1*c942fddfSThomas Gleixner // SPDX-License-Identifier: GPL-2.0-or-later 2992a56e4SMaxime Ripard /* 3992a56e4SMaxime Ripard * Copyright 2013 Emilio López 4992a56e4SMaxime Ripard * 5992a56e4SMaxime Ripard * Emilio López <emilio@elopez.com.ar> 6992a56e4SMaxime Ripard */ 7992a56e4SMaxime Ripard 89dfefe8cSStephen Boyd #include <linux/clk.h> 9992a56e4SMaxime Ripard #include <linux/clk-provider.h> 1062e59c4eSStephen Boyd #include <linux/io.h> 1137e1041fSMaxime Ripard #include <linux/of_address.h> 126ea3953dSHans de Goede #include <linux/platform_device.h> 139dfefe8cSStephen Boyd #include <linux/slab.h> 14992a56e4SMaxime Ripard 15992a56e4SMaxime Ripard #include "clk-factors.h" 16992a56e4SMaxime Ripard 17992a56e4SMaxime Ripard /** 1835b1fc2cSJulia Lawall * sun4i_a10_get_mod0_factors() - calculates m, n factors for MOD0-style clocks 19992a56e4SMaxime Ripard * MOD0 rate is calculated as follows 20992a56e4SMaxime Ripard * rate = (parent_rate >> p) / (m + 1); 21992a56e4SMaxime Ripard */ 22992a56e4SMaxime Ripard 23cfa63688SChen-Yu Tsai static void sun4i_a10_get_mod0_factors(struct factors_request *req) 24992a56e4SMaxime Ripard { 25992a56e4SMaxime Ripard u8 div, calcm, calcp; 26992a56e4SMaxime Ripard 27992a56e4SMaxime Ripard /* These clocks can only divide, so we will never be able to achieve 28992a56e4SMaxime Ripard * frequencies higher than the parent frequency */ 29cfa63688SChen-Yu Tsai if (req->rate > req->parent_rate) 30cfa63688SChen-Yu Tsai req->rate = req->parent_rate; 31992a56e4SMaxime Ripard 32cfa63688SChen-Yu Tsai div = DIV_ROUND_UP(req->parent_rate, req->rate); 33992a56e4SMaxime Ripard 34992a56e4SMaxime Ripard if (div < 16) 35992a56e4SMaxime Ripard calcp = 0; 36992a56e4SMaxime Ripard else if (div / 2 < 16) 37992a56e4SMaxime Ripard calcp = 1; 38992a56e4SMaxime Ripard else if (div / 4 < 16) 39992a56e4SMaxime Ripard calcp = 2; 40992a56e4SMaxime Ripard else 41992a56e4SMaxime Ripard calcp = 3; 42992a56e4SMaxime Ripard 43992a56e4SMaxime Ripard calcm = DIV_ROUND_UP(div, 1 << calcp); 44992a56e4SMaxime Ripard 45cfa63688SChen-Yu Tsai req->rate = (req->parent_rate >> calcp) / calcm; 46cfa63688SChen-Yu Tsai req->m = calcm - 1; 47cfa63688SChen-Yu Tsai req->p = calcp; 48992a56e4SMaxime Ripard } 49992a56e4SMaxime Ripard 50992a56e4SMaxime Ripard /* user manual says "n" but it's really "p" */ 51b3e919e0SChen-Yu Tsai static const struct clk_factors_config sun4i_a10_mod0_config = { 52992a56e4SMaxime Ripard .mshift = 0, 53992a56e4SMaxime Ripard .mwidth = 4, 54992a56e4SMaxime Ripard .pshift = 16, 55992a56e4SMaxime Ripard .pwidth = 2, 56992a56e4SMaxime Ripard }; 57992a56e4SMaxime Ripard 586ea3953dSHans de Goede static const struct factors_data sun4i_a10_mod0_data = { 59992a56e4SMaxime Ripard .enable = 31, 60992a56e4SMaxime Ripard .mux = 24, 61e94f8cb3SChen-Yu Tsai .muxmask = BIT(1) | BIT(0), 62992a56e4SMaxime Ripard .table = &sun4i_a10_mod0_config, 63992a56e4SMaxime Ripard .getter = sun4i_a10_get_mod0_factors, 64992a56e4SMaxime Ripard }; 65992a56e4SMaxime Ripard 66992a56e4SMaxime Ripard static DEFINE_SPINLOCK(sun4i_a10_mod0_lock); 67992a56e4SMaxime Ripard 68992a56e4SMaxime Ripard static void __init sun4i_a10_mod0_setup(struct device_node *node) 69992a56e4SMaxime Ripard { 707c74c220SHans de Goede void __iomem *reg; 717c74c220SHans de Goede 727c74c220SHans de Goede reg = of_iomap(node, 0); 737c74c220SHans de Goede if (!reg) { 746ea3953dSHans de Goede /* 756ea3953dSHans de Goede * This happens with mod0 clk nodes instantiated through 766ea3953dSHans de Goede * mfd, as those do not have their resources assigned at 776ea3953dSHans de Goede * CLK_OF_DECLARE time yet, so do not print an error. 786ea3953dSHans de Goede */ 797c74c220SHans de Goede return; 807c74c220SHans de Goede } 817c74c220SHans de Goede 827c74c220SHans de Goede sunxi_factors_register(node, &sun4i_a10_mod0_data, 837c74c220SHans de Goede &sun4i_a10_mod0_lock, reg); 84992a56e4SMaxime Ripard } 85cb1291c3SRicardo Ribalda Delgado CLK_OF_DECLARE_DRIVER(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk", 86cb1291c3SRicardo Ribalda Delgado sun4i_a10_mod0_setup); 87eaa18f5dSMaxime Ripard 886ea3953dSHans de Goede static int sun4i_a10_mod0_clk_probe(struct platform_device *pdev) 896ea3953dSHans de Goede { 906ea3953dSHans de Goede struct device_node *np = pdev->dev.of_node; 916ea3953dSHans de Goede struct resource *r; 926ea3953dSHans de Goede void __iomem *reg; 936ea3953dSHans de Goede 946ea3953dSHans de Goede if (!np) 956ea3953dSHans de Goede return -ENODEV; 966ea3953dSHans de Goede 976ea3953dSHans de Goede r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 986ea3953dSHans de Goede reg = devm_ioremap_resource(&pdev->dev, r); 996ea3953dSHans de Goede if (IS_ERR(reg)) 1006ea3953dSHans de Goede return PTR_ERR(reg); 1016ea3953dSHans de Goede 1026ea3953dSHans de Goede sunxi_factors_register(np, &sun4i_a10_mod0_data, 1036ea3953dSHans de Goede &sun4i_a10_mod0_lock, reg); 1046ea3953dSHans de Goede return 0; 1056ea3953dSHans de Goede } 1066ea3953dSHans de Goede 1076ea3953dSHans de Goede static const struct of_device_id sun4i_a10_mod0_clk_dt_ids[] = { 1086ea3953dSHans de Goede { .compatible = "allwinner,sun4i-a10-mod0-clk" }, 1096ea3953dSHans de Goede { /* sentinel */ } 1106ea3953dSHans de Goede }; 1116ea3953dSHans de Goede 1126ea3953dSHans de Goede static struct platform_driver sun4i_a10_mod0_clk_driver = { 1136ea3953dSHans de Goede .driver = { 1146ea3953dSHans de Goede .name = "sun4i-a10-mod0-clk", 1156ea3953dSHans de Goede .of_match_table = sun4i_a10_mod0_clk_dt_ids, 1166ea3953dSHans de Goede }, 1176ea3953dSHans de Goede .probe = sun4i_a10_mod0_clk_probe, 1186ea3953dSHans de Goede }; 11977459a0fSPaul Gortmaker builtin_platform_driver(sun4i_a10_mod0_clk_driver); 1206ea3953dSHans de Goede 12161af4d8dSChen-Yu Tsai static const struct factors_data sun9i_a80_mod0_data __initconst = { 12261af4d8dSChen-Yu Tsai .enable = 31, 12361af4d8dSChen-Yu Tsai .mux = 24, 12461af4d8dSChen-Yu Tsai .muxmask = BIT(3) | BIT(2) | BIT(1) | BIT(0), 12561af4d8dSChen-Yu Tsai .table = &sun4i_a10_mod0_config, 12661af4d8dSChen-Yu Tsai .getter = sun4i_a10_get_mod0_factors, 12761af4d8dSChen-Yu Tsai }; 12861af4d8dSChen-Yu Tsai 12961af4d8dSChen-Yu Tsai static void __init sun9i_a80_mod0_setup(struct device_node *node) 13061af4d8dSChen-Yu Tsai { 13161af4d8dSChen-Yu Tsai void __iomem *reg; 13261af4d8dSChen-Yu Tsai 13361af4d8dSChen-Yu Tsai reg = of_io_request_and_map(node, 0, of_node_full_name(node)); 13461af4d8dSChen-Yu Tsai if (IS_ERR(reg)) { 135e665f029SRob Herring pr_err("Could not get registers for mod0-clk: %pOFn\n", 136e665f029SRob Herring node); 13761af4d8dSChen-Yu Tsai return; 13861af4d8dSChen-Yu Tsai } 13961af4d8dSChen-Yu Tsai 14061af4d8dSChen-Yu Tsai sunxi_factors_register(node, &sun9i_a80_mod0_data, 14161af4d8dSChen-Yu Tsai &sun4i_a10_mod0_lock, reg); 14261af4d8dSChen-Yu Tsai } 14361af4d8dSChen-Yu Tsai CLK_OF_DECLARE(sun9i_a80_mod0, "allwinner,sun9i-a80-mod0-clk", sun9i_a80_mod0_setup); 14461af4d8dSChen-Yu Tsai 145eaa18f5dSMaxime Ripard static DEFINE_SPINLOCK(sun5i_a13_mbus_lock); 146eaa18f5dSMaxime Ripard 147eaa18f5dSMaxime Ripard static void __init sun5i_a13_mbus_setup(struct device_node *node) 148eaa18f5dSMaxime Ripard { 1497c74c220SHans de Goede void __iomem *reg; 1507c74c220SHans de Goede 1517c74c220SHans de Goede reg = of_iomap(node, 0); 1527c74c220SHans de Goede if (!reg) { 1537c74c220SHans de Goede pr_err("Could not get registers for a13-mbus-clk\n"); 1547c74c220SHans de Goede return; 1557c74c220SHans de Goede } 1567c74c220SHans de Goede 157eaa18f5dSMaxime Ripard /* The MBUS clocks needs to be always enabled */ 1589919d44fSStephen Boyd sunxi_factors_register_critical(node, &sun4i_a10_mod0_data, 1599919d44fSStephen Boyd &sun5i_a13_mbus_lock, reg); 160eaa18f5dSMaxime Ripard } 161eaa18f5dSMaxime Ripard CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup); 16237e1041fSMaxime Ripard 16337e1041fSMaxime Ripard struct mmc_phase { 16437e1041fSMaxime Ripard struct clk_hw hw; 1656b0b8ccfSMaxime Ripard u8 offset; 16637e1041fSMaxime Ripard void __iomem *reg; 16737e1041fSMaxime Ripard spinlock_t *lock; 16837e1041fSMaxime Ripard }; 16937e1041fSMaxime Ripard 17037e1041fSMaxime Ripard #define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw) 17137e1041fSMaxime Ripard 17237e1041fSMaxime Ripard static int mmc_get_phase(struct clk_hw *hw) 17337e1041fSMaxime Ripard { 17437e1041fSMaxime Ripard struct clk *mmc, *mmc_parent, *clk = hw->clk; 17537e1041fSMaxime Ripard struct mmc_phase *phase = to_mmc_phase(hw); 17637e1041fSMaxime Ripard unsigned int mmc_rate, mmc_parent_rate; 17737e1041fSMaxime Ripard u16 step, mmc_div; 17837e1041fSMaxime Ripard u32 value; 17937e1041fSMaxime Ripard u8 delay; 18037e1041fSMaxime Ripard 18137e1041fSMaxime Ripard value = readl(phase->reg); 1826b0b8ccfSMaxime Ripard delay = (value >> phase->offset) & 0x3; 18337e1041fSMaxime Ripard 18437e1041fSMaxime Ripard if (!delay) 18537e1041fSMaxime Ripard return 180; 18637e1041fSMaxime Ripard 18737e1041fSMaxime Ripard /* Get the main MMC clock */ 18837e1041fSMaxime Ripard mmc = clk_get_parent(clk); 18937e1041fSMaxime Ripard if (!mmc) 19037e1041fSMaxime Ripard return -EINVAL; 19137e1041fSMaxime Ripard 19237e1041fSMaxime Ripard /* And its rate */ 19337e1041fSMaxime Ripard mmc_rate = clk_get_rate(mmc); 19437e1041fSMaxime Ripard if (!mmc_rate) 19537e1041fSMaxime Ripard return -EINVAL; 19637e1041fSMaxime Ripard 19737e1041fSMaxime Ripard /* Now, get the MMC parent (most likely some PLL) */ 19837e1041fSMaxime Ripard mmc_parent = clk_get_parent(mmc); 19937e1041fSMaxime Ripard if (!mmc_parent) 20037e1041fSMaxime Ripard return -EINVAL; 20137e1041fSMaxime Ripard 20237e1041fSMaxime Ripard /* And its rate */ 20337e1041fSMaxime Ripard mmc_parent_rate = clk_get_rate(mmc_parent); 20437e1041fSMaxime Ripard if (!mmc_parent_rate) 20537e1041fSMaxime Ripard return -EINVAL; 20637e1041fSMaxime Ripard 20737e1041fSMaxime Ripard /* Get MMC clock divider */ 20837e1041fSMaxime Ripard mmc_div = mmc_parent_rate / mmc_rate; 20937e1041fSMaxime Ripard 21037e1041fSMaxime Ripard step = DIV_ROUND_CLOSEST(360, mmc_div); 21137e1041fSMaxime Ripard return delay * step; 21237e1041fSMaxime Ripard } 21337e1041fSMaxime Ripard 21437e1041fSMaxime Ripard static int mmc_set_phase(struct clk_hw *hw, int degrees) 21537e1041fSMaxime Ripard { 21637e1041fSMaxime Ripard struct clk *mmc, *mmc_parent, *clk = hw->clk; 21737e1041fSMaxime Ripard struct mmc_phase *phase = to_mmc_phase(hw); 21837e1041fSMaxime Ripard unsigned int mmc_rate, mmc_parent_rate; 21937e1041fSMaxime Ripard unsigned long flags; 22037e1041fSMaxime Ripard u32 value; 22137e1041fSMaxime Ripard u8 delay; 22237e1041fSMaxime Ripard 22337e1041fSMaxime Ripard /* Get the main MMC clock */ 22437e1041fSMaxime Ripard mmc = clk_get_parent(clk); 22537e1041fSMaxime Ripard if (!mmc) 22637e1041fSMaxime Ripard return -EINVAL; 22737e1041fSMaxime Ripard 22837e1041fSMaxime Ripard /* And its rate */ 22937e1041fSMaxime Ripard mmc_rate = clk_get_rate(mmc); 23037e1041fSMaxime Ripard if (!mmc_rate) 23137e1041fSMaxime Ripard return -EINVAL; 23237e1041fSMaxime Ripard 23337e1041fSMaxime Ripard /* Now, get the MMC parent (most likely some PLL) */ 23437e1041fSMaxime Ripard mmc_parent = clk_get_parent(mmc); 23537e1041fSMaxime Ripard if (!mmc_parent) 23637e1041fSMaxime Ripard return -EINVAL; 23737e1041fSMaxime Ripard 23837e1041fSMaxime Ripard /* And its rate */ 23937e1041fSMaxime Ripard mmc_parent_rate = clk_get_rate(mmc_parent); 24037e1041fSMaxime Ripard if (!mmc_parent_rate) 24137e1041fSMaxime Ripard return -EINVAL; 24237e1041fSMaxime Ripard 24337e1041fSMaxime Ripard if (degrees != 180) { 24437e1041fSMaxime Ripard u16 step, mmc_div; 24537e1041fSMaxime Ripard 24637e1041fSMaxime Ripard /* Get MMC clock divider */ 24737e1041fSMaxime Ripard mmc_div = mmc_parent_rate / mmc_rate; 24837e1041fSMaxime Ripard 24937e1041fSMaxime Ripard /* 25037e1041fSMaxime Ripard * We can only outphase the clocks by multiple of the 25137e1041fSMaxime Ripard * PLL's period. 25237e1041fSMaxime Ripard * 25337e1041fSMaxime Ripard * Since the MMC clock in only a divider, and the 25437e1041fSMaxime Ripard * formula to get the outphasing in degrees is deg = 25537e1041fSMaxime Ripard * 360 * delta / period 25637e1041fSMaxime Ripard * 25737e1041fSMaxime Ripard * If we simplify this formula, we can see that the 25837e1041fSMaxime Ripard * only thing that we're concerned about is the number 25937e1041fSMaxime Ripard * of period we want to outphase our clock from, and 26037e1041fSMaxime Ripard * the divider set by the MMC clock. 26137e1041fSMaxime Ripard */ 26237e1041fSMaxime Ripard step = DIV_ROUND_CLOSEST(360, mmc_div); 26337e1041fSMaxime Ripard delay = DIV_ROUND_CLOSEST(degrees, step); 26437e1041fSMaxime Ripard } else { 26537e1041fSMaxime Ripard delay = 0; 26637e1041fSMaxime Ripard } 26737e1041fSMaxime Ripard 26837e1041fSMaxime Ripard spin_lock_irqsave(phase->lock, flags); 26937e1041fSMaxime Ripard value = readl(phase->reg); 2706b0b8ccfSMaxime Ripard value &= ~GENMASK(phase->offset + 3, phase->offset); 2716b0b8ccfSMaxime Ripard value |= delay << phase->offset; 27237e1041fSMaxime Ripard writel(value, phase->reg); 27337e1041fSMaxime Ripard spin_unlock_irqrestore(phase->lock, flags); 27437e1041fSMaxime Ripard 27537e1041fSMaxime Ripard return 0; 27637e1041fSMaxime Ripard } 27737e1041fSMaxime Ripard 27837e1041fSMaxime Ripard static const struct clk_ops mmc_clk_ops = { 27937e1041fSMaxime Ripard .get_phase = mmc_get_phase, 28037e1041fSMaxime Ripard .set_phase = mmc_set_phase, 28137e1041fSMaxime Ripard }; 28237e1041fSMaxime Ripard 283eb378df7SChen-Yu Tsai /* 284eb378df7SChen-Yu Tsai * sunxi_mmc_setup - Common setup function for mmc module clocks 285eb378df7SChen-Yu Tsai * 286eb378df7SChen-Yu Tsai * The only difference between module clocks on different platforms is the 287eb378df7SChen-Yu Tsai * width of the mux register bits and the valid values, which are passed in 288eb378df7SChen-Yu Tsai * through struct factors_data. The phase clocks parts are identical. 289eb378df7SChen-Yu Tsai */ 290eb378df7SChen-Yu Tsai static void __init sunxi_mmc_setup(struct device_node *node, 291eb378df7SChen-Yu Tsai const struct factors_data *data, 292eb378df7SChen-Yu Tsai spinlock_t *lock) 29337e1041fSMaxime Ripard { 2946b0b8ccfSMaxime Ripard struct clk_onecell_data *clk_data; 2956b0b8ccfSMaxime Ripard const char *parent; 2966b0b8ccfSMaxime Ripard void __iomem *reg; 2976b0b8ccfSMaxime Ripard int i; 2986b0b8ccfSMaxime Ripard 2996b0b8ccfSMaxime Ripard reg = of_io_request_and_map(node, 0, of_node_full_name(node)); 3006b0b8ccfSMaxime Ripard if (IS_ERR(reg)) { 301e665f029SRob Herring pr_err("Couldn't map the %pOFn clock registers\n", node); 3026b0b8ccfSMaxime Ripard return; 3036b0b8ccfSMaxime Ripard } 3046b0b8ccfSMaxime Ripard 3056b0b8ccfSMaxime Ripard clk_data = kmalloc(sizeof(*clk_data), GFP_KERNEL); 3066b0b8ccfSMaxime Ripard if (!clk_data) 3076b0b8ccfSMaxime Ripard return; 3086b0b8ccfSMaxime Ripard 3096b0b8ccfSMaxime Ripard clk_data->clks = kcalloc(3, sizeof(*clk_data->clks), GFP_KERNEL); 3106b0b8ccfSMaxime Ripard if (!clk_data->clks) 3116b0b8ccfSMaxime Ripard goto err_free_data; 3126b0b8ccfSMaxime Ripard 3136b0b8ccfSMaxime Ripard clk_data->clk_num = 3; 314eb378df7SChen-Yu Tsai clk_data->clks[0] = sunxi_factors_register(node, data, lock, reg); 3156b0b8ccfSMaxime Ripard if (!clk_data->clks[0]) 3166b0b8ccfSMaxime Ripard goto err_free_clks; 3176b0b8ccfSMaxime Ripard 3186b0b8ccfSMaxime Ripard parent = __clk_get_name(clk_data->clks[0]); 3196b0b8ccfSMaxime Ripard 3206b0b8ccfSMaxime Ripard for (i = 1; i < 3; i++) { 32137e1041fSMaxime Ripard struct clk_init_data init = { 32237e1041fSMaxime Ripard .num_parents = 1, 3236b0b8ccfSMaxime Ripard .parent_names = &parent, 32437e1041fSMaxime Ripard .ops = &mmc_clk_ops, 32537e1041fSMaxime Ripard }; 32637e1041fSMaxime Ripard struct mmc_phase *phase; 32737e1041fSMaxime Ripard 32837e1041fSMaxime Ripard phase = kmalloc(sizeof(*phase), GFP_KERNEL); 32937e1041fSMaxime Ripard if (!phase) 3306b0b8ccfSMaxime Ripard continue; 33137e1041fSMaxime Ripard 33237e1041fSMaxime Ripard phase->hw.init = &init; 3336b0b8ccfSMaxime Ripard phase->reg = reg; 334eb378df7SChen-Yu Tsai phase->lock = lock; 33537e1041fSMaxime Ripard 3366b0b8ccfSMaxime Ripard if (i == 1) 3376b0b8ccfSMaxime Ripard phase->offset = 8; 3386b0b8ccfSMaxime Ripard else 3396b0b8ccfSMaxime Ripard phase->offset = 20; 34037e1041fSMaxime Ripard 3416b0b8ccfSMaxime Ripard if (of_property_read_string_index(node, "clock-output-names", 3426b0b8ccfSMaxime Ripard i, &init.name)) 34337e1041fSMaxime Ripard init.name = node->name; 34437e1041fSMaxime Ripard 3456b0b8ccfSMaxime Ripard clk_data->clks[i] = clk_register(NULL, &phase->hw); 3466b0b8ccfSMaxime Ripard if (IS_ERR(clk_data->clks[i])) { 3476b0b8ccfSMaxime Ripard kfree(phase); 3486b0b8ccfSMaxime Ripard continue; 3496b0b8ccfSMaxime Ripard } 3506b0b8ccfSMaxime Ripard } 35137e1041fSMaxime Ripard 3526b0b8ccfSMaxime Ripard of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); 35337e1041fSMaxime Ripard 35437e1041fSMaxime Ripard return; 35537e1041fSMaxime Ripard 3566b0b8ccfSMaxime Ripard err_free_clks: 3576b0b8ccfSMaxime Ripard kfree(clk_data->clks); 3586b0b8ccfSMaxime Ripard err_free_data: 3596b0b8ccfSMaxime Ripard kfree(clk_data); 36037e1041fSMaxime Ripard } 361eb378df7SChen-Yu Tsai 362eb378df7SChen-Yu Tsai static DEFINE_SPINLOCK(sun4i_a10_mmc_lock); 363eb378df7SChen-Yu Tsai 364eb378df7SChen-Yu Tsai static void __init sun4i_a10_mmc_setup(struct device_node *node) 365eb378df7SChen-Yu Tsai { 366eb378df7SChen-Yu Tsai sunxi_mmc_setup(node, &sun4i_a10_mod0_data, &sun4i_a10_mmc_lock); 367eb378df7SChen-Yu Tsai } 3686b0b8ccfSMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mmc, "allwinner,sun4i-a10-mmc-clk", sun4i_a10_mmc_setup); 36961af4d8dSChen-Yu Tsai 37061af4d8dSChen-Yu Tsai static DEFINE_SPINLOCK(sun9i_a80_mmc_lock); 37161af4d8dSChen-Yu Tsai 37261af4d8dSChen-Yu Tsai static void __init sun9i_a80_mmc_setup(struct device_node *node) 37361af4d8dSChen-Yu Tsai { 37461af4d8dSChen-Yu Tsai sunxi_mmc_setup(node, &sun9i_a80_mod0_data, &sun9i_a80_mmc_lock); 37561af4d8dSChen-Yu Tsai } 37661af4d8dSChen-Yu Tsai CLK_OF_DECLARE(sun9i_a80_mmc, "allwinner,sun9i-a80-mmc-clk", sun9i_a80_mmc_setup); 377