xref: /openbmc/linux/drivers/clocksource/arm_arch_timer.c (revision 78eee7b5f110c9884c8ffd1dfcdd9c29296f3e43)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8 
9 #define pr_fmt(fmt) 	"arch_timer: " fmt
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30 
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33 
34 #include <clocksource/arm_arch_timer.h>
35 
36 #define CNTTIDR		0x08
37 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
38 
39 #define CNTACR(n)	(0x40 + ((n) * 4))
40 #define CNTACR_RPCT	BIT(0)
41 #define CNTACR_RVCT	BIT(1)
42 #define CNTACR_RFRQ	BIT(2)
43 #define CNTACR_RVOFF	BIT(3)
44 #define CNTACR_RWVT	BIT(4)
45 #define CNTACR_RWPT	BIT(5)
46 
47 #define CNTVCT_LO	0x08
48 #define CNTVCT_HI	0x0c
49 #define CNTFRQ		0x10
50 #define CNTP_TVAL	0x28
51 #define CNTP_CTL	0x2c
52 #define CNTV_TVAL	0x38
53 #define CNTV_CTL	0x3c
54 
55 static unsigned arch_timers_present __initdata;
56 
57 static void __iomem *arch_counter_base __ro_after_init;
58 
59 struct arch_timer {
60 	void __iomem *base;
61 	struct clock_event_device evt;
62 };
63 
64 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
65 
66 static u32 arch_timer_rate __ro_after_init;
67 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
68 
69 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
70 	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
71 	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
72 	[ARCH_TIMER_VIRT_PPI]		= "virt",
73 	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
74 	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
75 };
76 
77 static struct clock_event_device __percpu *arch_timer_evt;
78 
79 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
80 static bool arch_timer_c3stop __ro_after_init;
81 static bool arch_timer_mem_use_virtual __ro_after_init;
82 static bool arch_counter_suspend_stop __ro_after_init;
83 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
84 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
85 #else
86 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
87 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
88 
89 static cpumask_t evtstrm_available = CPU_MASK_NONE;
90 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
91 
92 static int __init early_evtstrm_cfg(char *buf)
93 {
94 	return strtobool(buf, &evtstrm_enable);
95 }
96 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
97 
98 /*
99  * Architected system timer support.
100  */
101 
102 static __always_inline
103 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
104 			  struct clock_event_device *clk)
105 {
106 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
107 		struct arch_timer *timer = to_arch_timer(clk);
108 		switch (reg) {
109 		case ARCH_TIMER_REG_CTRL:
110 			writel_relaxed(val, timer->base + CNTP_CTL);
111 			break;
112 		case ARCH_TIMER_REG_TVAL:
113 			writel_relaxed(val, timer->base + CNTP_TVAL);
114 			break;
115 		}
116 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
117 		struct arch_timer *timer = to_arch_timer(clk);
118 		switch (reg) {
119 		case ARCH_TIMER_REG_CTRL:
120 			writel_relaxed(val, timer->base + CNTV_CTL);
121 			break;
122 		case ARCH_TIMER_REG_TVAL:
123 			writel_relaxed(val, timer->base + CNTV_TVAL);
124 			break;
125 		}
126 	} else {
127 		arch_timer_reg_write_cp15(access, reg, val);
128 	}
129 }
130 
131 static __always_inline
132 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
133 			struct clock_event_device *clk)
134 {
135 	u32 val;
136 
137 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
138 		struct arch_timer *timer = to_arch_timer(clk);
139 		switch (reg) {
140 		case ARCH_TIMER_REG_CTRL:
141 			val = readl_relaxed(timer->base + CNTP_CTL);
142 			break;
143 		case ARCH_TIMER_REG_TVAL:
144 			val = readl_relaxed(timer->base + CNTP_TVAL);
145 			break;
146 		}
147 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
148 		struct arch_timer *timer = to_arch_timer(clk);
149 		switch (reg) {
150 		case ARCH_TIMER_REG_CTRL:
151 			val = readl_relaxed(timer->base + CNTV_CTL);
152 			break;
153 		case ARCH_TIMER_REG_TVAL:
154 			val = readl_relaxed(timer->base + CNTV_TVAL);
155 			break;
156 		}
157 	} else {
158 		val = arch_timer_reg_read_cp15(access, reg);
159 	}
160 
161 	return val;
162 }
163 
164 static notrace u64 arch_counter_get_cntpct_stable(void)
165 {
166 	return __arch_counter_get_cntpct_stable();
167 }
168 
169 static notrace u64 arch_counter_get_cntpct(void)
170 {
171 	return __arch_counter_get_cntpct();
172 }
173 
174 static notrace u64 arch_counter_get_cntvct_stable(void)
175 {
176 	return __arch_counter_get_cntvct_stable();
177 }
178 
179 static notrace u64 arch_counter_get_cntvct(void)
180 {
181 	return __arch_counter_get_cntvct();
182 }
183 
184 /*
185  * Default to cp15 based access because arm64 uses this function for
186  * sched_clock() before DT is probed and the cp15 method is guaranteed
187  * to exist on arm64. arm doesn't use this before DT is probed so even
188  * if we don't have the cp15 accessors we won't have a problem.
189  */
190 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
191 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
192 
193 static u64 arch_counter_read(struct clocksource *cs)
194 {
195 	return arch_timer_read_counter();
196 }
197 
198 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
199 {
200 	return arch_timer_read_counter();
201 }
202 
203 static struct clocksource clocksource_counter = {
204 	.name	= "arch_sys_counter",
205 	.id	= CSID_ARM_ARCH_COUNTER,
206 	.rating	= 400,
207 	.read	= arch_counter_read,
208 	.mask	= CLOCKSOURCE_MASK(56),
209 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
210 };
211 
212 static struct cyclecounter cyclecounter __ro_after_init = {
213 	.read	= arch_counter_read_cc,
214 	.mask	= CLOCKSOURCE_MASK(56),
215 };
216 
217 struct ate_acpi_oem_info {
218 	char oem_id[ACPI_OEM_ID_SIZE + 1];
219 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
220 	u32 oem_revision;
221 };
222 
223 #ifdef CONFIG_FSL_ERRATUM_A008585
224 /*
225  * The number of retries is an arbitrary value well beyond the highest number
226  * of iterations the loop has been observed to take.
227  */
228 #define __fsl_a008585_read_reg(reg) ({			\
229 	u64 _old, _new;					\
230 	int _retries = 200;				\
231 							\
232 	do {						\
233 		_old = read_sysreg(reg);		\
234 		_new = read_sysreg(reg);		\
235 		_retries--;				\
236 	} while (unlikely(_old != _new) && _retries);	\
237 							\
238 	WARN_ON_ONCE(!_retries);			\
239 	_new;						\
240 })
241 
242 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
243 {
244 	return __fsl_a008585_read_reg(cntp_tval_el0);
245 }
246 
247 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
248 {
249 	return __fsl_a008585_read_reg(cntv_tval_el0);
250 }
251 
252 static u64 notrace fsl_a008585_read_cntpct_el0(void)
253 {
254 	return __fsl_a008585_read_reg(cntpct_el0);
255 }
256 
257 static u64 notrace fsl_a008585_read_cntvct_el0(void)
258 {
259 	return __fsl_a008585_read_reg(cntvct_el0);
260 }
261 #endif
262 
263 #ifdef CONFIG_HISILICON_ERRATUM_161010101
264 /*
265  * Verify whether the value of the second read is larger than the first by
266  * less than 32 is the only way to confirm the value is correct, so clear the
267  * lower 5 bits to check whether the difference is greater than 32 or not.
268  * Theoretically the erratum should not occur more than twice in succession
269  * when reading the system counter, but it is possible that some interrupts
270  * may lead to more than twice read errors, triggering the warning, so setting
271  * the number of retries far beyond the number of iterations the loop has been
272  * observed to take.
273  */
274 #define __hisi_161010101_read_reg(reg) ({				\
275 	u64 _old, _new;						\
276 	int _retries = 50;					\
277 								\
278 	do {							\
279 		_old = read_sysreg(reg);			\
280 		_new = read_sysreg(reg);			\
281 		_retries--;					\
282 	} while (unlikely((_new - _old) >> 5) && _retries);	\
283 								\
284 	WARN_ON_ONCE(!_retries);				\
285 	_new;							\
286 })
287 
288 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
289 {
290 	return __hisi_161010101_read_reg(cntp_tval_el0);
291 }
292 
293 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
294 {
295 	return __hisi_161010101_read_reg(cntv_tval_el0);
296 }
297 
298 static u64 notrace hisi_161010101_read_cntpct_el0(void)
299 {
300 	return __hisi_161010101_read_reg(cntpct_el0);
301 }
302 
303 static u64 notrace hisi_161010101_read_cntvct_el0(void)
304 {
305 	return __hisi_161010101_read_reg(cntvct_el0);
306 }
307 
308 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
309 	/*
310 	 * Note that trailing spaces are required to properly match
311 	 * the OEM table information.
312 	 */
313 	{
314 		.oem_id		= "HISI  ",
315 		.oem_table_id	= "HIP05   ",
316 		.oem_revision	= 0,
317 	},
318 	{
319 		.oem_id		= "HISI  ",
320 		.oem_table_id	= "HIP06   ",
321 		.oem_revision	= 0,
322 	},
323 	{
324 		.oem_id		= "HISI  ",
325 		.oem_table_id	= "HIP07   ",
326 		.oem_revision	= 0,
327 	},
328 	{ /* Sentinel indicating the end of the OEM array */ },
329 };
330 #endif
331 
332 #ifdef CONFIG_ARM64_ERRATUM_858921
333 static u64 notrace arm64_858921_read_cntpct_el0(void)
334 {
335 	u64 old, new;
336 
337 	old = read_sysreg(cntpct_el0);
338 	new = read_sysreg(cntpct_el0);
339 	return (((old ^ new) >> 32) & 1) ? old : new;
340 }
341 
342 static u64 notrace arm64_858921_read_cntvct_el0(void)
343 {
344 	u64 old, new;
345 
346 	old = read_sysreg(cntvct_el0);
347 	new = read_sysreg(cntvct_el0);
348 	return (((old ^ new) >> 32) & 1) ? old : new;
349 }
350 #endif
351 
352 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
353 /*
354  * The low bits of the counter registers are indeterminate while bit 10 or
355  * greater is rolling over. Since the counter value can jump both backward
356  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
357  * with all ones or all zeros in the low bits. Bound the loop by the maximum
358  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
359  */
360 #define __sun50i_a64_read_reg(reg) ({					\
361 	u64 _val;							\
362 	int _retries = 150;						\
363 									\
364 	do {								\
365 		_val = read_sysreg(reg);				\
366 		_retries--;						\
367 	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
368 									\
369 	WARN_ON_ONCE(!_retries);					\
370 	_val;								\
371 })
372 
373 static u64 notrace sun50i_a64_read_cntpct_el0(void)
374 {
375 	return __sun50i_a64_read_reg(cntpct_el0);
376 }
377 
378 static u64 notrace sun50i_a64_read_cntvct_el0(void)
379 {
380 	return __sun50i_a64_read_reg(cntvct_el0);
381 }
382 
383 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
384 {
385 	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
386 }
387 
388 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
389 {
390 	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
391 }
392 #endif
393 
394 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
395 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
396 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
397 
398 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
399 
400 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
401 						struct clock_event_device *clk)
402 {
403 	unsigned long ctrl;
404 	u64 cval;
405 
406 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
407 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
408 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
409 
410 	if (access == ARCH_TIMER_PHYS_ACCESS) {
411 		cval = evt + arch_counter_get_cntpct_stable();
412 		write_sysreg(cval, cntp_cval_el0);
413 	} else {
414 		cval = evt + arch_counter_get_cntvct_stable();
415 		write_sysreg(cval, cntv_cval_el0);
416 	}
417 
418 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
419 }
420 
421 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
422 					    struct clock_event_device *clk)
423 {
424 	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
425 	return 0;
426 }
427 
428 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
429 					    struct clock_event_device *clk)
430 {
431 	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
432 	return 0;
433 }
434 
435 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
436 #ifdef CONFIG_FSL_ERRATUM_A008585
437 	{
438 		.match_type = ate_match_dt,
439 		.id = "fsl,erratum-a008585",
440 		.desc = "Freescale erratum a005858",
441 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
442 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
443 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
444 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
445 		.set_next_event_phys = erratum_set_next_event_tval_phys,
446 		.set_next_event_virt = erratum_set_next_event_tval_virt,
447 	},
448 #endif
449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
450 	{
451 		.match_type = ate_match_dt,
452 		.id = "hisilicon,erratum-161010101",
453 		.desc = "HiSilicon erratum 161010101",
454 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
455 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
456 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
457 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
458 		.set_next_event_phys = erratum_set_next_event_tval_phys,
459 		.set_next_event_virt = erratum_set_next_event_tval_virt,
460 	},
461 	{
462 		.match_type = ate_match_acpi_oem_info,
463 		.id = hisi_161010101_oem_info,
464 		.desc = "HiSilicon erratum 161010101",
465 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
466 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
467 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
468 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
469 		.set_next_event_phys = erratum_set_next_event_tval_phys,
470 		.set_next_event_virt = erratum_set_next_event_tval_virt,
471 	},
472 #endif
473 #ifdef CONFIG_ARM64_ERRATUM_858921
474 	{
475 		.match_type = ate_match_local_cap_id,
476 		.id = (void *)ARM64_WORKAROUND_858921,
477 		.desc = "ARM erratum 858921",
478 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
479 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
480 	},
481 #endif
482 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
483 	{
484 		.match_type = ate_match_dt,
485 		.id = "allwinner,erratum-unknown1",
486 		.desc = "Allwinner erratum UNKNOWN1",
487 		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
488 		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
489 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
490 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
491 		.set_next_event_phys = erratum_set_next_event_tval_phys,
492 		.set_next_event_virt = erratum_set_next_event_tval_virt,
493 	},
494 #endif
495 #ifdef CONFIG_ARM64_ERRATUM_1418040
496 	{
497 		.match_type = ate_match_local_cap_id,
498 		.id = (void *)ARM64_WORKAROUND_1418040,
499 		.desc = "ARM erratum 1418040",
500 		.disable_compat_vdso = true,
501 	},
502 #endif
503 };
504 
505 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
506 			       const void *);
507 
508 static
509 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
510 				 const void *arg)
511 {
512 	const struct device_node *np = arg;
513 
514 	return of_property_read_bool(np, wa->id);
515 }
516 
517 static
518 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
519 					const void *arg)
520 {
521 	return this_cpu_has_cap((uintptr_t)wa->id);
522 }
523 
524 
525 static
526 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
527 				       const void *arg)
528 {
529 	static const struct ate_acpi_oem_info empty_oem_info = {};
530 	const struct ate_acpi_oem_info *info = wa->id;
531 	const struct acpi_table_header *table = arg;
532 
533 	/* Iterate over the ACPI OEM info array, looking for a match */
534 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
535 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
536 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
537 		    info->oem_revision == table->oem_revision)
538 			return true;
539 
540 		info++;
541 	}
542 
543 	return false;
544 }
545 
546 static const struct arch_timer_erratum_workaround *
547 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
548 			  ate_match_fn_t match_fn,
549 			  void *arg)
550 {
551 	int i;
552 
553 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
554 		if (ool_workarounds[i].match_type != type)
555 			continue;
556 
557 		if (match_fn(&ool_workarounds[i], arg))
558 			return &ool_workarounds[i];
559 	}
560 
561 	return NULL;
562 }
563 
564 static
565 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
566 				  bool local)
567 {
568 	int i;
569 
570 	if (local) {
571 		__this_cpu_write(timer_unstable_counter_workaround, wa);
572 	} else {
573 		for_each_possible_cpu(i)
574 			per_cpu(timer_unstable_counter_workaround, i) = wa;
575 	}
576 
577 	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
578 		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
579 
580 	/*
581 	 * Don't use the vdso fastpath if errata require using the
582 	 * out-of-line counter accessor. We may change our mind pretty
583 	 * late in the game (with a per-CPU erratum, for example), so
584 	 * change both the default value and the vdso itself.
585 	 */
586 	if (wa->read_cntvct_el0) {
587 		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
588 		vdso_default = VDSO_CLOCKMODE_NONE;
589 	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
590 		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
591 		clocksource_counter.vdso_clock_mode = vdso_default;
592 	}
593 }
594 
595 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
596 					    void *arg)
597 {
598 	const struct arch_timer_erratum_workaround *wa, *__wa;
599 	ate_match_fn_t match_fn = NULL;
600 	bool local = false;
601 
602 	switch (type) {
603 	case ate_match_dt:
604 		match_fn = arch_timer_check_dt_erratum;
605 		break;
606 	case ate_match_local_cap_id:
607 		match_fn = arch_timer_check_local_cap_erratum;
608 		local = true;
609 		break;
610 	case ate_match_acpi_oem_info:
611 		match_fn = arch_timer_check_acpi_oem_erratum;
612 		break;
613 	default:
614 		WARN_ON(1);
615 		return;
616 	}
617 
618 	wa = arch_timer_iterate_errata(type, match_fn, arg);
619 	if (!wa)
620 		return;
621 
622 	__wa = __this_cpu_read(timer_unstable_counter_workaround);
623 	if (__wa && wa != __wa)
624 		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
625 			wa->desc, __wa->desc);
626 
627 	if (__wa)
628 		return;
629 
630 	arch_timer_enable_workaround(wa, local);
631 	pr_info("Enabling %s workaround for %s\n",
632 		local ? "local" : "global", wa->desc);
633 }
634 
635 static bool arch_timer_this_cpu_has_cntvct_wa(void)
636 {
637 	return has_erratum_handler(read_cntvct_el0);
638 }
639 
640 static bool arch_timer_counter_has_wa(void)
641 {
642 	return atomic_read(&timer_unstable_counter_workaround_in_use);
643 }
644 #else
645 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
646 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
647 #define arch_timer_counter_has_wa()			({false;})
648 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
649 
650 static __always_inline irqreturn_t timer_handler(const int access,
651 					struct clock_event_device *evt)
652 {
653 	unsigned long ctrl;
654 
655 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
656 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
657 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
658 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
659 		evt->event_handler(evt);
660 		return IRQ_HANDLED;
661 	}
662 
663 	return IRQ_NONE;
664 }
665 
666 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
667 {
668 	struct clock_event_device *evt = dev_id;
669 
670 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
671 }
672 
673 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
674 {
675 	struct clock_event_device *evt = dev_id;
676 
677 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
678 }
679 
680 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
681 {
682 	struct clock_event_device *evt = dev_id;
683 
684 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
685 }
686 
687 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
688 {
689 	struct clock_event_device *evt = dev_id;
690 
691 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
692 }
693 
694 static __always_inline int timer_shutdown(const int access,
695 					  struct clock_event_device *clk)
696 {
697 	unsigned long ctrl;
698 
699 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
700 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
701 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
702 
703 	return 0;
704 }
705 
706 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
707 {
708 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
709 }
710 
711 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
712 {
713 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
714 }
715 
716 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
717 {
718 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
719 }
720 
721 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
722 {
723 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
724 }
725 
726 static __always_inline void set_next_event(const int access, unsigned long evt,
727 					   struct clock_event_device *clk)
728 {
729 	unsigned long ctrl;
730 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
731 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
732 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
733 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
734 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
735 }
736 
737 static int arch_timer_set_next_event_virt(unsigned long evt,
738 					  struct clock_event_device *clk)
739 {
740 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
741 	return 0;
742 }
743 
744 static int arch_timer_set_next_event_phys(unsigned long evt,
745 					  struct clock_event_device *clk)
746 {
747 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
748 	return 0;
749 }
750 
751 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
752 					      struct clock_event_device *clk)
753 {
754 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
755 	return 0;
756 }
757 
758 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
759 					      struct clock_event_device *clk)
760 {
761 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
762 	return 0;
763 }
764 
765 static void __arch_timer_setup(unsigned type,
766 			       struct clock_event_device *clk)
767 {
768 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
769 
770 	if (type == ARCH_TIMER_TYPE_CP15) {
771 		typeof(clk->set_next_event) sne;
772 
773 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
774 
775 		if (arch_timer_c3stop)
776 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
777 		clk->name = "arch_sys_timer";
778 		clk->rating = 450;
779 		clk->cpumask = cpumask_of(smp_processor_id());
780 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
781 		switch (arch_timer_uses_ppi) {
782 		case ARCH_TIMER_VIRT_PPI:
783 			clk->set_state_shutdown = arch_timer_shutdown_virt;
784 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
785 			sne = erratum_handler(set_next_event_virt);
786 			break;
787 		case ARCH_TIMER_PHYS_SECURE_PPI:
788 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
789 		case ARCH_TIMER_HYP_PPI:
790 			clk->set_state_shutdown = arch_timer_shutdown_phys;
791 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
792 			sne = erratum_handler(set_next_event_phys);
793 			break;
794 		default:
795 			BUG();
796 		}
797 
798 		clk->set_next_event = sne;
799 	} else {
800 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
801 		clk->name = "arch_mem_timer";
802 		clk->rating = 400;
803 		clk->cpumask = cpu_possible_mask;
804 		if (arch_timer_mem_use_virtual) {
805 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
806 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
807 			clk->set_next_event =
808 				arch_timer_set_next_event_virt_mem;
809 		} else {
810 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
811 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
812 			clk->set_next_event =
813 				arch_timer_set_next_event_phys_mem;
814 		}
815 	}
816 
817 	clk->set_state_shutdown(clk);
818 
819 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
820 }
821 
822 static void arch_timer_evtstrm_enable(int divider)
823 {
824 	u32 cntkctl = arch_timer_get_cntkctl();
825 
826 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
827 	/* Set the divider and enable virtual event stream */
828 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
829 			| ARCH_TIMER_VIRT_EVT_EN;
830 	arch_timer_set_cntkctl(cntkctl);
831 	arch_timer_set_evtstrm_feature();
832 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
833 }
834 
835 static void arch_timer_configure_evtstream(void)
836 {
837 	int evt_stream_div, lsb;
838 
839 	/*
840 	 * As the event stream can at most be generated at half the frequency
841 	 * of the counter, use half the frequency when computing the divider.
842 	 */
843 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
844 
845 	/*
846 	 * Find the closest power of two to the divisor. If the adjacent bit
847 	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
848 	 */
849 	lsb = fls(evt_stream_div) - 1;
850 	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
851 		lsb++;
852 
853 	/* enable event stream */
854 	arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
855 }
856 
857 static void arch_counter_set_user_access(void)
858 {
859 	u32 cntkctl = arch_timer_get_cntkctl();
860 
861 	/* Disable user access to the timers and both counters */
862 	/* Also disable virtual event stream */
863 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
864 			| ARCH_TIMER_USR_VT_ACCESS_EN
865 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
866 			| ARCH_TIMER_VIRT_EVT_EN
867 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
868 
869 	/*
870 	 * Enable user access to the virtual counter if it doesn't
871 	 * need to be workaround. The vdso may have been already
872 	 * disabled though.
873 	 */
874 	if (arch_timer_this_cpu_has_cntvct_wa())
875 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
876 	else
877 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
878 
879 	arch_timer_set_cntkctl(cntkctl);
880 }
881 
882 static bool arch_timer_has_nonsecure_ppi(void)
883 {
884 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
885 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
886 }
887 
888 static u32 check_ppi_trigger(int irq)
889 {
890 	u32 flags = irq_get_trigger_type(irq);
891 
892 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
893 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
894 		pr_warn("WARNING: Please fix your firmware\n");
895 		flags = IRQF_TRIGGER_LOW;
896 	}
897 
898 	return flags;
899 }
900 
901 static int arch_timer_starting_cpu(unsigned int cpu)
902 {
903 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
904 	u32 flags;
905 
906 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
907 
908 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
909 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
910 
911 	if (arch_timer_has_nonsecure_ppi()) {
912 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
913 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
914 				  flags);
915 	}
916 
917 	arch_counter_set_user_access();
918 	if (evtstrm_enable)
919 		arch_timer_configure_evtstream();
920 
921 	return 0;
922 }
923 
924 static int validate_timer_rate(void)
925 {
926 	if (!arch_timer_rate)
927 		return -EINVAL;
928 
929 	/* Arch timer frequency < 1MHz can cause trouble */
930 	WARN_ON(arch_timer_rate < 1000000);
931 
932 	return 0;
933 }
934 
935 /*
936  * For historical reasons, when probing with DT we use whichever (non-zero)
937  * rate was probed first, and don't verify that others match. If the first node
938  * probed has a clock-frequency property, this overrides the HW register.
939  */
940 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
941 {
942 	/* Who has more than one independent system counter? */
943 	if (arch_timer_rate)
944 		return;
945 
946 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
947 		arch_timer_rate = rate;
948 
949 	/* Check the timer frequency. */
950 	if (validate_timer_rate())
951 		pr_warn("frequency not available\n");
952 }
953 
954 static void __init arch_timer_banner(unsigned type)
955 {
956 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
957 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
958 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
959 			" and " : "",
960 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
961 		(unsigned long)arch_timer_rate / 1000000,
962 		(unsigned long)(arch_timer_rate / 10000) % 100,
963 		type & ARCH_TIMER_TYPE_CP15 ?
964 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
965 			"",
966 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
967 		type & ARCH_TIMER_TYPE_MEM ?
968 			arch_timer_mem_use_virtual ? "virt" : "phys" :
969 			"");
970 }
971 
972 u32 arch_timer_get_rate(void)
973 {
974 	return arch_timer_rate;
975 }
976 
977 bool arch_timer_evtstrm_available(void)
978 {
979 	/*
980 	 * We might get called from a preemptible context. This is fine
981 	 * because availability of the event stream should be always the same
982 	 * for a preemptible context and context where we might resume a task.
983 	 */
984 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
985 }
986 
987 static u64 arch_counter_get_cntvct_mem(void)
988 {
989 	u32 vct_lo, vct_hi, tmp_hi;
990 
991 	do {
992 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
993 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
994 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
995 	} while (vct_hi != tmp_hi);
996 
997 	return ((u64) vct_hi << 32) | vct_lo;
998 }
999 
1000 static struct arch_timer_kvm_info arch_timer_kvm_info;
1001 
1002 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1003 {
1004 	return &arch_timer_kvm_info;
1005 }
1006 
1007 static void __init arch_counter_register(unsigned type)
1008 {
1009 	u64 start_count;
1010 
1011 	/* Register the CP15 based counter if we have one */
1012 	if (type & ARCH_TIMER_TYPE_CP15) {
1013 		u64 (*rd)(void);
1014 
1015 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1016 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1017 			if (arch_timer_counter_has_wa())
1018 				rd = arch_counter_get_cntvct_stable;
1019 			else
1020 				rd = arch_counter_get_cntvct;
1021 		} else {
1022 			if (arch_timer_counter_has_wa())
1023 				rd = arch_counter_get_cntpct_stable;
1024 			else
1025 				rd = arch_counter_get_cntpct;
1026 		}
1027 
1028 		arch_timer_read_counter = rd;
1029 		clocksource_counter.vdso_clock_mode = vdso_default;
1030 	} else {
1031 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1032 	}
1033 
1034 	if (!arch_counter_suspend_stop)
1035 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1036 	start_count = arch_timer_read_counter();
1037 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1038 	cyclecounter.mult = clocksource_counter.mult;
1039 	cyclecounter.shift = clocksource_counter.shift;
1040 	timecounter_init(&arch_timer_kvm_info.timecounter,
1041 			 &cyclecounter, start_count);
1042 
1043 	/* 56 bits minimum, so we assume worst case rollover */
1044 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1045 }
1046 
1047 static void arch_timer_stop(struct clock_event_device *clk)
1048 {
1049 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1050 
1051 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1052 	if (arch_timer_has_nonsecure_ppi())
1053 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1054 
1055 	clk->set_state_shutdown(clk);
1056 }
1057 
1058 static int arch_timer_dying_cpu(unsigned int cpu)
1059 {
1060 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1061 
1062 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1063 
1064 	arch_timer_stop(clk);
1065 	return 0;
1066 }
1067 
1068 #ifdef CONFIG_CPU_PM
1069 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1070 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1071 				    unsigned long action, void *hcpu)
1072 {
1073 	if (action == CPU_PM_ENTER) {
1074 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1075 
1076 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1077 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1078 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1079 
1080 		if (arch_timer_have_evtstrm_feature())
1081 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1082 	}
1083 	return NOTIFY_OK;
1084 }
1085 
1086 static struct notifier_block arch_timer_cpu_pm_notifier = {
1087 	.notifier_call = arch_timer_cpu_pm_notify,
1088 };
1089 
1090 static int __init arch_timer_cpu_pm_init(void)
1091 {
1092 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1093 }
1094 
1095 static void __init arch_timer_cpu_pm_deinit(void)
1096 {
1097 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1098 }
1099 
1100 #else
1101 static int __init arch_timer_cpu_pm_init(void)
1102 {
1103 	return 0;
1104 }
1105 
1106 static void __init arch_timer_cpu_pm_deinit(void)
1107 {
1108 }
1109 #endif
1110 
1111 static int __init arch_timer_register(void)
1112 {
1113 	int err;
1114 	int ppi;
1115 
1116 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1117 	if (!arch_timer_evt) {
1118 		err = -ENOMEM;
1119 		goto out;
1120 	}
1121 
1122 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1123 	switch (arch_timer_uses_ppi) {
1124 	case ARCH_TIMER_VIRT_PPI:
1125 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1126 					 "arch_timer", arch_timer_evt);
1127 		break;
1128 	case ARCH_TIMER_PHYS_SECURE_PPI:
1129 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1130 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131 					 "arch_timer", arch_timer_evt);
1132 		if (!err && arch_timer_has_nonsecure_ppi()) {
1133 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1134 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1135 						 "arch_timer", arch_timer_evt);
1136 			if (err)
1137 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1138 						arch_timer_evt);
1139 		}
1140 		break;
1141 	case ARCH_TIMER_HYP_PPI:
1142 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1143 					 "arch_timer", arch_timer_evt);
1144 		break;
1145 	default:
1146 		BUG();
1147 	}
1148 
1149 	if (err) {
1150 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1151 		goto out_free;
1152 	}
1153 
1154 	err = arch_timer_cpu_pm_init();
1155 	if (err)
1156 		goto out_unreg_notify;
1157 
1158 	/* Register and immediately configure the timer on the boot CPU */
1159 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1160 				"clockevents/arm/arch_timer:starting",
1161 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1162 	if (err)
1163 		goto out_unreg_cpupm;
1164 	return 0;
1165 
1166 out_unreg_cpupm:
1167 	arch_timer_cpu_pm_deinit();
1168 
1169 out_unreg_notify:
1170 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1171 	if (arch_timer_has_nonsecure_ppi())
1172 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1173 				arch_timer_evt);
1174 
1175 out_free:
1176 	free_percpu(arch_timer_evt);
1177 out:
1178 	return err;
1179 }
1180 
1181 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1182 {
1183 	int ret;
1184 	irq_handler_t func;
1185 	struct arch_timer *t;
1186 
1187 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1188 	if (!t)
1189 		return -ENOMEM;
1190 
1191 	t->base = base;
1192 	t->evt.irq = irq;
1193 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1194 
1195 	if (arch_timer_mem_use_virtual)
1196 		func = arch_timer_handler_virt_mem;
1197 	else
1198 		func = arch_timer_handler_phys_mem;
1199 
1200 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1201 	if (ret) {
1202 		pr_err("Failed to request mem timer irq\n");
1203 		kfree(t);
1204 	}
1205 
1206 	return ret;
1207 }
1208 
1209 static const struct of_device_id arch_timer_of_match[] __initconst = {
1210 	{ .compatible   = "arm,armv7-timer",    },
1211 	{ .compatible   = "arm,armv8-timer",    },
1212 	{},
1213 };
1214 
1215 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1216 	{ .compatible   = "arm,armv7-timer-mem", },
1217 	{},
1218 };
1219 
1220 static bool __init arch_timer_needs_of_probing(void)
1221 {
1222 	struct device_node *dn;
1223 	bool needs_probing = false;
1224 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1225 
1226 	/* We have two timers, and both device-tree nodes are probed. */
1227 	if ((arch_timers_present & mask) == mask)
1228 		return false;
1229 
1230 	/*
1231 	 * Only one type of timer is probed,
1232 	 * check if we have another type of timer node in device-tree.
1233 	 */
1234 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1235 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1236 	else
1237 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1238 
1239 	if (dn && of_device_is_available(dn))
1240 		needs_probing = true;
1241 
1242 	of_node_put(dn);
1243 
1244 	return needs_probing;
1245 }
1246 
1247 static int __init arch_timer_common_init(void)
1248 {
1249 	arch_timer_banner(arch_timers_present);
1250 	arch_counter_register(arch_timers_present);
1251 	return arch_timer_arch_init();
1252 }
1253 
1254 /**
1255  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1256  *
1257  * If HYP mode is available, we know that the physical timer
1258  * has been configured to be accessible from PL1. Use it, so
1259  * that a guest can use the virtual timer instead.
1260  *
1261  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1262  * accesses to CNTP_*_EL1 registers are silently redirected to
1263  * their CNTHP_*_EL2 counterparts, and use a different PPI
1264  * number.
1265  *
1266  * If no interrupt provided for virtual timer, we'll have to
1267  * stick to the physical timer. It'd better be accessible...
1268  * For arm64 we never use the secure interrupt.
1269  *
1270  * Return: a suitable PPI type for the current system.
1271  */
1272 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1273 {
1274 	if (is_kernel_in_hyp_mode())
1275 		return ARCH_TIMER_HYP_PPI;
1276 
1277 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1278 		return ARCH_TIMER_VIRT_PPI;
1279 
1280 	if (IS_ENABLED(CONFIG_ARM64))
1281 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1282 
1283 	return ARCH_TIMER_PHYS_SECURE_PPI;
1284 }
1285 
1286 static void __init arch_timer_populate_kvm_info(void)
1287 {
1288 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1289 	if (is_kernel_in_hyp_mode())
1290 		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1291 }
1292 
1293 static int __init arch_timer_of_init(struct device_node *np)
1294 {
1295 	int i, irq, ret;
1296 	u32 rate;
1297 	bool has_names;
1298 
1299 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1300 		pr_warn("multiple nodes in dt, skipping\n");
1301 		return 0;
1302 	}
1303 
1304 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1305 
1306 	has_names = of_property_read_bool(np, "interrupt-names");
1307 
1308 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1309 		if (has_names)
1310 			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1311 		else
1312 			irq = of_irq_get(np, i);
1313 		if (irq > 0)
1314 			arch_timer_ppi[i] = irq;
1315 	}
1316 
1317 	arch_timer_populate_kvm_info();
1318 
1319 	rate = arch_timer_get_cntfrq();
1320 	arch_timer_of_configure_rate(rate, np);
1321 
1322 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1323 
1324 	/* Check for globally applicable workarounds */
1325 	arch_timer_check_ool_workaround(ate_match_dt, np);
1326 
1327 	/*
1328 	 * If we cannot rely on firmware initializing the timer registers then
1329 	 * we should use the physical timers instead.
1330 	 */
1331 	if (IS_ENABLED(CONFIG_ARM) &&
1332 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1333 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1334 	else
1335 		arch_timer_uses_ppi = arch_timer_select_ppi();
1336 
1337 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1338 		pr_err("No interrupt available, giving up\n");
1339 		return -EINVAL;
1340 	}
1341 
1342 	/* On some systems, the counter stops ticking when in suspend. */
1343 	arch_counter_suspend_stop = of_property_read_bool(np,
1344 							 "arm,no-tick-in-suspend");
1345 
1346 	ret = arch_timer_register();
1347 	if (ret)
1348 		return ret;
1349 
1350 	if (arch_timer_needs_of_probing())
1351 		return 0;
1352 
1353 	return arch_timer_common_init();
1354 }
1355 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1356 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1357 
1358 static u32 __init
1359 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1360 {
1361 	void __iomem *base;
1362 	u32 rate;
1363 
1364 	base = ioremap(frame->cntbase, frame->size);
1365 	if (!base) {
1366 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1367 		return 0;
1368 	}
1369 
1370 	rate = readl_relaxed(base + CNTFRQ);
1371 
1372 	iounmap(base);
1373 
1374 	return rate;
1375 }
1376 
1377 static struct arch_timer_mem_frame * __init
1378 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1379 {
1380 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1381 	void __iomem *cntctlbase;
1382 	u32 cnttidr;
1383 	int i;
1384 
1385 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1386 	if (!cntctlbase) {
1387 		pr_err("Can't map CNTCTLBase @ %pa\n",
1388 			&timer_mem->cntctlbase);
1389 		return NULL;
1390 	}
1391 
1392 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1393 
1394 	/*
1395 	 * Try to find a virtual capable frame. Otherwise fall back to a
1396 	 * physical capable frame.
1397 	 */
1398 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1399 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1400 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1401 
1402 		frame = &timer_mem->frame[i];
1403 		if (!frame->valid)
1404 			continue;
1405 
1406 		/* Try enabling everything, and see what sticks */
1407 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1408 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1409 
1410 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1411 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1412 			best_frame = frame;
1413 			arch_timer_mem_use_virtual = true;
1414 			break;
1415 		}
1416 
1417 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1418 			continue;
1419 
1420 		best_frame = frame;
1421 	}
1422 
1423 	iounmap(cntctlbase);
1424 
1425 	return best_frame;
1426 }
1427 
1428 static int __init
1429 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1430 {
1431 	void __iomem *base;
1432 	int ret, irq = 0;
1433 
1434 	if (arch_timer_mem_use_virtual)
1435 		irq = frame->virt_irq;
1436 	else
1437 		irq = frame->phys_irq;
1438 
1439 	if (!irq) {
1440 		pr_err("Frame missing %s irq.\n",
1441 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1442 		return -EINVAL;
1443 	}
1444 
1445 	if (!request_mem_region(frame->cntbase, frame->size,
1446 				"arch_mem_timer"))
1447 		return -EBUSY;
1448 
1449 	base = ioremap(frame->cntbase, frame->size);
1450 	if (!base) {
1451 		pr_err("Can't map frame's registers\n");
1452 		return -ENXIO;
1453 	}
1454 
1455 	ret = arch_timer_mem_register(base, irq);
1456 	if (ret) {
1457 		iounmap(base);
1458 		return ret;
1459 	}
1460 
1461 	arch_counter_base = base;
1462 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1463 
1464 	return 0;
1465 }
1466 
1467 static int __init arch_timer_mem_of_init(struct device_node *np)
1468 {
1469 	struct arch_timer_mem *timer_mem;
1470 	struct arch_timer_mem_frame *frame;
1471 	struct device_node *frame_node;
1472 	struct resource res;
1473 	int ret = -EINVAL;
1474 	u32 rate;
1475 
1476 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1477 	if (!timer_mem)
1478 		return -ENOMEM;
1479 
1480 	if (of_address_to_resource(np, 0, &res))
1481 		goto out;
1482 	timer_mem->cntctlbase = res.start;
1483 	timer_mem->size = resource_size(&res);
1484 
1485 	for_each_available_child_of_node(np, frame_node) {
1486 		u32 n;
1487 		struct arch_timer_mem_frame *frame;
1488 
1489 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1490 			pr_err(FW_BUG "Missing frame-number.\n");
1491 			of_node_put(frame_node);
1492 			goto out;
1493 		}
1494 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1495 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1496 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1497 			of_node_put(frame_node);
1498 			goto out;
1499 		}
1500 		frame = &timer_mem->frame[n];
1501 
1502 		if (frame->valid) {
1503 			pr_err(FW_BUG "Duplicated frame-number.\n");
1504 			of_node_put(frame_node);
1505 			goto out;
1506 		}
1507 
1508 		if (of_address_to_resource(frame_node, 0, &res)) {
1509 			of_node_put(frame_node);
1510 			goto out;
1511 		}
1512 		frame->cntbase = res.start;
1513 		frame->size = resource_size(&res);
1514 
1515 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1516 						       ARCH_TIMER_VIRT_SPI);
1517 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1518 						       ARCH_TIMER_PHYS_SPI);
1519 
1520 		frame->valid = true;
1521 	}
1522 
1523 	frame = arch_timer_mem_find_best_frame(timer_mem);
1524 	if (!frame) {
1525 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1526 			&timer_mem->cntctlbase);
1527 		ret = -EINVAL;
1528 		goto out;
1529 	}
1530 
1531 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1532 	arch_timer_of_configure_rate(rate, np);
1533 
1534 	ret = arch_timer_mem_frame_register(frame);
1535 	if (!ret && !arch_timer_needs_of_probing())
1536 		ret = arch_timer_common_init();
1537 out:
1538 	kfree(timer_mem);
1539 	return ret;
1540 }
1541 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1542 		       arch_timer_mem_of_init);
1543 
1544 #ifdef CONFIG_ACPI_GTDT
1545 static int __init
1546 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1547 {
1548 	struct arch_timer_mem_frame *frame;
1549 	u32 rate;
1550 	int i;
1551 
1552 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1553 		frame = &timer_mem->frame[i];
1554 
1555 		if (!frame->valid)
1556 			continue;
1557 
1558 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1559 		if (rate == arch_timer_rate)
1560 			continue;
1561 
1562 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1563 			&frame->cntbase,
1564 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1565 
1566 		return -EINVAL;
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1573 {
1574 	struct arch_timer_mem *timers, *timer;
1575 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1576 	int timer_count, i, ret = 0;
1577 
1578 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1579 			    GFP_KERNEL);
1580 	if (!timers)
1581 		return -ENOMEM;
1582 
1583 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1584 	if (ret || !timer_count)
1585 		goto out;
1586 
1587 	/*
1588 	 * While unlikely, it's theoretically possible that none of the frames
1589 	 * in a timer expose the combination of feature we want.
1590 	 */
1591 	for (i = 0; i < timer_count; i++) {
1592 		timer = &timers[i];
1593 
1594 		frame = arch_timer_mem_find_best_frame(timer);
1595 		if (!best_frame)
1596 			best_frame = frame;
1597 
1598 		ret = arch_timer_mem_verify_cntfrq(timer);
1599 		if (ret) {
1600 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1601 			goto out;
1602 		}
1603 
1604 		if (!best_frame) /* implies !frame */
1605 			/*
1606 			 * Only complain about missing suitable frames if we
1607 			 * haven't already found one in a previous iteration.
1608 			 */
1609 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1610 				&timer->cntctlbase);
1611 	}
1612 
1613 	if (best_frame)
1614 		ret = arch_timer_mem_frame_register(best_frame);
1615 out:
1616 	kfree(timers);
1617 	return ret;
1618 }
1619 
1620 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1621 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1622 {
1623 	int ret, platform_timer_count;
1624 
1625 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1626 		pr_warn("already initialized, skipping\n");
1627 		return -EINVAL;
1628 	}
1629 
1630 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1631 
1632 	ret = acpi_gtdt_init(table, &platform_timer_count);
1633 	if (ret)
1634 		return ret;
1635 
1636 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1637 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1638 
1639 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1640 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1641 
1642 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1643 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1644 
1645 	arch_timer_populate_kvm_info();
1646 
1647 	/*
1648 	 * When probing via ACPI, we have no mechanism to override the sysreg
1649 	 * CNTFRQ value. This *must* be correct.
1650 	 */
1651 	arch_timer_rate = arch_timer_get_cntfrq();
1652 	ret = validate_timer_rate();
1653 	if (ret) {
1654 		pr_err(FW_BUG "frequency not available.\n");
1655 		return ret;
1656 	}
1657 
1658 	arch_timer_uses_ppi = arch_timer_select_ppi();
1659 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1660 		pr_err("No interrupt available, giving up\n");
1661 		return -EINVAL;
1662 	}
1663 
1664 	/* Always-on capability */
1665 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1666 
1667 	/* Check for globally applicable workarounds */
1668 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1669 
1670 	ret = arch_timer_register();
1671 	if (ret)
1672 		return ret;
1673 
1674 	if (platform_timer_count &&
1675 	    arch_timer_mem_acpi_init(platform_timer_count))
1676 		pr_err("Failed to initialize memory-mapped timer.\n");
1677 
1678 	return arch_timer_common_init();
1679 }
1680 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1681 #endif
1682 
1683 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1684 				 struct clocksource **cs)
1685 {
1686 	struct arm_smccc_res hvc_res;
1687 	u32 ptp_counter;
1688 	ktime_t ktime;
1689 
1690 	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1691 		return -EOPNOTSUPP;
1692 
1693 	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1694 		ptp_counter = KVM_PTP_VIRT_COUNTER;
1695 	else
1696 		ptp_counter = KVM_PTP_PHYS_COUNTER;
1697 
1698 	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1699 			     ptp_counter, &hvc_res);
1700 
1701 	if ((int)(hvc_res.a0) < 0)
1702 		return -EOPNOTSUPP;
1703 
1704 	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1705 	*ts = ktime_to_timespec64(ktime);
1706 	if (cycle)
1707 		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1708 	if (cs)
1709 		*cs = &clocksource_counter;
1710 
1711 	return 0;
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1714