xref: /openbmc/linux/drivers/clk/sunxi/clk-mod0.c (revision e94f8cb32d47b157b2af1906eb965290e89ee3fe)
1992a56e4SMaxime Ripard /*
2992a56e4SMaxime Ripard  * Copyright 2013 Emilio López
3992a56e4SMaxime Ripard  *
4992a56e4SMaxime Ripard  * Emilio López <emilio@elopez.com.ar>
5992a56e4SMaxime Ripard  *
6992a56e4SMaxime Ripard  * This program is free software; you can redistribute it and/or modify
7992a56e4SMaxime Ripard  * it under the terms of the GNU General Public License as published by
8992a56e4SMaxime Ripard  * the Free Software Foundation; either version 2 of the License, or
9992a56e4SMaxime Ripard  * (at your option) any later version.
10992a56e4SMaxime Ripard  *
11992a56e4SMaxime Ripard  * This program is distributed in the hope that it will be useful,
12992a56e4SMaxime Ripard  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13992a56e4SMaxime Ripard  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14992a56e4SMaxime Ripard  * GNU General Public License for more details.
15992a56e4SMaxime Ripard  */
16992a56e4SMaxime Ripard 
17992a56e4SMaxime Ripard #include <linux/clk-provider.h>
18992a56e4SMaxime Ripard #include <linux/clkdev.h>
1937e1041fSMaxime Ripard #include <linux/of_address.h>
20992a56e4SMaxime Ripard 
21992a56e4SMaxime Ripard #include "clk-factors.h"
22992a56e4SMaxime Ripard 
23992a56e4SMaxime Ripard /**
24992a56e4SMaxime Ripard  * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
25992a56e4SMaxime Ripard  * MOD0 rate is calculated as follows
26992a56e4SMaxime Ripard  * rate = (parent_rate >> p) / (m + 1);
27992a56e4SMaxime Ripard  */
28992a56e4SMaxime Ripard 
29992a56e4SMaxime Ripard static void sun4i_a10_get_mod0_factors(u32 *freq, u32 parent_rate,
30992a56e4SMaxime Ripard 				       u8 *n, u8 *k, u8 *m, u8 *p)
31992a56e4SMaxime Ripard {
32992a56e4SMaxime Ripard 	u8 div, calcm, calcp;
33992a56e4SMaxime Ripard 
34992a56e4SMaxime Ripard 	/* These clocks can only divide, so we will never be able to achieve
35992a56e4SMaxime Ripard 	 * frequencies higher than the parent frequency */
36992a56e4SMaxime Ripard 	if (*freq > parent_rate)
37992a56e4SMaxime Ripard 		*freq = parent_rate;
38992a56e4SMaxime Ripard 
39992a56e4SMaxime Ripard 	div = DIV_ROUND_UP(parent_rate, *freq);
40992a56e4SMaxime Ripard 
41992a56e4SMaxime Ripard 	if (div < 16)
42992a56e4SMaxime Ripard 		calcp = 0;
43992a56e4SMaxime Ripard 	else if (div / 2 < 16)
44992a56e4SMaxime Ripard 		calcp = 1;
45992a56e4SMaxime Ripard 	else if (div / 4 < 16)
46992a56e4SMaxime Ripard 		calcp = 2;
47992a56e4SMaxime Ripard 	else
48992a56e4SMaxime Ripard 		calcp = 3;
49992a56e4SMaxime Ripard 
50992a56e4SMaxime Ripard 	calcm = DIV_ROUND_UP(div, 1 << calcp);
51992a56e4SMaxime Ripard 
52992a56e4SMaxime Ripard 	*freq = (parent_rate >> calcp) / calcm;
53992a56e4SMaxime Ripard 
54992a56e4SMaxime Ripard 	/* we were called to round the frequency, we can now return */
55992a56e4SMaxime Ripard 	if (n == NULL)
56992a56e4SMaxime Ripard 		return;
57992a56e4SMaxime Ripard 
58992a56e4SMaxime Ripard 	*m = calcm - 1;
59992a56e4SMaxime Ripard 	*p = calcp;
60992a56e4SMaxime Ripard }
61992a56e4SMaxime Ripard 
62992a56e4SMaxime Ripard /* user manual says "n" but it's really "p" */
63992a56e4SMaxime Ripard static struct clk_factors_config sun4i_a10_mod0_config = {
64992a56e4SMaxime Ripard 	.mshift = 0,
65992a56e4SMaxime Ripard 	.mwidth = 4,
66992a56e4SMaxime Ripard 	.pshift = 16,
67992a56e4SMaxime Ripard 	.pwidth = 2,
68992a56e4SMaxime Ripard };
69992a56e4SMaxime Ripard 
70992a56e4SMaxime Ripard static const struct factors_data sun4i_a10_mod0_data __initconst = {
71992a56e4SMaxime Ripard 	.enable = 31,
72992a56e4SMaxime Ripard 	.mux = 24,
73*e94f8cb3SChen-Yu Tsai 	.muxmask = BIT(1) | BIT(0),
74992a56e4SMaxime Ripard 	.table = &sun4i_a10_mod0_config,
75992a56e4SMaxime Ripard 	.getter = sun4i_a10_get_mod0_factors,
76992a56e4SMaxime Ripard };
77992a56e4SMaxime Ripard 
78992a56e4SMaxime Ripard static DEFINE_SPINLOCK(sun4i_a10_mod0_lock);
79992a56e4SMaxime Ripard 
80992a56e4SMaxime Ripard static void __init sun4i_a10_mod0_setup(struct device_node *node)
81992a56e4SMaxime Ripard {
82992a56e4SMaxime Ripard 	sunxi_factors_register(node, &sun4i_a10_mod0_data, &sun4i_a10_mod0_lock);
83992a56e4SMaxime Ripard }
84992a56e4SMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk", sun4i_a10_mod0_setup);
85eaa18f5dSMaxime Ripard 
86eaa18f5dSMaxime Ripard static DEFINE_SPINLOCK(sun5i_a13_mbus_lock);
87eaa18f5dSMaxime Ripard 
88eaa18f5dSMaxime Ripard static void __init sun5i_a13_mbus_setup(struct device_node *node)
89eaa18f5dSMaxime Ripard {
90eaa18f5dSMaxime Ripard 	struct clk *mbus = sunxi_factors_register(node, &sun4i_a10_mod0_data, &sun5i_a13_mbus_lock);
91eaa18f5dSMaxime Ripard 
92eaa18f5dSMaxime Ripard 	/* The MBUS clocks needs to be always enabled */
93eaa18f5dSMaxime Ripard 	__clk_get(mbus);
94eaa18f5dSMaxime Ripard 	clk_prepare_enable(mbus);
95eaa18f5dSMaxime Ripard }
96eaa18f5dSMaxime Ripard CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup);
9737e1041fSMaxime Ripard 
9837e1041fSMaxime Ripard struct mmc_phase_data {
9937e1041fSMaxime Ripard 	u8	offset;
10037e1041fSMaxime Ripard };
10137e1041fSMaxime Ripard 
10237e1041fSMaxime Ripard struct mmc_phase {
10337e1041fSMaxime Ripard 	struct clk_hw		hw;
10437e1041fSMaxime Ripard 	void __iomem		*reg;
10537e1041fSMaxime Ripard 	struct mmc_phase_data	*data;
10637e1041fSMaxime Ripard 	spinlock_t		*lock;
10737e1041fSMaxime Ripard };
10837e1041fSMaxime Ripard 
10937e1041fSMaxime Ripard #define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw)
11037e1041fSMaxime Ripard 
11137e1041fSMaxime Ripard static int mmc_get_phase(struct clk_hw *hw)
11237e1041fSMaxime Ripard {
11337e1041fSMaxime Ripard 	struct clk *mmc, *mmc_parent, *clk = hw->clk;
11437e1041fSMaxime Ripard 	struct mmc_phase *phase = to_mmc_phase(hw);
11537e1041fSMaxime Ripard 	unsigned int mmc_rate, mmc_parent_rate;
11637e1041fSMaxime Ripard 	u16 step, mmc_div;
11737e1041fSMaxime Ripard 	u32 value;
11837e1041fSMaxime Ripard 	u8 delay;
11937e1041fSMaxime Ripard 
12037e1041fSMaxime Ripard 	value = readl(phase->reg);
12137e1041fSMaxime Ripard 	delay = (value >> phase->data->offset) & 0x3;
12237e1041fSMaxime Ripard 
12337e1041fSMaxime Ripard 	if (!delay)
12437e1041fSMaxime Ripard 		return 180;
12537e1041fSMaxime Ripard 
12637e1041fSMaxime Ripard 	/* Get the main MMC clock */
12737e1041fSMaxime Ripard 	mmc = clk_get_parent(clk);
12837e1041fSMaxime Ripard 	if (!mmc)
12937e1041fSMaxime Ripard 		return -EINVAL;
13037e1041fSMaxime Ripard 
13137e1041fSMaxime Ripard 	/* And its rate */
13237e1041fSMaxime Ripard 	mmc_rate = clk_get_rate(mmc);
13337e1041fSMaxime Ripard 	if (!mmc_rate)
13437e1041fSMaxime Ripard 		return -EINVAL;
13537e1041fSMaxime Ripard 
13637e1041fSMaxime Ripard 	/* Now, get the MMC parent (most likely some PLL) */
13737e1041fSMaxime Ripard 	mmc_parent = clk_get_parent(mmc);
13837e1041fSMaxime Ripard 	if (!mmc_parent)
13937e1041fSMaxime Ripard 		return -EINVAL;
14037e1041fSMaxime Ripard 
14137e1041fSMaxime Ripard 	/* And its rate */
14237e1041fSMaxime Ripard 	mmc_parent_rate = clk_get_rate(mmc_parent);
14337e1041fSMaxime Ripard 	if (!mmc_parent_rate)
14437e1041fSMaxime Ripard 		return -EINVAL;
14537e1041fSMaxime Ripard 
14637e1041fSMaxime Ripard 	/* Get MMC clock divider */
14737e1041fSMaxime Ripard 	mmc_div = mmc_parent_rate / mmc_rate;
14837e1041fSMaxime Ripard 
14937e1041fSMaxime Ripard 	step = DIV_ROUND_CLOSEST(360, mmc_div);
15037e1041fSMaxime Ripard 	return delay * step;
15137e1041fSMaxime Ripard }
15237e1041fSMaxime Ripard 
15337e1041fSMaxime Ripard static int mmc_set_phase(struct clk_hw *hw, int degrees)
15437e1041fSMaxime Ripard {
15537e1041fSMaxime Ripard 	struct clk *mmc, *mmc_parent, *clk = hw->clk;
15637e1041fSMaxime Ripard 	struct mmc_phase *phase = to_mmc_phase(hw);
15737e1041fSMaxime Ripard 	unsigned int mmc_rate, mmc_parent_rate;
15837e1041fSMaxime Ripard 	unsigned long flags;
15937e1041fSMaxime Ripard 	u32 value;
16037e1041fSMaxime Ripard 	u8 delay;
16137e1041fSMaxime Ripard 
16237e1041fSMaxime Ripard 	/* Get the main MMC clock */
16337e1041fSMaxime Ripard 	mmc = clk_get_parent(clk);
16437e1041fSMaxime Ripard 	if (!mmc)
16537e1041fSMaxime Ripard 		return -EINVAL;
16637e1041fSMaxime Ripard 
16737e1041fSMaxime Ripard 	/* And its rate */
16837e1041fSMaxime Ripard 	mmc_rate = clk_get_rate(mmc);
16937e1041fSMaxime Ripard 	if (!mmc_rate)
17037e1041fSMaxime Ripard 		return -EINVAL;
17137e1041fSMaxime Ripard 
17237e1041fSMaxime Ripard 	/* Now, get the MMC parent (most likely some PLL) */
17337e1041fSMaxime Ripard 	mmc_parent = clk_get_parent(mmc);
17437e1041fSMaxime Ripard 	if (!mmc_parent)
17537e1041fSMaxime Ripard 		return -EINVAL;
17637e1041fSMaxime Ripard 
17737e1041fSMaxime Ripard 	/* And its rate */
17837e1041fSMaxime Ripard 	mmc_parent_rate = clk_get_rate(mmc_parent);
17937e1041fSMaxime Ripard 	if (!mmc_parent_rate)
18037e1041fSMaxime Ripard 		return -EINVAL;
18137e1041fSMaxime Ripard 
18237e1041fSMaxime Ripard 	if (degrees != 180) {
18337e1041fSMaxime Ripard 		u16 step, mmc_div;
18437e1041fSMaxime Ripard 
18537e1041fSMaxime Ripard 		/* Get MMC clock divider */
18637e1041fSMaxime Ripard 		mmc_div = mmc_parent_rate / mmc_rate;
18737e1041fSMaxime Ripard 
18837e1041fSMaxime Ripard 		/*
18937e1041fSMaxime Ripard 		 * We can only outphase the clocks by multiple of the
19037e1041fSMaxime Ripard 		 * PLL's period.
19137e1041fSMaxime Ripard 		 *
19237e1041fSMaxime Ripard 		 * Since the MMC clock in only a divider, and the
19337e1041fSMaxime Ripard 		 * formula to get the outphasing in degrees is deg =
19437e1041fSMaxime Ripard 		 * 360 * delta / period
19537e1041fSMaxime Ripard 		 *
19637e1041fSMaxime Ripard 		 * If we simplify this formula, we can see that the
19737e1041fSMaxime Ripard 		 * only thing that we're concerned about is the number
19837e1041fSMaxime Ripard 		 * of period we want to outphase our clock from, and
19937e1041fSMaxime Ripard 		 * the divider set by the MMC clock.
20037e1041fSMaxime Ripard 		 */
20137e1041fSMaxime Ripard 		step = DIV_ROUND_CLOSEST(360, mmc_div);
20237e1041fSMaxime Ripard 		delay = DIV_ROUND_CLOSEST(degrees, step);
20337e1041fSMaxime Ripard 	} else {
20437e1041fSMaxime Ripard 		delay = 0;
20537e1041fSMaxime Ripard 	}
20637e1041fSMaxime Ripard 
20737e1041fSMaxime Ripard 	spin_lock_irqsave(phase->lock, flags);
20837e1041fSMaxime Ripard 	value = readl(phase->reg);
20937e1041fSMaxime Ripard 	value &= ~GENMASK(phase->data->offset + 3, phase->data->offset);
21037e1041fSMaxime Ripard 	value |= delay << phase->data->offset;
21137e1041fSMaxime Ripard 	writel(value, phase->reg);
21237e1041fSMaxime Ripard 	spin_unlock_irqrestore(phase->lock, flags);
21337e1041fSMaxime Ripard 
21437e1041fSMaxime Ripard 	return 0;
21537e1041fSMaxime Ripard }
21637e1041fSMaxime Ripard 
21737e1041fSMaxime Ripard static const struct clk_ops mmc_clk_ops = {
21837e1041fSMaxime Ripard 	.get_phase	= mmc_get_phase,
21937e1041fSMaxime Ripard 	.set_phase	= mmc_set_phase,
22037e1041fSMaxime Ripard };
22137e1041fSMaxime Ripard 
22237e1041fSMaxime Ripard static void __init sun4i_a10_mmc_phase_setup(struct device_node *node,
22337e1041fSMaxime Ripard 					     struct mmc_phase_data *data)
22437e1041fSMaxime Ripard {
22537e1041fSMaxime Ripard 	const char *parent_names[1] = { of_clk_get_parent_name(node, 0) };
22637e1041fSMaxime Ripard 	struct clk_init_data init = {
22737e1041fSMaxime Ripard 		.num_parents	= 1,
22837e1041fSMaxime Ripard 		.parent_names	= parent_names,
22937e1041fSMaxime Ripard 		.ops		= &mmc_clk_ops,
23037e1041fSMaxime Ripard 	};
23137e1041fSMaxime Ripard 
23237e1041fSMaxime Ripard 	struct mmc_phase *phase;
23337e1041fSMaxime Ripard 	struct clk *clk;
23437e1041fSMaxime Ripard 
23537e1041fSMaxime Ripard 	phase = kmalloc(sizeof(*phase), GFP_KERNEL);
23637e1041fSMaxime Ripard 	if (!phase)
23737e1041fSMaxime Ripard 		return;
23837e1041fSMaxime Ripard 
23937e1041fSMaxime Ripard 	phase->hw.init = &init;
24037e1041fSMaxime Ripard 
24137e1041fSMaxime Ripard 	phase->reg = of_iomap(node, 0);
24237e1041fSMaxime Ripard 	if (!phase->reg)
24337e1041fSMaxime Ripard 		goto err_free;
24437e1041fSMaxime Ripard 
24537e1041fSMaxime Ripard 	phase->data = data;
24637e1041fSMaxime Ripard 	phase->lock = &sun4i_a10_mod0_lock;
24737e1041fSMaxime Ripard 
24837e1041fSMaxime Ripard 	if (of_property_read_string(node, "clock-output-names", &init.name))
24937e1041fSMaxime Ripard 		init.name = node->name;
25037e1041fSMaxime Ripard 
25137e1041fSMaxime Ripard 	clk = clk_register(NULL, &phase->hw);
25237e1041fSMaxime Ripard 	if (IS_ERR(clk))
25337e1041fSMaxime Ripard 		goto err_unmap;
25437e1041fSMaxime Ripard 
25537e1041fSMaxime Ripard 	of_clk_add_provider(node, of_clk_src_simple_get, clk);
25637e1041fSMaxime Ripard 
25737e1041fSMaxime Ripard 	return;
25837e1041fSMaxime Ripard 
25937e1041fSMaxime Ripard err_unmap:
26037e1041fSMaxime Ripard 	iounmap(phase->reg);
26137e1041fSMaxime Ripard err_free:
26237e1041fSMaxime Ripard 	kfree(phase);
26337e1041fSMaxime Ripard }
26437e1041fSMaxime Ripard 
26537e1041fSMaxime Ripard 
26637e1041fSMaxime Ripard static struct mmc_phase_data mmc_output_clk = {
26737e1041fSMaxime Ripard 	.offset	= 8,
26837e1041fSMaxime Ripard };
26937e1041fSMaxime Ripard 
27037e1041fSMaxime Ripard static struct mmc_phase_data mmc_sample_clk = {
27137e1041fSMaxime Ripard 	.offset	= 20,
27237e1041fSMaxime Ripard };
27337e1041fSMaxime Ripard 
27437e1041fSMaxime Ripard static void __init sun4i_a10_mmc_output_setup(struct device_node *node)
27537e1041fSMaxime Ripard {
27637e1041fSMaxime Ripard 	sun4i_a10_mmc_phase_setup(node, &mmc_output_clk);
27737e1041fSMaxime Ripard }
27837e1041fSMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mmc_output, "allwinner,sun4i-a10-mmc-output-clk", sun4i_a10_mmc_output_setup);
27937e1041fSMaxime Ripard 
28037e1041fSMaxime Ripard static void __init sun4i_a10_mmc_sample_setup(struct device_node *node)
28137e1041fSMaxime Ripard {
28237e1041fSMaxime Ripard 	sun4i_a10_mmc_phase_setup(node, &mmc_sample_clk);
28337e1041fSMaxime Ripard }
28437e1041fSMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mmc_sample, "allwinner,sun4i-a10-mmc-sample-clk", sun4i_a10_mmc_sample_setup);
285