1992a56e4SMaxime Ripard /* 2992a56e4SMaxime Ripard * Copyright 2013 Emilio López 3992a56e4SMaxime Ripard * 4992a56e4SMaxime Ripard * Emilio López <emilio@elopez.com.ar> 5992a56e4SMaxime Ripard * 6992a56e4SMaxime Ripard * This program is free software; you can redistribute it and/or modify 7992a56e4SMaxime Ripard * it under the terms of the GNU General Public License as published by 8992a56e4SMaxime Ripard * the Free Software Foundation; either version 2 of the License, or 9992a56e4SMaxime Ripard * (at your option) any later version. 10992a56e4SMaxime Ripard * 11992a56e4SMaxime Ripard * This program is distributed in the hope that it will be useful, 12992a56e4SMaxime Ripard * but WITHOUT ANY WARRANTY; without even the implied warranty of 13992a56e4SMaxime Ripard * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14992a56e4SMaxime Ripard * GNU General Public License for more details. 15992a56e4SMaxime Ripard */ 16992a56e4SMaxime Ripard 17992a56e4SMaxime Ripard #include <linux/clk-provider.h> 18992a56e4SMaxime Ripard #include <linux/clkdev.h> 1937e1041fSMaxime Ripard #include <linux/of_address.h> 206ea3953dSHans de Goede #include <linux/platform_device.h> 21992a56e4SMaxime Ripard 22992a56e4SMaxime Ripard #include "clk-factors.h" 23992a56e4SMaxime Ripard 24992a56e4SMaxime Ripard /** 25992a56e4SMaxime Ripard * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks 26992a56e4SMaxime Ripard * MOD0 rate is calculated as follows 27992a56e4SMaxime Ripard * rate = (parent_rate >> p) / (m + 1); 28992a56e4SMaxime Ripard */ 29992a56e4SMaxime Ripard 30992a56e4SMaxime Ripard static void sun4i_a10_get_mod0_factors(u32 *freq, u32 parent_rate, 31992a56e4SMaxime Ripard u8 *n, u8 *k, u8 *m, u8 *p) 32992a56e4SMaxime Ripard { 33992a56e4SMaxime Ripard u8 div, calcm, calcp; 34992a56e4SMaxime Ripard 35992a56e4SMaxime Ripard /* These clocks can only divide, so we will never be able to achieve 36992a56e4SMaxime Ripard * frequencies higher than the parent frequency */ 37992a56e4SMaxime Ripard if (*freq > parent_rate) 38992a56e4SMaxime Ripard *freq = parent_rate; 39992a56e4SMaxime Ripard 40992a56e4SMaxime Ripard div = DIV_ROUND_UP(parent_rate, *freq); 41992a56e4SMaxime Ripard 42992a56e4SMaxime Ripard if (div < 16) 43992a56e4SMaxime Ripard calcp = 0; 44992a56e4SMaxime Ripard else if (div / 2 < 16) 45992a56e4SMaxime Ripard calcp = 1; 46992a56e4SMaxime Ripard else if (div / 4 < 16) 47992a56e4SMaxime Ripard calcp = 2; 48992a56e4SMaxime Ripard else 49992a56e4SMaxime Ripard calcp = 3; 50992a56e4SMaxime Ripard 51992a56e4SMaxime Ripard calcm = DIV_ROUND_UP(div, 1 << calcp); 52992a56e4SMaxime Ripard 53992a56e4SMaxime Ripard *freq = (parent_rate >> calcp) / calcm; 54992a56e4SMaxime Ripard 55992a56e4SMaxime Ripard /* we were called to round the frequency, we can now return */ 56992a56e4SMaxime Ripard if (n == NULL) 57992a56e4SMaxime Ripard return; 58992a56e4SMaxime Ripard 59992a56e4SMaxime Ripard *m = calcm - 1; 60992a56e4SMaxime Ripard *p = calcp; 61992a56e4SMaxime Ripard } 62992a56e4SMaxime Ripard 63992a56e4SMaxime Ripard /* user manual says "n" but it's really "p" */ 64992a56e4SMaxime Ripard static struct clk_factors_config sun4i_a10_mod0_config = { 65992a56e4SMaxime Ripard .mshift = 0, 66992a56e4SMaxime Ripard .mwidth = 4, 67992a56e4SMaxime Ripard .pshift = 16, 68992a56e4SMaxime Ripard .pwidth = 2, 69992a56e4SMaxime Ripard }; 70992a56e4SMaxime Ripard 716ea3953dSHans de Goede static const struct factors_data sun4i_a10_mod0_data = { 72992a56e4SMaxime Ripard .enable = 31, 73992a56e4SMaxime Ripard .mux = 24, 74e94f8cb3SChen-Yu Tsai .muxmask = BIT(1) | BIT(0), 75992a56e4SMaxime Ripard .table = &sun4i_a10_mod0_config, 76992a56e4SMaxime Ripard .getter = sun4i_a10_get_mod0_factors, 77992a56e4SMaxime Ripard }; 78992a56e4SMaxime Ripard 79992a56e4SMaxime Ripard static DEFINE_SPINLOCK(sun4i_a10_mod0_lock); 80992a56e4SMaxime Ripard 81992a56e4SMaxime Ripard static void __init sun4i_a10_mod0_setup(struct device_node *node) 82992a56e4SMaxime Ripard { 837c74c220SHans de Goede void __iomem *reg; 847c74c220SHans de Goede 857c74c220SHans de Goede reg = of_iomap(node, 0); 867c74c220SHans de Goede if (!reg) { 876ea3953dSHans de Goede /* 886ea3953dSHans de Goede * This happens with mod0 clk nodes instantiated through 896ea3953dSHans de Goede * mfd, as those do not have their resources assigned at 906ea3953dSHans de Goede * CLK_OF_DECLARE time yet, so do not print an error. 916ea3953dSHans de Goede */ 927c74c220SHans de Goede return; 937c74c220SHans de Goede } 947c74c220SHans de Goede 957c74c220SHans de Goede sunxi_factors_register(node, &sun4i_a10_mod0_data, 967c74c220SHans de Goede &sun4i_a10_mod0_lock, reg); 97992a56e4SMaxime Ripard } 98992a56e4SMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk", sun4i_a10_mod0_setup); 99eaa18f5dSMaxime Ripard 1006ea3953dSHans de Goede static int sun4i_a10_mod0_clk_probe(struct platform_device *pdev) 1016ea3953dSHans de Goede { 1026ea3953dSHans de Goede struct device_node *np = pdev->dev.of_node; 1036ea3953dSHans de Goede struct resource *r; 1046ea3953dSHans de Goede void __iomem *reg; 1056ea3953dSHans de Goede 1066ea3953dSHans de Goede if (!np) 1076ea3953dSHans de Goede return -ENODEV; 1086ea3953dSHans de Goede 1096ea3953dSHans de Goede r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1106ea3953dSHans de Goede reg = devm_ioremap_resource(&pdev->dev, r); 1116ea3953dSHans de Goede if (IS_ERR(reg)) 1126ea3953dSHans de Goede return PTR_ERR(reg); 1136ea3953dSHans de Goede 1146ea3953dSHans de Goede sunxi_factors_register(np, &sun4i_a10_mod0_data, 1156ea3953dSHans de Goede &sun4i_a10_mod0_lock, reg); 1166ea3953dSHans de Goede return 0; 1176ea3953dSHans de Goede } 1186ea3953dSHans de Goede 1196ea3953dSHans de Goede static const struct of_device_id sun4i_a10_mod0_clk_dt_ids[] = { 1206ea3953dSHans de Goede { .compatible = "allwinner,sun4i-a10-mod0-clk" }, 1216ea3953dSHans de Goede { /* sentinel */ } 1226ea3953dSHans de Goede }; 1236ea3953dSHans de Goede 1246ea3953dSHans de Goede static struct platform_driver sun4i_a10_mod0_clk_driver = { 1256ea3953dSHans de Goede .driver = { 1266ea3953dSHans de Goede .name = "sun4i-a10-mod0-clk", 1276ea3953dSHans de Goede .of_match_table = sun4i_a10_mod0_clk_dt_ids, 1286ea3953dSHans de Goede }, 1296ea3953dSHans de Goede .probe = sun4i_a10_mod0_clk_probe, 1306ea3953dSHans de Goede }; 131*77459a0fSPaul Gortmaker builtin_platform_driver(sun4i_a10_mod0_clk_driver); 1326ea3953dSHans de Goede 13361af4d8dSChen-Yu Tsai static const struct factors_data sun9i_a80_mod0_data __initconst = { 13461af4d8dSChen-Yu Tsai .enable = 31, 13561af4d8dSChen-Yu Tsai .mux = 24, 13661af4d8dSChen-Yu Tsai .muxmask = BIT(3) | BIT(2) | BIT(1) | BIT(0), 13761af4d8dSChen-Yu Tsai .table = &sun4i_a10_mod0_config, 13861af4d8dSChen-Yu Tsai .getter = sun4i_a10_get_mod0_factors, 13961af4d8dSChen-Yu Tsai }; 14061af4d8dSChen-Yu Tsai 14161af4d8dSChen-Yu Tsai static void __init sun9i_a80_mod0_setup(struct device_node *node) 14261af4d8dSChen-Yu Tsai { 14361af4d8dSChen-Yu Tsai void __iomem *reg; 14461af4d8dSChen-Yu Tsai 14561af4d8dSChen-Yu Tsai reg = of_io_request_and_map(node, 0, of_node_full_name(node)); 14661af4d8dSChen-Yu Tsai if (IS_ERR(reg)) { 14761af4d8dSChen-Yu Tsai pr_err("Could not get registers for mod0-clk: %s\n", 14861af4d8dSChen-Yu Tsai node->name); 14961af4d8dSChen-Yu Tsai return; 15061af4d8dSChen-Yu Tsai } 15161af4d8dSChen-Yu Tsai 15261af4d8dSChen-Yu Tsai sunxi_factors_register(node, &sun9i_a80_mod0_data, 15361af4d8dSChen-Yu Tsai &sun4i_a10_mod0_lock, reg); 15461af4d8dSChen-Yu Tsai } 15561af4d8dSChen-Yu Tsai CLK_OF_DECLARE(sun9i_a80_mod0, "allwinner,sun9i-a80-mod0-clk", sun9i_a80_mod0_setup); 15661af4d8dSChen-Yu Tsai 157eaa18f5dSMaxime Ripard static DEFINE_SPINLOCK(sun5i_a13_mbus_lock); 158eaa18f5dSMaxime Ripard 159eaa18f5dSMaxime Ripard static void __init sun5i_a13_mbus_setup(struct device_node *node) 160eaa18f5dSMaxime Ripard { 1617c74c220SHans de Goede struct clk *mbus; 1627c74c220SHans de Goede void __iomem *reg; 1637c74c220SHans de Goede 1647c74c220SHans de Goede reg = of_iomap(node, 0); 1657c74c220SHans de Goede if (!reg) { 1667c74c220SHans de Goede pr_err("Could not get registers for a13-mbus-clk\n"); 1677c74c220SHans de Goede return; 1687c74c220SHans de Goede } 1697c74c220SHans de Goede 1707c74c220SHans de Goede mbus = sunxi_factors_register(node, &sun4i_a10_mod0_data, 1717c74c220SHans de Goede &sun5i_a13_mbus_lock, reg); 172eaa18f5dSMaxime Ripard 173eaa18f5dSMaxime Ripard /* The MBUS clocks needs to be always enabled */ 174eaa18f5dSMaxime Ripard __clk_get(mbus); 175eaa18f5dSMaxime Ripard clk_prepare_enable(mbus); 176eaa18f5dSMaxime Ripard } 177eaa18f5dSMaxime Ripard CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup); 17837e1041fSMaxime Ripard 17937e1041fSMaxime Ripard struct mmc_phase { 18037e1041fSMaxime Ripard struct clk_hw hw; 1816b0b8ccfSMaxime Ripard u8 offset; 18237e1041fSMaxime Ripard void __iomem *reg; 18337e1041fSMaxime Ripard spinlock_t *lock; 18437e1041fSMaxime Ripard }; 18537e1041fSMaxime Ripard 18637e1041fSMaxime Ripard #define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw) 18737e1041fSMaxime Ripard 18837e1041fSMaxime Ripard static int mmc_get_phase(struct clk_hw *hw) 18937e1041fSMaxime Ripard { 19037e1041fSMaxime Ripard struct clk *mmc, *mmc_parent, *clk = hw->clk; 19137e1041fSMaxime Ripard struct mmc_phase *phase = to_mmc_phase(hw); 19237e1041fSMaxime Ripard unsigned int mmc_rate, mmc_parent_rate; 19337e1041fSMaxime Ripard u16 step, mmc_div; 19437e1041fSMaxime Ripard u32 value; 19537e1041fSMaxime Ripard u8 delay; 19637e1041fSMaxime Ripard 19737e1041fSMaxime Ripard value = readl(phase->reg); 1986b0b8ccfSMaxime Ripard delay = (value >> phase->offset) & 0x3; 19937e1041fSMaxime Ripard 20037e1041fSMaxime Ripard if (!delay) 20137e1041fSMaxime Ripard return 180; 20237e1041fSMaxime Ripard 20337e1041fSMaxime Ripard /* Get the main MMC clock */ 20437e1041fSMaxime Ripard mmc = clk_get_parent(clk); 20537e1041fSMaxime Ripard if (!mmc) 20637e1041fSMaxime Ripard return -EINVAL; 20737e1041fSMaxime Ripard 20837e1041fSMaxime Ripard /* And its rate */ 20937e1041fSMaxime Ripard mmc_rate = clk_get_rate(mmc); 21037e1041fSMaxime Ripard if (!mmc_rate) 21137e1041fSMaxime Ripard return -EINVAL; 21237e1041fSMaxime Ripard 21337e1041fSMaxime Ripard /* Now, get the MMC parent (most likely some PLL) */ 21437e1041fSMaxime Ripard mmc_parent = clk_get_parent(mmc); 21537e1041fSMaxime Ripard if (!mmc_parent) 21637e1041fSMaxime Ripard return -EINVAL; 21737e1041fSMaxime Ripard 21837e1041fSMaxime Ripard /* And its rate */ 21937e1041fSMaxime Ripard mmc_parent_rate = clk_get_rate(mmc_parent); 22037e1041fSMaxime Ripard if (!mmc_parent_rate) 22137e1041fSMaxime Ripard return -EINVAL; 22237e1041fSMaxime Ripard 22337e1041fSMaxime Ripard /* Get MMC clock divider */ 22437e1041fSMaxime Ripard mmc_div = mmc_parent_rate / mmc_rate; 22537e1041fSMaxime Ripard 22637e1041fSMaxime Ripard step = DIV_ROUND_CLOSEST(360, mmc_div); 22737e1041fSMaxime Ripard return delay * step; 22837e1041fSMaxime Ripard } 22937e1041fSMaxime Ripard 23037e1041fSMaxime Ripard static int mmc_set_phase(struct clk_hw *hw, int degrees) 23137e1041fSMaxime Ripard { 23237e1041fSMaxime Ripard struct clk *mmc, *mmc_parent, *clk = hw->clk; 23337e1041fSMaxime Ripard struct mmc_phase *phase = to_mmc_phase(hw); 23437e1041fSMaxime Ripard unsigned int mmc_rate, mmc_parent_rate; 23537e1041fSMaxime Ripard unsigned long flags; 23637e1041fSMaxime Ripard u32 value; 23737e1041fSMaxime Ripard u8 delay; 23837e1041fSMaxime Ripard 23937e1041fSMaxime Ripard /* Get the main MMC clock */ 24037e1041fSMaxime Ripard mmc = clk_get_parent(clk); 24137e1041fSMaxime Ripard if (!mmc) 24237e1041fSMaxime Ripard return -EINVAL; 24337e1041fSMaxime Ripard 24437e1041fSMaxime Ripard /* And its rate */ 24537e1041fSMaxime Ripard mmc_rate = clk_get_rate(mmc); 24637e1041fSMaxime Ripard if (!mmc_rate) 24737e1041fSMaxime Ripard return -EINVAL; 24837e1041fSMaxime Ripard 24937e1041fSMaxime Ripard /* Now, get the MMC parent (most likely some PLL) */ 25037e1041fSMaxime Ripard mmc_parent = clk_get_parent(mmc); 25137e1041fSMaxime Ripard if (!mmc_parent) 25237e1041fSMaxime Ripard return -EINVAL; 25337e1041fSMaxime Ripard 25437e1041fSMaxime Ripard /* And its rate */ 25537e1041fSMaxime Ripard mmc_parent_rate = clk_get_rate(mmc_parent); 25637e1041fSMaxime Ripard if (!mmc_parent_rate) 25737e1041fSMaxime Ripard return -EINVAL; 25837e1041fSMaxime Ripard 25937e1041fSMaxime Ripard if (degrees != 180) { 26037e1041fSMaxime Ripard u16 step, mmc_div; 26137e1041fSMaxime Ripard 26237e1041fSMaxime Ripard /* Get MMC clock divider */ 26337e1041fSMaxime Ripard mmc_div = mmc_parent_rate / mmc_rate; 26437e1041fSMaxime Ripard 26537e1041fSMaxime Ripard /* 26637e1041fSMaxime Ripard * We can only outphase the clocks by multiple of the 26737e1041fSMaxime Ripard * PLL's period. 26837e1041fSMaxime Ripard * 26937e1041fSMaxime Ripard * Since the MMC clock in only a divider, and the 27037e1041fSMaxime Ripard * formula to get the outphasing in degrees is deg = 27137e1041fSMaxime Ripard * 360 * delta / period 27237e1041fSMaxime Ripard * 27337e1041fSMaxime Ripard * If we simplify this formula, we can see that the 27437e1041fSMaxime Ripard * only thing that we're concerned about is the number 27537e1041fSMaxime Ripard * of period we want to outphase our clock from, and 27637e1041fSMaxime Ripard * the divider set by the MMC clock. 27737e1041fSMaxime Ripard */ 27837e1041fSMaxime Ripard step = DIV_ROUND_CLOSEST(360, mmc_div); 27937e1041fSMaxime Ripard delay = DIV_ROUND_CLOSEST(degrees, step); 28037e1041fSMaxime Ripard } else { 28137e1041fSMaxime Ripard delay = 0; 28237e1041fSMaxime Ripard } 28337e1041fSMaxime Ripard 28437e1041fSMaxime Ripard spin_lock_irqsave(phase->lock, flags); 28537e1041fSMaxime Ripard value = readl(phase->reg); 2866b0b8ccfSMaxime Ripard value &= ~GENMASK(phase->offset + 3, phase->offset); 2876b0b8ccfSMaxime Ripard value |= delay << phase->offset; 28837e1041fSMaxime Ripard writel(value, phase->reg); 28937e1041fSMaxime Ripard spin_unlock_irqrestore(phase->lock, flags); 29037e1041fSMaxime Ripard 29137e1041fSMaxime Ripard return 0; 29237e1041fSMaxime Ripard } 29337e1041fSMaxime Ripard 29437e1041fSMaxime Ripard static const struct clk_ops mmc_clk_ops = { 29537e1041fSMaxime Ripard .get_phase = mmc_get_phase, 29637e1041fSMaxime Ripard .set_phase = mmc_set_phase, 29737e1041fSMaxime Ripard }; 29837e1041fSMaxime Ripard 299eb378df7SChen-Yu Tsai /* 300eb378df7SChen-Yu Tsai * sunxi_mmc_setup - Common setup function for mmc module clocks 301eb378df7SChen-Yu Tsai * 302eb378df7SChen-Yu Tsai * The only difference between module clocks on different platforms is the 303eb378df7SChen-Yu Tsai * width of the mux register bits and the valid values, which are passed in 304eb378df7SChen-Yu Tsai * through struct factors_data. The phase clocks parts are identical. 305eb378df7SChen-Yu Tsai */ 306eb378df7SChen-Yu Tsai static void __init sunxi_mmc_setup(struct device_node *node, 307eb378df7SChen-Yu Tsai const struct factors_data *data, 308eb378df7SChen-Yu Tsai spinlock_t *lock) 30937e1041fSMaxime Ripard { 3106b0b8ccfSMaxime Ripard struct clk_onecell_data *clk_data; 3116b0b8ccfSMaxime Ripard const char *parent; 3126b0b8ccfSMaxime Ripard void __iomem *reg; 3136b0b8ccfSMaxime Ripard int i; 3146b0b8ccfSMaxime Ripard 3156b0b8ccfSMaxime Ripard reg = of_io_request_and_map(node, 0, of_node_full_name(node)); 3166b0b8ccfSMaxime Ripard if (IS_ERR(reg)) { 3176b0b8ccfSMaxime Ripard pr_err("Couldn't map the %s clock registers\n", node->name); 3186b0b8ccfSMaxime Ripard return; 3196b0b8ccfSMaxime Ripard } 3206b0b8ccfSMaxime Ripard 3216b0b8ccfSMaxime Ripard clk_data = kmalloc(sizeof(*clk_data), GFP_KERNEL); 3226b0b8ccfSMaxime Ripard if (!clk_data) 3236b0b8ccfSMaxime Ripard return; 3246b0b8ccfSMaxime Ripard 3256b0b8ccfSMaxime Ripard clk_data->clks = kcalloc(3, sizeof(*clk_data->clks), GFP_KERNEL); 3266b0b8ccfSMaxime Ripard if (!clk_data->clks) 3276b0b8ccfSMaxime Ripard goto err_free_data; 3286b0b8ccfSMaxime Ripard 3296b0b8ccfSMaxime Ripard clk_data->clk_num = 3; 330eb378df7SChen-Yu Tsai clk_data->clks[0] = sunxi_factors_register(node, data, lock, reg); 3316b0b8ccfSMaxime Ripard if (!clk_data->clks[0]) 3326b0b8ccfSMaxime Ripard goto err_free_clks; 3336b0b8ccfSMaxime Ripard 3346b0b8ccfSMaxime Ripard parent = __clk_get_name(clk_data->clks[0]); 3356b0b8ccfSMaxime Ripard 3366b0b8ccfSMaxime Ripard for (i = 1; i < 3; i++) { 33737e1041fSMaxime Ripard struct clk_init_data init = { 33837e1041fSMaxime Ripard .num_parents = 1, 3396b0b8ccfSMaxime Ripard .parent_names = &parent, 34037e1041fSMaxime Ripard .ops = &mmc_clk_ops, 34137e1041fSMaxime Ripard }; 34237e1041fSMaxime Ripard struct mmc_phase *phase; 34337e1041fSMaxime Ripard 34437e1041fSMaxime Ripard phase = kmalloc(sizeof(*phase), GFP_KERNEL); 34537e1041fSMaxime Ripard if (!phase) 3466b0b8ccfSMaxime Ripard continue; 34737e1041fSMaxime Ripard 34837e1041fSMaxime Ripard phase->hw.init = &init; 3496b0b8ccfSMaxime Ripard phase->reg = reg; 350eb378df7SChen-Yu Tsai phase->lock = lock; 35137e1041fSMaxime Ripard 3526b0b8ccfSMaxime Ripard if (i == 1) 3536b0b8ccfSMaxime Ripard phase->offset = 8; 3546b0b8ccfSMaxime Ripard else 3556b0b8ccfSMaxime Ripard phase->offset = 20; 35637e1041fSMaxime Ripard 3576b0b8ccfSMaxime Ripard if (of_property_read_string_index(node, "clock-output-names", 3586b0b8ccfSMaxime Ripard i, &init.name)) 35937e1041fSMaxime Ripard init.name = node->name; 36037e1041fSMaxime Ripard 3616b0b8ccfSMaxime Ripard clk_data->clks[i] = clk_register(NULL, &phase->hw); 3626b0b8ccfSMaxime Ripard if (IS_ERR(clk_data->clks[i])) { 3636b0b8ccfSMaxime Ripard kfree(phase); 3646b0b8ccfSMaxime Ripard continue; 3656b0b8ccfSMaxime Ripard } 3666b0b8ccfSMaxime Ripard } 36737e1041fSMaxime Ripard 3686b0b8ccfSMaxime Ripard of_clk_add_provider(node, of_clk_src_onecell_get, clk_data); 36937e1041fSMaxime Ripard 37037e1041fSMaxime Ripard return; 37137e1041fSMaxime Ripard 3726b0b8ccfSMaxime Ripard err_free_clks: 3736b0b8ccfSMaxime Ripard kfree(clk_data->clks); 3746b0b8ccfSMaxime Ripard err_free_data: 3756b0b8ccfSMaxime Ripard kfree(clk_data); 37637e1041fSMaxime Ripard } 377eb378df7SChen-Yu Tsai 378eb378df7SChen-Yu Tsai static DEFINE_SPINLOCK(sun4i_a10_mmc_lock); 379eb378df7SChen-Yu Tsai 380eb378df7SChen-Yu Tsai static void __init sun4i_a10_mmc_setup(struct device_node *node) 381eb378df7SChen-Yu Tsai { 382eb378df7SChen-Yu Tsai sunxi_mmc_setup(node, &sun4i_a10_mod0_data, &sun4i_a10_mmc_lock); 383eb378df7SChen-Yu Tsai } 3846b0b8ccfSMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mmc, "allwinner,sun4i-a10-mmc-clk", sun4i_a10_mmc_setup); 38561af4d8dSChen-Yu Tsai 38661af4d8dSChen-Yu Tsai static DEFINE_SPINLOCK(sun9i_a80_mmc_lock); 38761af4d8dSChen-Yu Tsai 38861af4d8dSChen-Yu Tsai static void __init sun9i_a80_mmc_setup(struct device_node *node) 38961af4d8dSChen-Yu Tsai { 39061af4d8dSChen-Yu Tsai sunxi_mmc_setup(node, &sun9i_a80_mod0_data, &sun9i_a80_mmc_lock); 39161af4d8dSChen-Yu Tsai } 39261af4d8dSChen-Yu Tsai CLK_OF_DECLARE(sun9i_a80_mmc, "allwinner,sun9i-a80-mmc-clk", sun9i_a80_mmc_setup); 393