xref: /openbmc/linux/drivers/clk/sunxi/clk-mod0.c (revision 6ea3953da4e645fb4c6bff19b542eee10970505c)
1992a56e4SMaxime Ripard /*
2992a56e4SMaxime Ripard  * Copyright 2013 Emilio López
3992a56e4SMaxime Ripard  *
4992a56e4SMaxime Ripard  * Emilio López <emilio@elopez.com.ar>
5992a56e4SMaxime Ripard  *
6992a56e4SMaxime Ripard  * This program is free software; you can redistribute it and/or modify
7992a56e4SMaxime Ripard  * it under the terms of the GNU General Public License as published by
8992a56e4SMaxime Ripard  * the Free Software Foundation; either version 2 of the License, or
9992a56e4SMaxime Ripard  * (at your option) any later version.
10992a56e4SMaxime Ripard  *
11992a56e4SMaxime Ripard  * This program is distributed in the hope that it will be useful,
12992a56e4SMaxime Ripard  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13992a56e4SMaxime Ripard  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14992a56e4SMaxime Ripard  * GNU General Public License for more details.
15992a56e4SMaxime Ripard  */
16992a56e4SMaxime Ripard 
17992a56e4SMaxime Ripard #include <linux/clk-provider.h>
18992a56e4SMaxime Ripard #include <linux/clkdev.h>
1937e1041fSMaxime Ripard #include <linux/of_address.h>
20*6ea3953dSHans de Goede #include <linux/platform_device.h>
21992a56e4SMaxime Ripard 
22992a56e4SMaxime Ripard #include "clk-factors.h"
23992a56e4SMaxime Ripard 
24992a56e4SMaxime Ripard /**
25992a56e4SMaxime Ripard  * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
26992a56e4SMaxime Ripard  * MOD0 rate is calculated as follows
27992a56e4SMaxime Ripard  * rate = (parent_rate >> p) / (m + 1);
28992a56e4SMaxime Ripard  */
29992a56e4SMaxime Ripard 
30992a56e4SMaxime Ripard static void sun4i_a10_get_mod0_factors(u32 *freq, u32 parent_rate,
31992a56e4SMaxime Ripard 				       u8 *n, u8 *k, u8 *m, u8 *p)
32992a56e4SMaxime Ripard {
33992a56e4SMaxime Ripard 	u8 div, calcm, calcp;
34992a56e4SMaxime Ripard 
35992a56e4SMaxime Ripard 	/* These clocks can only divide, so we will never be able to achieve
36992a56e4SMaxime Ripard 	 * frequencies higher than the parent frequency */
37992a56e4SMaxime Ripard 	if (*freq > parent_rate)
38992a56e4SMaxime Ripard 		*freq = parent_rate;
39992a56e4SMaxime Ripard 
40992a56e4SMaxime Ripard 	div = DIV_ROUND_UP(parent_rate, *freq);
41992a56e4SMaxime Ripard 
42992a56e4SMaxime Ripard 	if (div < 16)
43992a56e4SMaxime Ripard 		calcp = 0;
44992a56e4SMaxime Ripard 	else if (div / 2 < 16)
45992a56e4SMaxime Ripard 		calcp = 1;
46992a56e4SMaxime Ripard 	else if (div / 4 < 16)
47992a56e4SMaxime Ripard 		calcp = 2;
48992a56e4SMaxime Ripard 	else
49992a56e4SMaxime Ripard 		calcp = 3;
50992a56e4SMaxime Ripard 
51992a56e4SMaxime Ripard 	calcm = DIV_ROUND_UP(div, 1 << calcp);
52992a56e4SMaxime Ripard 
53992a56e4SMaxime Ripard 	*freq = (parent_rate >> calcp) / calcm;
54992a56e4SMaxime Ripard 
55992a56e4SMaxime Ripard 	/* we were called to round the frequency, we can now return */
56992a56e4SMaxime Ripard 	if (n == NULL)
57992a56e4SMaxime Ripard 		return;
58992a56e4SMaxime Ripard 
59992a56e4SMaxime Ripard 	*m = calcm - 1;
60992a56e4SMaxime Ripard 	*p = calcp;
61992a56e4SMaxime Ripard }
62992a56e4SMaxime Ripard 
63992a56e4SMaxime Ripard /* user manual says "n" but it's really "p" */
64992a56e4SMaxime Ripard static struct clk_factors_config sun4i_a10_mod0_config = {
65992a56e4SMaxime Ripard 	.mshift = 0,
66992a56e4SMaxime Ripard 	.mwidth = 4,
67992a56e4SMaxime Ripard 	.pshift = 16,
68992a56e4SMaxime Ripard 	.pwidth = 2,
69992a56e4SMaxime Ripard };
70992a56e4SMaxime Ripard 
71*6ea3953dSHans de Goede static const struct factors_data sun4i_a10_mod0_data = {
72992a56e4SMaxime Ripard 	.enable = 31,
73992a56e4SMaxime Ripard 	.mux = 24,
74e94f8cb3SChen-Yu Tsai 	.muxmask = BIT(1) | BIT(0),
75992a56e4SMaxime Ripard 	.table = &sun4i_a10_mod0_config,
76992a56e4SMaxime Ripard 	.getter = sun4i_a10_get_mod0_factors,
77992a56e4SMaxime Ripard };
78992a56e4SMaxime Ripard 
79992a56e4SMaxime Ripard static DEFINE_SPINLOCK(sun4i_a10_mod0_lock);
80992a56e4SMaxime Ripard 
81992a56e4SMaxime Ripard static void __init sun4i_a10_mod0_setup(struct device_node *node)
82992a56e4SMaxime Ripard {
837c74c220SHans de Goede 	void __iomem *reg;
847c74c220SHans de Goede 
857c74c220SHans de Goede 	reg = of_iomap(node, 0);
867c74c220SHans de Goede 	if (!reg) {
87*6ea3953dSHans de Goede 		/*
88*6ea3953dSHans de Goede 		 * This happens with mod0 clk nodes instantiated through
89*6ea3953dSHans de Goede 		 * mfd, as those do not have their resources assigned at
90*6ea3953dSHans de Goede 		 * CLK_OF_DECLARE time yet, so do not print an error.
91*6ea3953dSHans de Goede 		 */
927c74c220SHans de Goede 		return;
937c74c220SHans de Goede 	}
947c74c220SHans de Goede 
957c74c220SHans de Goede 	sunxi_factors_register(node, &sun4i_a10_mod0_data,
967c74c220SHans de Goede 			       &sun4i_a10_mod0_lock, reg);
97992a56e4SMaxime Ripard }
98992a56e4SMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk", sun4i_a10_mod0_setup);
99eaa18f5dSMaxime Ripard 
100*6ea3953dSHans de Goede static int sun4i_a10_mod0_clk_probe(struct platform_device *pdev)
101*6ea3953dSHans de Goede {
102*6ea3953dSHans de Goede 	struct device_node *np = pdev->dev.of_node;
103*6ea3953dSHans de Goede 	struct resource *r;
104*6ea3953dSHans de Goede 	void __iomem *reg;
105*6ea3953dSHans de Goede 
106*6ea3953dSHans de Goede 	if (!np)
107*6ea3953dSHans de Goede 		return -ENODEV;
108*6ea3953dSHans de Goede 
109*6ea3953dSHans de Goede 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
110*6ea3953dSHans de Goede 	reg = devm_ioremap_resource(&pdev->dev, r);
111*6ea3953dSHans de Goede 	if (IS_ERR(reg))
112*6ea3953dSHans de Goede 		return PTR_ERR(reg);
113*6ea3953dSHans de Goede 
114*6ea3953dSHans de Goede 	sunxi_factors_register(np, &sun4i_a10_mod0_data,
115*6ea3953dSHans de Goede 			       &sun4i_a10_mod0_lock, reg);
116*6ea3953dSHans de Goede 	return 0;
117*6ea3953dSHans de Goede }
118*6ea3953dSHans de Goede 
119*6ea3953dSHans de Goede static const struct of_device_id sun4i_a10_mod0_clk_dt_ids[] = {
120*6ea3953dSHans de Goede 	{ .compatible = "allwinner,sun4i-a10-mod0-clk" },
121*6ea3953dSHans de Goede 	{ /* sentinel */ }
122*6ea3953dSHans de Goede };
123*6ea3953dSHans de Goede 
124*6ea3953dSHans de Goede static struct platform_driver sun4i_a10_mod0_clk_driver = {
125*6ea3953dSHans de Goede 	.driver = {
126*6ea3953dSHans de Goede 		.name = "sun4i-a10-mod0-clk",
127*6ea3953dSHans de Goede 		.of_match_table = sun4i_a10_mod0_clk_dt_ids,
128*6ea3953dSHans de Goede 	},
129*6ea3953dSHans de Goede 	.probe = sun4i_a10_mod0_clk_probe,
130*6ea3953dSHans de Goede };
131*6ea3953dSHans de Goede module_platform_driver(sun4i_a10_mod0_clk_driver);
132*6ea3953dSHans de Goede 
133eaa18f5dSMaxime Ripard static DEFINE_SPINLOCK(sun5i_a13_mbus_lock);
134eaa18f5dSMaxime Ripard 
135eaa18f5dSMaxime Ripard static void __init sun5i_a13_mbus_setup(struct device_node *node)
136eaa18f5dSMaxime Ripard {
1377c74c220SHans de Goede 	struct clk *mbus;
1387c74c220SHans de Goede 	void __iomem *reg;
1397c74c220SHans de Goede 
1407c74c220SHans de Goede 	reg = of_iomap(node, 0);
1417c74c220SHans de Goede 	if (!reg) {
1427c74c220SHans de Goede 		pr_err("Could not get registers for a13-mbus-clk\n");
1437c74c220SHans de Goede 		return;
1447c74c220SHans de Goede 	}
1457c74c220SHans de Goede 
1467c74c220SHans de Goede 	mbus = sunxi_factors_register(node, &sun4i_a10_mod0_data,
1477c74c220SHans de Goede 				      &sun5i_a13_mbus_lock, reg);
148eaa18f5dSMaxime Ripard 
149eaa18f5dSMaxime Ripard 	/* The MBUS clocks needs to be always enabled */
150eaa18f5dSMaxime Ripard 	__clk_get(mbus);
151eaa18f5dSMaxime Ripard 	clk_prepare_enable(mbus);
152eaa18f5dSMaxime Ripard }
153eaa18f5dSMaxime Ripard CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup);
15437e1041fSMaxime Ripard 
15537e1041fSMaxime Ripard struct mmc_phase_data {
15637e1041fSMaxime Ripard 	u8	offset;
15737e1041fSMaxime Ripard };
15837e1041fSMaxime Ripard 
15937e1041fSMaxime Ripard struct mmc_phase {
16037e1041fSMaxime Ripard 	struct clk_hw		hw;
16137e1041fSMaxime Ripard 	void __iomem		*reg;
16237e1041fSMaxime Ripard 	struct mmc_phase_data	*data;
16337e1041fSMaxime Ripard 	spinlock_t		*lock;
16437e1041fSMaxime Ripard };
16537e1041fSMaxime Ripard 
16637e1041fSMaxime Ripard #define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw)
16737e1041fSMaxime Ripard 
16837e1041fSMaxime Ripard static int mmc_get_phase(struct clk_hw *hw)
16937e1041fSMaxime Ripard {
17037e1041fSMaxime Ripard 	struct clk *mmc, *mmc_parent, *clk = hw->clk;
17137e1041fSMaxime Ripard 	struct mmc_phase *phase = to_mmc_phase(hw);
17237e1041fSMaxime Ripard 	unsigned int mmc_rate, mmc_parent_rate;
17337e1041fSMaxime Ripard 	u16 step, mmc_div;
17437e1041fSMaxime Ripard 	u32 value;
17537e1041fSMaxime Ripard 	u8 delay;
17637e1041fSMaxime Ripard 
17737e1041fSMaxime Ripard 	value = readl(phase->reg);
17837e1041fSMaxime Ripard 	delay = (value >> phase->data->offset) & 0x3;
17937e1041fSMaxime Ripard 
18037e1041fSMaxime Ripard 	if (!delay)
18137e1041fSMaxime Ripard 		return 180;
18237e1041fSMaxime Ripard 
18337e1041fSMaxime Ripard 	/* Get the main MMC clock */
18437e1041fSMaxime Ripard 	mmc = clk_get_parent(clk);
18537e1041fSMaxime Ripard 	if (!mmc)
18637e1041fSMaxime Ripard 		return -EINVAL;
18737e1041fSMaxime Ripard 
18837e1041fSMaxime Ripard 	/* And its rate */
18937e1041fSMaxime Ripard 	mmc_rate = clk_get_rate(mmc);
19037e1041fSMaxime Ripard 	if (!mmc_rate)
19137e1041fSMaxime Ripard 		return -EINVAL;
19237e1041fSMaxime Ripard 
19337e1041fSMaxime Ripard 	/* Now, get the MMC parent (most likely some PLL) */
19437e1041fSMaxime Ripard 	mmc_parent = clk_get_parent(mmc);
19537e1041fSMaxime Ripard 	if (!mmc_parent)
19637e1041fSMaxime Ripard 		return -EINVAL;
19737e1041fSMaxime Ripard 
19837e1041fSMaxime Ripard 	/* And its rate */
19937e1041fSMaxime Ripard 	mmc_parent_rate = clk_get_rate(mmc_parent);
20037e1041fSMaxime Ripard 	if (!mmc_parent_rate)
20137e1041fSMaxime Ripard 		return -EINVAL;
20237e1041fSMaxime Ripard 
20337e1041fSMaxime Ripard 	/* Get MMC clock divider */
20437e1041fSMaxime Ripard 	mmc_div = mmc_parent_rate / mmc_rate;
20537e1041fSMaxime Ripard 
20637e1041fSMaxime Ripard 	step = DIV_ROUND_CLOSEST(360, mmc_div);
20737e1041fSMaxime Ripard 	return delay * step;
20837e1041fSMaxime Ripard }
20937e1041fSMaxime Ripard 
21037e1041fSMaxime Ripard static int mmc_set_phase(struct clk_hw *hw, int degrees)
21137e1041fSMaxime Ripard {
21237e1041fSMaxime Ripard 	struct clk *mmc, *mmc_parent, *clk = hw->clk;
21337e1041fSMaxime Ripard 	struct mmc_phase *phase = to_mmc_phase(hw);
21437e1041fSMaxime Ripard 	unsigned int mmc_rate, mmc_parent_rate;
21537e1041fSMaxime Ripard 	unsigned long flags;
21637e1041fSMaxime Ripard 	u32 value;
21737e1041fSMaxime Ripard 	u8 delay;
21837e1041fSMaxime Ripard 
21937e1041fSMaxime Ripard 	/* Get the main MMC clock */
22037e1041fSMaxime Ripard 	mmc = clk_get_parent(clk);
22137e1041fSMaxime Ripard 	if (!mmc)
22237e1041fSMaxime Ripard 		return -EINVAL;
22337e1041fSMaxime Ripard 
22437e1041fSMaxime Ripard 	/* And its rate */
22537e1041fSMaxime Ripard 	mmc_rate = clk_get_rate(mmc);
22637e1041fSMaxime Ripard 	if (!mmc_rate)
22737e1041fSMaxime Ripard 		return -EINVAL;
22837e1041fSMaxime Ripard 
22937e1041fSMaxime Ripard 	/* Now, get the MMC parent (most likely some PLL) */
23037e1041fSMaxime Ripard 	mmc_parent = clk_get_parent(mmc);
23137e1041fSMaxime Ripard 	if (!mmc_parent)
23237e1041fSMaxime Ripard 		return -EINVAL;
23337e1041fSMaxime Ripard 
23437e1041fSMaxime Ripard 	/* And its rate */
23537e1041fSMaxime Ripard 	mmc_parent_rate = clk_get_rate(mmc_parent);
23637e1041fSMaxime Ripard 	if (!mmc_parent_rate)
23737e1041fSMaxime Ripard 		return -EINVAL;
23837e1041fSMaxime Ripard 
23937e1041fSMaxime Ripard 	if (degrees != 180) {
24037e1041fSMaxime Ripard 		u16 step, mmc_div;
24137e1041fSMaxime Ripard 
24237e1041fSMaxime Ripard 		/* Get MMC clock divider */
24337e1041fSMaxime Ripard 		mmc_div = mmc_parent_rate / mmc_rate;
24437e1041fSMaxime Ripard 
24537e1041fSMaxime Ripard 		/*
24637e1041fSMaxime Ripard 		 * We can only outphase the clocks by multiple of the
24737e1041fSMaxime Ripard 		 * PLL's period.
24837e1041fSMaxime Ripard 		 *
24937e1041fSMaxime Ripard 		 * Since the MMC clock in only a divider, and the
25037e1041fSMaxime Ripard 		 * formula to get the outphasing in degrees is deg =
25137e1041fSMaxime Ripard 		 * 360 * delta / period
25237e1041fSMaxime Ripard 		 *
25337e1041fSMaxime Ripard 		 * If we simplify this formula, we can see that the
25437e1041fSMaxime Ripard 		 * only thing that we're concerned about is the number
25537e1041fSMaxime Ripard 		 * of period we want to outphase our clock from, and
25637e1041fSMaxime Ripard 		 * the divider set by the MMC clock.
25737e1041fSMaxime Ripard 		 */
25837e1041fSMaxime Ripard 		step = DIV_ROUND_CLOSEST(360, mmc_div);
25937e1041fSMaxime Ripard 		delay = DIV_ROUND_CLOSEST(degrees, step);
26037e1041fSMaxime Ripard 	} else {
26137e1041fSMaxime Ripard 		delay = 0;
26237e1041fSMaxime Ripard 	}
26337e1041fSMaxime Ripard 
26437e1041fSMaxime Ripard 	spin_lock_irqsave(phase->lock, flags);
26537e1041fSMaxime Ripard 	value = readl(phase->reg);
26637e1041fSMaxime Ripard 	value &= ~GENMASK(phase->data->offset + 3, phase->data->offset);
26737e1041fSMaxime Ripard 	value |= delay << phase->data->offset;
26837e1041fSMaxime Ripard 	writel(value, phase->reg);
26937e1041fSMaxime Ripard 	spin_unlock_irqrestore(phase->lock, flags);
27037e1041fSMaxime Ripard 
27137e1041fSMaxime Ripard 	return 0;
27237e1041fSMaxime Ripard }
27337e1041fSMaxime Ripard 
27437e1041fSMaxime Ripard static const struct clk_ops mmc_clk_ops = {
27537e1041fSMaxime Ripard 	.get_phase	= mmc_get_phase,
27637e1041fSMaxime Ripard 	.set_phase	= mmc_set_phase,
27737e1041fSMaxime Ripard };
27837e1041fSMaxime Ripard 
27937e1041fSMaxime Ripard static void __init sun4i_a10_mmc_phase_setup(struct device_node *node,
28037e1041fSMaxime Ripard 					     struct mmc_phase_data *data)
28137e1041fSMaxime Ripard {
28237e1041fSMaxime Ripard 	const char *parent_names[1] = { of_clk_get_parent_name(node, 0) };
28337e1041fSMaxime Ripard 	struct clk_init_data init = {
28437e1041fSMaxime Ripard 		.num_parents	= 1,
28537e1041fSMaxime Ripard 		.parent_names	= parent_names,
28637e1041fSMaxime Ripard 		.ops		= &mmc_clk_ops,
28737e1041fSMaxime Ripard 	};
28837e1041fSMaxime Ripard 
28937e1041fSMaxime Ripard 	struct mmc_phase *phase;
29037e1041fSMaxime Ripard 	struct clk *clk;
29137e1041fSMaxime Ripard 
29237e1041fSMaxime Ripard 	phase = kmalloc(sizeof(*phase), GFP_KERNEL);
29337e1041fSMaxime Ripard 	if (!phase)
29437e1041fSMaxime Ripard 		return;
29537e1041fSMaxime Ripard 
29637e1041fSMaxime Ripard 	phase->hw.init = &init;
29737e1041fSMaxime Ripard 
29837e1041fSMaxime Ripard 	phase->reg = of_iomap(node, 0);
29937e1041fSMaxime Ripard 	if (!phase->reg)
30037e1041fSMaxime Ripard 		goto err_free;
30137e1041fSMaxime Ripard 
30237e1041fSMaxime Ripard 	phase->data = data;
30337e1041fSMaxime Ripard 	phase->lock = &sun4i_a10_mod0_lock;
30437e1041fSMaxime Ripard 
30537e1041fSMaxime Ripard 	if (of_property_read_string(node, "clock-output-names", &init.name))
30637e1041fSMaxime Ripard 		init.name = node->name;
30737e1041fSMaxime Ripard 
30837e1041fSMaxime Ripard 	clk = clk_register(NULL, &phase->hw);
30937e1041fSMaxime Ripard 	if (IS_ERR(clk))
31037e1041fSMaxime Ripard 		goto err_unmap;
31137e1041fSMaxime Ripard 
31237e1041fSMaxime Ripard 	of_clk_add_provider(node, of_clk_src_simple_get, clk);
31337e1041fSMaxime Ripard 
31437e1041fSMaxime Ripard 	return;
31537e1041fSMaxime Ripard 
31637e1041fSMaxime Ripard err_unmap:
31737e1041fSMaxime Ripard 	iounmap(phase->reg);
31837e1041fSMaxime Ripard err_free:
31937e1041fSMaxime Ripard 	kfree(phase);
32037e1041fSMaxime Ripard }
32137e1041fSMaxime Ripard 
32237e1041fSMaxime Ripard 
32337e1041fSMaxime Ripard static struct mmc_phase_data mmc_output_clk = {
32437e1041fSMaxime Ripard 	.offset	= 8,
32537e1041fSMaxime Ripard };
32637e1041fSMaxime Ripard 
32737e1041fSMaxime Ripard static struct mmc_phase_data mmc_sample_clk = {
32837e1041fSMaxime Ripard 	.offset	= 20,
32937e1041fSMaxime Ripard };
33037e1041fSMaxime Ripard 
33137e1041fSMaxime Ripard static void __init sun4i_a10_mmc_output_setup(struct device_node *node)
33237e1041fSMaxime Ripard {
33337e1041fSMaxime Ripard 	sun4i_a10_mmc_phase_setup(node, &mmc_output_clk);
33437e1041fSMaxime Ripard }
33537e1041fSMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mmc_output, "allwinner,sun4i-a10-mmc-output-clk", sun4i_a10_mmc_output_setup);
33637e1041fSMaxime Ripard 
33737e1041fSMaxime Ripard static void __init sun4i_a10_mmc_sample_setup(struct device_node *node)
33837e1041fSMaxime Ripard {
33937e1041fSMaxime Ripard 	sun4i_a10_mmc_phase_setup(node, &mmc_sample_clk);
34037e1041fSMaxime Ripard }
34137e1041fSMaxime Ripard CLK_OF_DECLARE(sun4i_a10_mmc_sample, "allwinner,sun4i-a10-mmc-sample-clk", sun4i_a10_mmc_sample_setup);
342