1992a56e4SMaxime Ripard /* 2992a56e4SMaxime Ripard * Copyright 2013 Emilio López 3992a56e4SMaxime Ripard * 4992a56e4SMaxime Ripard * Emilio López <emilio@elopez.com.ar> 5992a56e4SMaxime Ripard * 6992a56e4SMaxime Ripard * This program is free software; you can redistribute it and/or modify 7992a56e4SMaxime Ripard * it under the terms of the GNU General Public License as published by 8992a56e4SMaxime Ripard * the Free Software Foundation; either version 2 of the License, or 9992a56e4SMaxime Ripard * (at your option) any later version. 10992a56e4SMaxime Ripard * 11992a56e4SMaxime Ripard * This program is distributed in the hope that it will be useful, 12992a56e4SMaxime Ripard * but WITHOUT ANY WARRANTY; without even the implied warranty of 13992a56e4SMaxime Ripard * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14992a56e4SMaxime Ripard * GNU General Public License for more details. 15992a56e4SMaxime Ripard */ 16992a56e4SMaxime Ripard 17992a56e4SMaxime Ripard #include <linux/clk-provider.h> 18992a56e4SMaxime Ripard #include <linux/clkdev.h> 1937e1041fSMaxime Ripard #include <linux/of_address.h> 20992a56e4SMaxime Ripard 21992a56e4SMaxime Ripard #include "clk-factors.h" 22992a56e4SMaxime Ripard 23992a56e4SMaxime Ripard /** 24992a56e4SMaxime Ripard * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks 25992a56e4SMaxime Ripard * MOD0 rate is calculated as follows 26992a56e4SMaxime Ripard * rate = (parent_rate >> p) / (m + 1); 27992a56e4SMaxime Ripard */ 28992a56e4SMaxime Ripard 29992a56e4SMaxime Ripard static void sun4i_a10_get_mod0_factors(u32 *freq, u32 parent_rate, 30992a56e4SMaxime Ripard u8 *n, u8 *k, u8 *m, u8 *p) 31992a56e4SMaxime Ripard { 32992a56e4SMaxime Ripard u8 div, calcm, calcp; 33992a56e4SMaxime Ripard 34992a56e4SMaxime Ripard /* These clocks can only divide, so we will never be able to achieve 35992a56e4SMaxime Ripard * frequencies higher than the parent frequency */ 36992a56e4SMaxime Ripard if (*freq > parent_rate) 37992a56e4SMaxime Ripard *freq = parent_rate; 38992a56e4SMaxime Ripard 39992a56e4SMaxime Ripard div = DIV_ROUND_UP(parent_rate, *freq); 40992a56e4SMaxime Ripard 41992a56e4SMaxime Ripard if (div < 16) 42992a56e4SMaxime Ripard calcp = 0; 43992a56e4SMaxime Ripard else if (div / 2 < 16) 44992a56e4SMaxime Ripard calcp = 1; 45992a56e4SMaxime Ripard else if (div / 4 < 16) 46992a56e4SMaxime Ripard calcp = 2; 47992a56e4SMaxime Ripard else 48992a56e4SMaxime Ripard calcp = 3; 49992a56e4SMaxime Ripard 50992a56e4SMaxime Ripard calcm = DIV_ROUND_UP(div, 1 << calcp); 51992a56e4SMaxime Ripard 52992a56e4SMaxime Ripard *freq = (parent_rate >> calcp) / calcm; 53992a56e4SMaxime Ripard 54992a56e4SMaxime Ripard /* we were called to round the frequency, we can now return */ 55992a56e4SMaxime Ripard if (n == NULL) 56992a56e4SMaxime Ripard return; 57992a56e4SMaxime Ripard 58992a56e4SMaxime Ripard *m = calcm - 1; 59992a56e4SMaxime Ripard *p = calcp; 60992a56e4SMaxime Ripard } 61992a56e4SMaxime Ripard 62992a56e4SMaxime Ripard /* user manual says "n" but it's really "p" */ 63992a56e4SMaxime Ripard static struct clk_factors_config sun4i_a10_mod0_config = { 64992a56e4SMaxime Ripard .mshift = 0, 65992a56e4SMaxime Ripard .mwidth = 4, 66992a56e4SMaxime Ripard .pshift = 16, 67992a56e4SMaxime Ripard .pwidth = 2, 68992a56e4SMaxime Ripard }; 69992a56e4SMaxime Ripard 70992a56e4SMaxime Ripard static const struct factors_data sun4i_a10_mod0_data __initconst = { 71992a56e4SMaxime Ripard .enable = 31, 72992a56e4SMaxime Ripard .mux = 24, 73*e94f8cb3SChen-Yu Tsai .muxmask = BIT(1) | BIT(0), 74992a56e4SMaxime Ripard .table = &sun4i_a10_mod0_config, 75992a56e4SMaxime Ripard .getter = sun4i_a10_get_mod0_factors, 76992a56e4SMaxime Ripard }; 77992a56e4SMaxime Ripard 78992a56e4SMaxime Ripard static DEFINE_SPINLOCK(sun4i_a10_mod0_lock); 79992a56e4SMaxime Ripard 80992a56e4SMaxime Ripard static void __init sun4i_a10_mod0_setup(struct device_node *node) 81992a56e4SMaxime Ripard { 82992a56e4SMaxime Ripard sunxi_factors_register(node, &sun4i_a10_mod0_data, &sun4i_a10_mod0_lock); 83992a56e4SMaxime Ripard } 84992a56e4SMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk", sun4i_a10_mod0_setup); 85eaa18f5dSMaxime Ripard 86eaa18f5dSMaxime Ripard static DEFINE_SPINLOCK(sun5i_a13_mbus_lock); 87eaa18f5dSMaxime Ripard 88eaa18f5dSMaxime Ripard static void __init sun5i_a13_mbus_setup(struct device_node *node) 89eaa18f5dSMaxime Ripard { 90eaa18f5dSMaxime Ripard struct clk *mbus = sunxi_factors_register(node, &sun4i_a10_mod0_data, &sun5i_a13_mbus_lock); 91eaa18f5dSMaxime Ripard 92eaa18f5dSMaxime Ripard /* The MBUS clocks needs to be always enabled */ 93eaa18f5dSMaxime Ripard __clk_get(mbus); 94eaa18f5dSMaxime Ripard clk_prepare_enable(mbus); 95eaa18f5dSMaxime Ripard } 96eaa18f5dSMaxime Ripard CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup); 9737e1041fSMaxime Ripard 9837e1041fSMaxime Ripard struct mmc_phase_data { 9937e1041fSMaxime Ripard u8 offset; 10037e1041fSMaxime Ripard }; 10137e1041fSMaxime Ripard 10237e1041fSMaxime Ripard struct mmc_phase { 10337e1041fSMaxime Ripard struct clk_hw hw; 10437e1041fSMaxime Ripard void __iomem *reg; 10537e1041fSMaxime Ripard struct mmc_phase_data *data; 10637e1041fSMaxime Ripard spinlock_t *lock; 10737e1041fSMaxime Ripard }; 10837e1041fSMaxime Ripard 10937e1041fSMaxime Ripard #define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw) 11037e1041fSMaxime Ripard 11137e1041fSMaxime Ripard static int mmc_get_phase(struct clk_hw *hw) 11237e1041fSMaxime Ripard { 11337e1041fSMaxime Ripard struct clk *mmc, *mmc_parent, *clk = hw->clk; 11437e1041fSMaxime Ripard struct mmc_phase *phase = to_mmc_phase(hw); 11537e1041fSMaxime Ripard unsigned int mmc_rate, mmc_parent_rate; 11637e1041fSMaxime Ripard u16 step, mmc_div; 11737e1041fSMaxime Ripard u32 value; 11837e1041fSMaxime Ripard u8 delay; 11937e1041fSMaxime Ripard 12037e1041fSMaxime Ripard value = readl(phase->reg); 12137e1041fSMaxime Ripard delay = (value >> phase->data->offset) & 0x3; 12237e1041fSMaxime Ripard 12337e1041fSMaxime Ripard if (!delay) 12437e1041fSMaxime Ripard return 180; 12537e1041fSMaxime Ripard 12637e1041fSMaxime Ripard /* Get the main MMC clock */ 12737e1041fSMaxime Ripard mmc = clk_get_parent(clk); 12837e1041fSMaxime Ripard if (!mmc) 12937e1041fSMaxime Ripard return -EINVAL; 13037e1041fSMaxime Ripard 13137e1041fSMaxime Ripard /* And its rate */ 13237e1041fSMaxime Ripard mmc_rate = clk_get_rate(mmc); 13337e1041fSMaxime Ripard if (!mmc_rate) 13437e1041fSMaxime Ripard return -EINVAL; 13537e1041fSMaxime Ripard 13637e1041fSMaxime Ripard /* Now, get the MMC parent (most likely some PLL) */ 13737e1041fSMaxime Ripard mmc_parent = clk_get_parent(mmc); 13837e1041fSMaxime Ripard if (!mmc_parent) 13937e1041fSMaxime Ripard return -EINVAL; 14037e1041fSMaxime Ripard 14137e1041fSMaxime Ripard /* And its rate */ 14237e1041fSMaxime Ripard mmc_parent_rate = clk_get_rate(mmc_parent); 14337e1041fSMaxime Ripard if (!mmc_parent_rate) 14437e1041fSMaxime Ripard return -EINVAL; 14537e1041fSMaxime Ripard 14637e1041fSMaxime Ripard /* Get MMC clock divider */ 14737e1041fSMaxime Ripard mmc_div = mmc_parent_rate / mmc_rate; 14837e1041fSMaxime Ripard 14937e1041fSMaxime Ripard step = DIV_ROUND_CLOSEST(360, mmc_div); 15037e1041fSMaxime Ripard return delay * step; 15137e1041fSMaxime Ripard } 15237e1041fSMaxime Ripard 15337e1041fSMaxime Ripard static int mmc_set_phase(struct clk_hw *hw, int degrees) 15437e1041fSMaxime Ripard { 15537e1041fSMaxime Ripard struct clk *mmc, *mmc_parent, *clk = hw->clk; 15637e1041fSMaxime Ripard struct mmc_phase *phase = to_mmc_phase(hw); 15737e1041fSMaxime Ripard unsigned int mmc_rate, mmc_parent_rate; 15837e1041fSMaxime Ripard unsigned long flags; 15937e1041fSMaxime Ripard u32 value; 16037e1041fSMaxime Ripard u8 delay; 16137e1041fSMaxime Ripard 16237e1041fSMaxime Ripard /* Get the main MMC clock */ 16337e1041fSMaxime Ripard mmc = clk_get_parent(clk); 16437e1041fSMaxime Ripard if (!mmc) 16537e1041fSMaxime Ripard return -EINVAL; 16637e1041fSMaxime Ripard 16737e1041fSMaxime Ripard /* And its rate */ 16837e1041fSMaxime Ripard mmc_rate = clk_get_rate(mmc); 16937e1041fSMaxime Ripard if (!mmc_rate) 17037e1041fSMaxime Ripard return -EINVAL; 17137e1041fSMaxime Ripard 17237e1041fSMaxime Ripard /* Now, get the MMC parent (most likely some PLL) */ 17337e1041fSMaxime Ripard mmc_parent = clk_get_parent(mmc); 17437e1041fSMaxime Ripard if (!mmc_parent) 17537e1041fSMaxime Ripard return -EINVAL; 17637e1041fSMaxime Ripard 17737e1041fSMaxime Ripard /* And its rate */ 17837e1041fSMaxime Ripard mmc_parent_rate = clk_get_rate(mmc_parent); 17937e1041fSMaxime Ripard if (!mmc_parent_rate) 18037e1041fSMaxime Ripard return -EINVAL; 18137e1041fSMaxime Ripard 18237e1041fSMaxime Ripard if (degrees != 180) { 18337e1041fSMaxime Ripard u16 step, mmc_div; 18437e1041fSMaxime Ripard 18537e1041fSMaxime Ripard /* Get MMC clock divider */ 18637e1041fSMaxime Ripard mmc_div = mmc_parent_rate / mmc_rate; 18737e1041fSMaxime Ripard 18837e1041fSMaxime Ripard /* 18937e1041fSMaxime Ripard * We can only outphase the clocks by multiple of the 19037e1041fSMaxime Ripard * PLL's period. 19137e1041fSMaxime Ripard * 19237e1041fSMaxime Ripard * Since the MMC clock in only a divider, and the 19337e1041fSMaxime Ripard * formula to get the outphasing in degrees is deg = 19437e1041fSMaxime Ripard * 360 * delta / period 19537e1041fSMaxime Ripard * 19637e1041fSMaxime Ripard * If we simplify this formula, we can see that the 19737e1041fSMaxime Ripard * only thing that we're concerned about is the number 19837e1041fSMaxime Ripard * of period we want to outphase our clock from, and 19937e1041fSMaxime Ripard * the divider set by the MMC clock. 20037e1041fSMaxime Ripard */ 20137e1041fSMaxime Ripard step = DIV_ROUND_CLOSEST(360, mmc_div); 20237e1041fSMaxime Ripard delay = DIV_ROUND_CLOSEST(degrees, step); 20337e1041fSMaxime Ripard } else { 20437e1041fSMaxime Ripard delay = 0; 20537e1041fSMaxime Ripard } 20637e1041fSMaxime Ripard 20737e1041fSMaxime Ripard spin_lock_irqsave(phase->lock, flags); 20837e1041fSMaxime Ripard value = readl(phase->reg); 20937e1041fSMaxime Ripard value &= ~GENMASK(phase->data->offset + 3, phase->data->offset); 21037e1041fSMaxime Ripard value |= delay << phase->data->offset; 21137e1041fSMaxime Ripard writel(value, phase->reg); 21237e1041fSMaxime Ripard spin_unlock_irqrestore(phase->lock, flags); 21337e1041fSMaxime Ripard 21437e1041fSMaxime Ripard return 0; 21537e1041fSMaxime Ripard } 21637e1041fSMaxime Ripard 21737e1041fSMaxime Ripard static const struct clk_ops mmc_clk_ops = { 21837e1041fSMaxime Ripard .get_phase = mmc_get_phase, 21937e1041fSMaxime Ripard .set_phase = mmc_set_phase, 22037e1041fSMaxime Ripard }; 22137e1041fSMaxime Ripard 22237e1041fSMaxime Ripard static void __init sun4i_a10_mmc_phase_setup(struct device_node *node, 22337e1041fSMaxime Ripard struct mmc_phase_data *data) 22437e1041fSMaxime Ripard { 22537e1041fSMaxime Ripard const char *parent_names[1] = { of_clk_get_parent_name(node, 0) }; 22637e1041fSMaxime Ripard struct clk_init_data init = { 22737e1041fSMaxime Ripard .num_parents = 1, 22837e1041fSMaxime Ripard .parent_names = parent_names, 22937e1041fSMaxime Ripard .ops = &mmc_clk_ops, 23037e1041fSMaxime Ripard }; 23137e1041fSMaxime Ripard 23237e1041fSMaxime Ripard struct mmc_phase *phase; 23337e1041fSMaxime Ripard struct clk *clk; 23437e1041fSMaxime Ripard 23537e1041fSMaxime Ripard phase = kmalloc(sizeof(*phase), GFP_KERNEL); 23637e1041fSMaxime Ripard if (!phase) 23737e1041fSMaxime Ripard return; 23837e1041fSMaxime Ripard 23937e1041fSMaxime Ripard phase->hw.init = &init; 24037e1041fSMaxime Ripard 24137e1041fSMaxime Ripard phase->reg = of_iomap(node, 0); 24237e1041fSMaxime Ripard if (!phase->reg) 24337e1041fSMaxime Ripard goto err_free; 24437e1041fSMaxime Ripard 24537e1041fSMaxime Ripard phase->data = data; 24637e1041fSMaxime Ripard phase->lock = &sun4i_a10_mod0_lock; 24737e1041fSMaxime Ripard 24837e1041fSMaxime Ripard if (of_property_read_string(node, "clock-output-names", &init.name)) 24937e1041fSMaxime Ripard init.name = node->name; 25037e1041fSMaxime Ripard 25137e1041fSMaxime Ripard clk = clk_register(NULL, &phase->hw); 25237e1041fSMaxime Ripard if (IS_ERR(clk)) 25337e1041fSMaxime Ripard goto err_unmap; 25437e1041fSMaxime Ripard 25537e1041fSMaxime Ripard of_clk_add_provider(node, of_clk_src_simple_get, clk); 25637e1041fSMaxime Ripard 25737e1041fSMaxime Ripard return; 25837e1041fSMaxime Ripard 25937e1041fSMaxime Ripard err_unmap: 26037e1041fSMaxime Ripard iounmap(phase->reg); 26137e1041fSMaxime Ripard err_free: 26237e1041fSMaxime Ripard kfree(phase); 26337e1041fSMaxime Ripard } 26437e1041fSMaxime Ripard 26537e1041fSMaxime Ripard 26637e1041fSMaxime Ripard static struct mmc_phase_data mmc_output_clk = { 26737e1041fSMaxime Ripard .offset = 8, 26837e1041fSMaxime Ripard }; 26937e1041fSMaxime Ripard 27037e1041fSMaxime Ripard static struct mmc_phase_data mmc_sample_clk = { 27137e1041fSMaxime Ripard .offset = 20, 27237e1041fSMaxime Ripard }; 27337e1041fSMaxime Ripard 27437e1041fSMaxime Ripard static void __init sun4i_a10_mmc_output_setup(struct device_node *node) 27537e1041fSMaxime Ripard { 27637e1041fSMaxime Ripard sun4i_a10_mmc_phase_setup(node, &mmc_output_clk); 27737e1041fSMaxime Ripard } 27837e1041fSMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mmc_output, "allwinner,sun4i-a10-mmc-output-clk", sun4i_a10_mmc_output_setup); 27937e1041fSMaxime Ripard 28037e1041fSMaxime Ripard static void __init sun4i_a10_mmc_sample_setup(struct device_node *node) 28137e1041fSMaxime Ripard { 28237e1041fSMaxime Ripard sun4i_a10_mmc_phase_setup(node, &mmc_sample_clk); 28337e1041fSMaxime Ripard } 28437e1041fSMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mmc_sample, "allwinner,sun4i-a10-mmc-sample-clk", sun4i_a10_mmc_sample_setup); 285