1992a56e4SMaxime Ripard /* 2992a56e4SMaxime Ripard * Copyright 2013 Emilio López 3992a56e4SMaxime Ripard * 4992a56e4SMaxime Ripard * Emilio López <emilio@elopez.com.ar> 5992a56e4SMaxime Ripard * 6992a56e4SMaxime Ripard * This program is free software; you can redistribute it and/or modify 7992a56e4SMaxime Ripard * it under the terms of the GNU General Public License as published by 8992a56e4SMaxime Ripard * the Free Software Foundation; either version 2 of the License, or 9992a56e4SMaxime Ripard * (at your option) any later version. 10992a56e4SMaxime Ripard * 11992a56e4SMaxime Ripard * This program is distributed in the hope that it will be useful, 12992a56e4SMaxime Ripard * but WITHOUT ANY WARRANTY; without even the implied warranty of 13992a56e4SMaxime Ripard * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14992a56e4SMaxime Ripard * GNU General Public License for more details. 15992a56e4SMaxime Ripard */ 16992a56e4SMaxime Ripard 17992a56e4SMaxime Ripard #include <linux/clk-provider.h> 18992a56e4SMaxime Ripard #include <linux/clkdev.h> 1937e1041fSMaxime Ripard #include <linux/of_address.h> 206ea3953dSHans de Goede #include <linux/platform_device.h> 21992a56e4SMaxime Ripard 22992a56e4SMaxime Ripard #include "clk-factors.h" 23992a56e4SMaxime Ripard 24992a56e4SMaxime Ripard /** 25992a56e4SMaxime Ripard * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks 26992a56e4SMaxime Ripard * MOD0 rate is calculated as follows 27992a56e4SMaxime Ripard * rate = (parent_rate >> p) / (m + 1); 28992a56e4SMaxime Ripard */ 29992a56e4SMaxime Ripard 30992a56e4SMaxime Ripard static void sun4i_a10_get_mod0_factors(u32 *freq, u32 parent_rate, 31992a56e4SMaxime Ripard u8 *n, u8 *k, u8 *m, u8 *p) 32992a56e4SMaxime Ripard { 33992a56e4SMaxime Ripard u8 div, calcm, calcp; 34992a56e4SMaxime Ripard 35992a56e4SMaxime Ripard /* These clocks can only divide, so we will never be able to achieve 36992a56e4SMaxime Ripard * frequencies higher than the parent frequency */ 37992a56e4SMaxime Ripard if (*freq > parent_rate) 38992a56e4SMaxime Ripard *freq = parent_rate; 39992a56e4SMaxime Ripard 40992a56e4SMaxime Ripard div = DIV_ROUND_UP(parent_rate, *freq); 41992a56e4SMaxime Ripard 42992a56e4SMaxime Ripard if (div < 16) 43992a56e4SMaxime Ripard calcp = 0; 44992a56e4SMaxime Ripard else if (div / 2 < 16) 45992a56e4SMaxime Ripard calcp = 1; 46992a56e4SMaxime Ripard else if (div / 4 < 16) 47992a56e4SMaxime Ripard calcp = 2; 48992a56e4SMaxime Ripard else 49992a56e4SMaxime Ripard calcp = 3; 50992a56e4SMaxime Ripard 51992a56e4SMaxime Ripard calcm = DIV_ROUND_UP(div, 1 << calcp); 52992a56e4SMaxime Ripard 53992a56e4SMaxime Ripard *freq = (parent_rate >> calcp) / calcm; 54992a56e4SMaxime Ripard 55992a56e4SMaxime Ripard /* we were called to round the frequency, we can now return */ 56992a56e4SMaxime Ripard if (n == NULL) 57992a56e4SMaxime Ripard return; 58992a56e4SMaxime Ripard 59992a56e4SMaxime Ripard *m = calcm - 1; 60992a56e4SMaxime Ripard *p = calcp; 61992a56e4SMaxime Ripard } 62992a56e4SMaxime Ripard 63992a56e4SMaxime Ripard /* user manual says "n" but it's really "p" */ 64992a56e4SMaxime Ripard static struct clk_factors_config sun4i_a10_mod0_config = { 65992a56e4SMaxime Ripard .mshift = 0, 66992a56e4SMaxime Ripard .mwidth = 4, 67992a56e4SMaxime Ripard .pshift = 16, 68992a56e4SMaxime Ripard .pwidth = 2, 69992a56e4SMaxime Ripard }; 70992a56e4SMaxime Ripard 716ea3953dSHans de Goede static const struct factors_data sun4i_a10_mod0_data = { 72992a56e4SMaxime Ripard .enable = 31, 73992a56e4SMaxime Ripard .mux = 24, 74e94f8cb3SChen-Yu Tsai .muxmask = BIT(1) | BIT(0), 75992a56e4SMaxime Ripard .table = &sun4i_a10_mod0_config, 76992a56e4SMaxime Ripard .getter = sun4i_a10_get_mod0_factors, 77992a56e4SMaxime Ripard }; 78992a56e4SMaxime Ripard 79992a56e4SMaxime Ripard static DEFINE_SPINLOCK(sun4i_a10_mod0_lock); 80992a56e4SMaxime Ripard 81992a56e4SMaxime Ripard static void __init sun4i_a10_mod0_setup(struct device_node *node) 82992a56e4SMaxime Ripard { 837c74c220SHans de Goede void __iomem *reg; 847c74c220SHans de Goede 857c74c220SHans de Goede reg = of_iomap(node, 0); 867c74c220SHans de Goede if (!reg) { 876ea3953dSHans de Goede /* 886ea3953dSHans de Goede * This happens with mod0 clk nodes instantiated through 896ea3953dSHans de Goede * mfd, as those do not have their resources assigned at 906ea3953dSHans de Goede * CLK_OF_DECLARE time yet, so do not print an error. 916ea3953dSHans de Goede */ 927c74c220SHans de Goede return; 937c74c220SHans de Goede } 947c74c220SHans de Goede 957c74c220SHans de Goede sunxi_factors_register(node, &sun4i_a10_mod0_data, 967c74c220SHans de Goede &sun4i_a10_mod0_lock, reg); 97992a56e4SMaxime Ripard } 98992a56e4SMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk", sun4i_a10_mod0_setup); 99eaa18f5dSMaxime Ripard 1006ea3953dSHans de Goede static int sun4i_a10_mod0_clk_probe(struct platform_device *pdev) 1016ea3953dSHans de Goede { 1026ea3953dSHans de Goede struct device_node *np = pdev->dev.of_node; 1036ea3953dSHans de Goede struct resource *r; 1046ea3953dSHans de Goede void __iomem *reg; 1056ea3953dSHans de Goede 1066ea3953dSHans de Goede if (!np) 1076ea3953dSHans de Goede return -ENODEV; 1086ea3953dSHans de Goede 1096ea3953dSHans de Goede r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1106ea3953dSHans de Goede reg = devm_ioremap_resource(&pdev->dev, r); 1116ea3953dSHans de Goede if (IS_ERR(reg)) 1126ea3953dSHans de Goede return PTR_ERR(reg); 1136ea3953dSHans de Goede 1146ea3953dSHans de Goede sunxi_factors_register(np, &sun4i_a10_mod0_data, 1156ea3953dSHans de Goede &sun4i_a10_mod0_lock, reg); 1166ea3953dSHans de Goede return 0; 1176ea3953dSHans de Goede } 1186ea3953dSHans de Goede 1196ea3953dSHans de Goede static const struct of_device_id sun4i_a10_mod0_clk_dt_ids[] = { 1206ea3953dSHans de Goede { .compatible = "allwinner,sun4i-a10-mod0-clk" }, 1216ea3953dSHans de Goede { /* sentinel */ } 1226ea3953dSHans de Goede }; 1236ea3953dSHans de Goede 1246ea3953dSHans de Goede static struct platform_driver sun4i_a10_mod0_clk_driver = { 1256ea3953dSHans de Goede .driver = { 1266ea3953dSHans de Goede .name = "sun4i-a10-mod0-clk", 1276ea3953dSHans de Goede .of_match_table = sun4i_a10_mod0_clk_dt_ids, 1286ea3953dSHans de Goede }, 1296ea3953dSHans de Goede .probe = sun4i_a10_mod0_clk_probe, 1306ea3953dSHans de Goede }; 1316ea3953dSHans de Goede module_platform_driver(sun4i_a10_mod0_clk_driver); 1326ea3953dSHans de Goede 133eaa18f5dSMaxime Ripard static DEFINE_SPINLOCK(sun5i_a13_mbus_lock); 134eaa18f5dSMaxime Ripard 135eaa18f5dSMaxime Ripard static void __init sun5i_a13_mbus_setup(struct device_node *node) 136eaa18f5dSMaxime Ripard { 1377c74c220SHans de Goede struct clk *mbus; 1387c74c220SHans de Goede void __iomem *reg; 1397c74c220SHans de Goede 1407c74c220SHans de Goede reg = of_iomap(node, 0); 1417c74c220SHans de Goede if (!reg) { 1427c74c220SHans de Goede pr_err("Could not get registers for a13-mbus-clk\n"); 1437c74c220SHans de Goede return; 1447c74c220SHans de Goede } 1457c74c220SHans de Goede 1467c74c220SHans de Goede mbus = sunxi_factors_register(node, &sun4i_a10_mod0_data, 1477c74c220SHans de Goede &sun5i_a13_mbus_lock, reg); 148eaa18f5dSMaxime Ripard 149eaa18f5dSMaxime Ripard /* The MBUS clocks needs to be always enabled */ 150eaa18f5dSMaxime Ripard __clk_get(mbus); 151eaa18f5dSMaxime Ripard clk_prepare_enable(mbus); 152eaa18f5dSMaxime Ripard } 153eaa18f5dSMaxime Ripard CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup); 15437e1041fSMaxime Ripard 15537e1041fSMaxime Ripard struct mmc_phase { 15637e1041fSMaxime Ripard struct clk_hw hw; 1576b0b8ccfSMaxime Ripard u8 offset; 15837e1041fSMaxime Ripard void __iomem *reg; 15937e1041fSMaxime Ripard spinlock_t *lock; 16037e1041fSMaxime Ripard }; 16137e1041fSMaxime Ripard 16237e1041fSMaxime Ripard #define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw) 16337e1041fSMaxime Ripard 16437e1041fSMaxime Ripard static int mmc_get_phase(struct clk_hw *hw) 16537e1041fSMaxime Ripard { 16637e1041fSMaxime Ripard struct clk *mmc, *mmc_parent, *clk = hw->clk; 16737e1041fSMaxime Ripard struct mmc_phase *phase = to_mmc_phase(hw); 16837e1041fSMaxime Ripard unsigned int mmc_rate, mmc_parent_rate; 16937e1041fSMaxime Ripard u16 step, mmc_div; 17037e1041fSMaxime Ripard u32 value; 17137e1041fSMaxime Ripard u8 delay; 17237e1041fSMaxime Ripard 17337e1041fSMaxime Ripard value = readl(phase->reg); 1746b0b8ccfSMaxime Ripard delay = (value >> phase->offset) & 0x3; 17537e1041fSMaxime Ripard 17637e1041fSMaxime Ripard if (!delay) 17737e1041fSMaxime Ripard return 180; 17837e1041fSMaxime Ripard 17937e1041fSMaxime Ripard /* Get the main MMC clock */ 18037e1041fSMaxime Ripard mmc = clk_get_parent(clk); 18137e1041fSMaxime Ripard if (!mmc) 18237e1041fSMaxime Ripard return -EINVAL; 18337e1041fSMaxime Ripard 18437e1041fSMaxime Ripard /* And its rate */ 18537e1041fSMaxime Ripard mmc_rate = clk_get_rate(mmc); 18637e1041fSMaxime Ripard if (!mmc_rate) 18737e1041fSMaxime Ripard return -EINVAL; 18837e1041fSMaxime Ripard 18937e1041fSMaxime Ripard /* Now, get the MMC parent (most likely some PLL) */ 19037e1041fSMaxime Ripard mmc_parent = clk_get_parent(mmc); 19137e1041fSMaxime Ripard if (!mmc_parent) 19237e1041fSMaxime Ripard return -EINVAL; 19337e1041fSMaxime Ripard 19437e1041fSMaxime Ripard /* And its rate */ 19537e1041fSMaxime Ripard mmc_parent_rate = clk_get_rate(mmc_parent); 19637e1041fSMaxime Ripard if (!mmc_parent_rate) 19737e1041fSMaxime Ripard return -EINVAL; 19837e1041fSMaxime Ripard 19937e1041fSMaxime Ripard /* Get MMC clock divider */ 20037e1041fSMaxime Ripard mmc_div = mmc_parent_rate / mmc_rate; 20137e1041fSMaxime Ripard 20237e1041fSMaxime Ripard step = DIV_ROUND_CLOSEST(360, mmc_div); 20337e1041fSMaxime Ripard return delay * step; 20437e1041fSMaxime Ripard } 20537e1041fSMaxime Ripard 20637e1041fSMaxime Ripard static int mmc_set_phase(struct clk_hw *hw, int degrees) 20737e1041fSMaxime Ripard { 20837e1041fSMaxime Ripard struct clk *mmc, *mmc_parent, *clk = hw->clk; 20937e1041fSMaxime Ripard struct mmc_phase *phase = to_mmc_phase(hw); 21037e1041fSMaxime Ripard unsigned int mmc_rate, mmc_parent_rate; 21137e1041fSMaxime Ripard unsigned long flags; 21237e1041fSMaxime Ripard u32 value; 21337e1041fSMaxime Ripard u8 delay; 21437e1041fSMaxime Ripard 21537e1041fSMaxime Ripard /* Get the main MMC clock */ 21637e1041fSMaxime Ripard mmc = clk_get_parent(clk); 21737e1041fSMaxime Ripard if (!mmc) 21837e1041fSMaxime Ripard return -EINVAL; 21937e1041fSMaxime Ripard 22037e1041fSMaxime Ripard /* And its rate */ 22137e1041fSMaxime Ripard mmc_rate = clk_get_rate(mmc); 22237e1041fSMaxime Ripard if (!mmc_rate) 22337e1041fSMaxime Ripard return -EINVAL; 22437e1041fSMaxime Ripard 22537e1041fSMaxime Ripard /* Now, get the MMC parent (most likely some PLL) */ 22637e1041fSMaxime Ripard mmc_parent = clk_get_parent(mmc); 22737e1041fSMaxime Ripard if (!mmc_parent) 22837e1041fSMaxime Ripard return -EINVAL; 22937e1041fSMaxime Ripard 23037e1041fSMaxime Ripard /* And its rate */ 23137e1041fSMaxime Ripard mmc_parent_rate = clk_get_rate(mmc_parent); 23237e1041fSMaxime Ripard if (!mmc_parent_rate) 23337e1041fSMaxime Ripard return -EINVAL; 23437e1041fSMaxime Ripard 23537e1041fSMaxime Ripard if (degrees != 180) { 23637e1041fSMaxime Ripard u16 step, mmc_div; 23737e1041fSMaxime Ripard 23837e1041fSMaxime Ripard /* Get MMC clock divider */ 23937e1041fSMaxime Ripard mmc_div = mmc_parent_rate / mmc_rate; 24037e1041fSMaxime Ripard 24137e1041fSMaxime Ripard /* 24237e1041fSMaxime Ripard * We can only outphase the clocks by multiple of the 24337e1041fSMaxime Ripard * PLL's period. 24437e1041fSMaxime Ripard * 24537e1041fSMaxime Ripard * Since the MMC clock in only a divider, and the 24637e1041fSMaxime Ripard * formula to get the outphasing in degrees is deg = 24737e1041fSMaxime Ripard * 360 * delta / period 24837e1041fSMaxime Ripard * 24937e1041fSMaxime Ripard * If we simplify this formula, we can see that the 25037e1041fSMaxime Ripard * only thing that we're concerned about is the number 25137e1041fSMaxime Ripard * of period we want to outphase our clock from, and 25237e1041fSMaxime Ripard * the divider set by the MMC clock. 25337e1041fSMaxime Ripard */ 25437e1041fSMaxime Ripard step = DIV_ROUND_CLOSEST(360, mmc_div); 25537e1041fSMaxime Ripard delay = DIV_ROUND_CLOSEST(degrees, step); 25637e1041fSMaxime Ripard } else { 25737e1041fSMaxime Ripard delay = 0; 25837e1041fSMaxime Ripard } 25937e1041fSMaxime Ripard 26037e1041fSMaxime Ripard spin_lock_irqsave(phase->lock, flags); 26137e1041fSMaxime Ripard value = readl(phase->reg); 2626b0b8ccfSMaxime Ripard value &= ~GENMASK(phase->offset + 3, phase->offset); 2636b0b8ccfSMaxime Ripard value |= delay << phase->offset; 26437e1041fSMaxime Ripard writel(value, phase->reg); 26537e1041fSMaxime Ripard spin_unlock_irqrestore(phase->lock, flags); 26637e1041fSMaxime Ripard 26737e1041fSMaxime Ripard return 0; 26837e1041fSMaxime Ripard } 26937e1041fSMaxime Ripard 27037e1041fSMaxime Ripard static const struct clk_ops mmc_clk_ops = { 27137e1041fSMaxime Ripard .get_phase = mmc_get_phase, 27237e1041fSMaxime Ripard .set_phase = mmc_set_phase, 27337e1041fSMaxime Ripard }; 27437e1041fSMaxime Ripard 275*eb378df7SChen-Yu Tsai /* 276*eb378df7SChen-Yu Tsai * sunxi_mmc_setup - Common setup function for mmc module clocks 277*eb378df7SChen-Yu Tsai * 278*eb378df7SChen-Yu Tsai * The only difference between module clocks on different platforms is the 279*eb378df7SChen-Yu Tsai * width of the mux register bits and the valid values, which are passed in 280*eb378df7SChen-Yu Tsai * through struct factors_data. The phase clocks parts are identical. 281*eb378df7SChen-Yu Tsai */ 282*eb378df7SChen-Yu Tsai static void __init sunxi_mmc_setup(struct device_node *node, 283*eb378df7SChen-Yu Tsai const struct factors_data *data, 284*eb378df7SChen-Yu Tsai spinlock_t *lock) 28537e1041fSMaxime Ripard { 2866b0b8ccfSMaxime Ripard struct clk_onecell_data *clk_data; 2876b0b8ccfSMaxime Ripard const char *parent; 2886b0b8ccfSMaxime Ripard void __iomem *reg; 2896b0b8ccfSMaxime Ripard int i; 2906b0b8ccfSMaxime Ripard 2916b0b8ccfSMaxime Ripard reg = of_io_request_and_map(node, 0, of_node_full_name(node)); 2926b0b8ccfSMaxime Ripard if (IS_ERR(reg)) { 2936b0b8ccfSMaxime Ripard pr_err("Couldn't map the %s clock registers\n", node->name); 2946b0b8ccfSMaxime Ripard return; 2956b0b8ccfSMaxime Ripard } 2966b0b8ccfSMaxime Ripard 2976b0b8ccfSMaxime Ripard clk_data = kmalloc(sizeof(*clk_data), GFP_KERNEL); 2986b0b8ccfSMaxime Ripard if (!clk_data) 2996b0b8ccfSMaxime Ripard return; 3006b0b8ccfSMaxime Ripard 3016b0b8ccfSMaxime Ripard clk_data->clks = kcalloc(3, sizeof(*clk_data->clks), GFP_KERNEL); 3026b0b8ccfSMaxime Ripard if (!clk_data->clks) 3036b0b8ccfSMaxime Ripard goto err_free_data; 3046b0b8ccfSMaxime Ripard 3056b0b8ccfSMaxime Ripard clk_data->clk_num = 3; 306*eb378df7SChen-Yu Tsai clk_data->clks[0] = sunxi_factors_register(node, data, lock, reg); 3076b0b8ccfSMaxime Ripard if (!clk_data->clks[0]) 3086b0b8ccfSMaxime Ripard goto err_free_clks; 3096b0b8ccfSMaxime Ripard 3106b0b8ccfSMaxime Ripard parent = __clk_get_name(clk_data->clks[0]); 3116b0b8ccfSMaxime Ripard 3126b0b8ccfSMaxime Ripard for (i = 1; i < 3; i++) { 31337e1041fSMaxime Ripard struct clk_init_data init = { 31437e1041fSMaxime Ripard .num_parents = 1, 3156b0b8ccfSMaxime Ripard .parent_names = &parent, 31637e1041fSMaxime Ripard .ops = &mmc_clk_ops, 31737e1041fSMaxime Ripard }; 31837e1041fSMaxime Ripard struct mmc_phase *phase; 31937e1041fSMaxime Ripard 32037e1041fSMaxime Ripard phase = kmalloc(sizeof(*phase), GFP_KERNEL); 32137e1041fSMaxime Ripard if (!phase) 3226b0b8ccfSMaxime Ripard continue; 32337e1041fSMaxime Ripard 32437e1041fSMaxime Ripard phase->hw.init = &init; 3256b0b8ccfSMaxime Ripard phase->reg = reg; 326*eb378df7SChen-Yu Tsai phase->lock = lock; 32737e1041fSMaxime Ripard 3286b0b8ccfSMaxime Ripard if (i == 1) 3296b0b8ccfSMaxime Ripard phase->offset = 8; 3306b0b8ccfSMaxime Ripard else 3316b0b8ccfSMaxime Ripard phase->offset = 20; 33237e1041fSMaxime Ripard 3336b0b8ccfSMaxime Ripard if (of_property_read_string_index(node, "clock-output-names", 3346b0b8ccfSMaxime Ripard i, &init.name)) 33537e1041fSMaxime Ripard init.name = node->name; 33637e1041fSMaxime Ripard 3376b0b8ccfSMaxime Ripard clk_data->clks[i] = clk_register(NULL, &phase->hw); 3386b0b8ccfSMaxime Ripard if (IS_ERR(clk_data->clks[i])) { 3396b0b8ccfSMaxime Ripard kfree(phase); 3406b0b8ccfSMaxime Ripard continue; 3416b0b8ccfSMaxime Ripard } 3426b0b8ccfSMaxime Ripard } 34337e1041fSMaxime Ripard 3446b0b8ccfSMaxime Ripard of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); 34537e1041fSMaxime Ripard 34637e1041fSMaxime Ripard return; 34737e1041fSMaxime Ripard 3486b0b8ccfSMaxime Ripard err_free_clks: 3496b0b8ccfSMaxime Ripard kfree(clk_data->clks); 3506b0b8ccfSMaxime Ripard err_free_data: 3516b0b8ccfSMaxime Ripard kfree(clk_data); 35237e1041fSMaxime Ripard } 353*eb378df7SChen-Yu Tsai 354*eb378df7SChen-Yu Tsai static DEFINE_SPINLOCK(sun4i_a10_mmc_lock); 355*eb378df7SChen-Yu Tsai 356*eb378df7SChen-Yu Tsai static void __init sun4i_a10_mmc_setup(struct device_node *node) 357*eb378df7SChen-Yu Tsai { 358*eb378df7SChen-Yu Tsai sunxi_mmc_setup(node, &sun4i_a10_mod0_data, &sun4i_a10_mmc_lock); 359*eb378df7SChen-Yu Tsai } 3606b0b8ccfSMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mmc, "allwinner,sun4i-a10-mmc-clk", sun4i_a10_mmc_setup); 361