xref: /openbmc/linux/drivers/char/random.c (revision af704c856e888fb044b058d731d61b46eeec499d)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6  *
7  * This driver produces cryptographically secure pseudorandom data. It is divided
8  * into roughly six sections, each with a section header:
9  *
10  *   - Initialization and readiness waiting.
11  *   - Fast key erasure RNG, the "crng".
12  *   - Entropy accumulation and extraction routines.
13  *   - Entropy collection routines.
14  *   - Userspace reader/writer interfaces.
15  *   - Sysctl interface.
16  *
17  * The high level overview is that there is one input pool, into which
18  * various pieces of data are hashed. Some of that data is then "credited" as
19  * having a certain number of bits of entropy. When enough bits of entropy are
20  * available, the hash is finalized and handed as a key to a stream cipher that
21  * expands it indefinitely for various consumers. This key is periodically
22  * refreshed as the various entropy collectors, described below, add data to the
23  * input pool and credit it. There is currently no Fortuna-like scheduler
24  * involved, which can lead to malicious entropy sources causing a premature
25  * reseed, and the entropy estimates are, at best, conservative guesses.
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/utsname.h>
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/major.h>
34 #include <linux/string.h>
35 #include <linux/fcntl.h>
36 #include <linux/slab.h>
37 #include <linux/random.h>
38 #include <linux/poll.h>
39 #include <linux/init.h>
40 #include <linux/fs.h>
41 #include <linux/blkdev.h>
42 #include <linux/interrupt.h>
43 #include <linux/mm.h>
44 #include <linux/nodemask.h>
45 #include <linux/spinlock.h>
46 #include <linux/kthread.h>
47 #include <linux/percpu.h>
48 #include <linux/ptrace.h>
49 #include <linux/workqueue.h>
50 #include <linux/irq.h>
51 #include <linux/ratelimit.h>
52 #include <linux/syscalls.h>
53 #include <linux/completion.h>
54 #include <linux/uuid.h>
55 #include <linux/uaccess.h>
56 #include <crypto/chacha.h>
57 #include <crypto/blake2s.h>
58 #include <asm/processor.h>
59 #include <asm/irq.h>
60 #include <asm/irq_regs.h>
61 #include <asm/io.h>
62 
63 /*********************************************************************
64  *
65  * Initialization and readiness waiting.
66  *
67  * Much of the RNG infrastructure is devoted to various dependencies
68  * being able to wait until the RNG has collected enough entropy and
69  * is ready for safe consumption.
70  *
71  *********************************************************************/
72 
73 /*
74  * crng_init =  0 --> Uninitialized
75  *		1 --> Initialized
76  *		2 --> Initialized from input_pool
77  *
78  * crng_init is protected by base_crng->lock, and only increases
79  * its value (from 0->1->2).
80  */
81 static int crng_init = 0;
82 #define crng_ready() (likely(crng_init > 1))
83 /* Various types of waiters for crng_init->2 transition. */
84 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
85 static struct fasync_struct *fasync;
86 static DEFINE_SPINLOCK(random_ready_chain_lock);
87 static RAW_NOTIFIER_HEAD(random_ready_chain);
88 
89 /* Control how we warn userspace. */
90 static struct ratelimit_state unseeded_warning =
91 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
92 static struct ratelimit_state urandom_warning =
93 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
94 static int ratelimit_disable __read_mostly;
95 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
96 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
97 
98 /*
99  * Returns whether or not the input pool has been seeded and thus guaranteed
100  * to supply cryptographically secure random numbers. This applies to: the
101  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
102  * ,u64,int,long} family of functions.
103  *
104  * Returns: true if the input pool has been seeded.
105  *          false if the input pool has not been seeded.
106  */
107 bool rng_is_initialized(void)
108 {
109 	return crng_ready();
110 }
111 EXPORT_SYMBOL(rng_is_initialized);
112 
113 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
114 static void try_to_generate_entropy(void);
115 
116 /*
117  * Wait for the input pool to be seeded and thus guaranteed to supply
118  * cryptographically secure random numbers. This applies to: the /dev/urandom
119  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
120  * family of functions. Using any of these functions without first calling
121  * this function forfeits the guarantee of security.
122  *
123  * Returns: 0 if the input pool has been seeded.
124  *          -ERESTARTSYS if the function was interrupted by a signal.
125  */
126 int wait_for_random_bytes(void)
127 {
128 	while (!crng_ready()) {
129 		int ret;
130 
131 		try_to_generate_entropy();
132 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
133 		if (ret)
134 			return ret > 0 ? 0 : ret;
135 	}
136 	return 0;
137 }
138 EXPORT_SYMBOL(wait_for_random_bytes);
139 
140 /*
141  * Add a callback function that will be invoked when the input
142  * pool is initialised.
143  *
144  * returns: 0 if callback is successfully added
145  *	    -EALREADY if pool is already initialised (callback not called)
146  */
147 int register_random_ready_notifier(struct notifier_block *nb)
148 {
149 	unsigned long flags;
150 	int ret = -EALREADY;
151 
152 	if (crng_ready())
153 		return ret;
154 
155 	spin_lock_irqsave(&random_ready_chain_lock, flags);
156 	if (!crng_ready())
157 		ret = raw_notifier_chain_register(&random_ready_chain, nb);
158 	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
159 	return ret;
160 }
161 
162 /*
163  * Delete a previously registered readiness callback function.
164  */
165 int unregister_random_ready_notifier(struct notifier_block *nb)
166 {
167 	unsigned long flags;
168 	int ret;
169 
170 	spin_lock_irqsave(&random_ready_chain_lock, flags);
171 	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
172 	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
173 	return ret;
174 }
175 
176 static void process_random_ready_list(void)
177 {
178 	unsigned long flags;
179 
180 	spin_lock_irqsave(&random_ready_chain_lock, flags);
181 	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
182 	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
183 }
184 
185 #define warn_unseeded_randomness(previous) \
186 	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
187 
188 static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
189 {
190 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
191 	const bool print_once = false;
192 #else
193 	static bool print_once __read_mostly;
194 #endif
195 
196 	if (print_once || crng_ready() ||
197 	    (previous && (caller == READ_ONCE(*previous))))
198 		return;
199 	WRITE_ONCE(*previous, caller);
200 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
201 	print_once = true;
202 #endif
203 	if (__ratelimit(&unseeded_warning))
204 		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
205 				func_name, caller, crng_init);
206 }
207 
208 
209 /*********************************************************************
210  *
211  * Fast key erasure RNG, the "crng".
212  *
213  * These functions expand entropy from the entropy extractor into
214  * long streams for external consumption using the "fast key erasure"
215  * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
216  *
217  * There are a few exported interfaces for use by other drivers:
218  *
219  *	void get_random_bytes(void *buf, size_t nbytes)
220  *	u32 get_random_u32()
221  *	u64 get_random_u64()
222  *	unsigned int get_random_int()
223  *	unsigned long get_random_long()
224  *
225  * These interfaces will return the requested number of random bytes
226  * into the given buffer or as a return value. This is equivalent to
227  * a read from /dev/urandom. The integer family of functions may be
228  * higher performance for one-off random integers, because they do a
229  * bit of buffering.
230  *
231  *********************************************************************/
232 
233 enum {
234 	CRNG_RESEED_INTERVAL = 300 * HZ,
235 	CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
236 };
237 
238 static struct {
239 	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
240 	unsigned long birth;
241 	unsigned long generation;
242 	spinlock_t lock;
243 } base_crng = {
244 	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
245 };
246 
247 struct crng {
248 	u8 key[CHACHA_KEY_SIZE];
249 	unsigned long generation;
250 	local_lock_t lock;
251 };
252 
253 static DEFINE_PER_CPU(struct crng, crngs) = {
254 	.generation = ULONG_MAX,
255 	.lock = INIT_LOCAL_LOCK(crngs.lock),
256 };
257 
258 /* Used by crng_reseed() to extract a new seed from the input pool. */
259 static bool drain_entropy(void *buf, size_t nbytes, bool force);
260 
261 /*
262  * This extracts a new crng key from the input pool, but only if there is a
263  * sufficient amount of entropy available or force is true, in order to
264  * mitigate bruteforcing of newly added bits.
265  */
266 static void crng_reseed(bool force)
267 {
268 	unsigned long flags;
269 	unsigned long next_gen;
270 	u8 key[CHACHA_KEY_SIZE];
271 	bool finalize_init = false;
272 
273 	/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
274 	if (!drain_entropy(key, sizeof(key), force))
275 		return;
276 
277 	/*
278 	 * We copy the new key into the base_crng, overwriting the old one,
279 	 * and update the generation counter. We avoid hitting ULONG_MAX,
280 	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
281 	 * forces new CPUs that come online to always initialize.
282 	 */
283 	spin_lock_irqsave(&base_crng.lock, flags);
284 	memcpy(base_crng.key, key, sizeof(base_crng.key));
285 	next_gen = base_crng.generation + 1;
286 	if (next_gen == ULONG_MAX)
287 		++next_gen;
288 	WRITE_ONCE(base_crng.generation, next_gen);
289 	WRITE_ONCE(base_crng.birth, jiffies);
290 	if (!crng_ready()) {
291 		crng_init = 2;
292 		finalize_init = true;
293 	}
294 	spin_unlock_irqrestore(&base_crng.lock, flags);
295 	memzero_explicit(key, sizeof(key));
296 	if (finalize_init) {
297 		process_random_ready_list();
298 		wake_up_interruptible(&crng_init_wait);
299 		kill_fasync(&fasync, SIGIO, POLL_IN);
300 		pr_notice("crng init done\n");
301 		if (unseeded_warning.missed) {
302 			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
303 				  unseeded_warning.missed);
304 			unseeded_warning.missed = 0;
305 		}
306 		if (urandom_warning.missed) {
307 			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
308 				  urandom_warning.missed);
309 			urandom_warning.missed = 0;
310 		}
311 	}
312 }
313 
314 /*
315  * This generates a ChaCha block using the provided key, and then
316  * immediately overwites that key with half the block. It returns
317  * the resultant ChaCha state to the user, along with the second
318  * half of the block containing 32 bytes of random data that may
319  * be used; random_data_len may not be greater than 32.
320  */
321 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
322 				  u32 chacha_state[CHACHA_STATE_WORDS],
323 				  u8 *random_data, size_t random_data_len)
324 {
325 	u8 first_block[CHACHA_BLOCK_SIZE];
326 
327 	BUG_ON(random_data_len > 32);
328 
329 	chacha_init_consts(chacha_state);
330 	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
331 	memset(&chacha_state[12], 0, sizeof(u32) * 4);
332 	chacha20_block(chacha_state, first_block);
333 
334 	memcpy(key, first_block, CHACHA_KEY_SIZE);
335 	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
336 	memzero_explicit(first_block, sizeof(first_block));
337 }
338 
339 /*
340  * Return whether the crng seed is considered to be sufficiently
341  * old that a reseeding might be attempted. This happens if the last
342  * reseeding was CRNG_RESEED_INTERVAL ago, or during early boot, at
343  * an interval proportional to the uptime.
344  */
345 static bool crng_has_old_seed(void)
346 {
347 	static bool early_boot = true;
348 	unsigned long interval = CRNG_RESEED_INTERVAL;
349 
350 	if (unlikely(READ_ONCE(early_boot))) {
351 		time64_t uptime = ktime_get_seconds();
352 		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
353 			WRITE_ONCE(early_boot, false);
354 		else
355 			interval = max_t(unsigned int, 5 * HZ,
356 					 (unsigned int)uptime / 2 * HZ);
357 	}
358 	return time_after(jiffies, READ_ONCE(base_crng.birth) + interval);
359 }
360 
361 /*
362  * This function returns a ChaCha state that you may use for generating
363  * random data. It also returns up to 32 bytes on its own of random data
364  * that may be used; random_data_len may not be greater than 32.
365  */
366 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
367 			    u8 *random_data, size_t random_data_len)
368 {
369 	unsigned long flags;
370 	struct crng *crng;
371 
372 	BUG_ON(random_data_len > 32);
373 
374 	/*
375 	 * For the fast path, we check whether we're ready, unlocked first, and
376 	 * then re-check once locked later. In the case where we're really not
377 	 * ready, we do fast key erasure with the base_crng directly, because
378 	 * this is what crng_pre_init_inject() mutates during early init.
379 	 */
380 	if (!crng_ready()) {
381 		bool ready;
382 
383 		spin_lock_irqsave(&base_crng.lock, flags);
384 		ready = crng_ready();
385 		if (!ready)
386 			crng_fast_key_erasure(base_crng.key, chacha_state,
387 					      random_data, random_data_len);
388 		spin_unlock_irqrestore(&base_crng.lock, flags);
389 		if (!ready)
390 			return;
391 	}
392 
393 	/*
394 	 * If the base_crng is old enough, we try to reseed, which in turn
395 	 * bumps the generation counter that we check below.
396 	 */
397 	if (unlikely(crng_has_old_seed()))
398 		crng_reseed(false);
399 
400 	local_lock_irqsave(&crngs.lock, flags);
401 	crng = raw_cpu_ptr(&crngs);
402 
403 	/*
404 	 * If our per-cpu crng is older than the base_crng, then it means
405 	 * somebody reseeded the base_crng. In that case, we do fast key
406 	 * erasure on the base_crng, and use its output as the new key
407 	 * for our per-cpu crng. This brings us up to date with base_crng.
408 	 */
409 	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
410 		spin_lock(&base_crng.lock);
411 		crng_fast_key_erasure(base_crng.key, chacha_state,
412 				      crng->key, sizeof(crng->key));
413 		crng->generation = base_crng.generation;
414 		spin_unlock(&base_crng.lock);
415 	}
416 
417 	/*
418 	 * Finally, when we've made it this far, our per-cpu crng has an up
419 	 * to date key, and we can do fast key erasure with it to produce
420 	 * some random data and a ChaCha state for the caller. All other
421 	 * branches of this function are "unlikely", so most of the time we
422 	 * should wind up here immediately.
423 	 */
424 	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
425 	local_unlock_irqrestore(&crngs.lock, flags);
426 }
427 
428 /*
429  * This function is for crng_init == 0 only. It loads entropy directly
430  * into the crng's key, without going through the input pool. It is,
431  * generally speaking, not very safe, but we use this only at early
432  * boot time when it's better to have something there rather than
433  * nothing.
434  *
435  * If account is set, then the crng_init_cnt counter is incremented.
436  * This shouldn't be set by functions like add_device_randomness(),
437  * where we can't trust the buffer passed to it is guaranteed to be
438  * unpredictable (so it might not have any entropy at all).
439  *
440  * Returns the number of bytes processed from input, which is bounded
441  * by CRNG_INIT_CNT_THRESH if account is true.
442  */
443 static size_t crng_pre_init_inject(const void *input, size_t len, bool account)
444 {
445 	static int crng_init_cnt = 0;
446 	struct blake2s_state hash;
447 	unsigned long flags;
448 
449 	blake2s_init(&hash, sizeof(base_crng.key));
450 
451 	spin_lock_irqsave(&base_crng.lock, flags);
452 	if (crng_init != 0) {
453 		spin_unlock_irqrestore(&base_crng.lock, flags);
454 		return 0;
455 	}
456 
457 	if (account)
458 		len = min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt);
459 
460 	blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
461 	blake2s_update(&hash, input, len);
462 	blake2s_final(&hash, base_crng.key);
463 
464 	if (account) {
465 		crng_init_cnt += len;
466 		if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
467 			++base_crng.generation;
468 			crng_init = 1;
469 		}
470 	}
471 
472 	spin_unlock_irqrestore(&base_crng.lock, flags);
473 
474 	if (crng_init == 1)
475 		pr_notice("fast init done\n");
476 
477 	return len;
478 }
479 
480 static void _get_random_bytes(void *buf, size_t nbytes)
481 {
482 	u32 chacha_state[CHACHA_STATE_WORDS];
483 	u8 tmp[CHACHA_BLOCK_SIZE];
484 	size_t len;
485 
486 	if (!nbytes)
487 		return;
488 
489 	len = min_t(size_t, 32, nbytes);
490 	crng_make_state(chacha_state, buf, len);
491 	nbytes -= len;
492 	buf += len;
493 
494 	while (nbytes) {
495 		if (nbytes < CHACHA_BLOCK_SIZE) {
496 			chacha20_block(chacha_state, tmp);
497 			memcpy(buf, tmp, nbytes);
498 			memzero_explicit(tmp, sizeof(tmp));
499 			break;
500 		}
501 
502 		chacha20_block(chacha_state, buf);
503 		if (unlikely(chacha_state[12] == 0))
504 			++chacha_state[13];
505 		nbytes -= CHACHA_BLOCK_SIZE;
506 		buf += CHACHA_BLOCK_SIZE;
507 	}
508 
509 	memzero_explicit(chacha_state, sizeof(chacha_state));
510 }
511 
512 /*
513  * This function is the exported kernel interface.  It returns some
514  * number of good random numbers, suitable for key generation, seeding
515  * TCP sequence numbers, etc.  It does not rely on the hardware random
516  * number generator.  For random bytes direct from the hardware RNG
517  * (when available), use get_random_bytes_arch(). In order to ensure
518  * that the randomness provided by this function is okay, the function
519  * wait_for_random_bytes() should be called and return 0 at least once
520  * at any point prior.
521  */
522 void get_random_bytes(void *buf, size_t nbytes)
523 {
524 	static void *previous;
525 
526 	warn_unseeded_randomness(&previous);
527 	_get_random_bytes(buf, nbytes);
528 }
529 EXPORT_SYMBOL(get_random_bytes);
530 
531 static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
532 {
533 	bool large_request = nbytes > 256;
534 	ssize_t ret = 0;
535 	size_t len;
536 	u32 chacha_state[CHACHA_STATE_WORDS];
537 	u8 output[CHACHA_BLOCK_SIZE];
538 
539 	if (!nbytes)
540 		return 0;
541 
542 	len = min_t(size_t, 32, nbytes);
543 	crng_make_state(chacha_state, output, len);
544 
545 	if (copy_to_user(buf, output, len))
546 		return -EFAULT;
547 	nbytes -= len;
548 	buf += len;
549 	ret += len;
550 
551 	while (nbytes) {
552 		if (large_request && need_resched()) {
553 			if (signal_pending(current))
554 				break;
555 			schedule();
556 		}
557 
558 		chacha20_block(chacha_state, output);
559 		if (unlikely(chacha_state[12] == 0))
560 			++chacha_state[13];
561 
562 		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
563 		if (copy_to_user(buf, output, len)) {
564 			ret = -EFAULT;
565 			break;
566 		}
567 
568 		nbytes -= len;
569 		buf += len;
570 		ret += len;
571 	}
572 
573 	memzero_explicit(chacha_state, sizeof(chacha_state));
574 	memzero_explicit(output, sizeof(output));
575 	return ret;
576 }
577 
578 /*
579  * Batched entropy returns random integers. The quality of the random
580  * number is good as /dev/urandom. In order to ensure that the randomness
581  * provided by this function is okay, the function wait_for_random_bytes()
582  * should be called and return 0 at least once at any point prior.
583  */
584 struct batched_entropy {
585 	union {
586 		/*
587 		 * We make this 1.5x a ChaCha block, so that we get the
588 		 * remaining 32 bytes from fast key erasure, plus one full
589 		 * block from the detached ChaCha state. We can increase
590 		 * the size of this later if needed so long as we keep the
591 		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
592 		 */
593 		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
594 		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
595 	};
596 	local_lock_t lock;
597 	unsigned long generation;
598 	unsigned int position;
599 };
600 
601 
602 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
603 	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
604 	.position = UINT_MAX
605 };
606 
607 u64 get_random_u64(void)
608 {
609 	u64 ret;
610 	unsigned long flags;
611 	struct batched_entropy *batch;
612 	static void *previous;
613 	unsigned long next_gen;
614 
615 	warn_unseeded_randomness(&previous);
616 
617 	local_lock_irqsave(&batched_entropy_u64.lock, flags);
618 	batch = raw_cpu_ptr(&batched_entropy_u64);
619 
620 	next_gen = READ_ONCE(base_crng.generation);
621 	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
622 	    next_gen != batch->generation) {
623 		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
624 		batch->position = 0;
625 		batch->generation = next_gen;
626 	}
627 
628 	ret = batch->entropy_u64[batch->position];
629 	batch->entropy_u64[batch->position] = 0;
630 	++batch->position;
631 	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
632 	return ret;
633 }
634 EXPORT_SYMBOL(get_random_u64);
635 
636 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
637 	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
638 	.position = UINT_MAX
639 };
640 
641 u32 get_random_u32(void)
642 {
643 	u32 ret;
644 	unsigned long flags;
645 	struct batched_entropy *batch;
646 	static void *previous;
647 	unsigned long next_gen;
648 
649 	warn_unseeded_randomness(&previous);
650 
651 	local_lock_irqsave(&batched_entropy_u32.lock, flags);
652 	batch = raw_cpu_ptr(&batched_entropy_u32);
653 
654 	next_gen = READ_ONCE(base_crng.generation);
655 	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
656 	    next_gen != batch->generation) {
657 		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
658 		batch->position = 0;
659 		batch->generation = next_gen;
660 	}
661 
662 	ret = batch->entropy_u32[batch->position];
663 	batch->entropy_u32[batch->position] = 0;
664 	++batch->position;
665 	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
666 	return ret;
667 }
668 EXPORT_SYMBOL(get_random_u32);
669 
670 #ifdef CONFIG_SMP
671 /*
672  * This function is called when the CPU is coming up, with entry
673  * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
674  */
675 int random_prepare_cpu(unsigned int cpu)
676 {
677 	/*
678 	 * When the cpu comes back online, immediately invalidate both
679 	 * the per-cpu crng and all batches, so that we serve fresh
680 	 * randomness.
681 	 */
682 	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
683 	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
684 	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
685 	return 0;
686 }
687 #endif
688 
689 /**
690  * randomize_page - Generate a random, page aligned address
691  * @start:	The smallest acceptable address the caller will take.
692  * @range:	The size of the area, starting at @start, within which the
693  *		random address must fall.
694  *
695  * If @start + @range would overflow, @range is capped.
696  *
697  * NOTE: Historical use of randomize_range, which this replaces, presumed that
698  * @start was already page aligned.  We now align it regardless.
699  *
700  * Return: A page aligned address within [start, start + range).  On error,
701  * @start is returned.
702  */
703 unsigned long randomize_page(unsigned long start, unsigned long range)
704 {
705 	if (!PAGE_ALIGNED(start)) {
706 		range -= PAGE_ALIGN(start) - start;
707 		start = PAGE_ALIGN(start);
708 	}
709 
710 	if (start > ULONG_MAX - range)
711 		range = ULONG_MAX - start;
712 
713 	range >>= PAGE_SHIFT;
714 
715 	if (range == 0)
716 		return start;
717 
718 	return start + (get_random_long() % range << PAGE_SHIFT);
719 }
720 
721 /*
722  * This function will use the architecture-specific hardware random
723  * number generator if it is available. It is not recommended for
724  * use. Use get_random_bytes() instead. It returns the number of
725  * bytes filled in.
726  */
727 size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
728 {
729 	size_t left = nbytes;
730 	u8 *p = buf;
731 
732 	while (left) {
733 		unsigned long v;
734 		size_t chunk = min_t(size_t, left, sizeof(unsigned long));
735 
736 		if (!arch_get_random_long(&v))
737 			break;
738 
739 		memcpy(p, &v, chunk);
740 		p += chunk;
741 		left -= chunk;
742 	}
743 
744 	return nbytes - left;
745 }
746 EXPORT_SYMBOL(get_random_bytes_arch);
747 
748 
749 /**********************************************************************
750  *
751  * Entropy accumulation and extraction routines.
752  *
753  * Callers may add entropy via:
754  *
755  *     static void mix_pool_bytes(const void *in, size_t nbytes)
756  *
757  * After which, if added entropy should be credited:
758  *
759  *     static void credit_entropy_bits(size_t nbits)
760  *
761  * Finally, extract entropy via these two, with the latter one
762  * setting the entropy count to zero and extracting only if there
763  * is POOL_MIN_BITS entropy credited prior or force is true:
764  *
765  *     static void extract_entropy(void *buf, size_t nbytes)
766  *     static bool drain_entropy(void *buf, size_t nbytes, bool force)
767  *
768  **********************************************************************/
769 
770 enum {
771 	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
772 	POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
773 };
774 
775 /* For notifying userspace should write into /dev/random. */
776 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
777 
778 static struct {
779 	struct blake2s_state hash;
780 	spinlock_t lock;
781 	unsigned int entropy_count;
782 } input_pool = {
783 	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
784 		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
785 		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
786 	.hash.outlen = BLAKE2S_HASH_SIZE,
787 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
788 };
789 
790 static void _mix_pool_bytes(const void *in, size_t nbytes)
791 {
792 	blake2s_update(&input_pool.hash, in, nbytes);
793 }
794 
795 /*
796  * This function adds bytes into the entropy "pool".  It does not
797  * update the entropy estimate.  The caller should call
798  * credit_entropy_bits if this is appropriate.
799  */
800 static void mix_pool_bytes(const void *in, size_t nbytes)
801 {
802 	unsigned long flags;
803 
804 	spin_lock_irqsave(&input_pool.lock, flags);
805 	_mix_pool_bytes(in, nbytes);
806 	spin_unlock_irqrestore(&input_pool.lock, flags);
807 }
808 
809 static void credit_entropy_bits(size_t nbits)
810 {
811 	unsigned int entropy_count, orig, add;
812 
813 	if (!nbits)
814 		return;
815 
816 	add = min_t(size_t, nbits, POOL_BITS);
817 
818 	do {
819 		orig = READ_ONCE(input_pool.entropy_count);
820 		entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
821 	} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);
822 
823 	if (!crng_ready() && entropy_count >= POOL_MIN_BITS)
824 		crng_reseed(false);
825 }
826 
827 /*
828  * This is an HKDF-like construction for using the hashed collected entropy
829  * as a PRF key, that's then expanded block-by-block.
830  */
831 static void extract_entropy(void *buf, size_t nbytes)
832 {
833 	unsigned long flags;
834 	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
835 	struct {
836 		unsigned long rdseed[32 / sizeof(long)];
837 		size_t counter;
838 	} block;
839 	size_t i;
840 
841 	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
842 		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
843 		    !arch_get_random_long(&block.rdseed[i]))
844 			block.rdseed[i] = random_get_entropy();
845 	}
846 
847 	spin_lock_irqsave(&input_pool.lock, flags);
848 
849 	/* seed = HASHPRF(last_key, entropy_input) */
850 	blake2s_final(&input_pool.hash, seed);
851 
852 	/* next_key = HASHPRF(seed, RDSEED || 0) */
853 	block.counter = 0;
854 	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
855 	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
856 
857 	spin_unlock_irqrestore(&input_pool.lock, flags);
858 	memzero_explicit(next_key, sizeof(next_key));
859 
860 	while (nbytes) {
861 		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
862 		/* output = HASHPRF(seed, RDSEED || ++counter) */
863 		++block.counter;
864 		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
865 		nbytes -= i;
866 		buf += i;
867 	}
868 
869 	memzero_explicit(seed, sizeof(seed));
870 	memzero_explicit(&block, sizeof(block));
871 }
872 
873 /*
874  * First we make sure we have POOL_MIN_BITS of entropy in the pool unless force
875  * is true, and then we set the entropy count to zero (but don't actually touch
876  * any data). Only then can we extract a new key with extract_entropy().
877  */
878 static bool drain_entropy(void *buf, size_t nbytes, bool force)
879 {
880 	unsigned int entropy_count;
881 	do {
882 		entropy_count = READ_ONCE(input_pool.entropy_count);
883 		if (!force && entropy_count < POOL_MIN_BITS)
884 			return false;
885 	} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
886 	extract_entropy(buf, nbytes);
887 	wake_up_interruptible(&random_write_wait);
888 	kill_fasync(&fasync, SIGIO, POLL_OUT);
889 	return true;
890 }
891 
892 
893 /**********************************************************************
894  *
895  * Entropy collection routines.
896  *
897  * The following exported functions are used for pushing entropy into
898  * the above entropy accumulation routines:
899  *
900  *	void add_device_randomness(const void *buf, size_t size);
901  *	void add_input_randomness(unsigned int type, unsigned int code,
902  *	                          unsigned int value);
903  *	void add_disk_randomness(struct gendisk *disk);
904  *	void add_hwgenerator_randomness(const void *buffer, size_t count,
905  *					size_t entropy);
906  *	void add_bootloader_randomness(const void *buf, size_t size);
907  *	void add_vmfork_randomness(const void *unique_vm_id, size_t size);
908  *	void add_interrupt_randomness(int irq);
909  *
910  * add_device_randomness() adds data to the input pool that
911  * is likely to differ between two devices (or possibly even per boot).
912  * This would be things like MAC addresses or serial numbers, or the
913  * read-out of the RTC. This does *not* credit any actual entropy to
914  * the pool, but it initializes the pool to different values for devices
915  * that might otherwise be identical and have very little entropy
916  * available to them (particularly common in the embedded world).
917  *
918  * add_input_randomness() uses the input layer interrupt timing, as well
919  * as the event type information from the hardware.
920  *
921  * add_disk_randomness() uses what amounts to the seek time of block
922  * layer request events, on a per-disk_devt basis, as input to the
923  * entropy pool. Note that high-speed solid state drives with very low
924  * seek times do not make for good sources of entropy, as their seek
925  * times are usually fairly consistent.
926  *
927  * The above two routines try to estimate how many bits of entropy
928  * to credit. They do this by keeping track of the first and second
929  * order deltas of the event timings.
930  *
931  * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
932  * entropy as specified by the caller. If the entropy pool is full it will
933  * block until more entropy is needed.
934  *
935  * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
936  * add_device_randomness(), depending on whether or not the configuration
937  * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
938  *
939  * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
940  * representing the current instance of a VM to the pool, without crediting,
941  * and then force-reseeds the crng so that it takes effect immediately.
942  *
943  * add_interrupt_randomness() uses the interrupt timing as random
944  * inputs to the entropy pool. Using the cycle counters and the irq source
945  * as inputs, it feeds the input pool roughly once a second or after 64
946  * interrupts, crediting 1 bit of entropy for whichever comes first.
947  *
948  **********************************************************************/
949 
950 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
951 static int __init parse_trust_cpu(char *arg)
952 {
953 	return kstrtobool(arg, &trust_cpu);
954 }
955 early_param("random.trust_cpu", parse_trust_cpu);
956 
957 /*
958  * The first collection of entropy occurs at system boot while interrupts
959  * are still turned off. Here we push in RDSEED, a timestamp, and utsname().
960  * Depending on the above configuration knob, RDSEED may be considered
961  * sufficient for initialization. Note that much earlier setup may already
962  * have pushed entropy into the input pool by the time we get here.
963  */
964 int __init rand_initialize(void)
965 {
966 	size_t i;
967 	ktime_t now = ktime_get_real();
968 	bool arch_init = true;
969 	unsigned long rv;
970 
971 	for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
972 		if (!arch_get_random_seed_long_early(&rv) &&
973 		    !arch_get_random_long_early(&rv)) {
974 			rv = random_get_entropy();
975 			arch_init = false;
976 		}
977 		_mix_pool_bytes(&rv, sizeof(rv));
978 	}
979 	_mix_pool_bytes(&now, sizeof(now));
980 	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
981 
982 	extract_entropy(base_crng.key, sizeof(base_crng.key));
983 	++base_crng.generation;
984 
985 	if (arch_init && trust_cpu && !crng_ready()) {
986 		crng_init = 2;
987 		pr_notice("crng init done (trusting CPU's manufacturer)\n");
988 	}
989 
990 	if (ratelimit_disable) {
991 		urandom_warning.interval = 0;
992 		unseeded_warning.interval = 0;
993 	}
994 	return 0;
995 }
996 
997 /*
998  * Add device- or boot-specific data to the input pool to help
999  * initialize it.
1000  *
1001  * None of this adds any entropy; it is meant to avoid the problem of
1002  * the entropy pool having similar initial state across largely
1003  * identical devices.
1004  */
1005 void add_device_randomness(const void *buf, size_t size)
1006 {
1007 	cycles_t cycles = random_get_entropy();
1008 	unsigned long flags, now = jiffies;
1009 
1010 	if (crng_init == 0 && size)
1011 		crng_pre_init_inject(buf, size, false);
1012 
1013 	spin_lock_irqsave(&input_pool.lock, flags);
1014 	_mix_pool_bytes(&cycles, sizeof(cycles));
1015 	_mix_pool_bytes(&now, sizeof(now));
1016 	_mix_pool_bytes(buf, size);
1017 	spin_unlock_irqrestore(&input_pool.lock, flags);
1018 }
1019 EXPORT_SYMBOL(add_device_randomness);
1020 
1021 /* There is one of these per entropy source */
1022 struct timer_rand_state {
1023 	unsigned long last_time;
1024 	long last_delta, last_delta2;
1025 };
1026 
1027 /*
1028  * This function adds entropy to the entropy "pool" by using timing
1029  * delays.  It uses the timer_rand_state structure to make an estimate
1030  * of how many bits of entropy this call has added to the pool.
1031  *
1032  * The number "num" is also added to the pool - it should somehow describe
1033  * the type of event which just happened.  This is currently 0-255 for
1034  * keyboard scan codes, and 256 upwards for interrupts.
1035  */
1036 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1037 {
1038 	cycles_t cycles = random_get_entropy();
1039 	unsigned long flags, now = jiffies;
1040 	long delta, delta2, delta3;
1041 
1042 	spin_lock_irqsave(&input_pool.lock, flags);
1043 	_mix_pool_bytes(&cycles, sizeof(cycles));
1044 	_mix_pool_bytes(&now, sizeof(now));
1045 	_mix_pool_bytes(&num, sizeof(num));
1046 	spin_unlock_irqrestore(&input_pool.lock, flags);
1047 
1048 	/*
1049 	 * Calculate number of bits of randomness we probably added.
1050 	 * We take into account the first, second and third-order deltas
1051 	 * in order to make our estimate.
1052 	 */
1053 	delta = now - READ_ONCE(state->last_time);
1054 	WRITE_ONCE(state->last_time, now);
1055 
1056 	delta2 = delta - READ_ONCE(state->last_delta);
1057 	WRITE_ONCE(state->last_delta, delta);
1058 
1059 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1060 	WRITE_ONCE(state->last_delta2, delta2);
1061 
1062 	if (delta < 0)
1063 		delta = -delta;
1064 	if (delta2 < 0)
1065 		delta2 = -delta2;
1066 	if (delta3 < 0)
1067 		delta3 = -delta3;
1068 	if (delta > delta2)
1069 		delta = delta2;
1070 	if (delta > delta3)
1071 		delta = delta3;
1072 
1073 	/*
1074 	 * delta is now minimum absolute delta.
1075 	 * Round down by 1 bit on general principles,
1076 	 * and limit entropy estimate to 12 bits.
1077 	 */
1078 	credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
1079 }
1080 
1081 void add_input_randomness(unsigned int type, unsigned int code,
1082 			  unsigned int value)
1083 {
1084 	static unsigned char last_value;
1085 	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1086 
1087 	/* Ignore autorepeat and the like. */
1088 	if (value == last_value)
1089 		return;
1090 
1091 	last_value = value;
1092 	add_timer_randomness(&input_timer_state,
1093 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1094 }
1095 EXPORT_SYMBOL_GPL(add_input_randomness);
1096 
1097 #ifdef CONFIG_BLOCK
1098 void add_disk_randomness(struct gendisk *disk)
1099 {
1100 	if (!disk || !disk->random)
1101 		return;
1102 	/* First major is 1, so we get >= 0x200 here. */
1103 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1104 }
1105 EXPORT_SYMBOL_GPL(add_disk_randomness);
1106 
1107 void rand_initialize_disk(struct gendisk *disk)
1108 {
1109 	struct timer_rand_state *state;
1110 
1111 	/*
1112 	 * If kzalloc returns null, we just won't use that entropy
1113 	 * source.
1114 	 */
1115 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1116 	if (state) {
1117 		state->last_time = INITIAL_JIFFIES;
1118 		disk->random = state;
1119 	}
1120 }
1121 #endif
1122 
1123 /*
1124  * Interface for in-kernel drivers of true hardware RNGs.
1125  * Those devices may produce endless random bits and will be throttled
1126  * when our pool is full.
1127  */
1128 void add_hwgenerator_randomness(const void *buffer, size_t count,
1129 				size_t entropy)
1130 {
1131 	if (unlikely(crng_init == 0 && entropy < POOL_MIN_BITS)) {
1132 		size_t ret = crng_pre_init_inject(buffer, count, true);
1133 		mix_pool_bytes(buffer, ret);
1134 		count -= ret;
1135 		buffer += ret;
1136 		if (!count || crng_init == 0)
1137 			return;
1138 	}
1139 
1140 	/*
1141 	 * Throttle writing if we're above the trickle threshold.
1142 	 * We'll be woken up again once below POOL_MIN_BITS, when
1143 	 * the calling thread is about to terminate, or once
1144 	 * CRNG_RESEED_INTERVAL has elapsed.
1145 	 */
1146 	wait_event_interruptible_timeout(random_write_wait,
1147 			!system_wq || kthread_should_stop() ||
1148 			input_pool.entropy_count < POOL_MIN_BITS,
1149 			CRNG_RESEED_INTERVAL);
1150 	mix_pool_bytes(buffer, count);
1151 	credit_entropy_bits(entropy);
1152 }
1153 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
1154 
1155 /*
1156  * Handle random seed passed by bootloader.
1157  * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
1158  * it would be regarded as device data.
1159  * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
1160  */
1161 void add_bootloader_randomness(const void *buf, size_t size)
1162 {
1163 	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
1164 		add_hwgenerator_randomness(buf, size, size * 8);
1165 	else
1166 		add_device_randomness(buf, size);
1167 }
1168 EXPORT_SYMBOL_GPL(add_bootloader_randomness);
1169 
1170 #if IS_ENABLED(CONFIG_VMGENID)
1171 static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
1172 
1173 /*
1174  * Handle a new unique VM ID, which is unique, not secret, so we
1175  * don't credit it, but we do immediately force a reseed after so
1176  * that it's used by the crng posthaste.
1177  */
1178 void add_vmfork_randomness(const void *unique_vm_id, size_t size)
1179 {
1180 	add_device_randomness(unique_vm_id, size);
1181 	if (crng_ready()) {
1182 		crng_reseed(true);
1183 		pr_notice("crng reseeded due to virtual machine fork\n");
1184 	}
1185 	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1186 }
1187 #if IS_MODULE(CONFIG_VMGENID)
1188 EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1189 #endif
1190 
1191 int register_random_vmfork_notifier(struct notifier_block *nb)
1192 {
1193 	return blocking_notifier_chain_register(&vmfork_chain, nb);
1194 }
1195 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
1196 
1197 int unregister_random_vmfork_notifier(struct notifier_block *nb)
1198 {
1199 	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
1200 }
1201 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1202 #endif
1203 
1204 struct fast_pool {
1205 	struct work_struct mix;
1206 	unsigned long pool[4];
1207 	unsigned long last;
1208 	unsigned int count;
1209 	u16 reg_idx;
1210 };
1211 
1212 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1213 #ifdef CONFIG_64BIT
1214 	/* SipHash constants */
1215 	.pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL,
1216 		  0x6c7967656e657261UL, 0x7465646279746573UL }
1217 #else
1218 	/* HalfSipHash constants */
1219 	.pool = { 0, 0, 0x6c796765U, 0x74656462U }
1220 #endif
1221 };
1222 
1223 /*
1224  * This is [Half]SipHash-1-x, starting from an empty key. Because
1225  * the key is fixed, it assumes that its inputs are non-malicious,
1226  * and therefore this has no security on its own. s represents the
1227  * 128 or 256-bit SipHash state, while v represents a 128-bit input.
1228  */
1229 static void fast_mix(unsigned long s[4], const unsigned long *v)
1230 {
1231 	size_t i;
1232 
1233 	for (i = 0; i < 16 / sizeof(long); ++i) {
1234 		s[3] ^= v[i];
1235 #ifdef CONFIG_64BIT
1236 		s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32);
1237 		s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2];
1238 		s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0];
1239 		s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32);
1240 #else
1241 		s[0] += s[1]; s[1] = rol32(s[1],  5); s[1] ^= s[0]; s[0] = rol32(s[0], 16);
1242 		s[2] += s[3]; s[3] = rol32(s[3],  8); s[3] ^= s[2];
1243 		s[0] += s[3]; s[3] = rol32(s[3],  7); s[3] ^= s[0];
1244 		s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16);
1245 #endif
1246 		s[0] ^= v[i];
1247 	}
1248 }
1249 
1250 #ifdef CONFIG_SMP
1251 /*
1252  * This function is called when the CPU has just come online, with
1253  * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1254  */
1255 int random_online_cpu(unsigned int cpu)
1256 {
1257 	/*
1258 	 * During CPU shutdown and before CPU onlining, add_interrupt_
1259 	 * randomness() may schedule mix_interrupt_randomness(), and
1260 	 * set the MIX_INFLIGHT flag. However, because the worker can
1261 	 * be scheduled on a different CPU during this period, that
1262 	 * flag will never be cleared. For that reason, we zero out
1263 	 * the flag here, which runs just after workqueues are onlined
1264 	 * for the CPU again. This also has the effect of setting the
1265 	 * irq randomness count to zero so that new accumulated irqs
1266 	 * are fresh.
1267 	 */
1268 	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1269 	return 0;
1270 }
1271 #endif
1272 
1273 static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs)
1274 {
1275 	unsigned long *ptr = (unsigned long *)regs;
1276 	unsigned int idx;
1277 
1278 	if (regs == NULL)
1279 		return 0;
1280 	idx = READ_ONCE(f->reg_idx);
1281 	if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long))
1282 		idx = 0;
1283 	ptr += idx++;
1284 	WRITE_ONCE(f->reg_idx, idx);
1285 	return *ptr;
1286 }
1287 
1288 static void mix_interrupt_randomness(struct work_struct *work)
1289 {
1290 	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1291 	/*
1292 	 * The size of the copied stack pool is explicitly 16 bytes so that we
1293 	 * tax mix_pool_byte()'s compression function the same amount on all
1294 	 * platforms. This means on 64-bit we copy half the pool into this,
1295 	 * while on 32-bit we copy all of it. The entropy is supposed to be
1296 	 * sufficiently dispersed between bits that in the sponge-like
1297 	 * half case, on average we don't wind up "losing" some.
1298 	 */
1299 	u8 pool[16];
1300 
1301 	/* Check to see if we're running on the wrong CPU due to hotplug. */
1302 	local_irq_disable();
1303 	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1304 		local_irq_enable();
1305 		return;
1306 	}
1307 
1308 	/*
1309 	 * Copy the pool to the stack so that the mixer always has a
1310 	 * consistent view, before we reenable irqs again.
1311 	 */
1312 	memcpy(pool, fast_pool->pool, sizeof(pool));
1313 	fast_pool->count = 0;
1314 	fast_pool->last = jiffies;
1315 	local_irq_enable();
1316 
1317 	if (unlikely(crng_init == 0)) {
1318 		crng_pre_init_inject(pool, sizeof(pool), true);
1319 		mix_pool_bytes(pool, sizeof(pool));
1320 	} else {
1321 		mix_pool_bytes(pool, sizeof(pool));
1322 		credit_entropy_bits(1);
1323 	}
1324 
1325 	memzero_explicit(pool, sizeof(pool));
1326 }
1327 
1328 void add_interrupt_randomness(int irq)
1329 {
1330 	enum { MIX_INFLIGHT = 1U << 31 };
1331 	cycles_t cycles = random_get_entropy();
1332 	unsigned long now = jiffies;
1333 	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1334 	struct pt_regs *regs = get_irq_regs();
1335 	unsigned int new_count;
1336 	union {
1337 		u32 u32[4];
1338 		u64 u64[2];
1339 		unsigned long longs[16 / sizeof(long)];
1340 	} irq_data;
1341 
1342 	if (cycles == 0)
1343 		cycles = get_reg(fast_pool, regs);
1344 
1345 	if (sizeof(cycles) == 8)
1346 		irq_data.u64[0] = cycles ^ rol64(now, 32) ^ irq;
1347 	else {
1348 		irq_data.u32[0] = cycles ^ irq;
1349 		irq_data.u32[1] = now;
1350 	}
1351 
1352 	if (sizeof(unsigned long) == 8)
1353 		irq_data.u64[1] = regs ? instruction_pointer(regs) : _RET_IP_;
1354 	else {
1355 		irq_data.u32[2] = regs ? instruction_pointer(regs) : _RET_IP_;
1356 		irq_data.u32[3] = get_reg(fast_pool, regs);
1357 	}
1358 
1359 	fast_mix(fast_pool->pool, irq_data.longs);
1360 	new_count = ++fast_pool->count;
1361 
1362 	if (new_count & MIX_INFLIGHT)
1363 		return;
1364 
1365 	if (new_count < 64 && (!time_after(now, fast_pool->last + HZ) ||
1366 			       unlikely(crng_init == 0)))
1367 		return;
1368 
1369 	if (unlikely(!fast_pool->mix.func))
1370 		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1371 	fast_pool->count |= MIX_INFLIGHT;
1372 	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
1373 }
1374 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1375 
1376 /*
1377  * Each time the timer fires, we expect that we got an unpredictable
1378  * jump in the cycle counter. Even if the timer is running on another
1379  * CPU, the timer activity will be touching the stack of the CPU that is
1380  * generating entropy..
1381  *
1382  * Note that we don't re-arm the timer in the timer itself - we are
1383  * happy to be scheduled away, since that just makes the load more
1384  * complex, but we do not want the timer to keep ticking unless the
1385  * entropy loop is running.
1386  *
1387  * So the re-arming always happens in the entropy loop itself.
1388  */
1389 static void entropy_timer(struct timer_list *t)
1390 {
1391 	credit_entropy_bits(1);
1392 }
1393 
1394 /*
1395  * If we have an actual cycle counter, see if we can
1396  * generate enough entropy with timing noise
1397  */
1398 static void try_to_generate_entropy(void)
1399 {
1400 	struct {
1401 		cycles_t cycles;
1402 		struct timer_list timer;
1403 	} stack;
1404 
1405 	stack.cycles = random_get_entropy();
1406 
1407 	/* Slow counter - or none. Don't even bother */
1408 	if (stack.cycles == random_get_entropy())
1409 		return;
1410 
1411 	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1412 	while (!crng_ready() && !signal_pending(current)) {
1413 		if (!timer_pending(&stack.timer))
1414 			mod_timer(&stack.timer, jiffies + 1);
1415 		mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
1416 		schedule();
1417 		stack.cycles = random_get_entropy();
1418 	}
1419 
1420 	del_timer_sync(&stack.timer);
1421 	destroy_timer_on_stack(&stack.timer);
1422 	mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
1423 }
1424 
1425 
1426 /**********************************************************************
1427  *
1428  * Userspace reader/writer interfaces.
1429  *
1430  * getrandom(2) is the primary modern interface into the RNG and should
1431  * be used in preference to anything else.
1432  *
1433  * Reading from /dev/random has the same functionality as calling
1434  * getrandom(2) with flags=0. In earlier versions, however, it had
1435  * vastly different semantics and should therefore be avoided, to
1436  * prevent backwards compatibility issues.
1437  *
1438  * Reading from /dev/urandom has the same functionality as calling
1439  * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1440  * waiting for the RNG to be ready, it should not be used.
1441  *
1442  * Writing to either /dev/random or /dev/urandom adds entropy to
1443  * the input pool but does not credit it.
1444  *
1445  * Polling on /dev/random indicates when the RNG is initialized, on
1446  * the read side, and when it wants new entropy, on the write side.
1447  *
1448  * Both /dev/random and /dev/urandom have the same set of ioctls for
1449  * adding entropy, getting the entropy count, zeroing the count, and
1450  * reseeding the crng.
1451  *
1452  **********************************************************************/
1453 
1454 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
1455 		flags)
1456 {
1457 	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1458 		return -EINVAL;
1459 
1460 	/*
1461 	 * Requesting insecure and blocking randomness at the same time makes
1462 	 * no sense.
1463 	 */
1464 	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1465 		return -EINVAL;
1466 
1467 	if (count > INT_MAX)
1468 		count = INT_MAX;
1469 
1470 	if (!(flags & GRND_INSECURE) && !crng_ready()) {
1471 		int ret;
1472 
1473 		if (flags & GRND_NONBLOCK)
1474 			return -EAGAIN;
1475 		ret = wait_for_random_bytes();
1476 		if (unlikely(ret))
1477 			return ret;
1478 	}
1479 	return get_random_bytes_user(buf, count);
1480 }
1481 
1482 static __poll_t random_poll(struct file *file, poll_table *wait)
1483 {
1484 	__poll_t mask;
1485 
1486 	poll_wait(file, &crng_init_wait, wait);
1487 	poll_wait(file, &random_write_wait, wait);
1488 	mask = 0;
1489 	if (crng_ready())
1490 		mask |= EPOLLIN | EPOLLRDNORM;
1491 	if (input_pool.entropy_count < POOL_MIN_BITS)
1492 		mask |= EPOLLOUT | EPOLLWRNORM;
1493 	return mask;
1494 }
1495 
1496 static int write_pool(const char __user *ubuf, size_t count)
1497 {
1498 	size_t len;
1499 	int ret = 0;
1500 	u8 block[BLAKE2S_BLOCK_SIZE];
1501 
1502 	while (count) {
1503 		len = min(count, sizeof(block));
1504 		if (copy_from_user(block, ubuf, len)) {
1505 			ret = -EFAULT;
1506 			goto out;
1507 		}
1508 		count -= len;
1509 		ubuf += len;
1510 		mix_pool_bytes(block, len);
1511 		cond_resched();
1512 	}
1513 
1514 out:
1515 	memzero_explicit(block, sizeof(block));
1516 	return ret;
1517 }
1518 
1519 static ssize_t random_write(struct file *file, const char __user *buffer,
1520 			    size_t count, loff_t *ppos)
1521 {
1522 	int ret;
1523 
1524 	ret = write_pool(buffer, count);
1525 	if (ret)
1526 		return ret;
1527 
1528 	return (ssize_t)count;
1529 }
1530 
1531 static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
1532 			    loff_t *ppos)
1533 {
1534 	static int maxwarn = 10;
1535 
1536 	if (!crng_ready() && maxwarn > 0) {
1537 		maxwarn--;
1538 		if (__ratelimit(&urandom_warning))
1539 			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1540 				  current->comm, nbytes);
1541 	}
1542 
1543 	return get_random_bytes_user(buf, nbytes);
1544 }
1545 
1546 static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
1547 			   loff_t *ppos)
1548 {
1549 	int ret;
1550 
1551 	ret = wait_for_random_bytes();
1552 	if (ret != 0)
1553 		return ret;
1554 	return get_random_bytes_user(buf, nbytes);
1555 }
1556 
1557 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1558 {
1559 	int size, ent_count;
1560 	int __user *p = (int __user *)arg;
1561 	int retval;
1562 
1563 	switch (cmd) {
1564 	case RNDGETENTCNT:
1565 		/* Inherently racy, no point locking. */
1566 		if (put_user(input_pool.entropy_count, p))
1567 			return -EFAULT;
1568 		return 0;
1569 	case RNDADDTOENTCNT:
1570 		if (!capable(CAP_SYS_ADMIN))
1571 			return -EPERM;
1572 		if (get_user(ent_count, p))
1573 			return -EFAULT;
1574 		if (ent_count < 0)
1575 			return -EINVAL;
1576 		credit_entropy_bits(ent_count);
1577 		return 0;
1578 	case RNDADDENTROPY:
1579 		if (!capable(CAP_SYS_ADMIN))
1580 			return -EPERM;
1581 		if (get_user(ent_count, p++))
1582 			return -EFAULT;
1583 		if (ent_count < 0)
1584 			return -EINVAL;
1585 		if (get_user(size, p++))
1586 			return -EFAULT;
1587 		retval = write_pool((const char __user *)p, size);
1588 		if (retval < 0)
1589 			return retval;
1590 		credit_entropy_bits(ent_count);
1591 		return 0;
1592 	case RNDZAPENTCNT:
1593 	case RNDCLEARPOOL:
1594 		/*
1595 		 * Clear the entropy pool counters. We no longer clear
1596 		 * the entropy pool, as that's silly.
1597 		 */
1598 		if (!capable(CAP_SYS_ADMIN))
1599 			return -EPERM;
1600 		if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) {
1601 			wake_up_interruptible(&random_write_wait);
1602 			kill_fasync(&fasync, SIGIO, POLL_OUT);
1603 		}
1604 		return 0;
1605 	case RNDRESEEDCRNG:
1606 		if (!capable(CAP_SYS_ADMIN))
1607 			return -EPERM;
1608 		if (!crng_ready())
1609 			return -ENODATA;
1610 		crng_reseed(false);
1611 		return 0;
1612 	default:
1613 		return -EINVAL;
1614 	}
1615 }
1616 
1617 static int random_fasync(int fd, struct file *filp, int on)
1618 {
1619 	return fasync_helper(fd, filp, on, &fasync);
1620 }
1621 
1622 const struct file_operations random_fops = {
1623 	.read = random_read,
1624 	.write = random_write,
1625 	.poll = random_poll,
1626 	.unlocked_ioctl = random_ioctl,
1627 	.compat_ioctl = compat_ptr_ioctl,
1628 	.fasync = random_fasync,
1629 	.llseek = noop_llseek,
1630 };
1631 
1632 const struct file_operations urandom_fops = {
1633 	.read = urandom_read,
1634 	.write = random_write,
1635 	.unlocked_ioctl = random_ioctl,
1636 	.compat_ioctl = compat_ptr_ioctl,
1637 	.fasync = random_fasync,
1638 	.llseek = noop_llseek,
1639 };
1640 
1641 
1642 /********************************************************************
1643  *
1644  * Sysctl interface.
1645  *
1646  * These are partly unused legacy knobs with dummy values to not break
1647  * userspace and partly still useful things. They are usually accessible
1648  * in /proc/sys/kernel/random/ and are as follows:
1649  *
1650  * - boot_id - a UUID representing the current boot.
1651  *
1652  * - uuid - a random UUID, different each time the file is read.
1653  *
1654  * - poolsize - the number of bits of entropy that the input pool can
1655  *   hold, tied to the POOL_BITS constant.
1656  *
1657  * - entropy_avail - the number of bits of entropy currently in the
1658  *   input pool. Always <= poolsize.
1659  *
1660  * - write_wakeup_threshold - the amount of entropy in the input pool
1661  *   below which write polls to /dev/random will unblock, requesting
1662  *   more entropy, tied to the POOL_MIN_BITS constant. It is writable
1663  *   to avoid breaking old userspaces, but writing to it does not
1664  *   change any behavior of the RNG.
1665  *
1666  * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1667  *   It is writable to avoid breaking old userspaces, but writing
1668  *   to it does not change any behavior of the RNG.
1669  *
1670  ********************************************************************/
1671 
1672 #ifdef CONFIG_SYSCTL
1673 
1674 #include <linux/sysctl.h>
1675 
1676 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1677 static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS;
1678 static int sysctl_poolsize = POOL_BITS;
1679 static u8 sysctl_bootid[UUID_SIZE];
1680 
1681 /*
1682  * This function is used to return both the bootid UUID, and random
1683  * UUID. The difference is in whether table->data is NULL; if it is,
1684  * then a new UUID is generated and returned to the user.
1685  */
1686 static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
1687 			size_t *lenp, loff_t *ppos)
1688 {
1689 	u8 tmp_uuid[UUID_SIZE], *uuid;
1690 	char uuid_string[UUID_STRING_LEN + 1];
1691 	struct ctl_table fake_table = {
1692 		.data = uuid_string,
1693 		.maxlen = UUID_STRING_LEN
1694 	};
1695 
1696 	if (write)
1697 		return -EPERM;
1698 
1699 	uuid = table->data;
1700 	if (!uuid) {
1701 		uuid = tmp_uuid;
1702 		generate_random_uuid(uuid);
1703 	} else {
1704 		static DEFINE_SPINLOCK(bootid_spinlock);
1705 
1706 		spin_lock(&bootid_spinlock);
1707 		if (!uuid[8])
1708 			generate_random_uuid(uuid);
1709 		spin_unlock(&bootid_spinlock);
1710 	}
1711 
1712 	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1713 	return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
1714 }
1715 
1716 /* The same as proc_dointvec, but writes don't change anything. */
1717 static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer,
1718 			    size_t *lenp, loff_t *ppos)
1719 {
1720 	return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);
1721 }
1722 
1723 static struct ctl_table random_table[] = {
1724 	{
1725 		.procname	= "poolsize",
1726 		.data		= &sysctl_poolsize,
1727 		.maxlen		= sizeof(int),
1728 		.mode		= 0444,
1729 		.proc_handler	= proc_dointvec,
1730 	},
1731 	{
1732 		.procname	= "entropy_avail",
1733 		.data		= &input_pool.entropy_count,
1734 		.maxlen		= sizeof(int),
1735 		.mode		= 0444,
1736 		.proc_handler	= proc_dointvec,
1737 	},
1738 	{
1739 		.procname	= "write_wakeup_threshold",
1740 		.data		= &sysctl_random_write_wakeup_bits,
1741 		.maxlen		= sizeof(int),
1742 		.mode		= 0644,
1743 		.proc_handler	= proc_do_rointvec,
1744 	},
1745 	{
1746 		.procname	= "urandom_min_reseed_secs",
1747 		.data		= &sysctl_random_min_urandom_seed,
1748 		.maxlen		= sizeof(int),
1749 		.mode		= 0644,
1750 		.proc_handler	= proc_do_rointvec,
1751 	},
1752 	{
1753 		.procname	= "boot_id",
1754 		.data		= &sysctl_bootid,
1755 		.mode		= 0444,
1756 		.proc_handler	= proc_do_uuid,
1757 	},
1758 	{
1759 		.procname	= "uuid",
1760 		.mode		= 0444,
1761 		.proc_handler	= proc_do_uuid,
1762 	},
1763 	{ }
1764 };
1765 
1766 /*
1767  * rand_initialize() is called before sysctl_init(),
1768  * so we cannot call register_sysctl_init() in rand_initialize()
1769  */
1770 static int __init random_sysctls_init(void)
1771 {
1772 	register_sysctl_init("kernel/random", random_table);
1773 	return 0;
1774 }
1775 device_initcall(random_sysctls_init);
1776 #endif
1777