xref: /openbmc/linux/drivers/clk/bcm/clk-kona-setup.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /*
2  * Copyright (C) 2013 Broadcom Corporation
3  * Copyright 2013 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/io.h>
16 #include <linux/of_address.h>
17 
18 #include "clk-kona.h"
19 
20 /* These are used when a selector or trigger is found to be unneeded */
21 #define selector_clear_exists(sel)	((sel)->width = 0)
22 #define trigger_clear_exists(trig)	FLAG_CLEAR(trig, TRIG, EXISTS)
23 
24 LIST_HEAD(ccu_list);	/* The list of set up CCUs */
25 
26 /* Validity checking */
27 
28 static bool ccu_data_offsets_valid(struct ccu_data *ccu)
29 {
30 	struct ccu_policy *ccu_policy = &ccu->policy;
31 	u32 limit;
32 
33 	limit = ccu->range - sizeof(u32);
34 	limit = round_down(limit, sizeof(u32));
35 	if (ccu_policy_exists(ccu_policy)) {
36 		if (ccu_policy->enable.offset > limit) {
37 			pr_err("%s: bad policy enable offset for %s "
38 					"(%u > %u)\n", __func__,
39 				ccu->name, ccu_policy->enable.offset, limit);
40 			return false;
41 		}
42 		if (ccu_policy->control.offset > limit) {
43 			pr_err("%s: bad policy control offset for %s "
44 					"(%u > %u)\n", __func__,
45 				ccu->name, ccu_policy->control.offset, limit);
46 			return false;
47 		}
48 	}
49 
50 	return true;
51 }
52 
53 static bool clk_requires_trigger(struct kona_clk *bcm_clk)
54 {
55 	struct peri_clk_data *peri = bcm_clk->u.peri;
56 	struct bcm_clk_sel *sel;
57 	struct bcm_clk_div *div;
58 
59 	if (bcm_clk->type != bcm_clk_peri)
60 		return false;
61 
62 	sel = &peri->sel;
63 	if (sel->parent_count && selector_exists(sel))
64 		return true;
65 
66 	div = &peri->div;
67 	if (!divider_exists(div))
68 		return false;
69 
70 	/* Fixed dividers don't need triggers */
71 	if (!divider_is_fixed(div))
72 		return true;
73 
74 	div = &peri->pre_div;
75 
76 	return divider_exists(div) && !divider_is_fixed(div);
77 }
78 
79 static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk)
80 {
81 	struct peri_clk_data *peri;
82 	struct bcm_clk_policy *policy;
83 	struct bcm_clk_gate *gate;
84 	struct bcm_clk_hyst *hyst;
85 	struct bcm_clk_div *div;
86 	struct bcm_clk_sel *sel;
87 	struct bcm_clk_trig *trig;
88 	const char *name;
89 	u32 range;
90 	u32 limit;
91 
92 	BUG_ON(bcm_clk->type != bcm_clk_peri);
93 	peri = bcm_clk->u.peri;
94 	name = bcm_clk->init_data.name;
95 	range = bcm_clk->ccu->range;
96 
97 	limit = range - sizeof(u32);
98 	limit = round_down(limit, sizeof(u32));
99 
100 	policy = &peri->policy;
101 	if (policy_exists(policy)) {
102 		if (policy->offset > limit) {
103 			pr_err("%s: bad policy offset for %s (%u > %u)\n",
104 				__func__, name, policy->offset, limit);
105 			return false;
106 		}
107 	}
108 
109 	gate = &peri->gate;
110 	hyst = &peri->hyst;
111 	if (gate_exists(gate)) {
112 		if (gate->offset > limit) {
113 			pr_err("%s: bad gate offset for %s (%u > %u)\n",
114 				__func__, name, gate->offset, limit);
115 			return false;
116 		}
117 
118 		if (hyst_exists(hyst)) {
119 			if (hyst->offset > limit) {
120 				pr_err("%s: bad hysteresis offset for %s "
121 					"(%u > %u)\n", __func__,
122 					name, hyst->offset, limit);
123 				return false;
124 			}
125 		}
126 	} else if (hyst_exists(hyst)) {
127 		pr_err("%s: hysteresis but no gate for %s\n", __func__, name);
128 		return false;
129 	}
130 
131 	div = &peri->div;
132 	if (divider_exists(div)) {
133 		if (div->u.s.offset > limit) {
134 			pr_err("%s: bad divider offset for %s (%u > %u)\n",
135 				__func__, name, div->u.s.offset, limit);
136 			return false;
137 		}
138 	}
139 
140 	div = &peri->pre_div;
141 	if (divider_exists(div)) {
142 		if (div->u.s.offset > limit) {
143 			pr_err("%s: bad pre-divider offset for %s "
144 					"(%u > %u)\n",
145 				__func__, name, div->u.s.offset, limit);
146 			return false;
147 		}
148 	}
149 
150 	sel = &peri->sel;
151 	if (selector_exists(sel)) {
152 		if (sel->offset > limit) {
153 			pr_err("%s: bad selector offset for %s (%u > %u)\n",
154 				__func__, name, sel->offset, limit);
155 			return false;
156 		}
157 	}
158 
159 	trig = &peri->trig;
160 	if (trigger_exists(trig)) {
161 		if (trig->offset > limit) {
162 			pr_err("%s: bad trigger offset for %s (%u > %u)\n",
163 				__func__, name, trig->offset, limit);
164 			return false;
165 		}
166 	}
167 
168 	trig = &peri->pre_trig;
169 	if (trigger_exists(trig)) {
170 		if (trig->offset > limit) {
171 			pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n",
172 				__func__, name, trig->offset, limit);
173 			return false;
174 		}
175 	}
176 
177 	return true;
178 }
179 
180 /* A bit position must be less than the number of bits in a 32-bit register. */
181 static bool bit_posn_valid(u32 bit_posn, const char *field_name,
182 			const char *clock_name)
183 {
184 	u32 limit = BITS_PER_BYTE * sizeof(u32) - 1;
185 
186 	if (bit_posn > limit) {
187 		pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__,
188 			field_name, clock_name, bit_posn, limit);
189 		return false;
190 	}
191 	return true;
192 }
193 
194 /*
195  * A bitfield must be at least 1 bit wide.  Both the low-order and
196  * high-order bits must lie within a 32-bit register.  We require
197  * fields to be less than 32 bits wide, mainly because we use
198  * shifting to produce field masks, and shifting a full word width
199  * is not well-defined by the C standard.
200  */
201 static bool bitfield_valid(u32 shift, u32 width, const char *field_name,
202 			const char *clock_name)
203 {
204 	u32 limit = BITS_PER_BYTE * sizeof(u32);
205 
206 	if (!width) {
207 		pr_err("%s: bad %s field width 0 for %s\n", __func__,
208 			field_name, clock_name);
209 		return false;
210 	}
211 	if (shift + width > limit) {
212 		pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__,
213 			field_name, clock_name, shift, width, limit);
214 		return false;
215 	}
216 	return true;
217 }
218 
219 static bool
220 ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name)
221 {
222 	struct bcm_lvm_en *enable = &ccu_policy->enable;
223 	struct bcm_policy_ctl *control;
224 
225 	if (!bit_posn_valid(enable->bit, "policy enable", ccu_name))
226 		return false;
227 
228 	control = &ccu_policy->control;
229 	if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name))
230 		return false;
231 
232 	if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name))
233 		return false;
234 
235 	if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name))
236 		return false;
237 
238 	return true;
239 }
240 
241 static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name)
242 {
243 	if (!bit_posn_valid(policy->bit, "policy", clock_name))
244 		return false;
245 
246 	return true;
247 }
248 
249 /*
250  * All gates, if defined, have a status bit, and for hardware-only
251  * gates, that's it.  Gates that can be software controlled also
252  * have an enable bit.  And a gate that can be hardware or software
253  * controlled will have a hardware/software select bit.
254  */
255 static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name,
256 			const char *clock_name)
257 {
258 	if (!bit_posn_valid(gate->status_bit, "gate status", clock_name))
259 		return false;
260 
261 	if (gate_is_sw_controllable(gate)) {
262 		if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name))
263 			return false;
264 
265 		if (gate_is_hw_controllable(gate)) {
266 			if (!bit_posn_valid(gate->hw_sw_sel_bit,
267 						"gate hw/sw select",
268 						clock_name))
269 				return false;
270 		}
271 	} else {
272 		BUG_ON(!gate_is_hw_controllable(gate));
273 	}
274 
275 	return true;
276 }
277 
278 static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name)
279 {
280 	if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name))
281 		return false;
282 
283 	if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name))
284 		return false;
285 
286 	return true;
287 }
288 
289 /*
290  * A selector bitfield must be valid.  Its parent_sel array must
291  * also be reasonable for the field.
292  */
293 static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name,
294 			const char *clock_name)
295 {
296 	if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name))
297 		return false;
298 
299 	if (sel->parent_count) {
300 		u32 max_sel;
301 		u32 limit;
302 
303 		/*
304 		 * Make sure the selector field can hold all the
305 		 * selector values we expect to be able to use.  A
306 		 * clock only needs to have a selector defined if it
307 		 * has more than one parent.  And in that case the
308 		 * highest selector value will be in the last entry
309 		 * in the array.
310 		 */
311 		max_sel = sel->parent_sel[sel->parent_count - 1];
312 		limit = (1 << sel->width) - 1;
313 		if (max_sel > limit) {
314 			pr_err("%s: bad selector for %s "
315 					"(%u needs > %u bits)\n",
316 				__func__, clock_name, max_sel,
317 				sel->width);
318 			return false;
319 		}
320 	} else {
321 		pr_warn("%s: ignoring selector for %s (no parents)\n",
322 			__func__, clock_name);
323 		selector_clear_exists(sel);
324 		kfree(sel->parent_sel);
325 		sel->parent_sel = NULL;
326 	}
327 
328 	return true;
329 }
330 
331 /*
332  * A fixed divider just needs to be non-zero.  A variable divider
333  * has to have a valid divider bitfield, and if it has a fraction,
334  * the width of the fraction must not be no more than the width of
335  * the divider as a whole.
336  */
337 static bool div_valid(struct bcm_clk_div *div, const char *field_name,
338 			const char *clock_name)
339 {
340 	if (divider_is_fixed(div)) {
341 		/* Any fixed divider value but 0 is OK */
342 		if (div->u.fixed == 0) {
343 			pr_err("%s: bad %s fixed value 0 for %s\n", __func__,
344 				field_name, clock_name);
345 			return false;
346 		}
347 		return true;
348 	}
349 	if (!bitfield_valid(div->u.s.shift, div->u.s.width,
350 				field_name, clock_name))
351 		return false;
352 
353 	if (divider_has_fraction(div))
354 		if (div->u.s.frac_width > div->u.s.width) {
355 			pr_warn("%s: bad %s fraction width for %s (%u > %u)\n",
356 				__func__, field_name, clock_name,
357 				div->u.s.frac_width, div->u.s.width);
358 			return false;
359 		}
360 
361 	return true;
362 }
363 
364 /*
365  * If a clock has two dividers, the combined number of fractional
366  * bits must be representable in a 32-bit unsigned value.  This
367  * is because we scale up a dividend using both dividers before
368  * dividing to improve accuracy, and we need to avoid overflow.
369  */
370 static bool kona_dividers_valid(struct kona_clk *bcm_clk)
371 {
372 	struct peri_clk_data *peri = bcm_clk->u.peri;
373 	struct bcm_clk_div *div;
374 	struct bcm_clk_div *pre_div;
375 	u32 limit;
376 
377 	BUG_ON(bcm_clk->type != bcm_clk_peri);
378 
379 	if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div))
380 		return true;
381 
382 	div = &peri->div;
383 	pre_div = &peri->pre_div;
384 	if (divider_is_fixed(div) || divider_is_fixed(pre_div))
385 		return true;
386 
387 	limit = BITS_PER_BYTE * sizeof(u32);
388 
389 	return div->u.s.frac_width + pre_div->u.s.frac_width <= limit;
390 }
391 
392 
393 /* A trigger just needs to represent a valid bit position */
394 static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name,
395 			const char *clock_name)
396 {
397 	return bit_posn_valid(trig->bit, field_name, clock_name);
398 }
399 
400 /* Determine whether the set of peripheral clock registers are valid. */
401 static bool
402 peri_clk_data_valid(struct kona_clk *bcm_clk)
403 {
404 	struct peri_clk_data *peri;
405 	struct bcm_clk_policy *policy;
406 	struct bcm_clk_gate *gate;
407 	struct bcm_clk_hyst *hyst;
408 	struct bcm_clk_sel *sel;
409 	struct bcm_clk_div *div;
410 	struct bcm_clk_div *pre_div;
411 	struct bcm_clk_trig *trig;
412 	const char *name;
413 
414 	BUG_ON(bcm_clk->type != bcm_clk_peri);
415 
416 	/*
417 	 * First validate register offsets.  This is the only place
418 	 * where we need something from the ccu, so we do these
419 	 * together.
420 	 */
421 	if (!peri_clk_data_offsets_valid(bcm_clk))
422 		return false;
423 
424 	peri = bcm_clk->u.peri;
425 	name = bcm_clk->init_data.name;
426 
427 	policy = &peri->policy;
428 	if (policy_exists(policy) && !policy_valid(policy, name))
429 		return false;
430 
431 	gate = &peri->gate;
432 	if (gate_exists(gate) && !gate_valid(gate, "gate", name))
433 		return false;
434 
435 	hyst = &peri->hyst;
436 	if (hyst_exists(hyst) && !hyst_valid(hyst, name))
437 		return false;
438 
439 	sel = &peri->sel;
440 	if (selector_exists(sel)) {
441 		if (!sel_valid(sel, "selector", name))
442 			return false;
443 
444 	} else if (sel->parent_count > 1) {
445 		pr_err("%s: multiple parents but no selector for %s\n",
446 			__func__, name);
447 
448 		return false;
449 	}
450 
451 	div = &peri->div;
452 	pre_div = &peri->pre_div;
453 	if (divider_exists(div)) {
454 		if (!div_valid(div, "divider", name))
455 			return false;
456 
457 		if (divider_exists(pre_div))
458 			if (!div_valid(pre_div, "pre-divider", name))
459 				return false;
460 	} else if (divider_exists(pre_div)) {
461 		pr_err("%s: pre-divider but no divider for %s\n", __func__,
462 			name);
463 		return false;
464 	}
465 
466 	trig = &peri->trig;
467 	if (trigger_exists(trig)) {
468 		if (!trig_valid(trig, "trigger", name))
469 			return false;
470 
471 		if (trigger_exists(&peri->pre_trig)) {
472 			if (!trig_valid(trig, "pre-trigger", name)) {
473 				return false;
474 			}
475 		}
476 		if (!clk_requires_trigger(bcm_clk)) {
477 			pr_warn("%s: ignoring trigger for %s (not needed)\n",
478 				__func__, name);
479 			trigger_clear_exists(trig);
480 		}
481 	} else if (trigger_exists(&peri->pre_trig)) {
482 		pr_err("%s: pre-trigger but no trigger for %s\n", __func__,
483 			name);
484 		return false;
485 	} else if (clk_requires_trigger(bcm_clk)) {
486 		pr_err("%s: required trigger missing for %s\n", __func__,
487 			name);
488 		return false;
489 	}
490 
491 	return kona_dividers_valid(bcm_clk);
492 }
493 
494 static bool kona_clk_valid(struct kona_clk *bcm_clk)
495 {
496 	switch (bcm_clk->type) {
497 	case bcm_clk_peri:
498 		if (!peri_clk_data_valid(bcm_clk))
499 			return false;
500 		break;
501 	default:
502 		pr_err("%s: unrecognized clock type (%d)\n", __func__,
503 			(int)bcm_clk->type);
504 		return false;
505 	}
506 	return true;
507 }
508 
509 /*
510  * Scan an array of parent clock names to determine whether there
511  * are any entries containing BAD_CLK_NAME.  Such entries are
512  * placeholders for non-supported clocks.  Keep track of the
513  * position of each clock name in the original array.
514  *
515  * Allocates an array of pointers to to hold the names of all
516  * non-null entries in the original array, and returns a pointer to
517  * that array in *names.  This will be used for registering the
518  * clock with the common clock code.  On successful return,
519  * *count indicates how many entries are in that names array.
520  *
521  * If there is more than one entry in the resulting names array,
522  * another array is allocated to record the parent selector value
523  * for each (defined) parent clock.  This is the value that
524  * represents this parent clock in the clock's source selector
525  * register.  The position of the clock in the original parent array
526  * defines that selector value.  The number of entries in this array
527  * is the same as the number of entries in the parent names array.
528  *
529  * The array of selector values is returned.  If the clock has no
530  * parents, no selector is required and a null pointer is returned.
531  *
532  * Returns a null pointer if the clock names array supplied was
533  * null.  (This is not an error.)
534  *
535  * Returns a pointer-coded error if an error occurs.
536  */
537 static u32 *parent_process(const char *clocks[],
538 			u32 *count, const char ***names)
539 {
540 	static const char **parent_names;
541 	static u32 *parent_sel;
542 	const char **clock;
543 	u32 parent_count;
544 	u32 bad_count = 0;
545 	u32 orig_count;
546 	u32 i;
547 	u32 j;
548 
549 	*count = 0;	/* In case of early return */
550 	*names = NULL;
551 	if (!clocks)
552 		return NULL;
553 
554 	/*
555 	 * Count the number of names in the null-terminated array,
556 	 * and find out how many of those are actually clock names.
557 	 */
558 	for (clock = clocks; *clock; clock++)
559 		if (*clock == BAD_CLK_NAME)
560 			bad_count++;
561 	orig_count = (u32)(clock - clocks);
562 	parent_count = orig_count - bad_count;
563 
564 	/* If all clocks are unsupported, we treat it as no clock */
565 	if (!parent_count)
566 		return NULL;
567 
568 	/* Avoid exceeding our parent clock limit */
569 	if (parent_count > PARENT_COUNT_MAX) {
570 		pr_err("%s: too many parents (%u > %u)\n", __func__,
571 			parent_count, PARENT_COUNT_MAX);
572 		return ERR_PTR(-EINVAL);
573 	}
574 
575 	/*
576 	 * There is one parent name for each defined parent clock.
577 	 * We also maintain an array containing the selector value
578 	 * for each defined clock.  If there's only one clock, the
579 	 * selector is not required, but we allocate space for the
580 	 * array anyway to keep things simple.
581 	 */
582 	parent_names = kmalloc(parent_count * sizeof(parent_names), GFP_KERNEL);
583 	if (!parent_names) {
584 		pr_err("%s: error allocating %u parent names\n", __func__,
585 				parent_count);
586 		return ERR_PTR(-ENOMEM);
587 	}
588 
589 	/* There is at least one parent, so allocate a selector array */
590 
591 	parent_sel = kmalloc(parent_count * sizeof(*parent_sel), GFP_KERNEL);
592 	if (!parent_sel) {
593 		pr_err("%s: error allocating %u parent selectors\n", __func__,
594 				parent_count);
595 		kfree(parent_names);
596 
597 		return ERR_PTR(-ENOMEM);
598 	}
599 
600 	/* Now fill in the parent names and selector arrays */
601 	for (i = 0, j = 0; i < orig_count; i++) {
602 		if (clocks[i] != BAD_CLK_NAME) {
603 			parent_names[j] = clocks[i];
604 			parent_sel[j] = i;
605 			j++;
606 		}
607 	}
608 	*names = parent_names;
609 	*count = parent_count;
610 
611 	return parent_sel;
612 }
613 
614 static int
615 clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel,
616 		struct clk_init_data *init_data)
617 {
618 	const char **parent_names = NULL;
619 	u32 parent_count = 0;
620 	u32 *parent_sel;
621 
622 	/*
623 	 * If a peripheral clock has multiple parents, the value
624 	 * used by the hardware to select that parent is represented
625 	 * by the parent clock's position in the "clocks" list.  Some
626 	 * values don't have defined or supported clocks; these will
627 	 * have BAD_CLK_NAME entries in the parents[] array.  The
628 	 * list is terminated by a NULL entry.
629 	 *
630 	 * We need to supply (only) the names of defined parent
631 	 * clocks when registering a clock though, so we use an
632 	 * array of parent selector values to map between the
633 	 * indexes the common clock code uses and the selector
634 	 * values we need.
635 	 */
636 	parent_sel = parent_process(clocks, &parent_count, &parent_names);
637 	if (IS_ERR(parent_sel)) {
638 		int ret = PTR_ERR(parent_sel);
639 
640 		pr_err("%s: error processing parent clocks for %s (%d)\n",
641 			__func__, init_data->name, ret);
642 
643 		return ret;
644 	}
645 
646 	init_data->parent_names = parent_names;
647 	init_data->num_parents = parent_count;
648 
649 	sel->parent_count = parent_count;
650 	sel->parent_sel = parent_sel;
651 
652 	return 0;
653 }
654 
655 static void clk_sel_teardown(struct bcm_clk_sel *sel,
656 		struct clk_init_data *init_data)
657 {
658 	kfree(sel->parent_sel);
659 	sel->parent_sel = NULL;
660 	sel->parent_count = 0;
661 
662 	init_data->num_parents = 0;
663 	kfree(init_data->parent_names);
664 	init_data->parent_names = NULL;
665 }
666 
667 static void peri_clk_teardown(struct peri_clk_data *data,
668 				struct clk_init_data *init_data)
669 {
670 	clk_sel_teardown(&data->sel, init_data);
671 }
672 
673 /*
674  * Caller is responsible for freeing the parent_names[] and
675  * parent_sel[] arrays in the peripheral clock's "data" structure
676  * that can be assigned if the clock has one or more parent clocks
677  * associated with it.
678  */
679 static int
680 peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data)
681 {
682 	init_data->flags = CLK_IGNORE_UNUSED;
683 
684 	return clk_sel_setup(data->clocks, &data->sel, init_data);
685 }
686 
687 static void bcm_clk_teardown(struct kona_clk *bcm_clk)
688 {
689 	switch (bcm_clk->type) {
690 	case bcm_clk_peri:
691 		peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data);
692 		break;
693 	default:
694 		break;
695 	}
696 	bcm_clk->u.data = NULL;
697 	bcm_clk->type = bcm_clk_none;
698 }
699 
700 static void kona_clk_teardown(struct clk *clk)
701 {
702 	struct clk_hw *hw;
703 	struct kona_clk *bcm_clk;
704 
705 	if (!clk)
706 		return;
707 
708 	hw = __clk_get_hw(clk);
709 	if (!hw) {
710 		pr_err("%s: clk %p has null hw pointer\n", __func__, clk);
711 		return;
712 	}
713 	clk_unregister(clk);
714 
715 	bcm_clk = to_kona_clk(hw);
716 	bcm_clk_teardown(bcm_clk);
717 }
718 
719 struct clk *kona_clk_setup(struct kona_clk *bcm_clk)
720 {
721 	struct clk_init_data *init_data = &bcm_clk->init_data;
722 	struct clk *clk = NULL;
723 
724 	switch (bcm_clk->type) {
725 	case bcm_clk_peri:
726 		if (peri_clk_setup(bcm_clk->u.data, init_data))
727 			return NULL;
728 		break;
729 	default:
730 		pr_err("%s: clock type %d invalid for %s\n", __func__,
731 			(int)bcm_clk->type, init_data->name);
732 		return NULL;
733 	}
734 
735 	/* Make sure everything makes sense before we set it up */
736 	if (!kona_clk_valid(bcm_clk)) {
737 		pr_err("%s: clock data invalid for %s\n", __func__,
738 			init_data->name);
739 		goto out_teardown;
740 	}
741 
742 	bcm_clk->hw.init = init_data;
743 	clk = clk_register(NULL, &bcm_clk->hw);
744 	if (IS_ERR(clk)) {
745 		pr_err("%s: error registering clock %s (%ld)\n", __func__,
746 			init_data->name, PTR_ERR(clk));
747 		goto out_teardown;
748 	}
749 	BUG_ON(!clk);
750 
751 	return clk;
752 out_teardown:
753 	bcm_clk_teardown(bcm_clk);
754 
755 	return NULL;
756 }
757 
758 static void ccu_clks_teardown(struct ccu_data *ccu)
759 {
760 	u32 i;
761 
762 	for (i = 0; i < ccu->clk_data.clk_num; i++)
763 		kona_clk_teardown(ccu->clk_data.clks[i]);
764 	kfree(ccu->clk_data.clks);
765 }
766 
767 static void kona_ccu_teardown(struct ccu_data *ccu)
768 {
769 	kfree(ccu->clk_data.clks);
770 	ccu->clk_data.clks = NULL;
771 	if (!ccu->base)
772 		return;
773 
774 	of_clk_del_provider(ccu->node);	/* safe if never added */
775 	ccu_clks_teardown(ccu);
776 	list_del(&ccu->links);
777 	of_node_put(ccu->node);
778 	ccu->node = NULL;
779 	iounmap(ccu->base);
780 	ccu->base = NULL;
781 }
782 
783 static bool ccu_data_valid(struct ccu_data *ccu)
784 {
785 	struct ccu_policy *ccu_policy;
786 
787 	if (!ccu_data_offsets_valid(ccu))
788 		return false;
789 
790 	ccu_policy = &ccu->policy;
791 	if (ccu_policy_exists(ccu_policy))
792 		if (!ccu_policy_valid(ccu_policy, ccu->name))
793 			return false;
794 
795 	return true;
796 }
797 
798 /*
799  * Set up a CCU.  Call the provided ccu_clks_setup callback to
800  * initialize the array of clocks provided by the CCU.
801  */
802 void __init kona_dt_ccu_setup(struct ccu_data *ccu,
803 			struct device_node *node)
804 {
805 	struct resource res = { 0 };
806 	resource_size_t range;
807 	unsigned int i;
808 	int ret;
809 
810 	if (ccu->clk_data.clk_num) {
811 		size_t size;
812 
813 		size = ccu->clk_data.clk_num * sizeof(*ccu->clk_data.clks);
814 		ccu->clk_data.clks = kzalloc(size, GFP_KERNEL);
815 		if (!ccu->clk_data.clks) {
816 			pr_err("%s: unable to allocate %u clocks for %s\n",
817 				__func__, ccu->clk_data.clk_num, node->name);
818 			return;
819 		}
820 	}
821 
822 	ret = of_address_to_resource(node, 0, &res);
823 	if (ret) {
824 		pr_err("%s: no valid CCU registers found for %s\n", __func__,
825 			node->name);
826 		goto out_err;
827 	}
828 
829 	range = resource_size(&res);
830 	if (range > (resource_size_t)U32_MAX) {
831 		pr_err("%s: address range too large for %s\n", __func__,
832 			node->name);
833 		goto out_err;
834 	}
835 
836 	ccu->range = (u32)range;
837 
838 	if (!ccu_data_valid(ccu)) {
839 		pr_err("%s: ccu data not valid for %s\n", __func__, node->name);
840 		goto out_err;
841 	}
842 
843 	ccu->base = ioremap(res.start, ccu->range);
844 	if (!ccu->base) {
845 		pr_err("%s: unable to map CCU registers for %s\n", __func__,
846 			node->name);
847 		goto out_err;
848 	}
849 	ccu->node = of_node_get(node);
850 	list_add_tail(&ccu->links, &ccu_list);
851 
852 	/*
853 	 * Set up each defined kona clock and save the result in
854 	 * the clock framework clock array (in ccu->data).  Then
855 	 * register as a provider for these clocks.
856 	 */
857 	for (i = 0; i < ccu->clk_data.clk_num; i++) {
858 		if (!ccu->kona_clks[i].ccu)
859 			continue;
860 		ccu->clk_data.clks[i] = kona_clk_setup(&ccu->kona_clks[i]);
861 	}
862 
863 	ret = of_clk_add_provider(node, of_clk_src_onecell_get, &ccu->clk_data);
864 	if (ret) {
865 		pr_err("%s: error adding ccu %s as provider (%d)\n", __func__,
866 				node->name, ret);
867 		goto out_err;
868 	}
869 
870 	if (!kona_ccu_init(ccu))
871 		pr_err("Broadcom %s initialization had errors\n", node->name);
872 
873 	return;
874 out_err:
875 	kona_ccu_teardown(ccu);
876 	pr_err("Broadcom %s setup aborted\n", node->name);
877 }
878