)
2457 {
2458 	if (!cpufreq_driver)
2459 		return -EINVAL;
2460 
2461 	if (cpufreq_boost_supported())
2462 		return 0;
2463 
2464 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2465 
2466 	/* This will get removed on driver unregister */
2467 	return create_boost_sysfs_file();
2468 }
2469 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2470 
2471 int cpufreq_boost_enabled(void)
2472 {
2473 	return cpufreq_driver->boost_enabled;
2474 }
2475 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2476 
2477 /*********************************************************************
2478  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2479  *********************************************************************/
2480 static enum cpuhp_state hp_online;
2481 
2482 static int cpuhp_cpufreq_online(unsigned int cpu)
2483 {
2484 	cpufreq_online(cpu);
2485 
2486 	return 0;
2487 }
2488 
2489 static int cpuhp_cpufreq_offline(unsigned int cpu)
2490 {
2491 	cpufreq_offline(cpu);
2492 
2493 	return 0;
2494 }
2495 
2496 /**
2497  * cpufreq_register_driver - register a CPU Frequency driver
2498  * @driver_data: A struct cpufreq_driver containing the values#
2499  * submitted by the CPU Frequency driver.
2500  *
2501  * Registers a CPU Frequency driver to this core code. This code
2502  * returns zero on success, -EEXIST when another driver got here first
2503  * (and isn't unregistered in the meantime).
2504  *
2505  */
2506 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2507 {
2508 	unsigned long flags;
2509 	int ret;
2510 
2511 	if (cpufreq_disabled())
2512 		return -ENODEV;
2513 
2514 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2515 	    !(driver_data->setpolicy || driver_data->target_index ||
2516 		    driver_data->target) ||
2517 	     (driver_data->setpolicy && (driver_data->target_index ||
2518 		    driver_data->target)) ||
2519 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2520 	     (!driver_data->online != !driver_data->offline))
2521 		return -EINVAL;
2522 
2523 	pr_debug("trying to register driver %s\n", driver_data->name);
2524 
2525 	/* Protect against concurrent CPU online/offline. */
2526 	cpus_read_lock();
2527 
2528 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2529 	if (cpufreq_driver) {
2530 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2531 		ret = -EEXIST;
2532 		goto out;
2533 	}
2534 	cpufreq_driver = driver_data;
2535 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2536 
2537 	if (driver_data->setpolicy)
2538 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2539 
2540 	if (cpufreq_boost_supported()) {
2541 		ret = create_boost_sysfs_file();
2542 		if (ret)
2543 			goto err_null_driver;
2544 	}
2545 
2546 	ret = subsys_interface_register(&cpufreq_interface);
2547 	if (ret)
2548 		goto err_boost_unreg;
2549 
2550 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2551 	    list_empty(&cpufreq_policy_list)) {
2552 		/* if all ->init() calls failed, unregister */
2553 		ret = -ENODEV;
2554 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2555 			 driver_data->name);
2556 		goto err_if_unreg;
2557 	}
2558 
2559 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2560 						   "cpufreq:online",
2561 						   cpuhp_cpufreq_online,
2562 						   cpuhp_cpufreq_offline);
2563 	if (ret < 0)
2564 		goto err_if_unreg;
2565 	hp_online = ret;
2566 	ret = 0;
2567 
2568 	pr_debug("driver %s up and running\n", driver_data->name);
2569 	goto out;
2570 
2571 err_if_unreg:
2572 	subsys_interface_unregister(&cpufreq_interface);
2573 err_boost_unreg:
2574 	remove_boost_sysfs_file();
2575 err_null_driver:
2576 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2577 	cpufreq_driver = NULL;
2578 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2579 out:
2580 	cpus_read_unlock();
2581 	return ret;
2582 }
2583 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2584 
2585 /**
2586  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2587  *
2588  * Unregister the current CPUFreq driver. Only call this if you have
2589  * the right to do so, i.e. if you have succeeded in initialising before!
2590  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2591  * currently not initialised.
2592  */
2593 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2594 {
2595 	unsigned long flags;
2596 
2597 	if (!cpufreq_driver || (driver != cpufreq_driver))
2598 		return -EINVAL;
2599 
2600 	pr_debug("unregistering driver %s\n", driver->name);
2601 
2602 	/* Protect against concurrent cpu hotplug */
2603 	cpus_read_lock();
2604 	subsys_interface_unregister(&cpufreq_interface);
2605 	remove_boost_sysfs_file();
2606 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2607 
2608 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2609 
2610 	cpufreq_driver = NULL;
2611 
2612 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2613 	cpus_read_unlock();
2614 
2615 	return 0;
2616 }
2617 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2618 
2619 /*
2620  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2621  * or mutexes when secondary CPUs are halted.
2622  */
2623 static struct syscore_ops cpufreq_syscore_ops = {
2624 	.shutdown = cpufreq_suspend,
2625 };
2626 
2627 struct kobject *cpufreq_global_kobject;
2628 EXPORT_SYMBOL(cpufreq_global_kobject);
2629 
2630 static int __init cpufreq_core_init(void)
2631 {
2632 	if (cpufreq_disabled())
2633 		return -ENODEV;
2634 
2635 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2636 	BUG_ON(!cpufreq_global_kobject);
2637 
2638 	register_syscore_ops(&cpufreq_syscore_ops);
2639 
2640 	return 0;
2641 }
2642 module_param(off, int, 0444);
2643 core_initcall(cpufreq_core_init);
2644