xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 29e1c1ad3ff7f345d80c7b81b08175f5a8c84122)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 /* Iterate over governors */
46 static LIST_HEAD(cpufreq_governor_list);
47 #define for_each_governor(__governor)				\
48 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
49 
50 static char default_governor[CPUFREQ_NAME_LEN];
51 
52 /*
53  * The "cpufreq driver" - the arch- or hardware-dependent low
54  * level driver of CPUFreq support, and its spinlock. This lock
55  * also protects the cpufreq_cpu_data array.
56  */
57 static struct cpufreq_driver *cpufreq_driver;
58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
59 static DEFINE_RWLOCK(cpufreq_driver_lock);
60 
61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
62 bool cpufreq_supports_freq_invariance(void)
63 {
64 	return static_branch_likely(&cpufreq_freq_invariance);
65 }
66 
67 /* Flag to suspend/resume CPUFreq governors */
68 static bool cpufreq_suspended;
69 
70 static inline bool has_target(void)
71 {
72 	return cpufreq_driver->target_index || cpufreq_driver->target;
73 }
74 
75 /* internal prototypes */
76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
77 static int cpufreq_init_governor(struct cpufreq_policy *policy);
78 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
79 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
80 static int cpufreq_set_policy(struct cpufreq_policy *policy,
81 			      struct cpufreq_governor *new_gov,
82 			      unsigned int new_pol);
83 
84 /*
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93 
94 static int off __read_mostly;
95 static int cpufreq_disabled(void)
96 {
97 	return off;
98 }
99 void disable_cpufreq(void)
100 {
101 	off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104 
105 bool have_governor_per_policy(void)
106 {
107 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110 
111 static struct kobject *cpufreq_global_kobject;
112 
113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
114 {
115 	if (have_governor_per_policy())
116 		return &policy->kobj;
117 	else
118 		return cpufreq_global_kobject;
119 }
120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
121 
122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
123 {
124 	struct kernel_cpustat kcpustat;
125 	u64 cur_wall_time;
126 	u64 idle_time;
127 	u64 busy_time;
128 
129 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
130 
131 	kcpustat_cpu_fetch(&kcpustat, cpu);
132 
133 	busy_time = kcpustat.cpustat[CPUTIME_USER];
134 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
135 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
136 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
137 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
138 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
139 
140 	idle_time = cur_wall_time - busy_time;
141 	if (wall)
142 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
143 
144 	return div_u64(idle_time, NSEC_PER_USEC);
145 }
146 
147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
148 {
149 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
150 
151 	if (idle_time == -1ULL)
152 		return get_cpu_idle_time_jiffy(cpu, wall);
153 	else if (!io_busy)
154 		idle_time += get_cpu_iowait_time_us(cpu, wall);
155 
156 	return idle_time;
157 }
158 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
159 
160 /*
161  * This is a generic cpufreq init() routine which can be used by cpufreq
162  * drivers of SMP systems. It will do following:
163  * - validate & show freq table passed
164  * - set policies transition latency
165  * - policy->cpus with all possible CPUs
166  */
167 void cpufreq_generic_init(struct cpufreq_policy *policy,
168 		struct cpufreq_frequency_table *table,
169 		unsigned int transition_latency)
170 {
171 	policy->freq_table = table;
172 	policy->cpuinfo.transition_latency = transition_latency;
173 
174 	/*
175 	 * The driver only supports the SMP configuration where all processors
176 	 * share the clock and voltage and clock.
177 	 */
178 	cpumask_setall(policy->cpus);
179 }
180 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
181 
182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
183 {
184 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
185 
186 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
187 }
188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
189 
190 unsigned int cpufreq_generic_get(unsigned int cpu)
191 {
192 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
193 
194 	if (!policy || IS_ERR(policy->clk)) {
195 		pr_err("%s: No %s associated to cpu: %d\n",
196 		       __func__, policy ? "clk" : "policy", cpu);
197 		return 0;
198 	}
199 
200 	return clk_get_rate(policy->clk) / 1000;
201 }
202 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
203 
204 /**
205  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
206  * @cpu: CPU to find the policy for.
207  *
208  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
209  * the kobject reference counter of that policy.  Return a valid policy on
210  * success or NULL on failure.
211  *
212  * The policy returned by this function has to be released with the help of
213  * cpufreq_cpu_put() to balance its kobject reference counter properly.
214  */
215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
216 {
217 	struct cpufreq_policy *policy = NULL;
218 	unsigned long flags;
219 
220 	if (WARN_ON(cpu >= nr_cpu_ids))
221 		return NULL;
222 
223 	/* get the cpufreq driver */
224 	read_lock_irqsave(&cpufreq_driver_lock, flags);
225 
226 	if (cpufreq_driver) {
227 		/* get the CPU */
228 		policy = cpufreq_cpu_get_raw(cpu);
229 		if (policy)
230 			kobject_get(&policy->kobj);
231 	}
232 
233 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
234 
235 	return policy;
236 }
237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
238 
239 /**
240  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
241  * @policy: cpufreq policy returned by cpufreq_cpu_get().
242  */
243 void cpufreq_cpu_put(struct cpufreq_policy *policy)
244 {
245 	kobject_put(&policy->kobj);
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
248 
249 /**
250  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
251  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
252  */
253 void cpufreq_cpu_release(struct cpufreq_policy *policy)
254 {
255 	if (WARN_ON(!policy))
256 		return;
257 
258 	lockdep_assert_held(&policy->rwsem);
259 
260 	up_write(&policy->rwsem);
261 
262 	cpufreq_cpu_put(policy);
263 }
264 
265 /**
266  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
267  * @cpu: CPU to find the policy for.
268  *
269  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
270  * if the policy returned by it is not NULL, acquire its rwsem for writing.
271  * Return the policy if it is active or release it and return NULL otherwise.
272  *
273  * The policy returned by this function has to be released with the help of
274  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
275  * counter properly.
276  */
277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
278 {
279 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
280 
281 	if (!policy)
282 		return NULL;
283 
284 	down_write(&policy->rwsem);
285 
286 	if (policy_is_inactive(policy)) {
287 		cpufreq_cpu_release(policy);
288 		return NULL;
289 	}
290 
291 	return policy;
292 }
293 
294 /*********************************************************************
295  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
296  *********************************************************************/
297 
298 /**
299  * adjust_jiffies - Adjust the system "loops_per_jiffy".
300  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
301  * @ci: Frequency change information.
302  *
303  * This function alters the system "loops_per_jiffy" for the clock
304  * speed change. Note that loops_per_jiffy cannot be updated on SMP
305  * systems as each CPU might be scaled differently. So, use the arch
306  * per-CPU loops_per_jiffy value wherever possible.
307  */
308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
309 {
310 #ifndef CONFIG_SMP
311 	static unsigned long l_p_j_ref;
312 	static unsigned int l_p_j_ref_freq;
313 
314 	if (ci->flags & CPUFREQ_CONST_LOOPS)
315 		return;
316 
317 	if (!l_p_j_ref_freq) {
318 		l_p_j_ref = loops_per_jiffy;
319 		l_p_j_ref_freq = ci->old;
320 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
321 			 l_p_j_ref, l_p_j_ref_freq);
322 	}
323 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
324 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
325 								ci->new);
326 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
327 			 loops_per_jiffy, ci->new);
328 	}
329 #endif
330 }
331 
332 /**
333  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
334  * @policy: cpufreq policy to enable fast frequency switching for.
335  * @freqs: contain details of the frequency update.
336  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
337  *
338  * This function calls the transition notifiers and adjust_jiffies().
339  *
340  * It is called twice on all CPU frequency changes that have external effects.
341  */
342 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
343 				      struct cpufreq_freqs *freqs,
344 				      unsigned int state)
345 {
346 	int cpu;
347 
348 	BUG_ON(irqs_disabled());
349 
350 	if (cpufreq_disabled())
351 		return;
352 
353 	freqs->policy = policy;
354 	freqs->flags = cpufreq_driver->flags;
355 	pr_debug("notification %u of frequency transition to %u kHz\n",
356 		 state, freqs->new);
357 
358 	switch (state) {
359 	case CPUFREQ_PRECHANGE:
360 		/*
361 		 * Detect if the driver reported a value as "old frequency"
362 		 * which is not equal to what the cpufreq core thinks is
363 		 * "old frequency".
364 		 */
365 		if (policy->cur && policy->cur != freqs->old) {
366 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
367 				 freqs->old, policy->cur);
368 			freqs->old = policy->cur;
369 		}
370 
371 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
372 					 CPUFREQ_PRECHANGE, freqs);
373 
374 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
375 		break;
376 
377 	case CPUFREQ_POSTCHANGE:
378 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
379 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
380 			 cpumask_pr_args(policy->cpus));
381 
382 		for_each_cpu(cpu, policy->cpus)
383 			trace_cpu_frequency(freqs->new, cpu);
384 
385 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
386 					 CPUFREQ_POSTCHANGE, freqs);
387 
388 		cpufreq_stats_record_transition(policy, freqs->new);
389 		policy->cur = freqs->new;
390 	}
391 }
392 
393 /* Do post notifications when there are chances that transition has failed */
394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
395 		struct cpufreq_freqs *freqs, int transition_failed)
396 {
397 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
398 	if (!transition_failed)
399 		return;
400 
401 	swap(freqs->old, freqs->new);
402 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
404 }
405 
406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
407 		struct cpufreq_freqs *freqs)
408 {
409 
410 	/*
411 	 * Catch double invocations of _begin() which lead to self-deadlock.
412 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
413 	 * doesn't invoke _begin() on their behalf, and hence the chances of
414 	 * double invocations are very low. Moreover, there are scenarios
415 	 * where these checks can emit false-positive warnings in these
416 	 * drivers; so we avoid that by skipping them altogether.
417 	 */
418 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
419 				&& current == policy->transition_task);
420 
421 wait:
422 	wait_event(policy->transition_wait, !policy->transition_ongoing);
423 
424 	spin_lock(&policy->transition_lock);
425 
426 	if (unlikely(policy->transition_ongoing)) {
427 		spin_unlock(&policy->transition_lock);
428 		goto wait;
429 	}
430 
431 	policy->transition_ongoing = true;
432 	policy->transition_task = current;
433 
434 	spin_unlock(&policy->transition_lock);
435 
436 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
437 }
438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
439 
440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
441 		struct cpufreq_freqs *freqs, int transition_failed)
442 {
443 	if (WARN_ON(!policy->transition_ongoing))
444 		return;
445 
446 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
447 
448 	arch_set_freq_scale(policy->related_cpus,
449 			    policy->cur,
450 			    policy->cpuinfo.max_freq);
451 
452 	policy->transition_ongoing = false;
453 	policy->transition_task = NULL;
454 
455 	wake_up(&policy->transition_wait);
456 }
457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
458 
459 /*
460  * Fast frequency switching status count.  Positive means "enabled", negative
461  * means "disabled" and 0 means "not decided yet".
462  */
463 static int cpufreq_fast_switch_count;
464 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
465 
466 static void cpufreq_list_transition_notifiers(void)
467 {
468 	struct notifier_block *nb;
469 
470 	pr_info("Registered transition notifiers:\n");
471 
472 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
473 
474 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
475 		pr_info("%pS\n", nb->notifier_call);
476 
477 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
478 }
479 
480 /**
481  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
482  * @policy: cpufreq policy to enable fast frequency switching for.
483  *
484  * Try to enable fast frequency switching for @policy.
485  *
486  * The attempt will fail if there is at least one transition notifier registered
487  * at this point, as fast frequency switching is quite fundamentally at odds
488  * with transition notifiers.  Thus if successful, it will make registration of
489  * transition notifiers fail going forward.
490  */
491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
492 {
493 	lockdep_assert_held(&policy->rwsem);
494 
495 	if (!policy->fast_switch_possible)
496 		return;
497 
498 	mutex_lock(&cpufreq_fast_switch_lock);
499 	if (cpufreq_fast_switch_count >= 0) {
500 		cpufreq_fast_switch_count++;
501 		policy->fast_switch_enabled = true;
502 	} else {
503 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
504 			policy->cpu);
505 		cpufreq_list_transition_notifiers();
506 	}
507 	mutex_unlock(&cpufreq_fast_switch_lock);
508 }
509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
510 
511 /**
512  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
513  * @policy: cpufreq policy to disable fast frequency switching for.
514  */
515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
516 {
517 	mutex_lock(&cpufreq_fast_switch_lock);
518 	if (policy->fast_switch_enabled) {
519 		policy->fast_switch_enabled = false;
520 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
521 			cpufreq_fast_switch_count--;
522 	}
523 	mutex_unlock(&cpufreq_fast_switch_lock);
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
526 
527 /**
528  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
529  * one.
530  * @policy: associated policy to interrogate
531  * @target_freq: target frequency to resolve.
532  *
533  * The target to driver frequency mapping is cached in the policy.
534  *
535  * Return: Lowest driver-supported frequency greater than or equal to the
536  * given target_freq, subject to policy (min/max) and driver limitations.
537  */
538 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
539 					 unsigned int target_freq)
540 {
541 	target_freq = clamp_val(target_freq, policy->min, policy->max);
542 	policy->cached_target_freq = target_freq;
543 
544 	if (cpufreq_driver->target_index) {
545 		unsigned int idx;
546 
547 		idx = cpufreq_frequency_table_target(policy, target_freq,
548 						     CPUFREQ_RELATION_L);
549 		policy->cached_resolved_idx = idx;
550 		return policy->freq_table[idx].frequency;
551 	}
552 
553 	if (cpufreq_driver->resolve_freq)
554 		return cpufreq_driver->resolve_freq(policy, target_freq);
555 
556 	return target_freq;
557 }
558 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
559 
560 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
561 {
562 	unsigned int latency;
563 
564 	if (policy->transition_delay_us)
565 		return policy->transition_delay_us;
566 
567 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
568 	if (latency) {
569 		/*
570 		 * For platforms that can change the frequency very fast (< 10
571 		 * us), the above formula gives a decent transition delay. But
572 		 * for platforms where transition_latency is in milliseconds, it
573 		 * ends up giving unrealistic values.
574 		 *
575 		 * Cap the default transition delay to 10 ms, which seems to be
576 		 * a reasonable amount of time after which we should reevaluate
577 		 * the frequency.
578 		 */
579 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
580 	}
581 
582 	return LATENCY_MULTIPLIER;
583 }
584 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
585 
586 /*********************************************************************
587  *                          SYSFS INTERFACE                          *
588  *********************************************************************/
589 static ssize_t show_boost(struct kobject *kobj,
590 			  struct kobj_attribute *attr, char *buf)
591 {
592 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
593 }
594 
595 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
596 			   const char *buf, size_t count)
597 {
598 	int ret, enable;
599 
600 	ret = sscanf(buf, "%d", &enable);
601 	if (ret != 1 || enable < 0 || enable > 1)
602 		return -EINVAL;
603 
604 	if (cpufreq_boost_trigger_state(enable)) {
605 		pr_err("%s: Cannot %s BOOST!\n",
606 		       __func__, enable ? "enable" : "disable");
607 		return -EINVAL;
608 	}
609 
610 	pr_debug("%s: cpufreq BOOST %s\n",
611 		 __func__, enable ? "enabled" : "disabled");
612 
613 	return count;
614 }
615 define_one_global_rw(boost);
616 
617 static struct cpufreq_governor *find_governor(const char *str_governor)
618 {
619 	struct cpufreq_governor *t;
620 
621 	for_each_governor(t)
622 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
623 			return t;
624 
625 	return NULL;
626 }
627 
628 static struct cpufreq_governor *get_governor(const char *str_governor)
629 {
630 	struct cpufreq_governor *t;
631 
632 	mutex_lock(&cpufreq_governor_mutex);
633 	t = find_governor(str_governor);
634 	if (!t)
635 		goto unlock;
636 
637 	if (!try_module_get(t->owner))
638 		t = NULL;
639 
640 unlock:
641 	mutex_unlock(&cpufreq_governor_mutex);
642 
643 	return t;
644 }
645 
646 static unsigned int cpufreq_parse_policy(char *str_governor)
647 {
648 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
649 		return CPUFREQ_POLICY_PERFORMANCE;
650 
651 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
652 		return CPUFREQ_POLICY_POWERSAVE;
653 
654 	return CPUFREQ_POLICY_UNKNOWN;
655 }
656 
657 /**
658  * cpufreq_parse_governor - parse a governor string only for has_target()
659  * @str_governor: Governor name.
660  */
661 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
662 {
663 	struct cpufreq_governor *t;
664 
665 	t = get_governor(str_governor);
666 	if (t)
667 		return t;
668 
669 	if (request_module("cpufreq_%s", str_governor))
670 		return NULL;
671 
672 	return get_governor(str_governor);
673 }
674 
675 /*
676  * cpufreq_per_cpu_attr_read() / show_##file_name() -
677  * print out cpufreq information
678  *
679  * Write out information from cpufreq_driver->policy[cpu]; object must be
680  * "unsigned int".
681  */
682 
683 #define show_one(file_name, object)			\
684 static ssize_t show_##file_name				\
685 (struct cpufreq_policy *policy, char *buf)		\
686 {							\
687 	return sprintf(buf, "%u\n", policy->object);	\
688 }
689 
690 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
691 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
692 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
693 show_one(scaling_min_freq, min);
694 show_one(scaling_max_freq, max);
695 
696 __weak unsigned int arch_freq_get_on_cpu(int cpu)
697 {
698 	return 0;
699 }
700 
701 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
702 {
703 	ssize_t ret;
704 	unsigned int freq;
705 
706 	freq = arch_freq_get_on_cpu(policy->cpu);
707 	if (freq)
708 		ret = sprintf(buf, "%u\n", freq);
709 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
710 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
711 	else
712 		ret = sprintf(buf, "%u\n", policy->cur);
713 	return ret;
714 }
715 
716 /*
717  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
718  */
719 #define store_one(file_name, object)			\
720 static ssize_t store_##file_name					\
721 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
722 {									\
723 	unsigned long val;						\
724 	int ret;							\
725 									\
726 	ret = sscanf(buf, "%lu", &val);					\
727 	if (ret != 1)							\
728 		return -EINVAL;						\
729 									\
730 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
731 	return ret >= 0 ? count : ret;					\
732 }
733 
734 store_one(scaling_min_freq, min);
735 store_one(scaling_max_freq, max);
736 
737 /*
738  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
739  */
740 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
741 					char *buf)
742 {
743 	unsigned int cur_freq = __cpufreq_get(policy);
744 
745 	if (cur_freq)
746 		return sprintf(buf, "%u\n", cur_freq);
747 
748 	return sprintf(buf, "<unknown>\n");
749 }
750 
751 /*
752  * show_scaling_governor - show the current policy for the specified CPU
753  */
754 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
755 {
756 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
757 		return sprintf(buf, "powersave\n");
758 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
759 		return sprintf(buf, "performance\n");
760 	else if (policy->governor)
761 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
762 				policy->governor->name);
763 	return -EINVAL;
764 }
765 
766 /*
767  * store_scaling_governor - store policy for the specified CPU
768  */
769 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
770 					const char *buf, size_t count)
771 {
772 	char str_governor[16];
773 	int ret;
774 
775 	ret = sscanf(buf, "%15s", str_governor);
776 	if (ret != 1)
777 		return -EINVAL;
778 
779 	if (cpufreq_driver->setpolicy) {
780 		unsigned int new_pol;
781 
782 		new_pol = cpufreq_parse_policy(str_governor);
783 		if (!new_pol)
784 			return -EINVAL;
785 
786 		ret = cpufreq_set_policy(policy, NULL, new_pol);
787 	} else {
788 		struct cpufreq_governor *new_gov;
789 
790 		new_gov = cpufreq_parse_governor(str_governor);
791 		if (!new_gov)
792 			return -EINVAL;
793 
794 		ret = cpufreq_set_policy(policy, new_gov,
795 					 CPUFREQ_POLICY_UNKNOWN);
796 
797 		module_put(new_gov->owner);
798 	}
799 
800 	return ret ? ret : count;
801 }
802 
803 /*
804  * show_scaling_driver - show the cpufreq driver currently loaded
805  */
806 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
807 {
808 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
809 }
810 
811 /*
812  * show_scaling_available_governors - show the available CPUfreq governors
813  */
814 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
815 						char *buf)
816 {
817 	ssize_t i = 0;
818 	struct cpufreq_governor *t;
819 
820 	if (!has_target()) {
821 		i += sprintf(buf, "performance powersave");
822 		goto out;
823 	}
824 
825 	mutex_lock(&cpufreq_governor_mutex);
826 	for_each_governor(t) {
827 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
828 		    - (CPUFREQ_NAME_LEN + 2)))
829 			break;
830 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
831 	}
832 	mutex_unlock(&cpufreq_governor_mutex);
833 out:
834 	i += sprintf(&buf[i], "\n");
835 	return i;
836 }
837 
838 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
839 {
840 	ssize_t i = 0;
841 	unsigned int cpu;
842 
843 	for_each_cpu(cpu, mask) {
844 		if (i)
845 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
846 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
847 		if (i >= (PAGE_SIZE - 5))
848 			break;
849 	}
850 	i += sprintf(&buf[i], "\n");
851 	return i;
852 }
853 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
854 
855 /*
856  * show_related_cpus - show the CPUs affected by each transition even if
857  * hw coordination is in use
858  */
859 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
860 {
861 	return cpufreq_show_cpus(policy->related_cpus, buf);
862 }
863 
864 /*
865  * show_affected_cpus - show the CPUs affected by each transition
866  */
867 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
868 {
869 	return cpufreq_show_cpus(policy->cpus, buf);
870 }
871 
872 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
873 					const char *buf, size_t count)
874 {
875 	unsigned int freq = 0;
876 	unsigned int ret;
877 
878 	if (!policy->governor || !policy->governor->store_setspeed)
879 		return -EINVAL;
880 
881 	ret = sscanf(buf, "%u", &freq);
882 	if (ret != 1)
883 		return -EINVAL;
884 
885 	policy->governor->store_setspeed(policy, freq);
886 
887 	return count;
888 }
889 
890 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
891 {
892 	if (!policy->governor || !policy->governor->show_setspeed)
893 		return sprintf(buf, "<unsupported>\n");
894 
895 	return policy->governor->show_setspeed(policy, buf);
896 }
897 
898 /*
899  * show_bios_limit - show the current cpufreq HW/BIOS limitation
900  */
901 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
902 {
903 	unsigned int limit;
904 	int ret;
905 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
906 	if (!ret)
907 		return sprintf(buf, "%u\n", limit);
908 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
909 }
910 
911 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
912 cpufreq_freq_attr_ro(cpuinfo_min_freq);
913 cpufreq_freq_attr_ro(cpuinfo_max_freq);
914 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
915 cpufreq_freq_attr_ro(scaling_available_governors);
916 cpufreq_freq_attr_ro(scaling_driver);
917 cpufreq_freq_attr_ro(scaling_cur_freq);
918 cpufreq_freq_attr_ro(bios_limit);
919 cpufreq_freq_attr_ro(related_cpus);
920 cpufreq_freq_attr_ro(affected_cpus);
921 cpufreq_freq_attr_rw(scaling_min_freq);
922 cpufreq_freq_attr_rw(scaling_max_freq);
923 cpufreq_freq_attr_rw(scaling_governor);
924 cpufreq_freq_attr_rw(scaling_setspeed);
925 
926 static struct attribute *default_attrs[] = {
927 	&cpuinfo_min_freq.attr,
928 	&cpuinfo_max_freq.attr,
929 	&cpuinfo_transition_latency.attr,
930 	&scaling_min_freq.attr,
931 	&scaling_max_freq.attr,
932 	&affected_cpus.attr,
933 	&related_cpus.attr,
934 	&scaling_governor.attr,
935 	&scaling_driver.attr,
936 	&scaling_available_governors.attr,
937 	&scaling_setspeed.attr,
938 	NULL
939 };
940 
941 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
942 #define to_attr(a) container_of(a, struct freq_attr, attr)
943 
944 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
945 {
946 	struct cpufreq_policy *policy = to_policy(kobj);
947 	struct freq_attr *fattr = to_attr(attr);
948 	ssize_t ret;
949 
950 	if (!fattr->show)
951 		return -EIO;
952 
953 	down_read(&policy->rwsem);
954 	ret = fattr->show(policy, buf);
955 	up_read(&policy->rwsem);
956 
957 	return ret;
958 }
959 
960 static ssize_t store(struct kobject *kobj, struct attribute *attr,
961 		     const char *buf, size_t count)
962 {
963 	struct cpufreq_policy *policy = to_policy(kobj);
964 	struct freq_attr *fattr = to_attr(attr);
965 	ssize_t ret = -EINVAL;
966 
967 	if (!fattr->store)
968 		return -EIO;
969 
970 	/*
971 	 * cpus_read_trylock() is used here to work around a circular lock
972 	 * dependency problem with respect to the cpufreq_register_driver().
973 	 */
974 	if (!cpus_read_trylock())
975 		return -EBUSY;
976 
977 	if (cpu_online(policy->cpu)) {
978 		down_write(&policy->rwsem);
979 		ret = fattr->store(policy, buf, count);
980 		up_write(&policy->rwsem);
981 	}
982 
983 	cpus_read_unlock();
984 
985 	return ret;
986 }
987 
988 static void cpufreq_sysfs_release(struct kobject *kobj)
989 {
990 	struct cpufreq_policy *policy = to_policy(kobj);
991 	pr_debug("last reference is dropped\n");
992 	complete(&policy->kobj_unregister);
993 }
994 
995 static const struct sysfs_ops sysfs_ops = {
996 	.show	= show,
997 	.store	= store,
998 };
999 
1000 static struct kobj_type ktype_cpufreq = {
1001 	.sysfs_ops	= &sysfs_ops,
1002 	.default_attrs	= default_attrs,
1003 	.release	= cpufreq_sysfs_release,
1004 };
1005 
1006 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1007 {
1008 	struct device *dev = get_cpu_device(cpu);
1009 
1010 	if (unlikely(!dev))
1011 		return;
1012 
1013 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1014 		return;
1015 
1016 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1017 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1018 		dev_err(dev, "cpufreq symlink creation failed\n");
1019 }
1020 
1021 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1022 				   struct device *dev)
1023 {
1024 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1025 	sysfs_remove_link(&dev->kobj, "cpufreq");
1026 }
1027 
1028 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1029 {
1030 	struct freq_attr **drv_attr;
1031 	int ret = 0;
1032 
1033 	/* set up files for this cpu device */
1034 	drv_attr = cpufreq_driver->attr;
1035 	while (drv_attr && *drv_attr) {
1036 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1037 		if (ret)
1038 			return ret;
1039 		drv_attr++;
1040 	}
1041 	if (cpufreq_driver->get) {
1042 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1043 		if (ret)
1044 			return ret;
1045 	}
1046 
1047 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1048 	if (ret)
1049 		return ret;
1050 
1051 	if (cpufreq_driver->bios_limit) {
1052 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1053 		if (ret)
1054 			return ret;
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1061 {
1062 	struct cpufreq_governor *gov = NULL;
1063 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1064 	int ret;
1065 
1066 	if (has_target()) {
1067 		/* Update policy governor to the one used before hotplug. */
1068 		gov = get_governor(policy->last_governor);
1069 		if (gov) {
1070 			pr_debug("Restoring governor %s for cpu %d\n",
1071 				 gov->name, policy->cpu);
1072 		} else {
1073 			gov = get_governor(default_governor);
1074 		}
1075 
1076 		if (!gov) {
1077 			gov = cpufreq_default_governor();
1078 			__module_get(gov->owner);
1079 		}
1080 
1081 	} else {
1082 
1083 		/* Use the default policy if there is no last_policy. */
1084 		if (policy->last_policy) {
1085 			pol = policy->last_policy;
1086 		} else {
1087 			pol = cpufreq_parse_policy(default_governor);
1088 			/*
1089 			 * In case the default governor is neither "performance"
1090 			 * nor "powersave", fall back to the initial policy
1091 			 * value set by the driver.
1092 			 */
1093 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1094 				pol = policy->policy;
1095 		}
1096 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1097 		    pol != CPUFREQ_POLICY_POWERSAVE)
1098 			return -ENODATA;
1099 	}
1100 
1101 	ret = cpufreq_set_policy(policy, gov, pol);
1102 	if (gov)
1103 		module_put(gov->owner);
1104 
1105 	return ret;
1106 }
1107 
1108 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1109 {
1110 	int ret = 0;
1111 
1112 	/* Has this CPU been taken care of already? */
1113 	if (cpumask_test_cpu(cpu, policy->cpus))
1114 		return 0;
1115 
1116 	down_write(&policy->rwsem);
1117 	if (has_target())
1118 		cpufreq_stop_governor(policy);
1119 
1120 	cpumask_set_cpu(cpu, policy->cpus);
1121 
1122 	if (has_target()) {
1123 		ret = cpufreq_start_governor(policy);
1124 		if (ret)
1125 			pr_err("%s: Failed to start governor\n", __func__);
1126 	}
1127 	up_write(&policy->rwsem);
1128 	return ret;
1129 }
1130 
1131 void refresh_frequency_limits(struct cpufreq_policy *policy)
1132 {
1133 	if (!policy_is_inactive(policy)) {
1134 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1135 
1136 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1137 	}
1138 }
1139 EXPORT_SYMBOL(refresh_frequency_limits);
1140 
1141 static void handle_update(struct work_struct *work)
1142 {
1143 	struct cpufreq_policy *policy =
1144 		container_of(work, struct cpufreq_policy, update);
1145 
1146 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1147 	down_write(&policy->rwsem);
1148 	refresh_frequency_limits(policy);
1149 	up_write(&policy->rwsem);
1150 }
1151 
1152 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1153 				void *data)
1154 {
1155 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1156 
1157 	schedule_work(&policy->update);
1158 	return 0;
1159 }
1160 
1161 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1162 				void *data)
1163 {
1164 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1165 
1166 	schedule_work(&policy->update);
1167 	return 0;
1168 }
1169 
1170 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1171 {
1172 	struct kobject *kobj;
1173 	struct completion *cmp;
1174 
1175 	down_write(&policy->rwsem);
1176 	cpufreq_stats_free_table(policy);
1177 	kobj = &policy->kobj;
1178 	cmp = &policy->kobj_unregister;
1179 	up_write(&policy->rwsem);
1180 	kobject_put(kobj);
1181 
1182 	/*
1183 	 * We need to make sure that the underlying kobj is
1184 	 * actually not referenced anymore by anybody before we
1185 	 * proceed with unloading.
1186 	 */
1187 	pr_debug("waiting for dropping of refcount\n");
1188 	wait_for_completion(cmp);
1189 	pr_debug("wait complete\n");
1190 }
1191 
1192 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1193 {
1194 	struct cpufreq_policy *policy;
1195 	struct device *dev = get_cpu_device(cpu);
1196 	int ret;
1197 
1198 	if (!dev)
1199 		return NULL;
1200 
1201 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1202 	if (!policy)
1203 		return NULL;
1204 
1205 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1206 		goto err_free_policy;
1207 
1208 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1209 		goto err_free_cpumask;
1210 
1211 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1212 		goto err_free_rcpumask;
1213 
1214 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1215 				   cpufreq_global_kobject, "policy%u", cpu);
1216 	if (ret) {
1217 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1218 		/*
1219 		 * The entire policy object will be freed below, but the extra
1220 		 * memory allocated for the kobject name needs to be freed by
1221 		 * releasing the kobject.
1222 		 */
1223 		kobject_put(&policy->kobj);
1224 		goto err_free_real_cpus;
1225 	}
1226 
1227 	freq_constraints_init(&policy->constraints);
1228 
1229 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1230 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1231 
1232 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1233 				    &policy->nb_min);
1234 	if (ret) {
1235 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1236 			ret, cpumask_pr_args(policy->cpus));
1237 		goto err_kobj_remove;
1238 	}
1239 
1240 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1241 				    &policy->nb_max);
1242 	if (ret) {
1243 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1244 			ret, cpumask_pr_args(policy->cpus));
1245 		goto err_min_qos_notifier;
1246 	}
1247 
1248 	INIT_LIST_HEAD(&policy->policy_list);
1249 	init_rwsem(&policy->rwsem);
1250 	spin_lock_init(&policy->transition_lock);
1251 	init_waitqueue_head(&policy->transition_wait);
1252 	init_completion(&policy->kobj_unregister);
1253 	INIT_WORK(&policy->update, handle_update);
1254 
1255 	policy->cpu = cpu;
1256 	return policy;
1257 
1258 err_min_qos_notifier:
1259 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1260 				 &policy->nb_min);
1261 err_kobj_remove:
1262 	cpufreq_policy_put_kobj(policy);
1263 err_free_real_cpus:
1264 	free_cpumask_var(policy->real_cpus);
1265 err_free_rcpumask:
1266 	free_cpumask_var(policy->related_cpus);
1267 err_free_cpumask:
1268 	free_cpumask_var(policy->cpus);
1269 err_free_policy:
1270 	kfree(policy);
1271 
1272 	return NULL;
1273 }
1274 
1275 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1276 {
1277 	unsigned long flags;
1278 	int cpu;
1279 
1280 	/* Remove policy from list */
1281 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1282 	list_del(&policy->policy_list);
1283 
1284 	for_each_cpu(cpu, policy->related_cpus)
1285 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1286 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1287 
1288 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1289 				 &policy->nb_max);
1290 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1291 				 &policy->nb_min);
1292 
1293 	/* Cancel any pending policy->update work before freeing the policy. */
1294 	cancel_work_sync(&policy->update);
1295 
1296 	if (policy->max_freq_req) {
1297 		/*
1298 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1299 		 * successfully adding max_freq_req request.
1300 		 */
1301 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1302 					     CPUFREQ_REMOVE_POLICY, policy);
1303 		freq_qos_remove_request(policy->max_freq_req);
1304 	}
1305 
1306 	freq_qos_remove_request(policy->min_freq_req);
1307 	kfree(policy->min_freq_req);
1308 
1309 	cpufreq_policy_put_kobj(policy);
1310 	free_cpumask_var(policy->real_cpus);
1311 	free_cpumask_var(policy->related_cpus);
1312 	free_cpumask_var(policy->cpus);
1313 	kfree(policy);
1314 }
1315 
1316 static int cpufreq_online(unsigned int cpu)
1317 {
1318 	struct cpufreq_policy *policy;
1319 	bool new_policy;
1320 	unsigned long flags;
1321 	unsigned int j;
1322 	int ret;
1323 
1324 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1325 
1326 	/* Check if this CPU already has a policy to manage it */
1327 	policy = per_cpu(cpufreq_cpu_data, cpu);
1328 	if (policy) {
1329 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1330 		if (!policy_is_inactive(policy))
1331 			return cpufreq_add_policy_cpu(policy, cpu);
1332 
1333 		/* This is the only online CPU for the policy.  Start over. */
1334 		new_policy = false;
1335 		down_write(&policy->rwsem);
1336 		policy->cpu = cpu;
1337 		policy->governor = NULL;
1338 		up_write(&policy->rwsem);
1339 	} else {
1340 		new_policy = true;
1341 		policy = cpufreq_policy_alloc(cpu);
1342 		if (!policy)
1343 			return -ENOMEM;
1344 	}
1345 
1346 	if (!new_policy && cpufreq_driver->online) {
1347 		ret = cpufreq_driver->online(policy);
1348 		if (ret) {
1349 			pr_debug("%s: %d: initialization failed\n", __func__,
1350 				 __LINE__);
1351 			goto out_exit_policy;
1352 		}
1353 
1354 		/* Recover policy->cpus using related_cpus */
1355 		cpumask_copy(policy->cpus, policy->related_cpus);
1356 	} else {
1357 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1358 
1359 		/*
1360 		 * Call driver. From then on the cpufreq must be able
1361 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1362 		 */
1363 		ret = cpufreq_driver->init(policy);
1364 		if (ret) {
1365 			pr_debug("%s: %d: initialization failed\n", __func__,
1366 				 __LINE__);
1367 			goto out_free_policy;
1368 		}
1369 
1370 		ret = cpufreq_table_validate_and_sort(policy);
1371 		if (ret)
1372 			goto out_exit_policy;
1373 
1374 		/* related_cpus should at least include policy->cpus. */
1375 		cpumask_copy(policy->related_cpus, policy->cpus);
1376 	}
1377 
1378 	down_write(&policy->rwsem);
1379 	/*
1380 	 * affected cpus must always be the one, which are online. We aren't
1381 	 * managing offline cpus here.
1382 	 */
1383 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1384 
1385 	if (new_policy) {
1386 		for_each_cpu(j, policy->related_cpus) {
1387 			per_cpu(cpufreq_cpu_data, j) = policy;
1388 			add_cpu_dev_symlink(policy, j);
1389 		}
1390 
1391 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1392 					       GFP_KERNEL);
1393 		if (!policy->min_freq_req) {
1394 			ret = -ENOMEM;
1395 			goto out_destroy_policy;
1396 		}
1397 
1398 		ret = freq_qos_add_request(&policy->constraints,
1399 					   policy->min_freq_req, FREQ_QOS_MIN,
1400 					   policy->min);
1401 		if (ret < 0) {
1402 			/*
1403 			 * So we don't call freq_qos_remove_request() for an
1404 			 * uninitialized request.
1405 			 */
1406 			kfree(policy->min_freq_req);
1407 			policy->min_freq_req = NULL;
1408 			goto out_destroy_policy;
1409 		}
1410 
1411 		/*
1412 		 * This must be initialized right here to avoid calling
1413 		 * freq_qos_remove_request() on uninitialized request in case
1414 		 * of errors.
1415 		 */
1416 		policy->max_freq_req = policy->min_freq_req + 1;
1417 
1418 		ret = freq_qos_add_request(&policy->constraints,
1419 					   policy->max_freq_req, FREQ_QOS_MAX,
1420 					   policy->max);
1421 		if (ret < 0) {
1422 			policy->max_freq_req = NULL;
1423 			goto out_destroy_policy;
1424 		}
1425 
1426 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1427 				CPUFREQ_CREATE_POLICY, policy);
1428 	}
1429 
1430 	if (cpufreq_driver->get && has_target()) {
1431 		policy->cur = cpufreq_driver->get(policy->cpu);
1432 		if (!policy->cur) {
1433 			ret = -EIO;
1434 			pr_err("%s: ->get() failed\n", __func__);
1435 			goto out_destroy_policy;
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * Sometimes boot loaders set CPU frequency to a value outside of
1441 	 * frequency table present with cpufreq core. In such cases CPU might be
1442 	 * unstable if it has to run on that frequency for long duration of time
1443 	 * and so its better to set it to a frequency which is specified in
1444 	 * freq-table. This also makes cpufreq stats inconsistent as
1445 	 * cpufreq-stats would fail to register because current frequency of CPU
1446 	 * isn't found in freq-table.
1447 	 *
1448 	 * Because we don't want this change to effect boot process badly, we go
1449 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1450 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1451 	 * is initialized to zero).
1452 	 *
1453 	 * We are passing target-freq as "policy->cur - 1" otherwise
1454 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1455 	 * equal to target-freq.
1456 	 */
1457 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1458 	    && has_target()) {
1459 		unsigned int old_freq = policy->cur;
1460 
1461 		/* Are we running at unknown frequency ? */
1462 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1463 		if (ret == -EINVAL) {
1464 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1465 						      CPUFREQ_RELATION_L);
1466 
1467 			/*
1468 			 * Reaching here after boot in a few seconds may not
1469 			 * mean that system will remain stable at "unknown"
1470 			 * frequency for longer duration. Hence, a BUG_ON().
1471 			 */
1472 			BUG_ON(ret);
1473 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1474 				__func__, policy->cpu, old_freq, policy->cur);
1475 		}
1476 	}
1477 
1478 	if (new_policy) {
1479 		ret = cpufreq_add_dev_interface(policy);
1480 		if (ret)
1481 			goto out_destroy_policy;
1482 
1483 		cpufreq_stats_create_table(policy);
1484 
1485 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1486 		list_add(&policy->policy_list, &cpufreq_policy_list);
1487 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1488 	}
1489 
1490 	ret = cpufreq_init_policy(policy);
1491 	if (ret) {
1492 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1493 		       __func__, cpu, ret);
1494 		goto out_destroy_policy;
1495 	}
1496 
1497 	up_write(&policy->rwsem);
1498 
1499 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1500 
1501 	/* Callback for handling stuff after policy is ready */
1502 	if (cpufreq_driver->ready)
1503 		cpufreq_driver->ready(policy);
1504 
1505 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1506 		policy->cdev = of_cpufreq_cooling_register(policy);
1507 
1508 	pr_debug("initialization complete\n");
1509 
1510 	return 0;
1511 
1512 out_destroy_policy:
1513 	for_each_cpu(j, policy->real_cpus)
1514 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1515 
1516 	up_write(&policy->rwsem);
1517 
1518 out_exit_policy:
1519 	if (cpufreq_driver->exit)
1520 		cpufreq_driver->exit(policy);
1521 
1522 out_free_policy:
1523 	cpufreq_policy_free(policy);
1524 	return ret;
1525 }
1526 
1527 /**
1528  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1529  * @dev: CPU device.
1530  * @sif: Subsystem interface structure pointer (not used)
1531  */
1532 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1533 {
1534 	struct cpufreq_policy *policy;
1535 	unsigned cpu = dev->id;
1536 	int ret;
1537 
1538 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1539 
1540 	if (cpu_online(cpu)) {
1541 		ret = cpufreq_online(cpu);
1542 		if (ret)
1543 			return ret;
1544 	}
1545 
1546 	/* Create sysfs link on CPU registration */
1547 	policy = per_cpu(cpufreq_cpu_data, cpu);
1548 	if (policy)
1549 		add_cpu_dev_symlink(policy, cpu);
1550 
1551 	return 0;
1552 }
1553 
1554 static int cpufreq_offline(unsigned int cpu)
1555 {
1556 	struct cpufreq_policy *policy;
1557 	int ret;
1558 
1559 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1560 
1561 	policy = cpufreq_cpu_get_raw(cpu);
1562 	if (!policy) {
1563 		pr_debug("%s: No cpu_data found\n", __func__);
1564 		return 0;
1565 	}
1566 
1567 	down_write(&policy->rwsem);
1568 	if (has_target())
1569 		cpufreq_stop_governor(policy);
1570 
1571 	cpumask_clear_cpu(cpu, policy->cpus);
1572 
1573 	if (policy_is_inactive(policy)) {
1574 		if (has_target())
1575 			strncpy(policy->last_governor, policy->governor->name,
1576 				CPUFREQ_NAME_LEN);
1577 		else
1578 			policy->last_policy = policy->policy;
1579 	} else if (cpu == policy->cpu) {
1580 		/* Nominate new CPU */
1581 		policy->cpu = cpumask_any(policy->cpus);
1582 	}
1583 
1584 	/* Start governor again for active policy */
1585 	if (!policy_is_inactive(policy)) {
1586 		if (has_target()) {
1587 			ret = cpufreq_start_governor(policy);
1588 			if (ret)
1589 				pr_err("%s: Failed to start governor\n", __func__);
1590 		}
1591 
1592 		goto unlock;
1593 	}
1594 
1595 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1596 		cpufreq_cooling_unregister(policy->cdev);
1597 		policy->cdev = NULL;
1598 	}
1599 
1600 	if (cpufreq_driver->stop_cpu)
1601 		cpufreq_driver->stop_cpu(policy);
1602 
1603 	if (has_target())
1604 		cpufreq_exit_governor(policy);
1605 
1606 	/*
1607 	 * Perform the ->offline() during light-weight tear-down, as
1608 	 * that allows fast recovery when the CPU comes back.
1609 	 */
1610 	if (cpufreq_driver->offline) {
1611 		cpufreq_driver->offline(policy);
1612 	} else if (cpufreq_driver->exit) {
1613 		cpufreq_driver->exit(policy);
1614 		policy->freq_table = NULL;
1615 	}
1616 
1617 unlock:
1618 	up_write(&policy->rwsem);
1619 	return 0;
1620 }
1621 
1622 /*
1623  * cpufreq_remove_dev - remove a CPU device
1624  *
1625  * Removes the cpufreq interface for a CPU device.
1626  */
1627 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1628 {
1629 	unsigned int cpu = dev->id;
1630 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1631 
1632 	if (!policy)
1633 		return;
1634 
1635 	if (cpu_online(cpu))
1636 		cpufreq_offline(cpu);
1637 
1638 	cpumask_clear_cpu(cpu, policy->real_cpus);
1639 	remove_cpu_dev_symlink(policy, dev);
1640 
1641 	if (cpumask_empty(policy->real_cpus)) {
1642 		/* We did light-weight exit earlier, do full tear down now */
1643 		if (cpufreq_driver->offline)
1644 			cpufreq_driver->exit(policy);
1645 
1646 		cpufreq_policy_free(policy);
1647 	}
1648 }
1649 
1650 /**
1651  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1652  * @policy: Policy managing CPUs.
1653  * @new_freq: New CPU frequency.
1654  *
1655  * Adjust to the current frequency first and clean up later by either calling
1656  * cpufreq_update_policy(), or scheduling handle_update().
1657  */
1658 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1659 				unsigned int new_freq)
1660 {
1661 	struct cpufreq_freqs freqs;
1662 
1663 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1664 		 policy->cur, new_freq);
1665 
1666 	freqs.old = policy->cur;
1667 	freqs.new = new_freq;
1668 
1669 	cpufreq_freq_transition_begin(policy, &freqs);
1670 	cpufreq_freq_transition_end(policy, &freqs, 0);
1671 }
1672 
1673 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1674 {
1675 	unsigned int new_freq;
1676 
1677 	new_freq = cpufreq_driver->get(policy->cpu);
1678 	if (!new_freq)
1679 		return 0;
1680 
1681 	/*
1682 	 * If fast frequency switching is used with the given policy, the check
1683 	 * against policy->cur is pointless, so skip it in that case.
1684 	 */
1685 	if (policy->fast_switch_enabled || !has_target())
1686 		return new_freq;
1687 
1688 	if (policy->cur != new_freq) {
1689 		cpufreq_out_of_sync(policy, new_freq);
1690 		if (update)
1691 			schedule_work(&policy->update);
1692 	}
1693 
1694 	return new_freq;
1695 }
1696 
1697 /**
1698  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1699  * @cpu: CPU number
1700  *
1701  * This is the last known freq, without actually getting it from the driver.
1702  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1703  */
1704 unsigned int cpufreq_quick_get(unsigned int cpu)
1705 {
1706 	struct cpufreq_policy *policy;
1707 	unsigned int ret_freq = 0;
1708 	unsigned long flags;
1709 
1710 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1711 
1712 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1713 		ret_freq = cpufreq_driver->get(cpu);
1714 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1715 		return ret_freq;
1716 	}
1717 
1718 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1719 
1720 	policy = cpufreq_cpu_get(cpu);
1721 	if (policy) {
1722 		ret_freq = policy->cur;
1723 		cpufreq_cpu_put(policy);
1724 	}
1725 
1726 	return ret_freq;
1727 }
1728 EXPORT_SYMBOL(cpufreq_quick_get);
1729 
1730 /**
1731  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1732  * @cpu: CPU number
1733  *
1734  * Just return the max possible frequency for a given CPU.
1735  */
1736 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1737 {
1738 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1739 	unsigned int ret_freq = 0;
1740 
1741 	if (policy) {
1742 		ret_freq = policy->max;
1743 		cpufreq_cpu_put(policy);
1744 	}
1745 
1746 	return ret_freq;
1747 }
1748 EXPORT_SYMBOL(cpufreq_quick_get_max);
1749 
1750 /**
1751  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1752  * @cpu: CPU number
1753  *
1754  * The default return value is the max_freq field of cpuinfo.
1755  */
1756 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1757 {
1758 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1759 	unsigned int ret_freq = 0;
1760 
1761 	if (policy) {
1762 		ret_freq = policy->cpuinfo.max_freq;
1763 		cpufreq_cpu_put(policy);
1764 	}
1765 
1766 	return ret_freq;
1767 }
1768 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1769 
1770 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1771 {
1772 	if (unlikely(policy_is_inactive(policy)))
1773 		return 0;
1774 
1775 	return cpufreq_verify_current_freq(policy, true);
1776 }
1777 
1778 /**
1779  * cpufreq_get - get the current CPU frequency (in kHz)
1780  * @cpu: CPU number
1781  *
1782  * Get the CPU current (static) CPU frequency
1783  */
1784 unsigned int cpufreq_get(unsigned int cpu)
1785 {
1786 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1787 	unsigned int ret_freq = 0;
1788 
1789 	if (policy) {
1790 		down_read(&policy->rwsem);
1791 		if (cpufreq_driver->get)
1792 			ret_freq = __cpufreq_get(policy);
1793 		up_read(&policy->rwsem);
1794 
1795 		cpufreq_cpu_put(policy);
1796 	}
1797 
1798 	return ret_freq;
1799 }
1800 EXPORT_SYMBOL(cpufreq_get);
1801 
1802 static struct subsys_interface cpufreq_interface = {
1803 	.name		= "cpufreq",
1804 	.subsys		= &cpu_subsys,
1805 	.add_dev	= cpufreq_add_dev,
1806 	.remove_dev	= cpufreq_remove_dev,
1807 };
1808 
1809 /*
1810  * In case platform wants some specific frequency to be configured
1811  * during suspend..
1812  */
1813 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1814 {
1815 	int ret;
1816 
1817 	if (!policy->suspend_freq) {
1818 		pr_debug("%s: suspend_freq not defined\n", __func__);
1819 		return 0;
1820 	}
1821 
1822 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1823 			policy->suspend_freq);
1824 
1825 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1826 			CPUFREQ_RELATION_H);
1827 	if (ret)
1828 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1829 				__func__, policy->suspend_freq, ret);
1830 
1831 	return ret;
1832 }
1833 EXPORT_SYMBOL(cpufreq_generic_suspend);
1834 
1835 /**
1836  * cpufreq_suspend() - Suspend CPUFreq governors.
1837  *
1838  * Called during system wide Suspend/Hibernate cycles for suspending governors
1839  * as some platforms can't change frequency after this point in suspend cycle.
1840  * Because some of the devices (like: i2c, regulators, etc) they use for
1841  * changing frequency are suspended quickly after this point.
1842  */
1843 void cpufreq_suspend(void)
1844 {
1845 	struct cpufreq_policy *policy;
1846 
1847 	if (!cpufreq_driver)
1848 		return;
1849 
1850 	if (!has_target() && !cpufreq_driver->suspend)
1851 		goto suspend;
1852 
1853 	pr_debug("%s: Suspending Governors\n", __func__);
1854 
1855 	for_each_active_policy(policy) {
1856 		if (has_target()) {
1857 			down_write(&policy->rwsem);
1858 			cpufreq_stop_governor(policy);
1859 			up_write(&policy->rwsem);
1860 		}
1861 
1862 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1863 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1864 				cpufreq_driver->name);
1865 	}
1866 
1867 suspend:
1868 	cpufreq_suspended = true;
1869 }
1870 
1871 /**
1872  * cpufreq_resume() - Resume CPUFreq governors.
1873  *
1874  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1875  * are suspended with cpufreq_suspend().
1876  */
1877 void cpufreq_resume(void)
1878 {
1879 	struct cpufreq_policy *policy;
1880 	int ret;
1881 
1882 	if (!cpufreq_driver)
1883 		return;
1884 
1885 	if (unlikely(!cpufreq_suspended))
1886 		return;
1887 
1888 	cpufreq_suspended = false;
1889 
1890 	if (!has_target() && !cpufreq_driver->resume)
1891 		return;
1892 
1893 	pr_debug("%s: Resuming Governors\n", __func__);
1894 
1895 	for_each_active_policy(policy) {
1896 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1897 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1898 				policy);
1899 		} else if (has_target()) {
1900 			down_write(&policy->rwsem);
1901 			ret = cpufreq_start_governor(policy);
1902 			up_write(&policy->rwsem);
1903 
1904 			if (ret)
1905 				pr_err("%s: Failed to start governor for policy: %p\n",
1906 				       __func__, policy);
1907 		}
1908 	}
1909 }
1910 
1911 /**
1912  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1913  * @flags: Flags to test against the current cpufreq driver's flags.
1914  *
1915  * Assumes that the driver is there, so callers must ensure that this is the
1916  * case.
1917  */
1918 bool cpufreq_driver_test_flags(u16 flags)
1919 {
1920 	return !!(cpufreq_driver->flags & flags);
1921 }
1922 
1923 /**
1924  * cpufreq_get_current_driver - Return the current driver's name.
1925  *
1926  * Return the name string of the currently registered cpufreq driver or NULL if
1927  * none.
1928  */
1929 const char *cpufreq_get_current_driver(void)
1930 {
1931 	if (cpufreq_driver)
1932 		return cpufreq_driver->name;
1933 
1934 	return NULL;
1935 }
1936 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1937 
1938 /**
1939  * cpufreq_get_driver_data - Return current driver data.
1940  *
1941  * Return the private data of the currently registered cpufreq driver, or NULL
1942  * if no cpufreq driver has been registered.
1943  */
1944 void *cpufreq_get_driver_data(void)
1945 {
1946 	if (cpufreq_driver)
1947 		return cpufreq_driver->driver_data;
1948 
1949 	return NULL;
1950 }
1951 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1952 
1953 /*********************************************************************
1954  *                     NOTIFIER LISTS INTERFACE                      *
1955  *********************************************************************/
1956 
1957 /**
1958  * cpufreq_register_notifier - Register a notifier with cpufreq.
1959  * @nb: notifier function to register.
1960  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1961  *
1962  * Add a notifier to one of two lists: either a list of notifiers that run on
1963  * clock rate changes (once before and once after every transition), or a list
1964  * of notifiers that ron on cpufreq policy changes.
1965  *
1966  * This function may sleep and it has the same return values as
1967  * blocking_notifier_chain_register().
1968  */
1969 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1970 {
1971 	int ret;
1972 
1973 	if (cpufreq_disabled())
1974 		return -EINVAL;
1975 
1976 	switch (list) {
1977 	case CPUFREQ_TRANSITION_NOTIFIER:
1978 		mutex_lock(&cpufreq_fast_switch_lock);
1979 
1980 		if (cpufreq_fast_switch_count > 0) {
1981 			mutex_unlock(&cpufreq_fast_switch_lock);
1982 			return -EBUSY;
1983 		}
1984 		ret = srcu_notifier_chain_register(
1985 				&cpufreq_transition_notifier_list, nb);
1986 		if (!ret)
1987 			cpufreq_fast_switch_count--;
1988 
1989 		mutex_unlock(&cpufreq_fast_switch_lock);
1990 		break;
1991 	case CPUFREQ_POLICY_NOTIFIER:
1992 		ret = blocking_notifier_chain_register(
1993 				&cpufreq_policy_notifier_list, nb);
1994 		break;
1995 	default:
1996 		ret = -EINVAL;
1997 	}
1998 
1999 	return ret;
2000 }
2001 EXPORT_SYMBOL(cpufreq_register_notifier);
2002 
2003 /**
2004  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2005  * @nb: notifier block to be unregistered.
2006  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2007  *
2008  * Remove a notifier from one of the cpufreq notifier lists.
2009  *
2010  * This function may sleep and it has the same return values as
2011  * blocking_notifier_chain_unregister().
2012  */
2013 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2014 {
2015 	int ret;
2016 
2017 	if (cpufreq_disabled())
2018 		return -EINVAL;
2019 
2020 	switch (list) {
2021 	case CPUFREQ_TRANSITION_NOTIFIER:
2022 		mutex_lock(&cpufreq_fast_switch_lock);
2023 
2024 		ret = srcu_notifier_chain_unregister(
2025 				&cpufreq_transition_notifier_list, nb);
2026 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2027 			cpufreq_fast_switch_count++;
2028 
2029 		mutex_unlock(&cpufreq_fast_switch_lock);
2030 		break;
2031 	case CPUFREQ_POLICY_NOTIFIER:
2032 		ret = blocking_notifier_chain_unregister(
2033 				&cpufreq_policy_notifier_list, nb);
2034 		break;
2035 	default:
2036 		ret = -EINVAL;
2037 	}
2038 
2039 	return ret;
2040 }
2041 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2042 
2043 
2044 /*********************************************************************
2045  *                              GOVERNORS                            *
2046  *********************************************************************/
2047 
2048 /**
2049  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2050  * @policy: cpufreq policy to switch the frequency for.
2051  * @target_freq: New frequency to set (may be approximate).
2052  *
2053  * Carry out a fast frequency switch without sleeping.
2054  *
2055  * The driver's ->fast_switch() callback invoked by this function must be
2056  * suitable for being called from within RCU-sched read-side critical sections
2057  * and it is expected to select the minimum available frequency greater than or
2058  * equal to @target_freq (CPUFREQ_RELATION_L).
2059  *
2060  * This function must not be called if policy->fast_switch_enabled is unset.
2061  *
2062  * Governors calling this function must guarantee that it will never be invoked
2063  * twice in parallel for the same policy and that it will never be called in
2064  * parallel with either ->target() or ->target_index() for the same policy.
2065  *
2066  * Returns the actual frequency set for the CPU.
2067  *
2068  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2069  * error condition, the hardware configuration must be preserved.
2070  */
2071 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2072 					unsigned int target_freq)
2073 {
2074 	unsigned int freq;
2075 	int cpu;
2076 
2077 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2078 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2079 
2080 	if (!freq)
2081 		return 0;
2082 
2083 	policy->cur = freq;
2084 	arch_set_freq_scale(policy->related_cpus, freq,
2085 			    policy->cpuinfo.max_freq);
2086 	cpufreq_stats_record_transition(policy, freq);
2087 
2088 	if (trace_cpu_frequency_enabled()) {
2089 		for_each_cpu(cpu, policy->cpus)
2090 			trace_cpu_frequency(freq, cpu);
2091 	}
2092 
2093 	return freq;
2094 }
2095 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2096 
2097 /**
2098  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2099  * @cpu: Target CPU.
2100  * @min_perf: Minimum (required) performance level (units of @capacity).
2101  * @target_perf: Target (desired) performance level (units of @capacity).
2102  * @capacity: Capacity of the target CPU.
2103  *
2104  * Carry out a fast performance level switch of @cpu without sleeping.
2105  *
2106  * The driver's ->adjust_perf() callback invoked by this function must be
2107  * suitable for being called from within RCU-sched read-side critical sections
2108  * and it is expected to select a suitable performance level equal to or above
2109  * @min_perf and preferably equal to or below @target_perf.
2110  *
2111  * This function must not be called if policy->fast_switch_enabled is unset.
2112  *
2113  * Governors calling this function must guarantee that it will never be invoked
2114  * twice in parallel for the same CPU and that it will never be called in
2115  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2116  * the same CPU.
2117  */
2118 void cpufreq_driver_adjust_perf(unsigned int cpu,
2119 				 unsigned long min_perf,
2120 				 unsigned long target_perf,
2121 				 unsigned long capacity)
2122 {
2123 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2124 }
2125 
2126 /**
2127  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2128  *
2129  * Return 'true' if the ->adjust_perf callback is present for the
2130  * current driver or 'false' otherwise.
2131  */
2132 bool cpufreq_driver_has_adjust_perf(void)
2133 {
2134 	return !!cpufreq_driver->adjust_perf;
2135 }
2136 
2137 /* Must set freqs->new to intermediate frequency */
2138 static int __target_intermediate(struct cpufreq_policy *policy,
2139 				 struct cpufreq_freqs *freqs, int index)
2140 {
2141 	int ret;
2142 
2143 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2144 
2145 	/* We don't need to switch to intermediate freq */
2146 	if (!freqs->new)
2147 		return 0;
2148 
2149 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2150 		 __func__, policy->cpu, freqs->old, freqs->new);
2151 
2152 	cpufreq_freq_transition_begin(policy, freqs);
2153 	ret = cpufreq_driver->target_intermediate(policy, index);
2154 	cpufreq_freq_transition_end(policy, freqs, ret);
2155 
2156 	if (ret)
2157 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2158 		       __func__, ret);
2159 
2160 	return ret;
2161 }
2162 
2163 static int __target_index(struct cpufreq_policy *policy, int index)
2164 {
2165 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2166 	unsigned int restore_freq, intermediate_freq = 0;
2167 	unsigned int newfreq = policy->freq_table[index].frequency;
2168 	int retval = -EINVAL;
2169 	bool notify;
2170 
2171 	if (newfreq == policy->cur)
2172 		return 0;
2173 
2174 	/* Save last value to restore later on errors */
2175 	restore_freq = policy->cur;
2176 
2177 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2178 	if (notify) {
2179 		/* Handle switching to intermediate frequency */
2180 		if (cpufreq_driver->get_intermediate) {
2181 			retval = __target_intermediate(policy, &freqs, index);
2182 			if (retval)
2183 				return retval;
2184 
2185 			intermediate_freq = freqs.new;
2186 			/* Set old freq to intermediate */
2187 			if (intermediate_freq)
2188 				freqs.old = freqs.new;
2189 		}
2190 
2191 		freqs.new = newfreq;
2192 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2193 			 __func__, policy->cpu, freqs.old, freqs.new);
2194 
2195 		cpufreq_freq_transition_begin(policy, &freqs);
2196 	}
2197 
2198 	retval = cpufreq_driver->target_index(policy, index);
2199 	if (retval)
2200 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2201 		       retval);
2202 
2203 	if (notify) {
2204 		cpufreq_freq_transition_end(policy, &freqs, retval);
2205 
2206 		/*
2207 		 * Failed after setting to intermediate freq? Driver should have
2208 		 * reverted back to initial frequency and so should we. Check
2209 		 * here for intermediate_freq instead of get_intermediate, in
2210 		 * case we haven't switched to intermediate freq at all.
2211 		 */
2212 		if (unlikely(retval && intermediate_freq)) {
2213 			freqs.old = intermediate_freq;
2214 			freqs.new = restore_freq;
2215 			cpufreq_freq_transition_begin(policy, &freqs);
2216 			cpufreq_freq_transition_end(policy, &freqs, 0);
2217 		}
2218 	}
2219 
2220 	return retval;
2221 }
2222 
2223 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2224 			    unsigned int target_freq,
2225 			    unsigned int relation)
2226 {
2227 	unsigned int old_target_freq = target_freq;
2228 	int index;
2229 
2230 	if (cpufreq_disabled())
2231 		return -ENODEV;
2232 
2233 	/* Make sure that target_freq is within supported range */
2234 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2235 
2236 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2237 		 policy->cpu, target_freq, relation, old_target_freq);
2238 
2239 	/*
2240 	 * This might look like a redundant call as we are checking it again
2241 	 * after finding index. But it is left intentionally for cases where
2242 	 * exactly same freq is called again and so we can save on few function
2243 	 * calls.
2244 	 */
2245 	if (target_freq == policy->cur &&
2246 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2247 		return 0;
2248 
2249 	if (cpufreq_driver->target)
2250 		return cpufreq_driver->target(policy, target_freq, relation);
2251 
2252 	if (!cpufreq_driver->target_index)
2253 		return -EINVAL;
2254 
2255 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2256 
2257 	return __target_index(policy, index);
2258 }
2259 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2260 
2261 int cpufreq_driver_target(struct cpufreq_policy *policy,
2262 			  unsigned int target_freq,
2263 			  unsigned int relation)
2264 {
2265 	int ret;
2266 
2267 	down_write(&policy->rwsem);
2268 
2269 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2270 
2271 	up_write(&policy->rwsem);
2272 
2273 	return ret;
2274 }
2275 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2276 
2277 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2278 {
2279 	return NULL;
2280 }
2281 
2282 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2283 {
2284 	int ret;
2285 
2286 	/* Don't start any governor operations if we are entering suspend */
2287 	if (cpufreq_suspended)
2288 		return 0;
2289 	/*
2290 	 * Governor might not be initiated here if ACPI _PPC changed
2291 	 * notification happened, so check it.
2292 	 */
2293 	if (!policy->governor)
2294 		return -EINVAL;
2295 
2296 	/* Platform doesn't want dynamic frequency switching ? */
2297 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2298 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2299 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2300 
2301 		if (gov) {
2302 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2303 				policy->governor->name, gov->name);
2304 			policy->governor = gov;
2305 		} else {
2306 			return -EINVAL;
2307 		}
2308 	}
2309 
2310 	if (!try_module_get(policy->governor->owner))
2311 		return -EINVAL;
2312 
2313 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2314 
2315 	if (policy->governor->init) {
2316 		ret = policy->governor->init(policy);
2317 		if (ret) {
2318 			module_put(policy->governor->owner);
2319 			return ret;
2320 		}
2321 	}
2322 
2323 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2324 
2325 	return 0;
2326 }
2327 
2328 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2329 {
2330 	if (cpufreq_suspended || !policy->governor)
2331 		return;
2332 
2333 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2334 
2335 	if (policy->governor->exit)
2336 		policy->governor->exit(policy);
2337 
2338 	module_put(policy->governor->owner);
2339 }
2340 
2341 int cpufreq_start_governor(struct cpufreq_policy *policy)
2342 {
2343 	int ret;
2344 
2345 	if (cpufreq_suspended)
2346 		return 0;
2347 
2348 	if (!policy->governor)
2349 		return -EINVAL;
2350 
2351 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2352 
2353 	if (cpufreq_driver->get)
2354 		cpufreq_verify_current_freq(policy, false);
2355 
2356 	if (policy->governor->start) {
2357 		ret = policy->governor->start(policy);
2358 		if (ret)
2359 			return ret;
2360 	}
2361 
2362 	if (policy->governor->limits)
2363 		policy->governor->limits(policy);
2364 
2365 	return 0;
2366 }
2367 
2368 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2369 {
2370 	if (cpufreq_suspended || !policy->governor)
2371 		return;
2372 
2373 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2374 
2375 	if (policy->governor->stop)
2376 		policy->governor->stop(policy);
2377 }
2378 
2379 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2380 {
2381 	if (cpufreq_suspended || !policy->governor)
2382 		return;
2383 
2384 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2385 
2386 	if (policy->governor->limits)
2387 		policy->governor->limits(policy);
2388 }
2389 
2390 int cpufreq_register_governor(struct cpufreq_governor *governor)
2391 {
2392 	int err;
2393 
2394 	if (!governor)
2395 		return -EINVAL;
2396 
2397 	if (cpufreq_disabled())
2398 		return -ENODEV;
2399 
2400 	mutex_lock(&cpufreq_governor_mutex);
2401 
2402 	err = -EBUSY;
2403 	if (!find_governor(governor->name)) {
2404 		err = 0;
2405 		list_add(&governor->governor_list, &cpufreq_governor_list);
2406 	}
2407 
2408 	mutex_unlock(&cpufreq_governor_mutex);
2409 	return err;
2410 }
2411 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2412 
2413 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2414 {
2415 	struct cpufreq_policy *policy;
2416 	unsigned long flags;
2417 
2418 	if (!governor)
2419 		return;
2420 
2421 	if (cpufreq_disabled())
2422 		return;
2423 
2424 	/* clear last_governor for all inactive policies */
2425 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2426 	for_each_inactive_policy(policy) {
2427 		if (!strcmp(policy->last_governor, governor->name)) {
2428 			policy->governor = NULL;
2429 			strcpy(policy->last_governor, "\0");
2430 		}
2431 	}
2432 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2433 
2434 	mutex_lock(&cpufreq_governor_mutex);
2435 	list_del(&governor->governor_list);
2436 	mutex_unlock(&cpufreq_governor_mutex);
2437 }
2438 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2439 
2440 
2441 /*********************************************************************
2442  *                          POLICY INTERFACE                         *
2443  *********************************************************************/
2444 
2445 /**
2446  * cpufreq_get_policy - get the current cpufreq_policy
2447  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2448  *	is written
2449  * @cpu: CPU to find the policy for
2450  *
2451  * Reads the current cpufreq policy.
2452  */
2453 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2454 {
2455 	struct cpufreq_policy *cpu_policy;
2456 	if (!policy)
2457 		return -EINVAL;
2458 
2459 	cpu_policy = cpufreq_cpu_get(cpu);
2460 	if (!cpu_policy)
2461 		return -EINVAL;
2462 
2463 	memcpy(policy, cpu_policy, sizeof(*policy));
2464 
2465 	cpufreq_cpu_put(cpu_policy);
2466 	return 0;
2467 }
2468 EXPORT_SYMBOL(cpufreq_get_policy);
2469 
2470 /**
2471  * cpufreq_set_policy - Modify cpufreq policy parameters.
2472  * @policy: Policy object to modify.
2473  * @new_gov: Policy governor pointer.
2474  * @new_pol: Policy value (for drivers with built-in governors).
2475  *
2476  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2477  * limits to be set for the policy, update @policy with the verified limits
2478  * values and either invoke the driver's ->setpolicy() callback (if present) or
2479  * carry out a governor update for @policy.  That is, run the current governor's
2480  * ->limits() callback (if @new_gov points to the same object as the one in
2481  * @policy) or replace the governor for @policy with @new_gov.
2482  *
2483  * The cpuinfo part of @policy is not updated by this function.
2484  */
2485 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2486 			      struct cpufreq_governor *new_gov,
2487 			      unsigned int new_pol)
2488 {
2489 	struct cpufreq_policy_data new_data;
2490 	struct cpufreq_governor *old_gov;
2491 	int ret;
2492 
2493 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2494 	new_data.freq_table = policy->freq_table;
2495 	new_data.cpu = policy->cpu;
2496 	/*
2497 	 * PM QoS framework collects all the requests from users and provide us
2498 	 * the final aggregated value here.
2499 	 */
2500 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2501 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2502 
2503 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2504 		 new_data.cpu, new_data.min, new_data.max);
2505 
2506 	/*
2507 	 * Verify that the CPU speed can be set within these limits and make sure
2508 	 * that min <= max.
2509 	 */
2510 	ret = cpufreq_driver->verify(&new_data);
2511 	if (ret)
2512 		return ret;
2513 
2514 	policy->min = new_data.min;
2515 	policy->max = new_data.max;
2516 	trace_cpu_frequency_limits(policy);
2517 
2518 	policy->cached_target_freq = UINT_MAX;
2519 
2520 	pr_debug("new min and max freqs are %u - %u kHz\n",
2521 		 policy->min, policy->max);
2522 
2523 	if (cpufreq_driver->setpolicy) {
2524 		policy->policy = new_pol;
2525 		pr_debug("setting range\n");
2526 		return cpufreq_driver->setpolicy(policy);
2527 	}
2528 
2529 	if (new_gov == policy->governor) {
2530 		pr_debug("governor limits update\n");
2531 		cpufreq_governor_limits(policy);
2532 		return 0;
2533 	}
2534 
2535 	pr_debug("governor switch\n");
2536 
2537 	/* save old, working values */
2538 	old_gov = policy->governor;
2539 	/* end old governor */
2540 	if (old_gov) {
2541 		cpufreq_stop_governor(policy);
2542 		cpufreq_exit_governor(policy);
2543 	}
2544 
2545 	/* start new governor */
2546 	policy->governor = new_gov;
2547 	ret = cpufreq_init_governor(policy);
2548 	if (!ret) {
2549 		ret = cpufreq_start_governor(policy);
2550 		if (!ret) {
2551 			pr_debug("governor change\n");
2552 			sched_cpufreq_governor_change(policy, old_gov);
2553 			return 0;
2554 		}
2555 		cpufreq_exit_governor(policy);
2556 	}
2557 
2558 	/* new governor failed, so re-start old one */
2559 	pr_debug("starting governor %s failed\n", policy->governor->name);
2560 	if (old_gov) {
2561 		policy->governor = old_gov;
2562 		if (cpufreq_init_governor(policy))
2563 			policy->governor = NULL;
2564 		else
2565 			cpufreq_start_governor(policy);
2566 	}
2567 
2568 	return ret;
2569 }
2570 
2571 /**
2572  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2573  * @cpu: CPU to re-evaluate the policy for.
2574  *
2575  * Update the current frequency for the cpufreq policy of @cpu and use
2576  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2577  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2578  * for the policy in question, among other things.
2579  */
2580 void cpufreq_update_policy(unsigned int cpu)
2581 {
2582 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2583 
2584 	if (!policy)
2585 		return;
2586 
2587 	/*
2588 	 * BIOS might change freq behind our back
2589 	 * -> ask driver for current freq and notify governors about a change
2590 	 */
2591 	if (cpufreq_driver->get && has_target() &&
2592 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2593 		goto unlock;
2594 
2595 	refresh_frequency_limits(policy);
2596 
2597 unlock:
2598 	cpufreq_cpu_release(policy);
2599 }
2600 EXPORT_SYMBOL(cpufreq_update_policy);
2601 
2602 /**
2603  * cpufreq_update_limits - Update policy limits for a given CPU.
2604  * @cpu: CPU to update the policy limits for.
2605  *
2606  * Invoke the driver's ->update_limits callback if present or call
2607  * cpufreq_update_policy() for @cpu.
2608  */
2609 void cpufreq_update_limits(unsigned int cpu)
2610 {
2611 	if (cpufreq_driver->update_limits)
2612 		cpufreq_driver->update_limits(cpu);
2613 	else
2614 		cpufreq_update_policy(cpu);
2615 }
2616 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2617 
2618 /*********************************************************************
2619  *               BOOST						     *
2620  *********************************************************************/
2621 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2622 {
2623 	int ret;
2624 
2625 	if (!policy->freq_table)
2626 		return -ENXIO;
2627 
2628 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2629 	if (ret) {
2630 		pr_err("%s: Policy frequency update failed\n", __func__);
2631 		return ret;
2632 	}
2633 
2634 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2635 	if (ret < 0)
2636 		return ret;
2637 
2638 	return 0;
2639 }
2640 
2641 int cpufreq_boost_trigger_state(int state)
2642 {
2643 	struct cpufreq_policy *policy;
2644 	unsigned long flags;
2645 	int ret = 0;
2646 
2647 	if (cpufreq_driver->boost_enabled == state)
2648 		return 0;
2649 
2650 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2651 	cpufreq_driver->boost_enabled = state;
2652 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2653 
2654 	get_online_cpus();
2655 	for_each_active_policy(policy) {
2656 		ret = cpufreq_driver->set_boost(policy, state);
2657 		if (ret)
2658 			goto err_reset_state;
2659 	}
2660 	put_online_cpus();
2661 
2662 	return 0;
2663 
2664 err_reset_state:
2665 	put_online_cpus();
2666 
2667 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2668 	cpufreq_driver->boost_enabled = !state;
2669 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2670 
2671 	pr_err("%s: Cannot %s BOOST\n",
2672 	       __func__, state ? "enable" : "disable");
2673 
2674 	return ret;
2675 }
2676 
2677 static bool cpufreq_boost_supported(void)
2678 {
2679 	return cpufreq_driver->set_boost;
2680 }
2681 
2682 static int create_boost_sysfs_file(void)
2683 {
2684 	int ret;
2685 
2686 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2687 	if (ret)
2688 		pr_err("%s: cannot register global BOOST sysfs file\n",
2689 		       __func__);
2690 
2691 	return ret;
2692 }
2693 
2694 static void remove_boost_sysfs_file(void)
2695 {
2696 	if (cpufreq_boost_supported())
2697 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2698 }
2699 
2700 int cpufreq_enable_boost_support(void)
2701 {
2702 	if (!cpufreq_driver)
2703 		return -EINVAL;
2704 
2705 	if (cpufreq_boost_supported())
2706 		return 0;
2707 
2708 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2709 
2710 	/* This will get removed on driver unregister */
2711 	return create_boost_sysfs_file();
2712 }
2713 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2714 
2715 int cpufreq_boost_enabled(void)
2716 {
2717 	return cpufreq_driver->boost_enabled;
2718 }
2719 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2720 
2721 /*********************************************************************
2722  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2723  *********************************************************************/
2724 static enum cpuhp_state hp_online;
2725 
2726 static int cpuhp_cpufreq_online(unsigned int cpu)
2727 {
2728 	cpufreq_online(cpu);
2729 
2730 	return 0;
2731 }
2732 
2733 static int cpuhp_cpufreq_offline(unsigned int cpu)
2734 {
2735 	cpufreq_offline(cpu);
2736 
2737 	return 0;
2738 }
2739 
2740 /**
2741  * cpufreq_register_driver - register a CPU Frequency driver
2742  * @driver_data: A struct cpufreq_driver containing the values#
2743  * submitted by the CPU Frequency driver.
2744  *
2745  * Registers a CPU Frequency driver to this core code. This code
2746  * returns zero on success, -EEXIST when another driver got here first
2747  * (and isn't unregistered in the meantime).
2748  *
2749  */
2750 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2751 {
2752 	unsigned long flags;
2753 	int ret;
2754 
2755 	if (cpufreq_disabled())
2756 		return -ENODEV;
2757 
2758 	/*
2759 	 * The cpufreq core depends heavily on the availability of device
2760 	 * structure, make sure they are available before proceeding further.
2761 	 */
2762 	if (!get_cpu_device(0))
2763 		return -EPROBE_DEFER;
2764 
2765 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2766 	    !(driver_data->setpolicy || driver_data->target_index ||
2767 		    driver_data->target) ||
2768 	     (driver_data->setpolicy && (driver_data->target_index ||
2769 		    driver_data->target)) ||
2770 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2771 	     (!driver_data->online != !driver_data->offline))
2772 		return -EINVAL;
2773 
2774 	pr_debug("trying to register driver %s\n", driver_data->name);
2775 
2776 	/* Protect against concurrent CPU online/offline. */
2777 	cpus_read_lock();
2778 
2779 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2780 	if (cpufreq_driver) {
2781 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2782 		ret = -EEXIST;
2783 		goto out;
2784 	}
2785 	cpufreq_driver = driver_data;
2786 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2787 
2788 	/*
2789 	 * Mark support for the scheduler's frequency invariance engine for
2790 	 * drivers that implement target(), target_index() or fast_switch().
2791 	 */
2792 	if (!cpufreq_driver->setpolicy) {
2793 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2794 		pr_debug("supports frequency invariance");
2795 	}
2796 
2797 	if (driver_data->setpolicy)
2798 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2799 
2800 	if (cpufreq_boost_supported()) {
2801 		ret = create_boost_sysfs_file();
2802 		if (ret)
2803 			goto err_null_driver;
2804 	}
2805 
2806 	ret = subsys_interface_register(&cpufreq_interface);
2807 	if (ret)
2808 		goto err_boost_unreg;
2809 
2810 	if (unlikely(list_empty(&cpufreq_policy_list))) {
2811 		/* if all ->init() calls failed, unregister */
2812 		ret = -ENODEV;
2813 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2814 			 driver_data->name);
2815 		goto err_if_unreg;
2816 	}
2817 
2818 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2819 						   "cpufreq:online",
2820 						   cpuhp_cpufreq_online,
2821 						   cpuhp_cpufreq_offline);
2822 	if (ret < 0)
2823 		goto err_if_unreg;
2824 	hp_online = ret;
2825 	ret = 0;
2826 
2827 	pr_debug("driver %s up and running\n", driver_data->name);
2828 	goto out;
2829 
2830 err_if_unreg:
2831 	subsys_interface_unregister(&cpufreq_interface);
2832 err_boost_unreg:
2833 	remove_boost_sysfs_file();
2834 err_null_driver:
2835 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2836 	cpufreq_driver = NULL;
2837 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2838 out:
2839 	cpus_read_unlock();
2840 	return ret;
2841 }
2842 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2843 
2844 /*
2845  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2846  *
2847  * Unregister the current CPUFreq driver. Only call this if you have
2848  * the right to do so, i.e. if you have succeeded in initialising before!
2849  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2850  * currently not initialised.
2851  */
2852 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2853 {
2854 	unsigned long flags;
2855 
2856 	if (!cpufreq_driver || (driver != cpufreq_driver))
2857 		return -EINVAL;
2858 
2859 	pr_debug("unregistering driver %s\n", driver->name);
2860 
2861 	/* Protect against concurrent cpu hotplug */
2862 	cpus_read_lock();
2863 	subsys_interface_unregister(&cpufreq_interface);
2864 	remove_boost_sysfs_file();
2865 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2866 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2867 
2868 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2869 
2870 	cpufreq_driver = NULL;
2871 
2872 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2873 	cpus_read_unlock();
2874 
2875 	return 0;
2876 }
2877 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2878 
2879 static int __init cpufreq_core_init(void)
2880 {
2881 	struct cpufreq_governor *gov = cpufreq_default_governor();
2882 
2883 	if (cpufreq_disabled())
2884 		return -ENODEV;
2885 
2886 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2887 	BUG_ON(!cpufreq_global_kobject);
2888 
2889 	if (!strlen(default_governor))
2890 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2891 
2892 	return 0;
2893 }
2894 module_param(off, int, 0444);
2895 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2896 core_initcall(cpufreq_core_init);
2897