xref: /openbmc/linux/drivers/clk/ti/clkt_dpll.c (revision d0034a7a4ac7fae708146ac0059b9c47a1543f0d)
1d2912cb1SThomas Gleixner // SPDX-License-Identifier: GPL-2.0-only
2b138b028STero Kristo /*
3b138b028STero Kristo  * OMAP2/3/4 DPLL clock functions
4b138b028STero Kristo  *
5b138b028STero Kristo  * Copyright (C) 2005-2008 Texas Instruments, Inc.
6b138b028STero Kristo  * Copyright (C) 2004-2010 Nokia Corporation
7b138b028STero Kristo  *
8b138b028STero Kristo  * Contacts:
9b138b028STero Kristo  * Richard Woodruff <r-woodruff2@ti.com>
10b138b028STero Kristo  * Paul Walmsley
11b138b028STero Kristo  */
12b138b028STero Kristo #undef DEBUG
13b138b028STero Kristo 
14b138b028STero Kristo #include <linux/kernel.h>
15b138b028STero Kristo #include <linux/errno.h>
16a53ad8efSStephen Boyd #include <linux/clk.h>
17b138b028STero Kristo #include <linux/clk-provider.h>
18b138b028STero Kristo #include <linux/io.h>
19b138b028STero Kristo #include <linux/clk/ti.h>
20b138b028STero Kristo 
21b138b028STero Kristo #include <asm/div64.h>
22b138b028STero Kristo 
23b138b028STero Kristo #include "clock.h"
24b138b028STero Kristo 
25b138b028STero Kristo /* DPLL rate rounding: minimum DPLL multiplier, divider values */
26b138b028STero Kristo #define DPLL_MIN_MULTIPLIER		2
27b138b028STero Kristo #define DPLL_MIN_DIVIDER		1
28b138b028STero Kristo 
29b138b028STero Kristo /* Possible error results from _dpll_test_mult */
30b138b028STero Kristo #define DPLL_MULT_UNDERFLOW		-1
31b138b028STero Kristo 
32b138b028STero Kristo /*
33b138b028STero Kristo  * Scale factor to mitigate roundoff errors in DPLL rate rounding.
34b138b028STero Kristo  * The higher the scale factor, the greater the risk of arithmetic overflow,
35b138b028STero Kristo  * but the closer the rounded rate to the target rate.  DPLL_SCALE_FACTOR
36b138b028STero Kristo  * must be a power of DPLL_SCALE_BASE.
37b138b028STero Kristo  */
38b138b028STero Kristo #define DPLL_SCALE_FACTOR		64
39b138b028STero Kristo #define DPLL_SCALE_BASE			2
40b138b028STero Kristo #define DPLL_ROUNDING_VAL		((DPLL_SCALE_BASE / 2) * \
41b138b028STero Kristo 					 (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))
42b138b028STero Kristo 
43b138b028STero Kristo /*
44b138b028STero Kristo  * DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx.
45b138b028STero Kristo  * From device data manual section 4.3 "DPLL and DLL Specifications".
46b138b028STero Kristo  */
47b138b028STero Kristo #define OMAP3PLUS_DPLL_FINT_JTYPE_MIN	500000
48b138b028STero Kristo #define OMAP3PLUS_DPLL_FINT_JTYPE_MAX	2500000
49b138b028STero Kristo 
50b138b028STero Kristo /* _dpll_test_fint() return codes */
51b138b028STero Kristo #define DPLL_FINT_UNDERFLOW		-1
52b138b028STero Kristo #define DPLL_FINT_INVALID		-2
53b138b028STero Kristo 
54b138b028STero Kristo /* Private functions */
55b138b028STero Kristo 
56b138b028STero Kristo /*
57b138b028STero Kristo  * _dpll_test_fint - test whether an Fint value is valid for the DPLL
58b138b028STero Kristo  * @clk: DPLL struct clk to test
59b138b028STero Kristo  * @n: divider value (N) to test
60b138b028STero Kristo  *
61b138b028STero Kristo  * Tests whether a particular divider @n will result in a valid DPLL
62b138b028STero Kristo  * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter
63b138b028STero Kristo  * Correction".  Returns 0 if OK, -1 if the enclosing loop can terminate
64b138b028STero Kristo  * (assuming that it is counting N upwards), or -2 if the enclosing loop
65b138b028STero Kristo  * should skip to the next iteration (again assuming N is increasing).
66b138b028STero Kristo  */
_dpll_test_fint(struct clk_hw_omap * clk,unsigned int n)67b138b028STero Kristo static int _dpll_test_fint(struct clk_hw_omap *clk, unsigned int n)
68b138b028STero Kristo {
69b138b028STero Kristo 	struct dpll_data *dd;
70b138b028STero Kristo 	long fint, fint_min, fint_max;
71b138b028STero Kristo 	int ret = 0;
72b138b028STero Kristo 
73b138b028STero Kristo 	dd = clk->dpll_data;
74b138b028STero Kristo 
75b138b028STero Kristo 	/* DPLL divider must result in a valid jitter correction val */
76a53ad8efSStephen Boyd 	fint = clk_hw_get_rate(clk_hw_get_parent(&clk->hw)) / n;
77b138b028STero Kristo 
78b138b028STero Kristo 	if (dd->flags & DPLL_J_TYPE) {
79b138b028STero Kristo 		fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN;
80b138b028STero Kristo 		fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX;
81b138b028STero Kristo 	} else {
82b138b028STero Kristo 		fint_min = ti_clk_get_features()->fint_min;
83b138b028STero Kristo 		fint_max = ti_clk_get_features()->fint_max;
84b138b028STero Kristo 	}
85b138b028STero Kristo 
86b138b028STero Kristo 	if (!fint_min || !fint_max) {
87b138b028STero Kristo 		WARN(1, "No fint limits available!\n");
88b138b028STero Kristo 		return DPLL_FINT_INVALID;
89b138b028STero Kristo 	}
90b138b028STero Kristo 
91b138b028STero Kristo 	if (fint < ti_clk_get_features()->fint_min) {
92b138b028STero Kristo 		pr_debug("rejecting n=%d due to Fint failure, lowering max_divider\n",
93b138b028STero Kristo 			 n);
94b138b028STero Kristo 		dd->max_divider = n;
95b138b028STero Kristo 		ret = DPLL_FINT_UNDERFLOW;
96b138b028STero Kristo 	} else if (fint > ti_clk_get_features()->fint_max) {
97b138b028STero Kristo 		pr_debug("rejecting n=%d due to Fint failure, boosting min_divider\n",
98b138b028STero Kristo 			 n);
99b138b028STero Kristo 		dd->min_divider = n;
100b138b028STero Kristo 		ret = DPLL_FINT_INVALID;
101b138b028STero Kristo 	} else if (fint > ti_clk_get_features()->fint_band1_max &&
102b138b028STero Kristo 		   fint < ti_clk_get_features()->fint_band2_min) {
103b138b028STero Kristo 		pr_debug("rejecting n=%d due to Fint failure\n", n);
104b138b028STero Kristo 		ret = DPLL_FINT_INVALID;
105b138b028STero Kristo 	}
106b138b028STero Kristo 
107b138b028STero Kristo 	return ret;
108b138b028STero Kristo }
109b138b028STero Kristo 
_dpll_compute_new_rate(unsigned long parent_rate,unsigned int m,unsigned int n)110b138b028STero Kristo static unsigned long _dpll_compute_new_rate(unsigned long parent_rate,
111b138b028STero Kristo 					    unsigned int m, unsigned int n)
112b138b028STero Kristo {
113b138b028STero Kristo 	unsigned long long num;
114b138b028STero Kristo 
115b138b028STero Kristo 	num = (unsigned long long)parent_rate * m;
116b138b028STero Kristo 	do_div(num, n);
117b138b028STero Kristo 	return num;
118b138b028STero Kristo }
119b138b028STero Kristo 
120b138b028STero Kristo /*
121b138b028STero Kristo  * _dpll_test_mult - test a DPLL multiplier value
122b138b028STero Kristo  * @m: pointer to the DPLL m (multiplier) value under test
123b138b028STero Kristo  * @n: current DPLL n (divider) value under test
124b138b028STero Kristo  * @new_rate: pointer to storage for the resulting rounded rate
125b138b028STero Kristo  * @target_rate: the desired DPLL rate
126b138b028STero Kristo  * @parent_rate: the DPLL's parent clock rate
127b138b028STero Kristo  *
128b138b028STero Kristo  * This code tests a DPLL multiplier value, ensuring that the
129b138b028STero Kristo  * resulting rate will not be higher than the target_rate, and that
130b138b028STero Kristo  * the multiplier value itself is valid for the DPLL.  Initially, the
131b138b028STero Kristo  * integer pointed to by the m argument should be prescaled by
132b138b028STero Kristo  * multiplying by DPLL_SCALE_FACTOR.  The code will replace this with
133b138b028STero Kristo  * a non-scaled m upon return.  This non-scaled m will result in a
134b138b028STero Kristo  * new_rate as close as possible to target_rate (but not greater than
135b138b028STero Kristo  * target_rate) given the current (parent_rate, n, prescaled m)
136b138b028STero Kristo  * triple. Returns DPLL_MULT_UNDERFLOW in the event that the
137b138b028STero Kristo  * non-scaled m attempted to underflow, which can allow the calling
138b138b028STero Kristo  * function to bail out early; or 0 upon success.
139b138b028STero Kristo  */
_dpll_test_mult(int * m,int n,unsigned long * new_rate,unsigned long target_rate,unsigned long parent_rate)140b138b028STero Kristo static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
141b138b028STero Kristo 			   unsigned long target_rate,
142b138b028STero Kristo 			   unsigned long parent_rate)
143b138b028STero Kristo {
144b138b028STero Kristo 	int r = 0, carry = 0;
145b138b028STero Kristo 
146b138b028STero Kristo 	/* Unscale m and round if necessary */
147b138b028STero Kristo 	if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
148b138b028STero Kristo 		carry = 1;
149b138b028STero Kristo 	*m = (*m / DPLL_SCALE_FACTOR) + carry;
150b138b028STero Kristo 
151b138b028STero Kristo 	/*
152b138b028STero Kristo 	 * The new rate must be <= the target rate to avoid programming
153b138b028STero Kristo 	 * a rate that is impossible for the hardware to handle
154b138b028STero Kristo 	 */
155b138b028STero Kristo 	*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
156b138b028STero Kristo 	if (*new_rate > target_rate) {
157b138b028STero Kristo 		(*m)--;
158b138b028STero Kristo 		*new_rate = 0;
159b138b028STero Kristo 	}
160b138b028STero Kristo 
161b138b028STero Kristo 	/* Guard against m underflow */
162b138b028STero Kristo 	if (*m < DPLL_MIN_MULTIPLIER) {
163b138b028STero Kristo 		*m = DPLL_MIN_MULTIPLIER;
164b138b028STero Kristo 		*new_rate = 0;
165b138b028STero Kristo 		r = DPLL_MULT_UNDERFLOW;
166b138b028STero Kristo 	}
167b138b028STero Kristo 
168b138b028STero Kristo 	if (*new_rate == 0)
169b138b028STero Kristo 		*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
170b138b028STero Kristo 
171b138b028STero Kristo 	return r;
172b138b028STero Kristo }
173b138b028STero Kristo 
174b138b028STero Kristo /**
175b138b028STero Kristo  * _omap2_dpll_is_in_bypass - check if DPLL is in bypass mode or not
176b138b028STero Kristo  * @v: bitfield value of the DPLL enable
177b138b028STero Kristo  *
178b138b028STero Kristo  * Checks given DPLL enable bitfield to see whether the DPLL is in bypass
179b138b028STero Kristo  * mode or not. Returns 1 if the DPLL is in bypass, 0 otherwise.
180b138b028STero Kristo  */
_omap2_dpll_is_in_bypass(u32 v)181b138b028STero Kristo static int _omap2_dpll_is_in_bypass(u32 v)
182b138b028STero Kristo {
183b138b028STero Kristo 	u8 mask, val;
184b138b028STero Kristo 
185b138b028STero Kristo 	mask = ti_clk_get_features()->dpll_bypass_vals;
186b138b028STero Kristo 
187b138b028STero Kristo 	/*
188b138b028STero Kristo 	 * Each set bit in the mask corresponds to a bypass value equal
189b138b028STero Kristo 	 * to the bitshift. Go through each set-bit in the mask and
190b138b028STero Kristo 	 * compare against the given register value.
191b138b028STero Kristo 	 */
192b138b028STero Kristo 	while (mask) {
193b138b028STero Kristo 		val = __ffs(mask);
194b138b028STero Kristo 		mask ^= (1 << val);
195b138b028STero Kristo 		if (v == val)
196b138b028STero Kristo 			return 1;
197b138b028STero Kristo 	}
198b138b028STero Kristo 
199b138b028STero Kristo 	return 0;
200b138b028STero Kristo }
201b138b028STero Kristo 
202b138b028STero Kristo /* Public functions */
omap2_init_dpll_parent(struct clk_hw * hw)203b138b028STero Kristo u8 omap2_init_dpll_parent(struct clk_hw *hw)
204b138b028STero Kristo {
205b138b028STero Kristo 	struct clk_hw_omap *clk = to_clk_hw_omap(hw);
206b138b028STero Kristo 	u32 v;
207b138b028STero Kristo 	struct dpll_data *dd;
208b138b028STero Kristo 
209b138b028STero Kristo 	dd = clk->dpll_data;
210b138b028STero Kristo 	if (!dd)
211b138b028STero Kristo 		return -EINVAL;
212b138b028STero Kristo 
2136c0afb50STero Kristo 	v = ti_clk_ll_ops->clk_readl(&dd->control_reg);
214b138b028STero Kristo 	v &= dd->enable_mask;
215b138b028STero Kristo 	v >>= __ffs(dd->enable_mask);
216b138b028STero Kristo 
217b138b028STero Kristo 	/* Reparent the struct clk in case the dpll is in bypass */
218b138b028STero Kristo 	if (_omap2_dpll_is_in_bypass(v))
219b138b028STero Kristo 		return 1;
220b138b028STero Kristo 
221b138b028STero Kristo 	return 0;
222b138b028STero Kristo }
223b138b028STero Kristo 
224b138b028STero Kristo /**
225b138b028STero Kristo  * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate
226b138b028STero Kristo  * @clk: struct clk * of a DPLL
227b138b028STero Kristo  *
228b138b028STero Kristo  * DPLLs can be locked or bypassed - basically, enabled or disabled.
229b138b028STero Kristo  * When locked, the DPLL output depends on the M and N values.  When
230b138b028STero Kristo  * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock
231b138b028STero Kristo  * or sys_clk.  Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and
232b138b028STero Kristo  * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively
233b138b028STero Kristo  * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk.
234b138b028STero Kristo  * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is
235b138b028STero Kristo  * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0
236b138b028STero Kristo  * if the clock @clk is not a DPLL.
237b138b028STero Kristo  */
omap2_get_dpll_rate(struct clk_hw_omap * clk)238b138b028STero Kristo unsigned long omap2_get_dpll_rate(struct clk_hw_omap *clk)
239b138b028STero Kristo {
240df976f5dSNicolas Pitre 	u64 dpll_clk;
241b138b028STero Kristo 	u32 dpll_mult, dpll_div, v;
242b138b028STero Kristo 	struct dpll_data *dd;
243b138b028STero Kristo 
244b138b028STero Kristo 	dd = clk->dpll_data;
245b138b028STero Kristo 	if (!dd)
246b138b028STero Kristo 		return 0;
247b138b028STero Kristo 
248b138b028STero Kristo 	/* Return bypass rate if DPLL is bypassed */
2496c0afb50STero Kristo 	v = ti_clk_ll_ops->clk_readl(&dd->control_reg);
250b138b028STero Kristo 	v &= dd->enable_mask;
251b138b028STero Kristo 	v >>= __ffs(dd->enable_mask);
252b138b028STero Kristo 
253b138b028STero Kristo 	if (_omap2_dpll_is_in_bypass(v))
254b6f51284STero Kristo 		return clk_hw_get_rate(dd->clk_bypass);
255b138b028STero Kristo 
2566c0afb50STero Kristo 	v = ti_clk_ll_ops->clk_readl(&dd->mult_div1_reg);
257b138b028STero Kristo 	dpll_mult = v & dd->mult_mask;
258b138b028STero Kristo 	dpll_mult >>= __ffs(dd->mult_mask);
259b138b028STero Kristo 	dpll_div = v & dd->div1_mask;
260b138b028STero Kristo 	dpll_div >>= __ffs(dd->div1_mask);
261b138b028STero Kristo 
262b6f51284STero Kristo 	dpll_clk = (u64)clk_hw_get_rate(dd->clk_ref) * dpll_mult;
263b138b028STero Kristo 	do_div(dpll_clk, dpll_div + 1);
264b138b028STero Kristo 
265b138b028STero Kristo 	return dpll_clk;
266b138b028STero Kristo }
267b138b028STero Kristo 
268b138b028STero Kristo /* DPLL rate rounding code */
269b138b028STero Kristo 
270b138b028STero Kristo /**
271b138b028STero Kristo  * omap2_dpll_round_rate - round a target rate for an OMAP DPLL
272*ed1b7dd7SLee Jones  * @hw: struct clk_hw containing the struct clk * for a DPLL
273b138b028STero Kristo  * @target_rate: desired DPLL clock rate
274*ed1b7dd7SLee Jones  * @parent_rate: parent's DPLL clock rate
275b138b028STero Kristo  *
276b138b028STero Kristo  * Given a DPLL and a desired target rate, round the target rate to a
277b138b028STero Kristo  * possible, programmable rate for this DPLL.  Attempts to select the
278b138b028STero Kristo  * minimum possible n.  Stores the computed (m, n) in the DPLL's
279b138b028STero Kristo  * dpll_data structure so set_rate() will not need to call this
280b138b028STero Kristo  * (expensive) function again.  Returns ~0 if the target rate cannot
281b138b028STero Kristo  * be rounded, or the rounded rate upon success.
282b138b028STero Kristo  */
omap2_dpll_round_rate(struct clk_hw * hw,unsigned long target_rate,unsigned long * parent_rate)283b138b028STero Kristo long omap2_dpll_round_rate(struct clk_hw *hw, unsigned long target_rate,
284b138b028STero Kristo 			   unsigned long *parent_rate)
285b138b028STero Kristo {
286b138b028STero Kristo 	struct clk_hw_omap *clk = to_clk_hw_omap(hw);
287b138b028STero Kristo 	int m, n, r, scaled_max_m;
288b138b028STero Kristo 	int min_delta_m = INT_MAX, min_delta_n = INT_MAX;
289b138b028STero Kristo 	unsigned long scaled_rt_rp;
290b138b028STero Kristo 	unsigned long new_rate = 0;
291b138b028STero Kristo 	struct dpll_data *dd;
292b138b028STero Kristo 	unsigned long ref_rate;
293b138b028STero Kristo 	long delta;
294b138b028STero Kristo 	long prev_min_delta = LONG_MAX;
295b138b028STero Kristo 	const char *clk_name;
296b138b028STero Kristo 
297b138b028STero Kristo 	if (!clk || !clk->dpll_data)
298b138b028STero Kristo 		return ~0;
299b138b028STero Kristo 
300b138b028STero Kristo 	dd = clk->dpll_data;
301b138b028STero Kristo 
302c5cc2a0bSTero Kristo 	if (dd->max_rate && target_rate > dd->max_rate)
303c5cc2a0bSTero Kristo 		target_rate = dd->max_rate;
304c5cc2a0bSTero Kristo 
305b6f51284STero Kristo 	ref_rate = clk_hw_get_rate(dd->clk_ref);
306a53ad8efSStephen Boyd 	clk_name = clk_hw_get_name(hw);
307b138b028STero Kristo 	pr_debug("clock: %s: starting DPLL round_rate, target rate %lu\n",
308b138b028STero Kristo 		 clk_name, target_rate);
309b138b028STero Kristo 
310b138b028STero Kristo 	scaled_rt_rp = target_rate / (ref_rate / DPLL_SCALE_FACTOR);
311b138b028STero Kristo 	scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR;
312b138b028STero Kristo 
313b138b028STero Kristo 	dd->last_rounded_rate = 0;
314b138b028STero Kristo 
315b138b028STero Kristo 	for (n = dd->min_divider; n <= dd->max_divider; n++) {
316b138b028STero Kristo 		/* Is the (input clk, divider) pair valid for the DPLL? */
317b138b028STero Kristo 		r = _dpll_test_fint(clk, n);
318b138b028STero Kristo 		if (r == DPLL_FINT_UNDERFLOW)
319b138b028STero Kristo 			break;
320b138b028STero Kristo 		else if (r == DPLL_FINT_INVALID)
321b138b028STero Kristo 			continue;
322b138b028STero Kristo 
323b138b028STero Kristo 		/* Compute the scaled DPLL multiplier, based on the divider */
324b138b028STero Kristo 		m = scaled_rt_rp * n;
325b138b028STero Kristo 
326b138b028STero Kristo 		/*
327b138b028STero Kristo 		 * Since we're counting n up, a m overflow means we
328b138b028STero Kristo 		 * can bail out completely (since as n increases in
329b138b028STero Kristo 		 * the next iteration, there's no way that m can
330b138b028STero Kristo 		 * increase beyond the current m)
331b138b028STero Kristo 		 */
332b138b028STero Kristo 		if (m > scaled_max_m)
333b138b028STero Kristo 			break;
334b138b028STero Kristo 
335b138b028STero Kristo 		r = _dpll_test_mult(&m, n, &new_rate, target_rate,
336b138b028STero Kristo 				    ref_rate);
337b138b028STero Kristo 
338b138b028STero Kristo 		/* m can't be set low enough for this n - try with a larger n */
339b138b028STero Kristo 		if (r == DPLL_MULT_UNDERFLOW)
340b138b028STero Kristo 			continue;
341b138b028STero Kristo 
342b138b028STero Kristo 		/* skip rates above our target rate */
343b138b028STero Kristo 		delta = target_rate - new_rate;
344b138b028STero Kristo 		if (delta < 0)
345b138b028STero Kristo 			continue;
346b138b028STero Kristo 
347b138b028STero Kristo 		if (delta < prev_min_delta) {
348b138b028STero Kristo 			prev_min_delta = delta;
349b138b028STero Kristo 			min_delta_m = m;
350b138b028STero Kristo 			min_delta_n = n;
351b138b028STero Kristo 		}
352b138b028STero Kristo 
353b138b028STero Kristo 		pr_debug("clock: %s: m = %d: n = %d: new_rate = %lu\n",
354b138b028STero Kristo 			 clk_name, m, n, new_rate);
355b138b028STero Kristo 
356b138b028STero Kristo 		if (delta == 0)
357b138b028STero Kristo 			break;
358b138b028STero Kristo 	}
359b138b028STero Kristo 
360b138b028STero Kristo 	if (prev_min_delta == LONG_MAX) {
361b138b028STero Kristo 		pr_debug("clock: %s: cannot round to rate %lu\n",
362b138b028STero Kristo 			 clk_name, target_rate);
363b138b028STero Kristo 		return ~0;
364b138b028STero Kristo 	}
365b138b028STero Kristo 
366b138b028STero Kristo 	dd->last_rounded_m = min_delta_m;
367b138b028STero Kristo 	dd->last_rounded_n = min_delta_n;
368b138b028STero Kristo 	dd->last_rounded_rate = target_rate - prev_min_delta;
369b138b028STero Kristo 
370b138b028STero Kristo 	return dd->last_rounded_rate;
371b138b028STero Kristo }
372