1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 /** 34 * The "cpufreq driver" - the arch- or hardware-dependent low 35 * level driver of CPUFreq support, and its spinlock. This lock 36 * also protects the cpufreq_cpu_data array. 37 */ 38 static struct cpufreq_driver *cpufreq_driver; 39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback); 41 static DEFINE_RWLOCK(cpufreq_driver_lock); 42 DEFINE_MUTEX(cpufreq_governor_lock); 43 static LIST_HEAD(cpufreq_policy_list); 44 45 /* This one keeps track of the previously set governor of a removed CPU */ 46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 47 48 /* Flag to suspend/resume CPUFreq governors */ 49 static bool cpufreq_suspended; 50 51 static inline bool has_target(void) 52 { 53 return cpufreq_driver->target_index || cpufreq_driver->target; 54 } 55 56 /* 57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical 58 * sections 59 */ 60 static DECLARE_RWSEM(cpufreq_rwsem); 61 62 /* internal prototypes */ 63 static int __cpufreq_governor(struct cpufreq_policy *policy, 64 unsigned int event); 65 static unsigned int __cpufreq_get(unsigned int cpu); 66 static void handle_update(struct work_struct *work); 67 68 /** 69 * Two notifier lists: the "policy" list is involved in the 70 * validation process for a new CPU frequency policy; the 71 * "transition" list for kernel code that needs to handle 72 * changes to devices when the CPU clock speed changes. 73 * The mutex locks both lists. 74 */ 75 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 76 static struct srcu_notifier_head cpufreq_transition_notifier_list; 77 78 static bool init_cpufreq_transition_notifier_list_called; 79 static int __init init_cpufreq_transition_notifier_list(void) 80 { 81 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 82 init_cpufreq_transition_notifier_list_called = true; 83 return 0; 84 } 85 pure_initcall(init_cpufreq_transition_notifier_list); 86 87 static int off __read_mostly; 88 static int cpufreq_disabled(void) 89 { 90 return off; 91 } 92 void disable_cpufreq(void) 93 { 94 off = 1; 95 } 96 static LIST_HEAD(cpufreq_governor_list); 97 static DEFINE_MUTEX(cpufreq_governor_mutex); 98 99 bool have_governor_per_policy(void) 100 { 101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 102 } 103 EXPORT_SYMBOL_GPL(have_governor_per_policy); 104 105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 106 { 107 if (have_governor_per_policy()) 108 return &policy->kobj; 109 else 110 return cpufreq_global_kobject; 111 } 112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 113 114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 115 { 116 u64 idle_time; 117 u64 cur_wall_time; 118 u64 busy_time; 119 120 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 121 122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 128 129 idle_time = cur_wall_time - busy_time; 130 if (wall) 131 *wall = cputime_to_usecs(cur_wall_time); 132 133 return cputime_to_usecs(idle_time); 134 } 135 136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 137 { 138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 139 140 if (idle_time == -1ULL) 141 return get_cpu_idle_time_jiffy(cpu, wall); 142 else if (!io_busy) 143 idle_time += get_cpu_iowait_time_us(cpu, wall); 144 145 return idle_time; 146 } 147 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 148 149 /* 150 * This is a generic cpufreq init() routine which can be used by cpufreq 151 * drivers of SMP systems. It will do following: 152 * - validate & show freq table passed 153 * - set policies transition latency 154 * - policy->cpus with all possible CPUs 155 */ 156 int cpufreq_generic_init(struct cpufreq_policy *policy, 157 struct cpufreq_frequency_table *table, 158 unsigned int transition_latency) 159 { 160 int ret; 161 162 ret = cpufreq_table_validate_and_show(policy, table); 163 if (ret) { 164 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 165 return ret; 166 } 167 168 policy->cpuinfo.transition_latency = transition_latency; 169 170 /* 171 * The driver only supports the SMP configuartion where all processors 172 * share the clock and voltage and clock. 173 */ 174 cpumask_setall(policy->cpus); 175 176 return 0; 177 } 178 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 179 180 unsigned int cpufreq_generic_get(unsigned int cpu) 181 { 182 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 183 184 if (!policy || IS_ERR(policy->clk)) { 185 pr_err("%s: No %s associated to cpu: %d\n", 186 __func__, policy ? "clk" : "policy", cpu); 187 return 0; 188 } 189 190 return clk_get_rate(policy->clk) / 1000; 191 } 192 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 193 194 /* Only for cpufreq core internal use */ 195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 196 { 197 return per_cpu(cpufreq_cpu_data, cpu); 198 } 199 200 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 201 { 202 struct cpufreq_policy *policy = NULL; 203 unsigned long flags; 204 205 if (cpufreq_disabled() || (cpu >= nr_cpu_ids)) 206 return NULL; 207 208 if (!down_read_trylock(&cpufreq_rwsem)) 209 return NULL; 210 211 /* get the cpufreq driver */ 212 read_lock_irqsave(&cpufreq_driver_lock, flags); 213 214 if (cpufreq_driver) { 215 /* get the CPU */ 216 policy = per_cpu(cpufreq_cpu_data, cpu); 217 if (policy) 218 kobject_get(&policy->kobj); 219 } 220 221 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 222 223 if (!policy) 224 up_read(&cpufreq_rwsem); 225 226 return policy; 227 } 228 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 229 230 void cpufreq_cpu_put(struct cpufreq_policy *policy) 231 { 232 if (cpufreq_disabled()) 233 return; 234 235 kobject_put(&policy->kobj); 236 up_read(&cpufreq_rwsem); 237 } 238 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 239 240 /********************************************************************* 241 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 242 *********************************************************************/ 243 244 /** 245 * adjust_jiffies - adjust the system "loops_per_jiffy" 246 * 247 * This function alters the system "loops_per_jiffy" for the clock 248 * speed change. Note that loops_per_jiffy cannot be updated on SMP 249 * systems as each CPU might be scaled differently. So, use the arch 250 * per-CPU loops_per_jiffy value wherever possible. 251 */ 252 #ifndef CONFIG_SMP 253 static unsigned long l_p_j_ref; 254 static unsigned int l_p_j_ref_freq; 255 256 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 257 { 258 if (ci->flags & CPUFREQ_CONST_LOOPS) 259 return; 260 261 if (!l_p_j_ref_freq) { 262 l_p_j_ref = loops_per_jiffy; 263 l_p_j_ref_freq = ci->old; 264 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 265 l_p_j_ref, l_p_j_ref_freq); 266 } 267 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 268 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 269 ci->new); 270 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 271 loops_per_jiffy, ci->new); 272 } 273 } 274 #else 275 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 276 { 277 return; 278 } 279 #endif 280 281 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 282 struct cpufreq_freqs *freqs, unsigned int state) 283 { 284 BUG_ON(irqs_disabled()); 285 286 if (cpufreq_disabled()) 287 return; 288 289 freqs->flags = cpufreq_driver->flags; 290 pr_debug("notification %u of frequency transition to %u kHz\n", 291 state, freqs->new); 292 293 switch (state) { 294 295 case CPUFREQ_PRECHANGE: 296 /* detect if the driver reported a value as "old frequency" 297 * which is not equal to what the cpufreq core thinks is 298 * "old frequency". 299 */ 300 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 301 if ((policy) && (policy->cpu == freqs->cpu) && 302 (policy->cur) && (policy->cur != freqs->old)) { 303 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 304 freqs->old, policy->cur); 305 freqs->old = policy->cur; 306 } 307 } 308 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 309 CPUFREQ_PRECHANGE, freqs); 310 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 311 break; 312 313 case CPUFREQ_POSTCHANGE: 314 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 315 pr_debug("FREQ: %lu - CPU: %lu\n", 316 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 317 trace_cpu_frequency(freqs->new, freqs->cpu); 318 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 319 CPUFREQ_POSTCHANGE, freqs); 320 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 321 policy->cur = freqs->new; 322 break; 323 } 324 } 325 326 /** 327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 328 * on frequency transition. 329 * 330 * This function calls the transition notifiers and the "adjust_jiffies" 331 * function. It is called twice on all CPU frequency changes that have 332 * external effects. 333 */ 334 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 335 struct cpufreq_freqs *freqs, unsigned int state) 336 { 337 for_each_cpu(freqs->cpu, policy->cpus) 338 __cpufreq_notify_transition(policy, freqs, state); 339 } 340 341 /* Do post notifications when there are chances that transition has failed */ 342 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 343 struct cpufreq_freqs *freqs, int transition_failed) 344 { 345 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 346 if (!transition_failed) 347 return; 348 349 swap(freqs->old, freqs->new); 350 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 351 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 352 } 353 354 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 355 struct cpufreq_freqs *freqs) 356 { 357 358 /* 359 * Catch double invocations of _begin() which lead to self-deadlock. 360 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 361 * doesn't invoke _begin() on their behalf, and hence the chances of 362 * double invocations are very low. Moreover, there are scenarios 363 * where these checks can emit false-positive warnings in these 364 * drivers; so we avoid that by skipping them altogether. 365 */ 366 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 367 && current == policy->transition_task); 368 369 wait: 370 wait_event(policy->transition_wait, !policy->transition_ongoing); 371 372 spin_lock(&policy->transition_lock); 373 374 if (unlikely(policy->transition_ongoing)) { 375 spin_unlock(&policy->transition_lock); 376 goto wait; 377 } 378 379 policy->transition_ongoing = true; 380 policy->transition_task = current; 381 382 spin_unlock(&policy->transition_lock); 383 384 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 385 } 386 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 387 388 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 389 struct cpufreq_freqs *freqs, int transition_failed) 390 { 391 if (unlikely(WARN_ON(!policy->transition_ongoing))) 392 return; 393 394 cpufreq_notify_post_transition(policy, freqs, transition_failed); 395 396 policy->transition_ongoing = false; 397 policy->transition_task = NULL; 398 399 wake_up(&policy->transition_wait); 400 } 401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 402 403 404 /********************************************************************* 405 * SYSFS INTERFACE * 406 *********************************************************************/ 407 static ssize_t show_boost(struct kobject *kobj, 408 struct attribute *attr, char *buf) 409 { 410 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 411 } 412 413 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 414 const char *buf, size_t count) 415 { 416 int ret, enable; 417 418 ret = sscanf(buf, "%d", &enable); 419 if (ret != 1 || enable < 0 || enable > 1) 420 return -EINVAL; 421 422 if (cpufreq_boost_trigger_state(enable)) { 423 pr_err("%s: Cannot %s BOOST!\n", 424 __func__, enable ? "enable" : "disable"); 425 return -EINVAL; 426 } 427 428 pr_debug("%s: cpufreq BOOST %s\n", 429 __func__, enable ? "enabled" : "disabled"); 430 431 return count; 432 } 433 define_one_global_rw(boost); 434 435 static struct cpufreq_governor *__find_governor(const char *str_governor) 436 { 437 struct cpufreq_governor *t; 438 439 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 440 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 441 return t; 442 443 return NULL; 444 } 445 446 /** 447 * cpufreq_parse_governor - parse a governor string 448 */ 449 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 450 struct cpufreq_governor **governor) 451 { 452 int err = -EINVAL; 453 454 if (!cpufreq_driver) 455 goto out; 456 457 if (cpufreq_driver->setpolicy) { 458 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 459 *policy = CPUFREQ_POLICY_PERFORMANCE; 460 err = 0; 461 } else if (!strncasecmp(str_governor, "powersave", 462 CPUFREQ_NAME_LEN)) { 463 *policy = CPUFREQ_POLICY_POWERSAVE; 464 err = 0; 465 } 466 } else if (has_target()) { 467 struct cpufreq_governor *t; 468 469 mutex_lock(&cpufreq_governor_mutex); 470 471 t = __find_governor(str_governor); 472 473 if (t == NULL) { 474 int ret; 475 476 mutex_unlock(&cpufreq_governor_mutex); 477 ret = request_module("cpufreq_%s", str_governor); 478 mutex_lock(&cpufreq_governor_mutex); 479 480 if (ret == 0) 481 t = __find_governor(str_governor); 482 } 483 484 if (t != NULL) { 485 *governor = t; 486 err = 0; 487 } 488 489 mutex_unlock(&cpufreq_governor_mutex); 490 } 491 out: 492 return err; 493 } 494 495 /** 496 * cpufreq_per_cpu_attr_read() / show_##file_name() - 497 * print out cpufreq information 498 * 499 * Write out information from cpufreq_driver->policy[cpu]; object must be 500 * "unsigned int". 501 */ 502 503 #define show_one(file_name, object) \ 504 static ssize_t show_##file_name \ 505 (struct cpufreq_policy *policy, char *buf) \ 506 { \ 507 return sprintf(buf, "%u\n", policy->object); \ 508 } 509 510 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 511 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 512 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 513 show_one(scaling_min_freq, min); 514 show_one(scaling_max_freq, max); 515 516 static ssize_t show_scaling_cur_freq( 517 struct cpufreq_policy *policy, char *buf) 518 { 519 ssize_t ret; 520 521 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 522 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 523 else 524 ret = sprintf(buf, "%u\n", policy->cur); 525 return ret; 526 } 527 528 static int cpufreq_set_policy(struct cpufreq_policy *policy, 529 struct cpufreq_policy *new_policy); 530 531 /** 532 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 533 */ 534 #define store_one(file_name, object) \ 535 static ssize_t store_##file_name \ 536 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 537 { \ 538 int ret; \ 539 struct cpufreq_policy new_policy; \ 540 \ 541 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 542 if (ret) \ 543 return -EINVAL; \ 544 \ 545 ret = sscanf(buf, "%u", &new_policy.object); \ 546 if (ret != 1) \ 547 return -EINVAL; \ 548 \ 549 ret = cpufreq_set_policy(policy, &new_policy); \ 550 policy->user_policy.object = policy->object; \ 551 \ 552 return ret ? ret : count; \ 553 } 554 555 store_one(scaling_min_freq, min); 556 store_one(scaling_max_freq, max); 557 558 /** 559 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 560 */ 561 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 562 char *buf) 563 { 564 unsigned int cur_freq = __cpufreq_get(policy->cpu); 565 if (!cur_freq) 566 return sprintf(buf, "<unknown>"); 567 return sprintf(buf, "%u\n", cur_freq); 568 } 569 570 /** 571 * show_scaling_governor - show the current policy for the specified CPU 572 */ 573 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 574 { 575 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 576 return sprintf(buf, "powersave\n"); 577 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 578 return sprintf(buf, "performance\n"); 579 else if (policy->governor) 580 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 581 policy->governor->name); 582 return -EINVAL; 583 } 584 585 /** 586 * store_scaling_governor - store policy for the specified CPU 587 */ 588 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 589 const char *buf, size_t count) 590 { 591 int ret; 592 char str_governor[16]; 593 struct cpufreq_policy new_policy; 594 595 ret = cpufreq_get_policy(&new_policy, policy->cpu); 596 if (ret) 597 return ret; 598 599 ret = sscanf(buf, "%15s", str_governor); 600 if (ret != 1) 601 return -EINVAL; 602 603 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 604 &new_policy.governor)) 605 return -EINVAL; 606 607 ret = cpufreq_set_policy(policy, &new_policy); 608 609 policy->user_policy.policy = policy->policy; 610 policy->user_policy.governor = policy->governor; 611 612 if (ret) 613 return ret; 614 else 615 return count; 616 } 617 618 /** 619 * show_scaling_driver - show the cpufreq driver currently loaded 620 */ 621 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 622 { 623 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 624 } 625 626 /** 627 * show_scaling_available_governors - show the available CPUfreq governors 628 */ 629 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 630 char *buf) 631 { 632 ssize_t i = 0; 633 struct cpufreq_governor *t; 634 635 if (!has_target()) { 636 i += sprintf(buf, "performance powersave"); 637 goto out; 638 } 639 640 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 641 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 642 - (CPUFREQ_NAME_LEN + 2))) 643 goto out; 644 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 645 } 646 out: 647 i += sprintf(&buf[i], "\n"); 648 return i; 649 } 650 651 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 652 { 653 ssize_t i = 0; 654 unsigned int cpu; 655 656 for_each_cpu(cpu, mask) { 657 if (i) 658 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 659 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 660 if (i >= (PAGE_SIZE - 5)) 661 break; 662 } 663 i += sprintf(&buf[i], "\n"); 664 return i; 665 } 666 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 667 668 /** 669 * show_related_cpus - show the CPUs affected by each transition even if 670 * hw coordination is in use 671 */ 672 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 673 { 674 return cpufreq_show_cpus(policy->related_cpus, buf); 675 } 676 677 /** 678 * show_affected_cpus - show the CPUs affected by each transition 679 */ 680 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 681 { 682 return cpufreq_show_cpus(policy->cpus, buf); 683 } 684 685 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 686 const char *buf, size_t count) 687 { 688 unsigned int freq = 0; 689 unsigned int ret; 690 691 if (!policy->governor || !policy->governor->store_setspeed) 692 return -EINVAL; 693 694 ret = sscanf(buf, "%u", &freq); 695 if (ret != 1) 696 return -EINVAL; 697 698 policy->governor->store_setspeed(policy, freq); 699 700 return count; 701 } 702 703 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 704 { 705 if (!policy->governor || !policy->governor->show_setspeed) 706 return sprintf(buf, "<unsupported>\n"); 707 708 return policy->governor->show_setspeed(policy, buf); 709 } 710 711 /** 712 * show_bios_limit - show the current cpufreq HW/BIOS limitation 713 */ 714 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 715 { 716 unsigned int limit; 717 int ret; 718 if (cpufreq_driver->bios_limit) { 719 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 720 if (!ret) 721 return sprintf(buf, "%u\n", limit); 722 } 723 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 724 } 725 726 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 727 cpufreq_freq_attr_ro(cpuinfo_min_freq); 728 cpufreq_freq_attr_ro(cpuinfo_max_freq); 729 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 730 cpufreq_freq_attr_ro(scaling_available_governors); 731 cpufreq_freq_attr_ro(scaling_driver); 732 cpufreq_freq_attr_ro(scaling_cur_freq); 733 cpufreq_freq_attr_ro(bios_limit); 734 cpufreq_freq_attr_ro(related_cpus); 735 cpufreq_freq_attr_ro(affected_cpus); 736 cpufreq_freq_attr_rw(scaling_min_freq); 737 cpufreq_freq_attr_rw(scaling_max_freq); 738 cpufreq_freq_attr_rw(scaling_governor); 739 cpufreq_freq_attr_rw(scaling_setspeed); 740 741 static struct attribute *default_attrs[] = { 742 &cpuinfo_min_freq.attr, 743 &cpuinfo_max_freq.attr, 744 &cpuinfo_transition_latency.attr, 745 &scaling_min_freq.attr, 746 &scaling_max_freq.attr, 747 &affected_cpus.attr, 748 &related_cpus.attr, 749 &scaling_governor.attr, 750 &scaling_driver.attr, 751 &scaling_available_governors.attr, 752 &scaling_setspeed.attr, 753 NULL 754 }; 755 756 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 757 #define to_attr(a) container_of(a, struct freq_attr, attr) 758 759 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 760 { 761 struct cpufreq_policy *policy = to_policy(kobj); 762 struct freq_attr *fattr = to_attr(attr); 763 ssize_t ret; 764 765 if (!down_read_trylock(&cpufreq_rwsem)) 766 return -EINVAL; 767 768 down_read(&policy->rwsem); 769 770 if (fattr->show) 771 ret = fattr->show(policy, buf); 772 else 773 ret = -EIO; 774 775 up_read(&policy->rwsem); 776 up_read(&cpufreq_rwsem); 777 778 return ret; 779 } 780 781 static ssize_t store(struct kobject *kobj, struct attribute *attr, 782 const char *buf, size_t count) 783 { 784 struct cpufreq_policy *policy = to_policy(kobj); 785 struct freq_attr *fattr = to_attr(attr); 786 ssize_t ret = -EINVAL; 787 788 get_online_cpus(); 789 790 if (!cpu_online(policy->cpu)) 791 goto unlock; 792 793 if (!down_read_trylock(&cpufreq_rwsem)) 794 goto unlock; 795 796 down_write(&policy->rwsem); 797 798 if (fattr->store) 799 ret = fattr->store(policy, buf, count); 800 else 801 ret = -EIO; 802 803 up_write(&policy->rwsem); 804 805 up_read(&cpufreq_rwsem); 806 unlock: 807 put_online_cpus(); 808 809 return ret; 810 } 811 812 static void cpufreq_sysfs_release(struct kobject *kobj) 813 { 814 struct cpufreq_policy *policy = to_policy(kobj); 815 pr_debug("last reference is dropped\n"); 816 complete(&policy->kobj_unregister); 817 } 818 819 static const struct sysfs_ops sysfs_ops = { 820 .show = show, 821 .store = store, 822 }; 823 824 static struct kobj_type ktype_cpufreq = { 825 .sysfs_ops = &sysfs_ops, 826 .default_attrs = default_attrs, 827 .release = cpufreq_sysfs_release, 828 }; 829 830 struct kobject *cpufreq_global_kobject; 831 EXPORT_SYMBOL(cpufreq_global_kobject); 832 833 static int cpufreq_global_kobject_usage; 834 835 int cpufreq_get_global_kobject(void) 836 { 837 if (!cpufreq_global_kobject_usage++) 838 return kobject_add(cpufreq_global_kobject, 839 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 840 841 return 0; 842 } 843 EXPORT_SYMBOL(cpufreq_get_global_kobject); 844 845 void cpufreq_put_global_kobject(void) 846 { 847 if (!--cpufreq_global_kobject_usage) 848 kobject_del(cpufreq_global_kobject); 849 } 850 EXPORT_SYMBOL(cpufreq_put_global_kobject); 851 852 int cpufreq_sysfs_create_file(const struct attribute *attr) 853 { 854 int ret = cpufreq_get_global_kobject(); 855 856 if (!ret) { 857 ret = sysfs_create_file(cpufreq_global_kobject, attr); 858 if (ret) 859 cpufreq_put_global_kobject(); 860 } 861 862 return ret; 863 } 864 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 865 866 void cpufreq_sysfs_remove_file(const struct attribute *attr) 867 { 868 sysfs_remove_file(cpufreq_global_kobject, attr); 869 cpufreq_put_global_kobject(); 870 } 871 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 872 873 /* symlink affected CPUs */ 874 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 875 { 876 unsigned int j; 877 int ret = 0; 878 879 for_each_cpu(j, policy->cpus) { 880 struct device *cpu_dev; 881 882 if (j == policy->cpu) 883 continue; 884 885 pr_debug("Adding link for CPU: %u\n", j); 886 cpu_dev = get_cpu_device(j); 887 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 888 "cpufreq"); 889 if (ret) 890 break; 891 } 892 return ret; 893 } 894 895 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy, 896 struct device *dev) 897 { 898 struct freq_attr **drv_attr; 899 int ret = 0; 900 901 /* prepare interface data */ 902 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 903 &dev->kobj, "cpufreq"); 904 if (ret) 905 return ret; 906 907 /* set up files for this cpu device */ 908 drv_attr = cpufreq_driver->attr; 909 while ((drv_attr) && (*drv_attr)) { 910 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 911 if (ret) 912 goto err_out_kobj_put; 913 drv_attr++; 914 } 915 if (cpufreq_driver->get) { 916 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 917 if (ret) 918 goto err_out_kobj_put; 919 } 920 921 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 922 if (ret) 923 goto err_out_kobj_put; 924 925 if (cpufreq_driver->bios_limit) { 926 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 927 if (ret) 928 goto err_out_kobj_put; 929 } 930 931 ret = cpufreq_add_dev_symlink(policy); 932 if (ret) 933 goto err_out_kobj_put; 934 935 return ret; 936 937 err_out_kobj_put: 938 kobject_put(&policy->kobj); 939 wait_for_completion(&policy->kobj_unregister); 940 return ret; 941 } 942 943 static void cpufreq_init_policy(struct cpufreq_policy *policy) 944 { 945 struct cpufreq_governor *gov = NULL; 946 struct cpufreq_policy new_policy; 947 int ret = 0; 948 949 memcpy(&new_policy, policy, sizeof(*policy)); 950 951 /* Update governor of new_policy to the governor used before hotplug */ 952 gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu)); 953 if (gov) 954 pr_debug("Restoring governor %s for cpu %d\n", 955 policy->governor->name, policy->cpu); 956 else 957 gov = CPUFREQ_DEFAULT_GOVERNOR; 958 959 new_policy.governor = gov; 960 961 /* Use the default policy if its valid. */ 962 if (cpufreq_driver->setpolicy) 963 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL); 964 965 /* set default policy */ 966 ret = cpufreq_set_policy(policy, &new_policy); 967 if (ret) { 968 pr_debug("setting policy failed\n"); 969 if (cpufreq_driver->exit) 970 cpufreq_driver->exit(policy); 971 } 972 } 973 974 #ifdef CONFIG_HOTPLUG_CPU 975 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, 976 unsigned int cpu, struct device *dev) 977 { 978 int ret = 0; 979 unsigned long flags; 980 981 if (has_target()) { 982 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 983 if (ret) { 984 pr_err("%s: Failed to stop governor\n", __func__); 985 return ret; 986 } 987 } 988 989 down_write(&policy->rwsem); 990 991 write_lock_irqsave(&cpufreq_driver_lock, flags); 992 993 cpumask_set_cpu(cpu, policy->cpus); 994 per_cpu(cpufreq_cpu_data, cpu) = policy; 995 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 996 997 up_write(&policy->rwsem); 998 999 if (has_target()) { 1000 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1001 if (!ret) 1002 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1003 1004 if (ret) { 1005 pr_err("%s: Failed to start governor\n", __func__); 1006 return ret; 1007 } 1008 } 1009 1010 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 1011 } 1012 #endif 1013 1014 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu) 1015 { 1016 struct cpufreq_policy *policy; 1017 unsigned long flags; 1018 1019 read_lock_irqsave(&cpufreq_driver_lock, flags); 1020 1021 policy = per_cpu(cpufreq_cpu_data_fallback, cpu); 1022 1023 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1024 1025 if (policy) 1026 policy->governor = NULL; 1027 1028 return policy; 1029 } 1030 1031 static struct cpufreq_policy *cpufreq_policy_alloc(void) 1032 { 1033 struct cpufreq_policy *policy; 1034 1035 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1036 if (!policy) 1037 return NULL; 1038 1039 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1040 goto err_free_policy; 1041 1042 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1043 goto err_free_cpumask; 1044 1045 INIT_LIST_HEAD(&policy->policy_list); 1046 init_rwsem(&policy->rwsem); 1047 spin_lock_init(&policy->transition_lock); 1048 init_waitqueue_head(&policy->transition_wait); 1049 1050 return policy; 1051 1052 err_free_cpumask: 1053 free_cpumask_var(policy->cpus); 1054 err_free_policy: 1055 kfree(policy); 1056 1057 return NULL; 1058 } 1059 1060 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1061 { 1062 struct kobject *kobj; 1063 struct completion *cmp; 1064 1065 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1066 CPUFREQ_REMOVE_POLICY, policy); 1067 1068 down_read(&policy->rwsem); 1069 kobj = &policy->kobj; 1070 cmp = &policy->kobj_unregister; 1071 up_read(&policy->rwsem); 1072 kobject_put(kobj); 1073 1074 /* 1075 * We need to make sure that the underlying kobj is 1076 * actually not referenced anymore by anybody before we 1077 * proceed with unloading. 1078 */ 1079 pr_debug("waiting for dropping of refcount\n"); 1080 wait_for_completion(cmp); 1081 pr_debug("wait complete\n"); 1082 } 1083 1084 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1085 { 1086 free_cpumask_var(policy->related_cpus); 1087 free_cpumask_var(policy->cpus); 1088 kfree(policy); 1089 } 1090 1091 static int update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu, 1092 struct device *cpu_dev) 1093 { 1094 int ret; 1095 1096 if (WARN_ON(cpu == policy->cpu)) 1097 return 0; 1098 1099 /* Move kobject to the new policy->cpu */ 1100 ret = kobject_move(&policy->kobj, &cpu_dev->kobj); 1101 if (ret) { 1102 pr_err("%s: Failed to move kobj: %d\n", __func__, ret); 1103 return ret; 1104 } 1105 1106 down_write(&policy->rwsem); 1107 1108 policy->last_cpu = policy->cpu; 1109 policy->cpu = cpu; 1110 1111 up_write(&policy->rwsem); 1112 1113 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1114 CPUFREQ_UPDATE_POLICY_CPU, policy); 1115 1116 return 0; 1117 } 1118 1119 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1120 { 1121 unsigned int j, cpu = dev->id; 1122 int ret = -ENOMEM; 1123 struct cpufreq_policy *policy; 1124 unsigned long flags; 1125 bool recover_policy = cpufreq_suspended; 1126 #ifdef CONFIG_HOTPLUG_CPU 1127 struct cpufreq_policy *tpolicy; 1128 #endif 1129 1130 if (cpu_is_offline(cpu)) 1131 return 0; 1132 1133 pr_debug("adding CPU %u\n", cpu); 1134 1135 #ifdef CONFIG_SMP 1136 /* check whether a different CPU already registered this 1137 * CPU because it is in the same boat. */ 1138 policy = cpufreq_cpu_get(cpu); 1139 if (unlikely(policy)) { 1140 cpufreq_cpu_put(policy); 1141 return 0; 1142 } 1143 #endif 1144 1145 if (!down_read_trylock(&cpufreq_rwsem)) 1146 return 0; 1147 1148 #ifdef CONFIG_HOTPLUG_CPU 1149 /* Check if this cpu was hot-unplugged earlier and has siblings */ 1150 read_lock_irqsave(&cpufreq_driver_lock, flags); 1151 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) { 1152 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) { 1153 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1154 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev); 1155 up_read(&cpufreq_rwsem); 1156 return ret; 1157 } 1158 } 1159 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1160 #endif 1161 1162 /* 1163 * Restore the saved policy when doing light-weight init and fall back 1164 * to the full init if that fails. 1165 */ 1166 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL; 1167 if (!policy) { 1168 recover_policy = false; 1169 policy = cpufreq_policy_alloc(); 1170 if (!policy) 1171 goto nomem_out; 1172 } 1173 1174 /* 1175 * In the resume path, since we restore a saved policy, the assignment 1176 * to policy->cpu is like an update of the existing policy, rather than 1177 * the creation of a brand new one. So we need to perform this update 1178 * by invoking update_policy_cpu(). 1179 */ 1180 if (recover_policy && cpu != policy->cpu) 1181 WARN_ON(update_policy_cpu(policy, cpu, dev)); 1182 else 1183 policy->cpu = cpu; 1184 1185 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1186 1187 init_completion(&policy->kobj_unregister); 1188 INIT_WORK(&policy->update, handle_update); 1189 1190 /* call driver. From then on the cpufreq must be able 1191 * to accept all calls to ->verify and ->setpolicy for this CPU 1192 */ 1193 ret = cpufreq_driver->init(policy); 1194 if (ret) { 1195 pr_debug("initialization failed\n"); 1196 goto err_set_policy_cpu; 1197 } 1198 1199 /* related cpus should atleast have policy->cpus */ 1200 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1201 1202 /* 1203 * affected cpus must always be the one, which are online. We aren't 1204 * managing offline cpus here. 1205 */ 1206 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1207 1208 if (!recover_policy) { 1209 policy->user_policy.min = policy->min; 1210 policy->user_policy.max = policy->max; 1211 } 1212 1213 down_write(&policy->rwsem); 1214 write_lock_irqsave(&cpufreq_driver_lock, flags); 1215 for_each_cpu(j, policy->cpus) 1216 per_cpu(cpufreq_cpu_data, j) = policy; 1217 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1218 1219 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1220 policy->cur = cpufreq_driver->get(policy->cpu); 1221 if (!policy->cur) { 1222 pr_err("%s: ->get() failed\n", __func__); 1223 goto err_get_freq; 1224 } 1225 } 1226 1227 /* 1228 * Sometimes boot loaders set CPU frequency to a value outside of 1229 * frequency table present with cpufreq core. In such cases CPU might be 1230 * unstable if it has to run on that frequency for long duration of time 1231 * and so its better to set it to a frequency which is specified in 1232 * freq-table. This also makes cpufreq stats inconsistent as 1233 * cpufreq-stats would fail to register because current frequency of CPU 1234 * isn't found in freq-table. 1235 * 1236 * Because we don't want this change to effect boot process badly, we go 1237 * for the next freq which is >= policy->cur ('cur' must be set by now, 1238 * otherwise we will end up setting freq to lowest of the table as 'cur' 1239 * is initialized to zero). 1240 * 1241 * We are passing target-freq as "policy->cur - 1" otherwise 1242 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1243 * equal to target-freq. 1244 */ 1245 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1246 && has_target()) { 1247 /* Are we running at unknown frequency ? */ 1248 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1249 if (ret == -EINVAL) { 1250 /* Warn user and fix it */ 1251 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1252 __func__, policy->cpu, policy->cur); 1253 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1254 CPUFREQ_RELATION_L); 1255 1256 /* 1257 * Reaching here after boot in a few seconds may not 1258 * mean that system will remain stable at "unknown" 1259 * frequency for longer duration. Hence, a BUG_ON(). 1260 */ 1261 BUG_ON(ret); 1262 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1263 __func__, policy->cpu, policy->cur); 1264 } 1265 } 1266 1267 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1268 CPUFREQ_START, policy); 1269 1270 if (!recover_policy) { 1271 ret = cpufreq_add_dev_interface(policy, dev); 1272 if (ret) 1273 goto err_out_unregister; 1274 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1275 CPUFREQ_CREATE_POLICY, policy); 1276 } 1277 1278 write_lock_irqsave(&cpufreq_driver_lock, flags); 1279 list_add(&policy->policy_list, &cpufreq_policy_list); 1280 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1281 1282 cpufreq_init_policy(policy); 1283 1284 if (!recover_policy) { 1285 policy->user_policy.policy = policy->policy; 1286 policy->user_policy.governor = policy->governor; 1287 } 1288 up_write(&policy->rwsem); 1289 1290 kobject_uevent(&policy->kobj, KOBJ_ADD); 1291 up_read(&cpufreq_rwsem); 1292 1293 pr_debug("initialization complete\n"); 1294 1295 return 0; 1296 1297 err_out_unregister: 1298 err_get_freq: 1299 write_lock_irqsave(&cpufreq_driver_lock, flags); 1300 for_each_cpu(j, policy->cpus) 1301 per_cpu(cpufreq_cpu_data, j) = NULL; 1302 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1303 1304 up_write(&policy->rwsem); 1305 1306 if (cpufreq_driver->exit) 1307 cpufreq_driver->exit(policy); 1308 err_set_policy_cpu: 1309 if (recover_policy) { 1310 /* Do not leave stale fallback data behind. */ 1311 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL; 1312 cpufreq_policy_put_kobj(policy); 1313 } 1314 cpufreq_policy_free(policy); 1315 1316 nomem_out: 1317 up_read(&cpufreq_rwsem); 1318 1319 return ret; 1320 } 1321 1322 /** 1323 * cpufreq_add_dev - add a CPU device 1324 * 1325 * Adds the cpufreq interface for a CPU device. 1326 * 1327 * The Oracle says: try running cpufreq registration/unregistration concurrently 1328 * with with cpu hotplugging and all hell will break loose. Tried to clean this 1329 * mess up, but more thorough testing is needed. - Mathieu 1330 */ 1331 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1332 { 1333 return __cpufreq_add_dev(dev, sif); 1334 } 1335 1336 static int __cpufreq_remove_dev_prepare(struct device *dev, 1337 struct subsys_interface *sif) 1338 { 1339 unsigned int cpu = dev->id, cpus; 1340 int ret; 1341 unsigned long flags; 1342 struct cpufreq_policy *policy; 1343 1344 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1345 1346 write_lock_irqsave(&cpufreq_driver_lock, flags); 1347 1348 policy = per_cpu(cpufreq_cpu_data, cpu); 1349 1350 /* Save the policy somewhere when doing a light-weight tear-down */ 1351 if (cpufreq_suspended) 1352 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy; 1353 1354 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1355 1356 if (!policy) { 1357 pr_debug("%s: No cpu_data found\n", __func__); 1358 return -EINVAL; 1359 } 1360 1361 if (has_target()) { 1362 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1363 if (ret) { 1364 pr_err("%s: Failed to stop governor\n", __func__); 1365 return ret; 1366 } 1367 } 1368 1369 if (!cpufreq_driver->setpolicy) 1370 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1371 policy->governor->name, CPUFREQ_NAME_LEN); 1372 1373 down_read(&policy->rwsem); 1374 cpus = cpumask_weight(policy->cpus); 1375 up_read(&policy->rwsem); 1376 1377 if (cpu != policy->cpu) { 1378 sysfs_remove_link(&dev->kobj, "cpufreq"); 1379 } else if (cpus > 1) { 1380 /* Nominate new CPU */ 1381 int new_cpu = cpumask_any_but(policy->cpus, cpu); 1382 struct device *cpu_dev = get_cpu_device(new_cpu); 1383 1384 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1385 ret = update_policy_cpu(policy, new_cpu, cpu_dev); 1386 if (ret) { 1387 if (sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 1388 "cpufreq")) 1389 pr_err("%s: Failed to restore kobj link to cpu:%d\n", 1390 __func__, cpu_dev->id); 1391 return ret; 1392 } 1393 1394 if (!cpufreq_suspended) 1395 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n", 1396 __func__, new_cpu, cpu); 1397 } else if (cpufreq_driver->stop_cpu) { 1398 cpufreq_driver->stop_cpu(policy); 1399 } 1400 1401 return 0; 1402 } 1403 1404 static int __cpufreq_remove_dev_finish(struct device *dev, 1405 struct subsys_interface *sif) 1406 { 1407 unsigned int cpu = dev->id, cpus; 1408 int ret; 1409 unsigned long flags; 1410 struct cpufreq_policy *policy; 1411 1412 read_lock_irqsave(&cpufreq_driver_lock, flags); 1413 policy = per_cpu(cpufreq_cpu_data, cpu); 1414 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1415 1416 if (!policy) { 1417 pr_debug("%s: No cpu_data found\n", __func__); 1418 return -EINVAL; 1419 } 1420 1421 down_write(&policy->rwsem); 1422 cpus = cpumask_weight(policy->cpus); 1423 1424 if (cpus > 1) 1425 cpumask_clear_cpu(cpu, policy->cpus); 1426 up_write(&policy->rwsem); 1427 1428 /* If cpu is last user of policy, free policy */ 1429 if (cpus == 1) { 1430 if (has_target()) { 1431 ret = __cpufreq_governor(policy, 1432 CPUFREQ_GOV_POLICY_EXIT); 1433 if (ret) { 1434 pr_err("%s: Failed to exit governor\n", 1435 __func__); 1436 return ret; 1437 } 1438 } 1439 1440 if (!cpufreq_suspended) 1441 cpufreq_policy_put_kobj(policy); 1442 1443 /* 1444 * Perform the ->exit() even during light-weight tear-down, 1445 * since this is a core component, and is essential for the 1446 * subsequent light-weight ->init() to succeed. 1447 */ 1448 if (cpufreq_driver->exit) 1449 cpufreq_driver->exit(policy); 1450 1451 /* Remove policy from list of active policies */ 1452 write_lock_irqsave(&cpufreq_driver_lock, flags); 1453 list_del(&policy->policy_list); 1454 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1455 1456 if (!cpufreq_suspended) 1457 cpufreq_policy_free(policy); 1458 } else if (has_target()) { 1459 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1460 if (!ret) 1461 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1462 1463 if (ret) { 1464 pr_err("%s: Failed to start governor\n", __func__); 1465 return ret; 1466 } 1467 } 1468 1469 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1470 return 0; 1471 } 1472 1473 /** 1474 * cpufreq_remove_dev - remove a CPU device 1475 * 1476 * Removes the cpufreq interface for a CPU device. 1477 */ 1478 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1479 { 1480 unsigned int cpu = dev->id; 1481 int ret; 1482 1483 if (cpu_is_offline(cpu)) 1484 return 0; 1485 1486 ret = __cpufreq_remove_dev_prepare(dev, sif); 1487 1488 if (!ret) 1489 ret = __cpufreq_remove_dev_finish(dev, sif); 1490 1491 return ret; 1492 } 1493 1494 static void handle_update(struct work_struct *work) 1495 { 1496 struct cpufreq_policy *policy = 1497 container_of(work, struct cpufreq_policy, update); 1498 unsigned int cpu = policy->cpu; 1499 pr_debug("handle_update for cpu %u called\n", cpu); 1500 cpufreq_update_policy(cpu); 1501 } 1502 1503 /** 1504 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1505 * in deep trouble. 1506 * @cpu: cpu number 1507 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1508 * @new_freq: CPU frequency the CPU actually runs at 1509 * 1510 * We adjust to current frequency first, and need to clean up later. 1511 * So either call to cpufreq_update_policy() or schedule handle_update()). 1512 */ 1513 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1514 unsigned int new_freq) 1515 { 1516 struct cpufreq_policy *policy; 1517 struct cpufreq_freqs freqs; 1518 unsigned long flags; 1519 1520 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1521 old_freq, new_freq); 1522 1523 freqs.old = old_freq; 1524 freqs.new = new_freq; 1525 1526 read_lock_irqsave(&cpufreq_driver_lock, flags); 1527 policy = per_cpu(cpufreq_cpu_data, cpu); 1528 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1529 1530 cpufreq_freq_transition_begin(policy, &freqs); 1531 cpufreq_freq_transition_end(policy, &freqs, 0); 1532 } 1533 1534 /** 1535 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1536 * @cpu: CPU number 1537 * 1538 * This is the last known freq, without actually getting it from the driver. 1539 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1540 */ 1541 unsigned int cpufreq_quick_get(unsigned int cpu) 1542 { 1543 struct cpufreq_policy *policy; 1544 unsigned int ret_freq = 0; 1545 1546 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1547 return cpufreq_driver->get(cpu); 1548 1549 policy = cpufreq_cpu_get(cpu); 1550 if (policy) { 1551 ret_freq = policy->cur; 1552 cpufreq_cpu_put(policy); 1553 } 1554 1555 return ret_freq; 1556 } 1557 EXPORT_SYMBOL(cpufreq_quick_get); 1558 1559 /** 1560 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1561 * @cpu: CPU number 1562 * 1563 * Just return the max possible frequency for a given CPU. 1564 */ 1565 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1566 { 1567 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1568 unsigned int ret_freq = 0; 1569 1570 if (policy) { 1571 ret_freq = policy->max; 1572 cpufreq_cpu_put(policy); 1573 } 1574 1575 return ret_freq; 1576 } 1577 EXPORT_SYMBOL(cpufreq_quick_get_max); 1578 1579 static unsigned int __cpufreq_get(unsigned int cpu) 1580 { 1581 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1582 unsigned int ret_freq = 0; 1583 1584 if (!cpufreq_driver->get) 1585 return ret_freq; 1586 1587 ret_freq = cpufreq_driver->get(cpu); 1588 1589 if (ret_freq && policy->cur && 1590 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1591 /* verify no discrepancy between actual and 1592 saved value exists */ 1593 if (unlikely(ret_freq != policy->cur)) { 1594 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1595 schedule_work(&policy->update); 1596 } 1597 } 1598 1599 return ret_freq; 1600 } 1601 1602 /** 1603 * cpufreq_get - get the current CPU frequency (in kHz) 1604 * @cpu: CPU number 1605 * 1606 * Get the CPU current (static) CPU frequency 1607 */ 1608 unsigned int cpufreq_get(unsigned int cpu) 1609 { 1610 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1611 unsigned int ret_freq = 0; 1612 1613 if (policy) { 1614 down_read(&policy->rwsem); 1615 ret_freq = __cpufreq_get(cpu); 1616 up_read(&policy->rwsem); 1617 1618 cpufreq_cpu_put(policy); 1619 } 1620 1621 return ret_freq; 1622 } 1623 EXPORT_SYMBOL(cpufreq_get); 1624 1625 static struct subsys_interface cpufreq_interface = { 1626 .name = "cpufreq", 1627 .subsys = &cpu_subsys, 1628 .add_dev = cpufreq_add_dev, 1629 .remove_dev = cpufreq_remove_dev, 1630 }; 1631 1632 /* 1633 * In case platform wants some specific frequency to be configured 1634 * during suspend.. 1635 */ 1636 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1637 { 1638 int ret; 1639 1640 if (!policy->suspend_freq) { 1641 pr_err("%s: suspend_freq can't be zero\n", __func__); 1642 return -EINVAL; 1643 } 1644 1645 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1646 policy->suspend_freq); 1647 1648 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1649 CPUFREQ_RELATION_H); 1650 if (ret) 1651 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1652 __func__, policy->suspend_freq, ret); 1653 1654 return ret; 1655 } 1656 EXPORT_SYMBOL(cpufreq_generic_suspend); 1657 1658 /** 1659 * cpufreq_suspend() - Suspend CPUFreq governors 1660 * 1661 * Called during system wide Suspend/Hibernate cycles for suspending governors 1662 * as some platforms can't change frequency after this point in suspend cycle. 1663 * Because some of the devices (like: i2c, regulators, etc) they use for 1664 * changing frequency are suspended quickly after this point. 1665 */ 1666 void cpufreq_suspend(void) 1667 { 1668 struct cpufreq_policy *policy; 1669 1670 if (!cpufreq_driver) 1671 return; 1672 1673 if (!has_target()) 1674 goto suspend; 1675 1676 pr_debug("%s: Suspending Governors\n", __func__); 1677 1678 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 1679 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP)) 1680 pr_err("%s: Failed to stop governor for policy: %p\n", 1681 __func__, policy); 1682 else if (cpufreq_driver->suspend 1683 && cpufreq_driver->suspend(policy)) 1684 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1685 policy); 1686 } 1687 1688 suspend: 1689 cpufreq_suspended = true; 1690 } 1691 1692 /** 1693 * cpufreq_resume() - Resume CPUFreq governors 1694 * 1695 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1696 * are suspended with cpufreq_suspend(). 1697 */ 1698 void cpufreq_resume(void) 1699 { 1700 struct cpufreq_policy *policy; 1701 1702 if (!cpufreq_driver) 1703 return; 1704 1705 cpufreq_suspended = false; 1706 1707 if (!has_target()) 1708 return; 1709 1710 pr_debug("%s: Resuming Governors\n", __func__); 1711 1712 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 1713 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) 1714 pr_err("%s: Failed to resume driver: %p\n", __func__, 1715 policy); 1716 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START) 1717 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS)) 1718 pr_err("%s: Failed to start governor for policy: %p\n", 1719 __func__, policy); 1720 1721 /* 1722 * schedule call cpufreq_update_policy() for boot CPU, i.e. last 1723 * policy in list. It will verify that the current freq is in 1724 * sync with what we believe it to be. 1725 */ 1726 if (list_is_last(&policy->policy_list, &cpufreq_policy_list)) 1727 schedule_work(&policy->update); 1728 } 1729 } 1730 1731 /** 1732 * cpufreq_get_current_driver - return current driver's name 1733 * 1734 * Return the name string of the currently loaded cpufreq driver 1735 * or NULL, if none. 1736 */ 1737 const char *cpufreq_get_current_driver(void) 1738 { 1739 if (cpufreq_driver) 1740 return cpufreq_driver->name; 1741 1742 return NULL; 1743 } 1744 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1745 1746 /** 1747 * cpufreq_get_driver_data - return current driver data 1748 * 1749 * Return the private data of the currently loaded cpufreq 1750 * driver, or NULL if no cpufreq driver is loaded. 1751 */ 1752 void *cpufreq_get_driver_data(void) 1753 { 1754 if (cpufreq_driver) 1755 return cpufreq_driver->driver_data; 1756 1757 return NULL; 1758 } 1759 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1760 1761 /********************************************************************* 1762 * NOTIFIER LISTS INTERFACE * 1763 *********************************************************************/ 1764 1765 /** 1766 * cpufreq_register_notifier - register a driver with cpufreq 1767 * @nb: notifier function to register 1768 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1769 * 1770 * Add a driver to one of two lists: either a list of drivers that 1771 * are notified about clock rate changes (once before and once after 1772 * the transition), or a list of drivers that are notified about 1773 * changes in cpufreq policy. 1774 * 1775 * This function may sleep, and has the same return conditions as 1776 * blocking_notifier_chain_register. 1777 */ 1778 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1779 { 1780 int ret; 1781 1782 if (cpufreq_disabled()) 1783 return -EINVAL; 1784 1785 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1786 1787 switch (list) { 1788 case CPUFREQ_TRANSITION_NOTIFIER: 1789 ret = srcu_notifier_chain_register( 1790 &cpufreq_transition_notifier_list, nb); 1791 break; 1792 case CPUFREQ_POLICY_NOTIFIER: 1793 ret = blocking_notifier_chain_register( 1794 &cpufreq_policy_notifier_list, nb); 1795 break; 1796 default: 1797 ret = -EINVAL; 1798 } 1799 1800 return ret; 1801 } 1802 EXPORT_SYMBOL(cpufreq_register_notifier); 1803 1804 /** 1805 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1806 * @nb: notifier block to be unregistered 1807 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1808 * 1809 * Remove a driver from the CPU frequency notifier list. 1810 * 1811 * This function may sleep, and has the same return conditions as 1812 * blocking_notifier_chain_unregister. 1813 */ 1814 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1815 { 1816 int ret; 1817 1818 if (cpufreq_disabled()) 1819 return -EINVAL; 1820 1821 switch (list) { 1822 case CPUFREQ_TRANSITION_NOTIFIER: 1823 ret = srcu_notifier_chain_unregister( 1824 &cpufreq_transition_notifier_list, nb); 1825 break; 1826 case CPUFREQ_POLICY_NOTIFIER: 1827 ret = blocking_notifier_chain_unregister( 1828 &cpufreq_policy_notifier_list, nb); 1829 break; 1830 default: 1831 ret = -EINVAL; 1832 } 1833 1834 return ret; 1835 } 1836 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1837 1838 1839 /********************************************************************* 1840 * GOVERNORS * 1841 *********************************************************************/ 1842 1843 /* Must set freqs->new to intermediate frequency */ 1844 static int __target_intermediate(struct cpufreq_policy *policy, 1845 struct cpufreq_freqs *freqs, int index) 1846 { 1847 int ret; 1848 1849 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1850 1851 /* We don't need to switch to intermediate freq */ 1852 if (!freqs->new) 1853 return 0; 1854 1855 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1856 __func__, policy->cpu, freqs->old, freqs->new); 1857 1858 cpufreq_freq_transition_begin(policy, freqs); 1859 ret = cpufreq_driver->target_intermediate(policy, index); 1860 cpufreq_freq_transition_end(policy, freqs, ret); 1861 1862 if (ret) 1863 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1864 __func__, ret); 1865 1866 return ret; 1867 } 1868 1869 static int __target_index(struct cpufreq_policy *policy, 1870 struct cpufreq_frequency_table *freq_table, int index) 1871 { 1872 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1873 unsigned int intermediate_freq = 0; 1874 int retval = -EINVAL; 1875 bool notify; 1876 1877 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1878 if (notify) { 1879 /* Handle switching to intermediate frequency */ 1880 if (cpufreq_driver->get_intermediate) { 1881 retval = __target_intermediate(policy, &freqs, index); 1882 if (retval) 1883 return retval; 1884 1885 intermediate_freq = freqs.new; 1886 /* Set old freq to intermediate */ 1887 if (intermediate_freq) 1888 freqs.old = freqs.new; 1889 } 1890 1891 freqs.new = freq_table[index].frequency; 1892 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1893 __func__, policy->cpu, freqs.old, freqs.new); 1894 1895 cpufreq_freq_transition_begin(policy, &freqs); 1896 } 1897 1898 retval = cpufreq_driver->target_index(policy, index); 1899 if (retval) 1900 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1901 retval); 1902 1903 if (notify) { 1904 cpufreq_freq_transition_end(policy, &freqs, retval); 1905 1906 /* 1907 * Failed after setting to intermediate freq? Driver should have 1908 * reverted back to initial frequency and so should we. Check 1909 * here for intermediate_freq instead of get_intermediate, in 1910 * case we have't switched to intermediate freq at all. 1911 */ 1912 if (unlikely(retval && intermediate_freq)) { 1913 freqs.old = intermediate_freq; 1914 freqs.new = policy->restore_freq; 1915 cpufreq_freq_transition_begin(policy, &freqs); 1916 cpufreq_freq_transition_end(policy, &freqs, 0); 1917 } 1918 } 1919 1920 return retval; 1921 } 1922 1923 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1924 unsigned int target_freq, 1925 unsigned int relation) 1926 { 1927 unsigned int old_target_freq = target_freq; 1928 int retval = -EINVAL; 1929 1930 if (cpufreq_disabled()) 1931 return -ENODEV; 1932 1933 /* Make sure that target_freq is within supported range */ 1934 if (target_freq > policy->max) 1935 target_freq = policy->max; 1936 if (target_freq < policy->min) 1937 target_freq = policy->min; 1938 1939 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1940 policy->cpu, target_freq, relation, old_target_freq); 1941 1942 /* 1943 * This might look like a redundant call as we are checking it again 1944 * after finding index. But it is left intentionally for cases where 1945 * exactly same freq is called again and so we can save on few function 1946 * calls. 1947 */ 1948 if (target_freq == policy->cur) 1949 return 0; 1950 1951 /* Save last value to restore later on errors */ 1952 policy->restore_freq = policy->cur; 1953 1954 if (cpufreq_driver->target) 1955 retval = cpufreq_driver->target(policy, target_freq, relation); 1956 else if (cpufreq_driver->target_index) { 1957 struct cpufreq_frequency_table *freq_table; 1958 int index; 1959 1960 freq_table = cpufreq_frequency_get_table(policy->cpu); 1961 if (unlikely(!freq_table)) { 1962 pr_err("%s: Unable to find freq_table\n", __func__); 1963 goto out; 1964 } 1965 1966 retval = cpufreq_frequency_table_target(policy, freq_table, 1967 target_freq, relation, &index); 1968 if (unlikely(retval)) { 1969 pr_err("%s: Unable to find matching freq\n", __func__); 1970 goto out; 1971 } 1972 1973 if (freq_table[index].frequency == policy->cur) { 1974 retval = 0; 1975 goto out; 1976 } 1977 1978 retval = __target_index(policy, freq_table, index); 1979 } 1980 1981 out: 1982 return retval; 1983 } 1984 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1985 1986 int cpufreq_driver_target(struct cpufreq_policy *policy, 1987 unsigned int target_freq, 1988 unsigned int relation) 1989 { 1990 int ret = -EINVAL; 1991 1992 down_write(&policy->rwsem); 1993 1994 ret = __cpufreq_driver_target(policy, target_freq, relation); 1995 1996 up_write(&policy->rwsem); 1997 1998 return ret; 1999 } 2000 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2001 2002 /* 2003 * when "event" is CPUFREQ_GOV_LIMITS 2004 */ 2005 2006 static int __cpufreq_governor(struct cpufreq_policy *policy, 2007 unsigned int event) 2008 { 2009 int ret; 2010 2011 /* Only must be defined when default governor is known to have latency 2012 restrictions, like e.g. conservative or ondemand. 2013 That this is the case is already ensured in Kconfig 2014 */ 2015 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 2016 struct cpufreq_governor *gov = &cpufreq_gov_performance; 2017 #else 2018 struct cpufreq_governor *gov = NULL; 2019 #endif 2020 2021 /* Don't start any governor operations if we are entering suspend */ 2022 if (cpufreq_suspended) 2023 return 0; 2024 2025 if (policy->governor->max_transition_latency && 2026 policy->cpuinfo.transition_latency > 2027 policy->governor->max_transition_latency) { 2028 if (!gov) 2029 return -EINVAL; 2030 else { 2031 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 2032 policy->governor->name, gov->name); 2033 policy->governor = gov; 2034 } 2035 } 2036 2037 if (event == CPUFREQ_GOV_POLICY_INIT) 2038 if (!try_module_get(policy->governor->owner)) 2039 return -EINVAL; 2040 2041 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 2042 policy->cpu, event); 2043 2044 mutex_lock(&cpufreq_governor_lock); 2045 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 2046 || (!policy->governor_enabled 2047 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 2048 mutex_unlock(&cpufreq_governor_lock); 2049 return -EBUSY; 2050 } 2051 2052 if (event == CPUFREQ_GOV_STOP) 2053 policy->governor_enabled = false; 2054 else if (event == CPUFREQ_GOV_START) 2055 policy->governor_enabled = true; 2056 2057 mutex_unlock(&cpufreq_governor_lock); 2058 2059 ret = policy->governor->governor(policy, event); 2060 2061 if (!ret) { 2062 if (event == CPUFREQ_GOV_POLICY_INIT) 2063 policy->governor->initialized++; 2064 else if (event == CPUFREQ_GOV_POLICY_EXIT) 2065 policy->governor->initialized--; 2066 } else { 2067 /* Restore original values */ 2068 mutex_lock(&cpufreq_governor_lock); 2069 if (event == CPUFREQ_GOV_STOP) 2070 policy->governor_enabled = true; 2071 else if (event == CPUFREQ_GOV_START) 2072 policy->governor_enabled = false; 2073 mutex_unlock(&cpufreq_governor_lock); 2074 } 2075 2076 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 2077 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 2078 module_put(policy->governor->owner); 2079 2080 return ret; 2081 } 2082 2083 int cpufreq_register_governor(struct cpufreq_governor *governor) 2084 { 2085 int err; 2086 2087 if (!governor) 2088 return -EINVAL; 2089 2090 if (cpufreq_disabled()) 2091 return -ENODEV; 2092 2093 mutex_lock(&cpufreq_governor_mutex); 2094 2095 governor->initialized = 0; 2096 err = -EBUSY; 2097 if (__find_governor(governor->name) == NULL) { 2098 err = 0; 2099 list_add(&governor->governor_list, &cpufreq_governor_list); 2100 } 2101 2102 mutex_unlock(&cpufreq_governor_mutex); 2103 return err; 2104 } 2105 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2106 2107 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2108 { 2109 int cpu; 2110 2111 if (!governor) 2112 return; 2113 2114 if (cpufreq_disabled()) 2115 return; 2116 2117 for_each_present_cpu(cpu) { 2118 if (cpu_online(cpu)) 2119 continue; 2120 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 2121 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 2122 } 2123 2124 mutex_lock(&cpufreq_governor_mutex); 2125 list_del(&governor->governor_list); 2126 mutex_unlock(&cpufreq_governor_mutex); 2127 return; 2128 } 2129 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2130 2131 2132 /********************************************************************* 2133 * POLICY INTERFACE * 2134 *********************************************************************/ 2135 2136 /** 2137 * cpufreq_get_policy - get the current cpufreq_policy 2138 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2139 * is written 2140 * 2141 * Reads the current cpufreq policy. 2142 */ 2143 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2144 { 2145 struct cpufreq_policy *cpu_policy; 2146 if (!policy) 2147 return -EINVAL; 2148 2149 cpu_policy = cpufreq_cpu_get(cpu); 2150 if (!cpu_policy) 2151 return -EINVAL; 2152 2153 memcpy(policy, cpu_policy, sizeof(*policy)); 2154 2155 cpufreq_cpu_put(cpu_policy); 2156 return 0; 2157 } 2158 EXPORT_SYMBOL(cpufreq_get_policy); 2159 2160 /* 2161 * policy : current policy. 2162 * new_policy: policy to be set. 2163 */ 2164 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2165 struct cpufreq_policy *new_policy) 2166 { 2167 struct cpufreq_governor *old_gov; 2168 int ret; 2169 2170 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2171 new_policy->cpu, new_policy->min, new_policy->max); 2172 2173 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2174 2175 if (new_policy->min > policy->max || new_policy->max < policy->min) 2176 return -EINVAL; 2177 2178 /* verify the cpu speed can be set within this limit */ 2179 ret = cpufreq_driver->verify(new_policy); 2180 if (ret) 2181 return ret; 2182 2183 /* adjust if necessary - all reasons */ 2184 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2185 CPUFREQ_ADJUST, new_policy); 2186 2187 /* adjust if necessary - hardware incompatibility*/ 2188 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2189 CPUFREQ_INCOMPATIBLE, new_policy); 2190 2191 /* 2192 * verify the cpu speed can be set within this limit, which might be 2193 * different to the first one 2194 */ 2195 ret = cpufreq_driver->verify(new_policy); 2196 if (ret) 2197 return ret; 2198 2199 /* notification of the new policy */ 2200 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2201 CPUFREQ_NOTIFY, new_policy); 2202 2203 policy->min = new_policy->min; 2204 policy->max = new_policy->max; 2205 2206 pr_debug("new min and max freqs are %u - %u kHz\n", 2207 policy->min, policy->max); 2208 2209 if (cpufreq_driver->setpolicy) { 2210 policy->policy = new_policy->policy; 2211 pr_debug("setting range\n"); 2212 return cpufreq_driver->setpolicy(new_policy); 2213 } 2214 2215 if (new_policy->governor == policy->governor) 2216 goto out; 2217 2218 pr_debug("governor switch\n"); 2219 2220 /* save old, working values */ 2221 old_gov = policy->governor; 2222 /* end old governor */ 2223 if (old_gov) { 2224 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2225 up_write(&policy->rwsem); 2226 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2227 down_write(&policy->rwsem); 2228 } 2229 2230 /* start new governor */ 2231 policy->governor = new_policy->governor; 2232 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) { 2233 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) 2234 goto out; 2235 2236 up_write(&policy->rwsem); 2237 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2238 down_write(&policy->rwsem); 2239 } 2240 2241 /* new governor failed, so re-start old one */ 2242 pr_debug("starting governor %s failed\n", policy->governor->name); 2243 if (old_gov) { 2244 policy->governor = old_gov; 2245 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2246 __cpufreq_governor(policy, CPUFREQ_GOV_START); 2247 } 2248 2249 return -EINVAL; 2250 2251 out: 2252 pr_debug("governor: change or update limits\n"); 2253 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2254 } 2255 2256 /** 2257 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2258 * @cpu: CPU which shall be re-evaluated 2259 * 2260 * Useful for policy notifiers which have different necessities 2261 * at different times. 2262 */ 2263 int cpufreq_update_policy(unsigned int cpu) 2264 { 2265 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2266 struct cpufreq_policy new_policy; 2267 int ret; 2268 2269 if (!policy) 2270 return -ENODEV; 2271 2272 down_write(&policy->rwsem); 2273 2274 pr_debug("updating policy for CPU %u\n", cpu); 2275 memcpy(&new_policy, policy, sizeof(*policy)); 2276 new_policy.min = policy->user_policy.min; 2277 new_policy.max = policy->user_policy.max; 2278 new_policy.policy = policy->user_policy.policy; 2279 new_policy.governor = policy->user_policy.governor; 2280 2281 /* 2282 * BIOS might change freq behind our back 2283 * -> ask driver for current freq and notify governors about a change 2284 */ 2285 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2286 new_policy.cur = cpufreq_driver->get(cpu); 2287 if (WARN_ON(!new_policy.cur)) { 2288 ret = -EIO; 2289 goto unlock; 2290 } 2291 2292 if (!policy->cur) { 2293 pr_debug("Driver did not initialize current freq\n"); 2294 policy->cur = new_policy.cur; 2295 } else { 2296 if (policy->cur != new_policy.cur && has_target()) 2297 cpufreq_out_of_sync(cpu, policy->cur, 2298 new_policy.cur); 2299 } 2300 } 2301 2302 ret = cpufreq_set_policy(policy, &new_policy); 2303 2304 unlock: 2305 up_write(&policy->rwsem); 2306 2307 cpufreq_cpu_put(policy); 2308 return ret; 2309 } 2310 EXPORT_SYMBOL(cpufreq_update_policy); 2311 2312 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2313 unsigned long action, void *hcpu) 2314 { 2315 unsigned int cpu = (unsigned long)hcpu; 2316 struct device *dev; 2317 2318 dev = get_cpu_device(cpu); 2319 if (dev) { 2320 switch (action & ~CPU_TASKS_FROZEN) { 2321 case CPU_ONLINE: 2322 __cpufreq_add_dev(dev, NULL); 2323 break; 2324 2325 case CPU_DOWN_PREPARE: 2326 __cpufreq_remove_dev_prepare(dev, NULL); 2327 break; 2328 2329 case CPU_POST_DEAD: 2330 __cpufreq_remove_dev_finish(dev, NULL); 2331 break; 2332 2333 case CPU_DOWN_FAILED: 2334 __cpufreq_add_dev(dev, NULL); 2335 break; 2336 } 2337 } 2338 return NOTIFY_OK; 2339 } 2340 2341 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2342 .notifier_call = cpufreq_cpu_callback, 2343 }; 2344 2345 /********************************************************************* 2346 * BOOST * 2347 *********************************************************************/ 2348 static int cpufreq_boost_set_sw(int state) 2349 { 2350 struct cpufreq_frequency_table *freq_table; 2351 struct cpufreq_policy *policy; 2352 int ret = -EINVAL; 2353 2354 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 2355 freq_table = cpufreq_frequency_get_table(policy->cpu); 2356 if (freq_table) { 2357 ret = cpufreq_frequency_table_cpuinfo(policy, 2358 freq_table); 2359 if (ret) { 2360 pr_err("%s: Policy frequency update failed\n", 2361 __func__); 2362 break; 2363 } 2364 policy->user_policy.max = policy->max; 2365 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2366 } 2367 } 2368 2369 return ret; 2370 } 2371 2372 int cpufreq_boost_trigger_state(int state) 2373 { 2374 unsigned long flags; 2375 int ret = 0; 2376 2377 if (cpufreq_driver->boost_enabled == state) 2378 return 0; 2379 2380 write_lock_irqsave(&cpufreq_driver_lock, flags); 2381 cpufreq_driver->boost_enabled = state; 2382 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2383 2384 ret = cpufreq_driver->set_boost(state); 2385 if (ret) { 2386 write_lock_irqsave(&cpufreq_driver_lock, flags); 2387 cpufreq_driver->boost_enabled = !state; 2388 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2389 2390 pr_err("%s: Cannot %s BOOST\n", 2391 __func__, state ? "enable" : "disable"); 2392 } 2393 2394 return ret; 2395 } 2396 2397 int cpufreq_boost_supported(void) 2398 { 2399 if (likely(cpufreq_driver)) 2400 return cpufreq_driver->boost_supported; 2401 2402 return 0; 2403 } 2404 EXPORT_SYMBOL_GPL(cpufreq_boost_supported); 2405 2406 int cpufreq_boost_enabled(void) 2407 { 2408 return cpufreq_driver->boost_enabled; 2409 } 2410 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2411 2412 /********************************************************************* 2413 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2414 *********************************************************************/ 2415 2416 /** 2417 * cpufreq_register_driver - register a CPU Frequency driver 2418 * @driver_data: A struct cpufreq_driver containing the values# 2419 * submitted by the CPU Frequency driver. 2420 * 2421 * Registers a CPU Frequency driver to this core code. This code 2422 * returns zero on success, -EBUSY when another driver got here first 2423 * (and isn't unregistered in the meantime). 2424 * 2425 */ 2426 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2427 { 2428 unsigned long flags; 2429 int ret; 2430 2431 if (cpufreq_disabled()) 2432 return -ENODEV; 2433 2434 if (!driver_data || !driver_data->verify || !driver_data->init || 2435 !(driver_data->setpolicy || driver_data->target_index || 2436 driver_data->target) || 2437 (driver_data->setpolicy && (driver_data->target_index || 2438 driver_data->target)) || 2439 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2440 return -EINVAL; 2441 2442 pr_debug("trying to register driver %s\n", driver_data->name); 2443 2444 if (driver_data->setpolicy) 2445 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2446 2447 write_lock_irqsave(&cpufreq_driver_lock, flags); 2448 if (cpufreq_driver) { 2449 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2450 return -EEXIST; 2451 } 2452 cpufreq_driver = driver_data; 2453 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2454 2455 if (cpufreq_boost_supported()) { 2456 /* 2457 * Check if driver provides function to enable boost - 2458 * if not, use cpufreq_boost_set_sw as default 2459 */ 2460 if (!cpufreq_driver->set_boost) 2461 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2462 2463 ret = cpufreq_sysfs_create_file(&boost.attr); 2464 if (ret) { 2465 pr_err("%s: cannot register global BOOST sysfs file\n", 2466 __func__); 2467 goto err_null_driver; 2468 } 2469 } 2470 2471 ret = subsys_interface_register(&cpufreq_interface); 2472 if (ret) 2473 goto err_boost_unreg; 2474 2475 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 2476 int i; 2477 ret = -ENODEV; 2478 2479 /* check for at least one working CPU */ 2480 for (i = 0; i < nr_cpu_ids; i++) 2481 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 2482 ret = 0; 2483 break; 2484 } 2485 2486 /* if all ->init() calls failed, unregister */ 2487 if (ret) { 2488 pr_debug("no CPU initialized for driver %s\n", 2489 driver_data->name); 2490 goto err_if_unreg; 2491 } 2492 } 2493 2494 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2495 pr_debug("driver %s up and running\n", driver_data->name); 2496 2497 return 0; 2498 err_if_unreg: 2499 subsys_interface_unregister(&cpufreq_interface); 2500 err_boost_unreg: 2501 if (cpufreq_boost_supported()) 2502 cpufreq_sysfs_remove_file(&boost.attr); 2503 err_null_driver: 2504 write_lock_irqsave(&cpufreq_driver_lock, flags); 2505 cpufreq_driver = NULL; 2506 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2507 return ret; 2508 } 2509 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2510 2511 /** 2512 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2513 * 2514 * Unregister the current CPUFreq driver. Only call this if you have 2515 * the right to do so, i.e. if you have succeeded in initialising before! 2516 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2517 * currently not initialised. 2518 */ 2519 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2520 { 2521 unsigned long flags; 2522 2523 if (!cpufreq_driver || (driver != cpufreq_driver)) 2524 return -EINVAL; 2525 2526 pr_debug("unregistering driver %s\n", driver->name); 2527 2528 subsys_interface_unregister(&cpufreq_interface); 2529 if (cpufreq_boost_supported()) 2530 cpufreq_sysfs_remove_file(&boost.attr); 2531 2532 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2533 2534 down_write(&cpufreq_rwsem); 2535 write_lock_irqsave(&cpufreq_driver_lock, flags); 2536 2537 cpufreq_driver = NULL; 2538 2539 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2540 up_write(&cpufreq_rwsem); 2541 2542 return 0; 2543 } 2544 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2545 2546 static int __init cpufreq_core_init(void) 2547 { 2548 if (cpufreq_disabled()) 2549 return -ENODEV; 2550 2551 cpufreq_global_kobject = kobject_create(); 2552 BUG_ON(!cpufreq_global_kobject); 2553 2554 return 0; 2555 } 2556 core_initcall(cpufreq_core_init); 2557