xref: /openbmc/linux/drivers/clocksource/timer-fttmr010.c (revision dbb381b619aa5242c9cb1a8fd54d71c4d79c91eb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Faraday Technology FTTMR010 timer driver
4  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
5  *
6  * Based on a rewrite of arch/arm/mach-gemini/timer.c:
7  * Copyright (C) 2001-2006 Storlink, Corp.
8  * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
9  */
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/clockchips.h>
16 #include <linux/clocksource.h>
17 #include <linux/sched_clock.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/bitops.h>
21 #include <linux/delay.h>
22 
23 /*
24  * Register definitions common for all the timer variants.
25  */
26 #define TIMER1_COUNT		(0x00)
27 #define TIMER1_LOAD		(0x04)
28 #define TIMER1_MATCH1		(0x08)
29 #define TIMER1_MATCH2		(0x0c)
30 #define TIMER2_COUNT		(0x10)
31 #define TIMER2_LOAD		(0x14)
32 #define TIMER2_MATCH1		(0x18)
33 #define TIMER2_MATCH2		(0x1c)
34 #define TIMER3_COUNT		(0x20)
35 #define TIMER3_LOAD		(0x24)
36 #define TIMER3_MATCH1		(0x28)
37 #define TIMER3_MATCH2		(0x2c)
38 #define TIMER_CR		(0x30)
39 
40 /*
41  * Control register set to clear for ast2600 only.
42  */
43 #define AST2600_TIMER_CR_CLR	(0x3c)
44 
45 /*
46  * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
47  */
48 #define TIMER_1_CR_ENABLE	BIT(0)
49 #define TIMER_1_CR_CLOCK	BIT(1)
50 #define TIMER_1_CR_INT		BIT(2)
51 #define TIMER_2_CR_ENABLE	BIT(3)
52 #define TIMER_2_CR_CLOCK	BIT(4)
53 #define TIMER_2_CR_INT		BIT(5)
54 #define TIMER_3_CR_ENABLE	BIT(6)
55 #define TIMER_3_CR_CLOCK	BIT(7)
56 #define TIMER_3_CR_INT		BIT(8)
57 #define TIMER_1_CR_UPDOWN	BIT(9)
58 #define TIMER_2_CR_UPDOWN	BIT(10)
59 #define TIMER_3_CR_UPDOWN	BIT(11)
60 
61 /*
62  * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
63  * The aspeed timers move bits around in the control register and lacks
64  * bits for setting the timer to count upwards.
65  */
66 #define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
67 #define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
68 #define TIMER_1_CR_ASPEED_INT		BIT(2)
69 #define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
70 #define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
71 #define TIMER_2_CR_ASPEED_INT		BIT(6)
72 #define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
73 #define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
74 #define TIMER_3_CR_ASPEED_INT		BIT(10)
75 
76 /*
77  * Interrupt status/mask register definitions for fttmr010/gemini/moxart
78  * timers.
79  * The registers don't exist and they are not needed on aspeed timers
80  * because:
81  *   - aspeed timer overflow interrupt is controlled by bits in Control
82  *     Register (TMC30).
83  *   - aspeed timers always generate interrupt when either one of the
84  *     Match registers equals to Status register.
85  */
86 #define TIMER_INTR_STATE	(0x34)
87 #define TIMER_INTR_MASK		(0x38)
88 #define TIMER_1_INT_MATCH1	BIT(0)
89 #define TIMER_1_INT_MATCH2	BIT(1)
90 #define TIMER_1_INT_OVERFLOW	BIT(2)
91 #define TIMER_2_INT_MATCH1	BIT(3)
92 #define TIMER_2_INT_MATCH2	BIT(4)
93 #define TIMER_2_INT_OVERFLOW	BIT(5)
94 #define TIMER_3_INT_MATCH1	BIT(6)
95 #define TIMER_3_INT_MATCH2	BIT(7)
96 #define TIMER_3_INT_OVERFLOW	BIT(8)
97 #define TIMER_INT_ALL_MASK	0x1ff
98 
99 struct fttmr010 {
100 	void __iomem *base;
101 	unsigned int tick_rate;
102 	bool is_aspeed;
103 	u32 t1_enable_val;
104 	struct clock_event_device clkevt;
105 	int (*timer_shutdown)(struct clock_event_device *evt);
106 #ifdef CONFIG_ARM
107 	struct delay_timer delay_timer;
108 #endif
109 };
110 
111 /*
112  * A local singleton used by sched_clock and delay timer reads, which are
113  * fast and stateless
114  */
115 static struct fttmr010 *local_fttmr;
116 
117 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
118 {
119 	return container_of(evt, struct fttmr010, clkevt);
120 }
121 
122 static unsigned long fttmr010_read_current_timer_up(void)
123 {
124 	return readl(local_fttmr->base + TIMER2_COUNT);
125 }
126 
127 static unsigned long fttmr010_read_current_timer_down(void)
128 {
129 	return ~readl(local_fttmr->base + TIMER2_COUNT);
130 }
131 
132 static u64 notrace fttmr010_read_sched_clock_up(void)
133 {
134 	return fttmr010_read_current_timer_up();
135 }
136 
137 static u64 notrace fttmr010_read_sched_clock_down(void)
138 {
139 	return fttmr010_read_current_timer_down();
140 }
141 
142 static int fttmr010_timer_set_next_event(unsigned long cycles,
143 				       struct clock_event_device *evt)
144 {
145 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
146 	u32 cr;
147 
148 	/* Stop */
149 	fttmr010->timer_shutdown(evt);
150 
151 	if (fttmr010->is_aspeed) {
152 		/*
153 		 * ASPEED Timer Controller will load TIMER1_LOAD register
154 		 * into TIMER1_COUNT register when the timer is re-enabled.
155 		 */
156 		writel(cycles, fttmr010->base + TIMER1_LOAD);
157 	} else {
158 		/* Setup the match register forward in time */
159 		cr = readl(fttmr010->base + TIMER1_COUNT);
160 		writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
161 	}
162 
163 	/* Start */
164 	cr = readl(fttmr010->base + TIMER_CR);
165 	cr |= fttmr010->t1_enable_val;
166 	writel(cr, fttmr010->base + TIMER_CR);
167 
168 	return 0;
169 }
170 
171 static int ast2600_timer_shutdown(struct clock_event_device *evt)
172 {
173 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
174 
175 	/* Stop */
176 	writel(fttmr010->t1_enable_val, fttmr010->base + AST2600_TIMER_CR_CLR);
177 
178 	return 0;
179 }
180 
181 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
182 {
183 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
184 	u32 cr;
185 
186 	/* Stop */
187 	cr = readl(fttmr010->base + TIMER_CR);
188 	cr &= ~fttmr010->t1_enable_val;
189 	writel(cr, fttmr010->base + TIMER_CR);
190 
191 	return 0;
192 }
193 
194 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
195 {
196 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
197 	u32 cr;
198 
199 	/* Stop */
200 	fttmr010->timer_shutdown(evt);
201 
202 	/* Setup counter start from 0 or ~0 */
203 	writel(0, fttmr010->base + TIMER1_COUNT);
204 	if (fttmr010->is_aspeed) {
205 		writel(~0, fttmr010->base + TIMER1_LOAD);
206 	} else {
207 		writel(0, fttmr010->base + TIMER1_LOAD);
208 
209 		/* Enable interrupt */
210 		cr = readl(fttmr010->base + TIMER_INTR_MASK);
211 		cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
212 		cr |= TIMER_1_INT_MATCH1;
213 		writel(cr, fttmr010->base + TIMER_INTR_MASK);
214 	}
215 
216 	return 0;
217 }
218 
219 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
220 {
221 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
222 	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
223 	u32 cr;
224 
225 	/* Stop */
226 	fttmr010->timer_shutdown(evt);
227 
228 	/* Setup timer to fire at 1/HZ intervals. */
229 	if (fttmr010->is_aspeed) {
230 		writel(period, fttmr010->base + TIMER1_LOAD);
231 	} else {
232 		cr = 0xffffffff - (period - 1);
233 		writel(cr, fttmr010->base + TIMER1_COUNT);
234 		writel(cr, fttmr010->base + TIMER1_LOAD);
235 
236 		/* Enable interrupt on overflow */
237 		cr = readl(fttmr010->base + TIMER_INTR_MASK);
238 		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
239 		cr |= TIMER_1_INT_OVERFLOW;
240 		writel(cr, fttmr010->base + TIMER_INTR_MASK);
241 	}
242 
243 	/* Start the timer */
244 	cr = readl(fttmr010->base + TIMER_CR);
245 	cr |= fttmr010->t1_enable_val;
246 	writel(cr, fttmr010->base + TIMER_CR);
247 
248 	return 0;
249 }
250 
251 /*
252  * IRQ handler for the timer
253  */
254 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
255 {
256 	struct clock_event_device *evt = dev_id;
257 
258 	evt->event_handler(evt);
259 	return IRQ_HANDLED;
260 }
261 
262 static irqreturn_t ast2600_timer_interrupt(int irq, void *dev_id)
263 {
264 	struct clock_event_device *evt = dev_id;
265 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
266 
267 	writel(0x1, fttmr010->base + TIMER_INTR_STATE);
268 
269 	evt->event_handler(evt);
270 	return IRQ_HANDLED;
271 }
272 
273 static int __init fttmr010_common_init(struct device_node *np,
274 		bool is_aspeed,
275 		int (*timer_shutdown)(struct clock_event_device *),
276 		irq_handler_t irq_handler)
277 {
278 	struct fttmr010 *fttmr010;
279 	int irq;
280 	struct clk *clk;
281 	int ret;
282 	u32 val;
283 
284 	/*
285 	 * These implementations require a clock reference.
286 	 * FIXME: we currently only support clocking using PCLK
287 	 * and using EXTCLK is not supported in the driver.
288 	 */
289 	clk = of_clk_get_by_name(np, "PCLK");
290 	if (IS_ERR(clk)) {
291 		pr_err("could not get PCLK\n");
292 		return PTR_ERR(clk);
293 	}
294 	ret = clk_prepare_enable(clk);
295 	if (ret) {
296 		pr_err("failed to enable PCLK\n");
297 		return ret;
298 	}
299 
300 	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
301 	if (!fttmr010) {
302 		ret = -ENOMEM;
303 		goto out_disable_clock;
304 	}
305 	fttmr010->tick_rate = clk_get_rate(clk);
306 
307 	fttmr010->base = of_iomap(np, 0);
308 	if (!fttmr010->base) {
309 		pr_err("Can't remap registers\n");
310 		ret = -ENXIO;
311 		goto out_free;
312 	}
313 	/* IRQ for timer 1 */
314 	irq = irq_of_parse_and_map(np, 0);
315 	if (irq <= 0) {
316 		pr_err("Can't parse IRQ\n");
317 		ret = -EINVAL;
318 		goto out_unmap;
319 	}
320 
321 	/*
322 	 * The Aspeed timers move bits around in the control register.
323 	 */
324 	if (is_aspeed) {
325 		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
326 			TIMER_1_CR_ASPEED_INT;
327 		fttmr010->is_aspeed = true;
328 	} else {
329 		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
330 
331 		/*
332 		 * Reset the interrupt mask and status
333 		 */
334 		writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
335 		writel(0, fttmr010->base + TIMER_INTR_STATE);
336 	}
337 
338 	/*
339 	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
340 	 * where everything just counts down.
341 	 */
342 	if (is_aspeed)
343 		val = TIMER_2_CR_ASPEED_ENABLE;
344 	else {
345 		val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
346 			TIMER_2_CR_UPDOWN;
347 	}
348 	writel(val, fttmr010->base + TIMER_CR);
349 
350 	/*
351 	 * Setup free-running clocksource timer (interrupts
352 	 * disabled.)
353 	 */
354 	local_fttmr = fttmr010;
355 	writel(0, fttmr010->base + TIMER2_COUNT);
356 	writel(0, fttmr010->base + TIMER2_MATCH1);
357 	writel(0, fttmr010->base + TIMER2_MATCH2);
358 
359 	if (fttmr010->is_aspeed) {
360 		writel(~0, fttmr010->base + TIMER2_LOAD);
361 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
362 				      "FTTMR010-TIMER2",
363 				      fttmr010->tick_rate,
364 				      300, 32, clocksource_mmio_readl_down);
365 		sched_clock_register(fttmr010_read_sched_clock_down, 32,
366 				     fttmr010->tick_rate);
367 	} else {
368 		writel(0, fttmr010->base + TIMER2_LOAD);
369 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
370 				      "FTTMR010-TIMER2",
371 				      fttmr010->tick_rate,
372 				      300, 32, clocksource_mmio_readl_up);
373 		sched_clock_register(fttmr010_read_sched_clock_up, 32,
374 				     fttmr010->tick_rate);
375 	}
376 
377 	fttmr010->timer_shutdown = timer_shutdown;
378 
379 	/*
380 	 * Setup clockevent timer (interrupt-driven) on timer 1.
381 	 */
382 	writel(0, fttmr010->base + TIMER1_COUNT);
383 	writel(0, fttmr010->base + TIMER1_LOAD);
384 	writel(0, fttmr010->base + TIMER1_MATCH1);
385 	writel(0, fttmr010->base + TIMER1_MATCH2);
386 	ret = request_irq(irq, irq_handler, IRQF_TIMER,
387 			  "FTTMR010-TIMER1", &fttmr010->clkevt);
388 	if (ret) {
389 		pr_err("FTTMR010-TIMER1 no IRQ\n");
390 		goto out_unmap;
391 	}
392 
393 	fttmr010->clkevt.name = "FTTMR010-TIMER1";
394 	/* Reasonably fast and accurate clock event */
395 	fttmr010->clkevt.rating = 300;
396 	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
397 		CLOCK_EVT_FEAT_ONESHOT;
398 	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
399 	fttmr010->clkevt.set_state_shutdown = fttmr010->timer_shutdown;
400 	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
401 	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
402 	fttmr010->clkevt.tick_resume = fttmr010->timer_shutdown;
403 	fttmr010->clkevt.cpumask = cpumask_of(0);
404 	fttmr010->clkevt.irq = irq;
405 	clockevents_config_and_register(&fttmr010->clkevt,
406 					fttmr010->tick_rate,
407 					1, 0xffffffff);
408 
409 #ifdef CONFIG_ARM
410 	/* Also use this timer for delays */
411 	if (fttmr010->is_aspeed)
412 		fttmr010->delay_timer.read_current_timer =
413 			fttmr010_read_current_timer_down;
414 	else
415 		fttmr010->delay_timer.read_current_timer =
416 			fttmr010_read_current_timer_up;
417 	fttmr010->delay_timer.freq = fttmr010->tick_rate;
418 	register_current_timer_delay(&fttmr010->delay_timer);
419 #endif
420 
421 	return 0;
422 
423 out_unmap:
424 	iounmap(fttmr010->base);
425 out_free:
426 	kfree(fttmr010);
427 out_disable_clock:
428 	clk_disable_unprepare(clk);
429 
430 	return ret;
431 }
432 
433 static __init int ast2600_timer_init(struct device_node *np)
434 {
435 	return fttmr010_common_init(np, true,
436 			ast2600_timer_shutdown,
437 			ast2600_timer_interrupt);
438 }
439 
440 static __init int aspeed_timer_init(struct device_node *np)
441 {
442 	return fttmr010_common_init(np, true,
443 			fttmr010_timer_shutdown,
444 			fttmr010_timer_interrupt);
445 }
446 
447 static __init int fttmr010_timer_init(struct device_node *np)
448 {
449 	return fttmr010_common_init(np, false,
450 			fttmr010_timer_shutdown,
451 			fttmr010_timer_interrupt);
452 }
453 
454 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
455 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
456 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
457 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
458 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
459 TIMER_OF_DECLARE(ast2600, "aspeed,ast2600-timer", ast2600_timer_init);
460