xref: /openbmc/linux/drivers/char/random.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Version 1.89, last modified 19-Sep-99
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  * 	void add_input_randomness(unsigned int type, unsigned int code,
129  *                                unsigned int value);
130  * 	void add_interrupt_randomness(int irq);
131  *
132  * add_input_randomness() uses the input layer interrupt timing, as well as
133  * the event type information from the hardware.
134  *
135  * add_interrupt_randomness() uses the inter-interrupt timing as random
136  * inputs to the entropy pool.  Note that not all interrupts are good
137  * sources of randomness!  For example, the timer interrupts is not a
138  * good choice, because the periodicity of the interrupts is too
139  * regular, and hence predictable to an attacker.  Disk interrupts are
140  * a better measure, since the timing of the disk interrupts are more
141  * unpredictable.
142  *
143  * All of these routines try to estimate how many bits of randomness a
144  * particular randomness source.  They do this by keeping track of the
145  * first and second order deltas of the event timings.
146  *
147  * Ensuring unpredictability at system startup
148  * ============================================
149  *
150  * When any operating system starts up, it will go through a sequence
151  * of actions that are fairly predictable by an adversary, especially
152  * if the start-up does not involve interaction with a human operator.
153  * This reduces the actual number of bits of unpredictability in the
154  * entropy pool below the value in entropy_count.  In order to
155  * counteract this effect, it helps to carry information in the
156  * entropy pool across shut-downs and start-ups.  To do this, put the
157  * following lines an appropriate script which is run during the boot
158  * sequence:
159  *
160  *	echo "Initializing random number generator..."
161  *	random_seed=/var/run/random-seed
162  *	# Carry a random seed from start-up to start-up
163  *	# Load and then save the whole entropy pool
164  *	if [ -f $random_seed ]; then
165  *		cat $random_seed >/dev/urandom
166  *	else
167  *		touch $random_seed
168  *	fi
169  *	chmod 600 $random_seed
170  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
171  *
172  * and the following lines in an appropriate script which is run as
173  * the system is shutdown:
174  *
175  *	# Carry a random seed from shut-down to start-up
176  *	# Save the whole entropy pool
177  *	echo "Saving random seed..."
178  *	random_seed=/var/run/random-seed
179  *	touch $random_seed
180  *	chmod 600 $random_seed
181  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
182  *
183  * For example, on most modern systems using the System V init
184  * scripts, such code fragments would be found in
185  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
186  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187  *
188  * Effectively, these commands cause the contents of the entropy pool
189  * to be saved at shut-down time and reloaded into the entropy pool at
190  * start-up.  (The 'dd' in the addition to the bootup script is to
191  * make sure that /etc/random-seed is different for every start-up,
192  * even if the system crashes without executing rc.0.)  Even with
193  * complete knowledge of the start-up activities, predicting the state
194  * of the entropy pool requires knowledge of the previous history of
195  * the system.
196  *
197  * Configuring the /dev/random driver under Linux
198  * ==============================================
199  *
200  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201  * the /dev/mem major number (#1).  So if your system does not have
202  * /dev/random and /dev/urandom created already, they can be created
203  * by using the commands:
204  *
205  * 	mknod /dev/random c 1 8
206  * 	mknod /dev/urandom c 1 9
207  *
208  * Acknowledgements:
209  * =================
210  *
211  * Ideas for constructing this random number generator were derived
212  * from Pretty Good Privacy's random number generator, and from private
213  * discussions with Phil Karn.  Colin Plumb provided a faster random
214  * number generator, which speed up the mixing function of the entropy
215  * pool, taken from PGPfone.  Dale Worley has also contributed many
216  * useful ideas and suggestions to improve this driver.
217  *
218  * Any flaws in the design are solely my responsibility, and should
219  * not be attributed to the Phil, Colin, or any of authors of PGP.
220  *
221  * Further background information on this topic may be obtained from
222  * RFC 1750, "Randomness Recommendations for Security", by Donald
223  * Eastlake, Steve Crocker, and Jeff Schiller.
224  */
225 
226 #include <linux/utsname.h>
227 #include <linux/config.h>
228 #include <linux/module.h>
229 #include <linux/kernel.h>
230 #include <linux/major.h>
231 #include <linux/string.h>
232 #include <linux/fcntl.h>
233 #include <linux/slab.h>
234 #include <linux/random.h>
235 #include <linux/poll.h>
236 #include <linux/init.h>
237 #include <linux/fs.h>
238 #include <linux/genhd.h>
239 #include <linux/interrupt.h>
240 #include <linux/spinlock.h>
241 #include <linux/percpu.h>
242 #include <linux/cryptohash.h>
243 
244 #include <asm/processor.h>
245 #include <asm/uaccess.h>
246 #include <asm/irq.h>
247 #include <asm/io.h>
248 
249 /*
250  * Configuration information
251  */
252 #define INPUT_POOL_WORDS 128
253 #define OUTPUT_POOL_WORDS 32
254 #define SEC_XFER_SIZE 512
255 
256 /*
257  * The minimum number of bits of entropy before we wake up a read on
258  * /dev/random.  Should be enough to do a significant reseed.
259  */
260 static int random_read_wakeup_thresh = 64;
261 
262 /*
263  * If the entropy count falls under this number of bits, then we
264  * should wake up processes which are selecting or polling on write
265  * access to /dev/random.
266  */
267 static int random_write_wakeup_thresh = 128;
268 
269 /*
270  * When the input pool goes over trickle_thresh, start dropping most
271  * samples to avoid wasting CPU time and reduce lock contention.
272  */
273 
274 static int trickle_thresh = INPUT_POOL_WORDS * 28;
275 
276 static DEFINE_PER_CPU(int, trickle_count) = 0;
277 
278 /*
279  * A pool of size .poolwords is stirred with a primitive polynomial
280  * of degree .poolwords over GF(2).  The taps for various sizes are
281  * defined below.  They are chosen to be evenly spaced (minimum RMS
282  * distance from evenly spaced; the numbers in the comments are a
283  * scaled squared error sum) except for the last tap, which is 1 to
284  * get the twisting happening as fast as possible.
285  */
286 static struct poolinfo {
287 	int poolwords;
288 	int tap1, tap2, tap3, tap4, tap5;
289 } poolinfo_table[] = {
290 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
291 	{ 128,	103,	76,	51,	25,	1 },
292 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
293 	{ 32,	26,	20,	14,	7,	1 },
294 #if 0
295 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
296 	{ 2048,	1638,	1231,	819,	411,	1 },
297 
298 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
299 	{ 1024,	817,	615,	412,	204,	1 },
300 
301 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
302 	{ 1024,	819,	616,	410,	207,	2 },
303 
304 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
305 	{ 512,	411,	308,	208,	104,	1 },
306 
307 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
308 	{ 512,	409,	307,	206,	102,	2 },
309 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
310 	{ 512,	409,	309,	205,	103,	2 },
311 
312 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
313 	{ 256,	205,	155,	101,	52,	1 },
314 
315 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
316 	{ 128,	103,	78,	51,	27,	2 },
317 
318 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
319 	{ 64,	52,	39,	26,	14,	1 },
320 #endif
321 };
322 
323 #define POOLBITS	poolwords*32
324 #define POOLBYTES	poolwords*4
325 
326 /*
327  * For the purposes of better mixing, we use the CRC-32 polynomial as
328  * well to make a twisted Generalized Feedback Shift Reigster
329  *
330  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
331  * Transactions on Modeling and Computer Simulation 2(3):179-194.
332  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
333  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
334  *
335  * Thanks to Colin Plumb for suggesting this.
336  *
337  * We have not analyzed the resultant polynomial to prove it primitive;
338  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
339  * of a random large-degree polynomial over GF(2) are more than large enough
340  * that periodicity is not a concern.
341  *
342  * The input hash is much less sensitive than the output hash.  All
343  * that we want of it is that it be a good non-cryptographic hash;
344  * i.e. it not produce collisions when fed "random" data of the sort
345  * we expect to see.  As long as the pool state differs for different
346  * inputs, we have preserved the input entropy and done a good job.
347  * The fact that an intelligent attacker can construct inputs that
348  * will produce controlled alterations to the pool's state is not
349  * important because we don't consider such inputs to contribute any
350  * randomness.  The only property we need with respect to them is that
351  * the attacker can't increase his/her knowledge of the pool's state.
352  * Since all additions are reversible (knowing the final state and the
353  * input, you can reconstruct the initial state), if an attacker has
354  * any uncertainty about the initial state, he/she can only shuffle
355  * that uncertainty about, but never cause any collisions (which would
356  * decrease the uncertainty).
357  *
358  * The chosen system lets the state of the pool be (essentially) the input
359  * modulo the generator polymnomial.  Now, for random primitive polynomials,
360  * this is a universal class of hash functions, meaning that the chance
361  * of a collision is limited by the attacker's knowledge of the generator
362  * polynomail, so if it is chosen at random, an attacker can never force
363  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
364  * ###--> it is unknown to the processes generating the input entropy. <-###
365  * Because of this important property, this is a good, collision-resistant
366  * hash; hash collisions will occur no more often than chance.
367  */
368 
369 /*
370  * Static global variables
371  */
372 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
373 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
374 
375 #if 0
376 static int debug = 0;
377 module_param(debug, bool, 0644);
378 #define DEBUG_ENT(fmt, arg...) do { if (debug) \
379 	printk(KERN_DEBUG "random %04d %04d %04d: " \
380 	fmt,\
381 	input_pool.entropy_count,\
382 	blocking_pool.entropy_count,\
383 	nonblocking_pool.entropy_count,\
384 	## arg); } while (0)
385 #else
386 #define DEBUG_ENT(fmt, arg...) do {} while (0)
387 #endif
388 
389 /**********************************************************************
390  *
391  * OS independent entropy store.   Here are the functions which handle
392  * storing entropy in an entropy pool.
393  *
394  **********************************************************************/
395 
396 struct entropy_store;
397 struct entropy_store {
398 	/* mostly-read data: */
399 	struct poolinfo *poolinfo;
400 	__u32 *pool;
401 	const char *name;
402 	int limit;
403 	struct entropy_store *pull;
404 
405 	/* read-write data: */
406 	spinlock_t lock ____cacheline_aligned_in_smp;
407 	unsigned add_ptr;
408 	int entropy_count;
409 	int input_rotate;
410 };
411 
412 static __u32 input_pool_data[INPUT_POOL_WORDS];
413 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
414 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
415 
416 static struct entropy_store input_pool = {
417 	.poolinfo = &poolinfo_table[0],
418 	.name = "input",
419 	.limit = 1,
420 	.lock = SPIN_LOCK_UNLOCKED,
421 	.pool = input_pool_data
422 };
423 
424 static struct entropy_store blocking_pool = {
425 	.poolinfo = &poolinfo_table[1],
426 	.name = "blocking",
427 	.limit = 1,
428 	.pull = &input_pool,
429 	.lock = SPIN_LOCK_UNLOCKED,
430 	.pool = blocking_pool_data
431 };
432 
433 static struct entropy_store nonblocking_pool = {
434 	.poolinfo = &poolinfo_table[1],
435 	.name = "nonblocking",
436 	.pull = &input_pool,
437 	.lock = SPIN_LOCK_UNLOCKED,
438 	.pool = nonblocking_pool_data
439 };
440 
441 /*
442  * This function adds a byte into the entropy "pool".  It does not
443  * update the entropy estimate.  The caller should call
444  * credit_entropy_store if this is appropriate.
445  *
446  * The pool is stirred with a primitive polynomial of the appropriate
447  * degree, and then twisted.  We twist by three bits at a time because
448  * it's cheap to do so and helps slightly in the expected case where
449  * the entropy is concentrated in the low-order bits.
450  */
451 static void __add_entropy_words(struct entropy_store *r, const __u32 *in,
452 				int nwords, __u32 out[16])
453 {
454 	static __u32 const twist_table[8] = {
455 		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
456 		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
457 	unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5;
458 	int new_rotate, input_rotate;
459 	int wordmask = r->poolinfo->poolwords - 1;
460 	__u32 w, next_w;
461 	unsigned long flags;
462 
463 	/* Taps are constant, so we can load them without holding r->lock.  */
464 	tap1 = r->poolinfo->tap1;
465 	tap2 = r->poolinfo->tap2;
466 	tap3 = r->poolinfo->tap3;
467 	tap4 = r->poolinfo->tap4;
468 	tap5 = r->poolinfo->tap5;
469 	next_w = *in++;
470 
471 	spin_lock_irqsave(&r->lock, flags);
472 	prefetch_range(r->pool, wordmask);
473 	input_rotate = r->input_rotate;
474 	add_ptr = r->add_ptr;
475 
476 	while (nwords--) {
477 		w = rol32(next_w, input_rotate);
478 		if (nwords > 0)
479 			next_w = *in++;
480 		i = add_ptr = (add_ptr - 1) & wordmask;
481 		/*
482 		 * Normally, we add 7 bits of rotation to the pool.
483 		 * At the beginning of the pool, add an extra 7 bits
484 		 * rotation, so that successive passes spread the
485 		 * input bits across the pool evenly.
486 		 */
487 		new_rotate = input_rotate + 14;
488 		if (i)
489 			new_rotate = input_rotate + 7;
490 		input_rotate = new_rotate & 31;
491 
492 		/* XOR in the various taps */
493 		w ^= r->pool[(i + tap1) & wordmask];
494 		w ^= r->pool[(i + tap2) & wordmask];
495 		w ^= r->pool[(i + tap3) & wordmask];
496 		w ^= r->pool[(i + tap4) & wordmask];
497 		w ^= r->pool[(i + tap5) & wordmask];
498 		w ^= r->pool[i];
499 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
500 	}
501 
502 	r->input_rotate = input_rotate;
503 	r->add_ptr = add_ptr;
504 
505 	if (out) {
506 		for (i = 0; i < 16; i++) {
507 			out[i] = r->pool[add_ptr];
508 			add_ptr = (add_ptr - 1) & wordmask;
509 		}
510 	}
511 
512 	spin_unlock_irqrestore(&r->lock, flags);
513 }
514 
515 static inline void add_entropy_words(struct entropy_store *r, const __u32 *in,
516 				     int nwords)
517 {
518 	__add_entropy_words(r, in, nwords, NULL);
519 }
520 
521 /*
522  * Credit (or debit) the entropy store with n bits of entropy
523  */
524 static void credit_entropy_store(struct entropy_store *r, int nbits)
525 {
526 	unsigned long flags;
527 
528 	spin_lock_irqsave(&r->lock, flags);
529 
530 	if (r->entropy_count + nbits < 0) {
531 		DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
532 			  r->entropy_count, nbits);
533 		r->entropy_count = 0;
534 	} else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) {
535 		r->entropy_count = r->poolinfo->POOLBITS;
536 	} else {
537 		r->entropy_count += nbits;
538 		if (nbits)
539 			DEBUG_ENT("added %d entropy credits to %s\n",
540 				  nbits, r->name);
541 	}
542 
543 	spin_unlock_irqrestore(&r->lock, flags);
544 }
545 
546 /*********************************************************************
547  *
548  * Entropy input management
549  *
550  *********************************************************************/
551 
552 /* There is one of these per entropy source */
553 struct timer_rand_state {
554 	cycles_t last_time;
555 	long last_delta,last_delta2;
556 	unsigned dont_count_entropy:1;
557 };
558 
559 static struct timer_rand_state input_timer_state;
560 static struct timer_rand_state *irq_timer_state[NR_IRQS];
561 
562 /*
563  * This function adds entropy to the entropy "pool" by using timing
564  * delays.  It uses the timer_rand_state structure to make an estimate
565  * of how many bits of entropy this call has added to the pool.
566  *
567  * The number "num" is also added to the pool - it should somehow describe
568  * the type of event which just happened.  This is currently 0-255 for
569  * keyboard scan codes, and 256 upwards for interrupts.
570  *
571  */
572 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
573 {
574 	struct {
575 		cycles_t cycles;
576 		long jiffies;
577 		unsigned num;
578 	} sample;
579 	long delta, delta2, delta3;
580 
581 	preempt_disable();
582 	/* if over the trickle threshold, use only 1 in 4096 samples */
583 	if (input_pool.entropy_count > trickle_thresh &&
584 	    (__get_cpu_var(trickle_count)++ & 0xfff))
585 		goto out;
586 
587 	sample.jiffies = jiffies;
588 	sample.cycles = get_cycles();
589 	sample.num = num;
590 	add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4);
591 
592 	/*
593 	 * Calculate number of bits of randomness we probably added.
594 	 * We take into account the first, second and third-order deltas
595 	 * in order to make our estimate.
596 	 */
597 
598 	if (!state->dont_count_entropy) {
599 		delta = sample.jiffies - state->last_time;
600 		state->last_time = sample.jiffies;
601 
602 		delta2 = delta - state->last_delta;
603 		state->last_delta = delta;
604 
605 		delta3 = delta2 - state->last_delta2;
606 		state->last_delta2 = delta2;
607 
608 		if (delta < 0)
609 			delta = -delta;
610 		if (delta2 < 0)
611 			delta2 = -delta2;
612 		if (delta3 < 0)
613 			delta3 = -delta3;
614 		if (delta > delta2)
615 			delta = delta2;
616 		if (delta > delta3)
617 			delta = delta3;
618 
619 		/*
620 		 * delta is now minimum absolute delta.
621 		 * Round down by 1 bit on general principles,
622 		 * and limit entropy entimate to 12 bits.
623 		 */
624 		credit_entropy_store(&input_pool,
625 				     min_t(int, fls(delta>>1), 11));
626 	}
627 
628 	if(input_pool.entropy_count >= random_read_wakeup_thresh)
629 		wake_up_interruptible(&random_read_wait);
630 
631 out:
632 	preempt_enable();
633 }
634 
635 extern void add_input_randomness(unsigned int type, unsigned int code,
636 				 unsigned int value)
637 {
638 	static unsigned char last_value;
639 
640 	/* ignore autorepeat and the like */
641 	if (value == last_value)
642 		return;
643 
644 	DEBUG_ENT("input event\n");
645 	last_value = value;
646 	add_timer_randomness(&input_timer_state,
647 			     (type << 4) ^ code ^ (code >> 4) ^ value);
648 }
649 
650 void add_interrupt_randomness(int irq)
651 {
652 	if (irq >= NR_IRQS || irq_timer_state[irq] == 0)
653 		return;
654 
655 	DEBUG_ENT("irq event %d\n", irq);
656 	add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
657 }
658 
659 void add_disk_randomness(struct gendisk *disk)
660 {
661 	if (!disk || !disk->random)
662 		return;
663 	/* first major is 1, so we get >= 0x200 here */
664 	DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
665 
666 	add_timer_randomness(disk->random,
667 			     0x100 + MKDEV(disk->major, disk->first_minor));
668 }
669 
670 EXPORT_SYMBOL(add_disk_randomness);
671 
672 #define EXTRACT_SIZE 10
673 
674 /*********************************************************************
675  *
676  * Entropy extraction routines
677  *
678  *********************************************************************/
679 
680 static ssize_t extract_entropy(struct entropy_store *r, void * buf,
681 			       size_t nbytes, int min, int rsvd);
682 
683 /*
684  * This utility inline function is responsible for transfering entropy
685  * from the primary pool to the secondary extraction pool. We make
686  * sure we pull enough for a 'catastrophic reseed'.
687  */
688 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
689 {
690 	__u32 tmp[OUTPUT_POOL_WORDS];
691 
692 	if (r->pull && r->entropy_count < nbytes * 8 &&
693 	    r->entropy_count < r->poolinfo->POOLBITS) {
694 		int bytes = max_t(int, random_read_wakeup_thresh / 8,
695 				min_t(int, nbytes, sizeof(tmp)));
696 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
697 
698 		DEBUG_ENT("going to reseed %s with %d bits "
699 			  "(%d of %d requested)\n",
700 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
701 
702 		bytes=extract_entropy(r->pull, tmp, bytes,
703 				      random_read_wakeup_thresh / 8, rsvd);
704 		add_entropy_words(r, tmp, (bytes + 3) / 4);
705 		credit_entropy_store(r, bytes*8);
706 	}
707 }
708 
709 /*
710  * These functions extracts randomness from the "entropy pool", and
711  * returns it in a buffer.
712  *
713  * The min parameter specifies the minimum amount we can pull before
714  * failing to avoid races that defeat catastrophic reseeding while the
715  * reserved parameter indicates how much entropy we must leave in the
716  * pool after each pull to avoid starving other readers.
717  *
718  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
719  */
720 
721 static size_t account(struct entropy_store *r, size_t nbytes, int min,
722 		      int reserved)
723 {
724 	unsigned long flags;
725 
726 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
727 
728 	/* Hold lock while accounting */
729 	spin_lock_irqsave(&r->lock, flags);
730 
731 	DEBUG_ENT("trying to extract %d bits from %s\n",
732 		  nbytes * 8, r->name);
733 
734 	/* Can we pull enough? */
735 	if (r->entropy_count / 8 < min + reserved) {
736 		nbytes = 0;
737 	} else {
738 		/* If limited, never pull more than available */
739 		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
740 			nbytes = r->entropy_count/8 - reserved;
741 
742 		if(r->entropy_count / 8 >= nbytes + reserved)
743 			r->entropy_count -= nbytes*8;
744 		else
745 			r->entropy_count = reserved;
746 
747 		if (r->entropy_count < random_write_wakeup_thresh)
748 			wake_up_interruptible(&random_write_wait);
749 	}
750 
751 	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
752 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
753 
754 	spin_unlock_irqrestore(&r->lock, flags);
755 
756 	return nbytes;
757 }
758 
759 static void extract_buf(struct entropy_store *r, __u8 *out)
760 {
761 	int i, x;
762 	__u32 data[16], buf[5 + SHA_WORKSPACE_WORDS];
763 
764 	sha_init(buf);
765 	/*
766 	 * As we hash the pool, we mix intermediate values of
767 	 * the hash back into the pool.  This eliminates
768 	 * backtracking attacks (where the attacker knows
769 	 * the state of the pool plus the current outputs, and
770 	 * attempts to find previous ouputs), unless the hash
771 	 * function can be inverted.
772 	 */
773 	for (i = 0, x = 0; i < r->poolinfo->poolwords; i += 16, x+=2) {
774 		sha_transform(buf, (__u8 *)r->pool+i, buf + 5);
775 		add_entropy_words(r, &buf[x % 5], 1);
776 	}
777 
778 	/*
779 	 * To avoid duplicates, we atomically extract a
780 	 * portion of the pool while mixing, and hash one
781 	 * final time.
782 	 */
783 	__add_entropy_words(r, &buf[x % 5], 1, data);
784 	sha_transform(buf, (__u8 *)data, buf + 5);
785 
786 	/*
787 	 * In case the hash function has some recognizable
788 	 * output pattern, we fold it in half.
789 	 */
790 
791 	buf[0] ^= buf[3];
792 	buf[1] ^= buf[4];
793 	buf[0] ^= rol32(buf[3], 16);
794 	memcpy(out, buf, EXTRACT_SIZE);
795 	memset(buf, 0, sizeof(buf));
796 }
797 
798 static ssize_t extract_entropy(struct entropy_store *r, void * buf,
799 			       size_t nbytes, int min, int reserved)
800 {
801 	ssize_t ret = 0, i;
802 	__u8 tmp[EXTRACT_SIZE];
803 
804 	xfer_secondary_pool(r, nbytes);
805 	nbytes = account(r, nbytes, min, reserved);
806 
807 	while (nbytes) {
808 		extract_buf(r, tmp);
809 		i = min_t(int, nbytes, EXTRACT_SIZE);
810 		memcpy(buf, tmp, i);
811 		nbytes -= i;
812 		buf += i;
813 		ret += i;
814 	}
815 
816 	/* Wipe data just returned from memory */
817 	memset(tmp, 0, sizeof(tmp));
818 
819 	return ret;
820 }
821 
822 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
823 				    size_t nbytes)
824 {
825 	ssize_t ret = 0, i;
826 	__u8 tmp[EXTRACT_SIZE];
827 
828 	xfer_secondary_pool(r, nbytes);
829 	nbytes = account(r, nbytes, 0, 0);
830 
831 	while (nbytes) {
832 		if (need_resched()) {
833 			if (signal_pending(current)) {
834 				if (ret == 0)
835 					ret = -ERESTARTSYS;
836 				break;
837 			}
838 			schedule();
839 		}
840 
841 		extract_buf(r, tmp);
842 		i = min_t(int, nbytes, EXTRACT_SIZE);
843 		if (copy_to_user(buf, tmp, i)) {
844 			ret = -EFAULT;
845 			break;
846 		}
847 
848 		nbytes -= i;
849 		buf += i;
850 		ret += i;
851 	}
852 
853 	/* Wipe data just returned from memory */
854 	memset(tmp, 0, sizeof(tmp));
855 
856 	return ret;
857 }
858 
859 /*
860  * This function is the exported kernel interface.  It returns some
861  * number of good random numbers, suitable for seeding TCP sequence
862  * numbers, etc.
863  */
864 void get_random_bytes(void *buf, int nbytes)
865 {
866 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
867 }
868 
869 EXPORT_SYMBOL(get_random_bytes);
870 
871 /*
872  * init_std_data - initialize pool with system data
873  *
874  * @r: pool to initialize
875  *
876  * This function clears the pool's entropy count and mixes some system
877  * data into the pool to prepare it for use. The pool is not cleared
878  * as that can only decrease the entropy in the pool.
879  */
880 static void init_std_data(struct entropy_store *r)
881 {
882 	struct timeval tv;
883 	unsigned long flags;
884 
885 	spin_lock_irqsave(&r->lock, flags);
886 	r->entropy_count = 0;
887 	spin_unlock_irqrestore(&r->lock, flags);
888 
889 	do_gettimeofday(&tv);
890 	add_entropy_words(r, (__u32 *)&tv, sizeof(tv)/4);
891 	add_entropy_words(r, (__u32 *)&system_utsname,
892 			  sizeof(system_utsname)/4);
893 }
894 
895 static int __init rand_initialize(void)
896 {
897 	init_std_data(&input_pool);
898 	init_std_data(&blocking_pool);
899 	init_std_data(&nonblocking_pool);
900 	return 0;
901 }
902 module_init(rand_initialize);
903 
904 void rand_initialize_irq(int irq)
905 {
906 	struct timer_rand_state *state;
907 
908 	if (irq >= NR_IRQS || irq_timer_state[irq])
909 		return;
910 
911 	/*
912 	 * If kmalloc returns null, we just won't use that entropy
913 	 * source.
914 	 */
915 	state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
916 	if (state) {
917 		memset(state, 0, sizeof(struct timer_rand_state));
918 		irq_timer_state[irq] = state;
919 	}
920 }
921 
922 void rand_initialize_disk(struct gendisk *disk)
923 {
924 	struct timer_rand_state *state;
925 
926 	/*
927 	 * If kmalloc returns null, we just won't use that entropy
928 	 * source.
929 	 */
930 	state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
931 	if (state) {
932 		memset(state, 0, sizeof(struct timer_rand_state));
933 		disk->random = state;
934 	}
935 }
936 
937 static ssize_t
938 random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos)
939 {
940 	ssize_t n, retval = 0, count = 0;
941 
942 	if (nbytes == 0)
943 		return 0;
944 
945 	while (nbytes > 0) {
946 		n = nbytes;
947 		if (n > SEC_XFER_SIZE)
948 			n = SEC_XFER_SIZE;
949 
950 		DEBUG_ENT("reading %d bits\n", n*8);
951 
952 		n = extract_entropy_user(&blocking_pool, buf, n);
953 
954 		DEBUG_ENT("read got %d bits (%d still needed)\n",
955 			  n*8, (nbytes-n)*8);
956 
957 		if (n == 0) {
958 			if (file->f_flags & O_NONBLOCK) {
959 				retval = -EAGAIN;
960 				break;
961 			}
962 
963 			DEBUG_ENT("sleeping?\n");
964 
965 			wait_event_interruptible(random_read_wait,
966 				input_pool.entropy_count >=
967 						 random_read_wakeup_thresh);
968 
969 			DEBUG_ENT("awake\n");
970 
971 			if (signal_pending(current)) {
972 				retval = -ERESTARTSYS;
973 				break;
974 			}
975 
976 			continue;
977 		}
978 
979 		if (n < 0) {
980 			retval = n;
981 			break;
982 		}
983 		count += n;
984 		buf += n;
985 		nbytes -= n;
986 		break;		/* This break makes the device work */
987 				/* like a named pipe */
988 	}
989 
990 	/*
991 	 * If we gave the user some bytes, update the access time.
992 	 */
993 	if (count)
994 		file_accessed(file);
995 
996 	return (count ? count : retval);
997 }
998 
999 static ssize_t
1000 urandom_read(struct file * file, char __user * buf,
1001 		      size_t nbytes, loff_t *ppos)
1002 {
1003 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1004 }
1005 
1006 static unsigned int
1007 random_poll(struct file *file, poll_table * wait)
1008 {
1009 	unsigned int mask;
1010 
1011 	poll_wait(file, &random_read_wait, wait);
1012 	poll_wait(file, &random_write_wait, wait);
1013 	mask = 0;
1014 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1015 		mask |= POLLIN | POLLRDNORM;
1016 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1017 		mask |= POLLOUT | POLLWRNORM;
1018 	return mask;
1019 }
1020 
1021 static ssize_t
1022 random_write(struct file * file, const char __user * buffer,
1023 	     size_t count, loff_t *ppos)
1024 {
1025 	int ret = 0;
1026 	size_t bytes;
1027 	__u32 buf[16];
1028 	const char __user *p = buffer;
1029 	size_t c = count;
1030 
1031 	while (c > 0) {
1032 		bytes = min(c, sizeof(buf));
1033 
1034 		bytes -= copy_from_user(&buf, p, bytes);
1035 		if (!bytes) {
1036 			ret = -EFAULT;
1037 			break;
1038 		}
1039 		c -= bytes;
1040 		p += bytes;
1041 
1042 		add_entropy_words(&input_pool, buf, (bytes + 3) / 4);
1043 	}
1044 	if (p == buffer) {
1045 		return (ssize_t)ret;
1046 	} else {
1047 		struct inode *inode = file->f_dentry->d_inode;
1048 	        inode->i_mtime = current_fs_time(inode->i_sb);
1049 		mark_inode_dirty(inode);
1050 		return (ssize_t)(p - buffer);
1051 	}
1052 }
1053 
1054 static int
1055 random_ioctl(struct inode * inode, struct file * file,
1056 	     unsigned int cmd, unsigned long arg)
1057 {
1058 	int size, ent_count;
1059 	int __user *p = (int __user *)arg;
1060 	int retval;
1061 
1062 	switch (cmd) {
1063 	case RNDGETENTCNT:
1064 		ent_count = input_pool.entropy_count;
1065 		if (put_user(ent_count, p))
1066 			return -EFAULT;
1067 		return 0;
1068 	case RNDADDTOENTCNT:
1069 		if (!capable(CAP_SYS_ADMIN))
1070 			return -EPERM;
1071 		if (get_user(ent_count, p))
1072 			return -EFAULT;
1073 		credit_entropy_store(&input_pool, ent_count);
1074 		/*
1075 		 * Wake up waiting processes if we have enough
1076 		 * entropy.
1077 		 */
1078 		if (input_pool.entropy_count >= random_read_wakeup_thresh)
1079 			wake_up_interruptible(&random_read_wait);
1080 		return 0;
1081 	case RNDADDENTROPY:
1082 		if (!capable(CAP_SYS_ADMIN))
1083 			return -EPERM;
1084 		if (get_user(ent_count, p++))
1085 			return -EFAULT;
1086 		if (ent_count < 0)
1087 			return -EINVAL;
1088 		if (get_user(size, p++))
1089 			return -EFAULT;
1090 		retval = random_write(file, (const char __user *) p,
1091 				      size, &file->f_pos);
1092 		if (retval < 0)
1093 			return retval;
1094 		credit_entropy_store(&input_pool, ent_count);
1095 		/*
1096 		 * Wake up waiting processes if we have enough
1097 		 * entropy.
1098 		 */
1099 		if (input_pool.entropy_count >= random_read_wakeup_thresh)
1100 			wake_up_interruptible(&random_read_wait);
1101 		return 0;
1102 	case RNDZAPENTCNT:
1103 	case RNDCLEARPOOL:
1104 		/* Clear the entropy pool counters. */
1105 		if (!capable(CAP_SYS_ADMIN))
1106 			return -EPERM;
1107 		init_std_data(&input_pool);
1108 		init_std_data(&blocking_pool);
1109 		init_std_data(&nonblocking_pool);
1110 		return 0;
1111 	default:
1112 		return -EINVAL;
1113 	}
1114 }
1115 
1116 struct file_operations random_fops = {
1117 	.read  = random_read,
1118 	.write = random_write,
1119 	.poll  = random_poll,
1120 	.ioctl = random_ioctl,
1121 };
1122 
1123 struct file_operations urandom_fops = {
1124 	.read  = urandom_read,
1125 	.write = random_write,
1126 	.ioctl = random_ioctl,
1127 };
1128 
1129 /***************************************************************
1130  * Random UUID interface
1131  *
1132  * Used here for a Boot ID, but can be useful for other kernel
1133  * drivers.
1134  ***************************************************************/
1135 
1136 /*
1137  * Generate random UUID
1138  */
1139 void generate_random_uuid(unsigned char uuid_out[16])
1140 {
1141 	get_random_bytes(uuid_out, 16);
1142 	/* Set UUID version to 4 --- truely random generation */
1143 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1144 	/* Set the UUID variant to DCE */
1145 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1146 }
1147 
1148 EXPORT_SYMBOL(generate_random_uuid);
1149 
1150 /********************************************************************
1151  *
1152  * Sysctl interface
1153  *
1154  ********************************************************************/
1155 
1156 #ifdef CONFIG_SYSCTL
1157 
1158 #include <linux/sysctl.h>
1159 
1160 static int min_read_thresh = 8, min_write_thresh;
1161 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1162 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1163 static char sysctl_bootid[16];
1164 
1165 /*
1166  * These functions is used to return both the bootid UUID, and random
1167  * UUID.  The difference is in whether table->data is NULL; if it is,
1168  * then a new UUID is generated and returned to the user.
1169  *
1170  * If the user accesses this via the proc interface, it will be returned
1171  * as an ASCII string in the standard UUID format.  If accesses via the
1172  * sysctl system call, it is returned as 16 bytes of binary data.
1173  */
1174 static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1175 			void __user *buffer, size_t *lenp, loff_t *ppos)
1176 {
1177 	ctl_table fake_table;
1178 	unsigned char buf[64], tmp_uuid[16], *uuid;
1179 
1180 	uuid = table->data;
1181 	if (!uuid) {
1182 		uuid = tmp_uuid;
1183 		uuid[8] = 0;
1184 	}
1185 	if (uuid[8] == 0)
1186 		generate_random_uuid(uuid);
1187 
1188 	sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1189 		"%02x%02x%02x%02x%02x%02x",
1190 		uuid[0],  uuid[1],  uuid[2],  uuid[3],
1191 		uuid[4],  uuid[5],  uuid[6],  uuid[7],
1192 		uuid[8],  uuid[9],  uuid[10], uuid[11],
1193 		uuid[12], uuid[13], uuid[14], uuid[15]);
1194 	fake_table.data = buf;
1195 	fake_table.maxlen = sizeof(buf);
1196 
1197 	return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1198 }
1199 
1200 static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
1201 			 void __user *oldval, size_t __user *oldlenp,
1202 			 void __user *newval, size_t newlen, void **context)
1203 {
1204 	unsigned char tmp_uuid[16], *uuid;
1205 	unsigned int len;
1206 
1207 	if (!oldval || !oldlenp)
1208 		return 1;
1209 
1210 	uuid = table->data;
1211 	if (!uuid) {
1212 		uuid = tmp_uuid;
1213 		uuid[8] = 0;
1214 	}
1215 	if (uuid[8] == 0)
1216 		generate_random_uuid(uuid);
1217 
1218 	if (get_user(len, oldlenp))
1219 		return -EFAULT;
1220 	if (len) {
1221 		if (len > 16)
1222 			len = 16;
1223 		if (copy_to_user(oldval, uuid, len) ||
1224 		    put_user(len, oldlenp))
1225 			return -EFAULT;
1226 	}
1227 	return 1;
1228 }
1229 
1230 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1231 ctl_table random_table[] = {
1232 	{
1233 		.ctl_name 	= RANDOM_POOLSIZE,
1234 		.procname	= "poolsize",
1235 		.data		= &sysctl_poolsize,
1236 		.maxlen		= sizeof(int),
1237 		.mode		= 0444,
1238 		.proc_handler	= &proc_dointvec,
1239 	},
1240 	{
1241 		.ctl_name	= RANDOM_ENTROPY_COUNT,
1242 		.procname	= "entropy_avail",
1243 		.maxlen		= sizeof(int),
1244 		.mode		= 0444,
1245 		.proc_handler	= &proc_dointvec,
1246 		.data		= &input_pool.entropy_count,
1247 	},
1248 	{
1249 		.ctl_name	= RANDOM_READ_THRESH,
1250 		.procname	= "read_wakeup_threshold",
1251 		.data		= &random_read_wakeup_thresh,
1252 		.maxlen		= sizeof(int),
1253 		.mode		= 0644,
1254 		.proc_handler	= &proc_dointvec_minmax,
1255 		.strategy	= &sysctl_intvec,
1256 		.extra1		= &min_read_thresh,
1257 		.extra2		= &max_read_thresh,
1258 	},
1259 	{
1260 		.ctl_name	= RANDOM_WRITE_THRESH,
1261 		.procname	= "write_wakeup_threshold",
1262 		.data		= &random_write_wakeup_thresh,
1263 		.maxlen		= sizeof(int),
1264 		.mode		= 0644,
1265 		.proc_handler	= &proc_dointvec_minmax,
1266 		.strategy	= &sysctl_intvec,
1267 		.extra1		= &min_write_thresh,
1268 		.extra2		= &max_write_thresh,
1269 	},
1270 	{
1271 		.ctl_name	= RANDOM_BOOT_ID,
1272 		.procname	= "boot_id",
1273 		.data		= &sysctl_bootid,
1274 		.maxlen		= 16,
1275 		.mode		= 0444,
1276 		.proc_handler	= &proc_do_uuid,
1277 		.strategy	= &uuid_strategy,
1278 	},
1279 	{
1280 		.ctl_name	= RANDOM_UUID,
1281 		.procname	= "uuid",
1282 		.maxlen		= 16,
1283 		.mode		= 0444,
1284 		.proc_handler	= &proc_do_uuid,
1285 		.strategy	= &uuid_strategy,
1286 	},
1287 	{ .ctl_name = 0 }
1288 };
1289 #endif 	/* CONFIG_SYSCTL */
1290 
1291 /********************************************************************
1292  *
1293  * Random funtions for networking
1294  *
1295  ********************************************************************/
1296 
1297 /*
1298  * TCP initial sequence number picking.  This uses the random number
1299  * generator to pick an initial secret value.  This value is hashed
1300  * along with the TCP endpoint information to provide a unique
1301  * starting point for each pair of TCP endpoints.  This defeats
1302  * attacks which rely on guessing the initial TCP sequence number.
1303  * This algorithm was suggested by Steve Bellovin.
1304  *
1305  * Using a very strong hash was taking an appreciable amount of the total
1306  * TCP connection establishment time, so this is a weaker hash,
1307  * compensated for by changing the secret periodically.
1308  */
1309 
1310 /* F, G and H are basic MD4 functions: selection, majority, parity */
1311 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1312 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1313 #define H(x, y, z) ((x) ^ (y) ^ (z))
1314 
1315 /*
1316  * The generic round function.  The application is so specific that
1317  * we don't bother protecting all the arguments with parens, as is generally
1318  * good macro practice, in favor of extra legibility.
1319  * Rotation is separate from addition to prevent recomputation
1320  */
1321 #define ROUND(f, a, b, c, d, x, s)	\
1322 	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1323 #define K1 0
1324 #define K2 013240474631UL
1325 #define K3 015666365641UL
1326 
1327 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1328 
1329 static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
1330 {
1331 	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1332 
1333 	/* Round 1 */
1334 	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1335 	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1336 	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1337 	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1338 	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1339 	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1340 	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1341 	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1342 	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1343 	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1344 	ROUND(F, c, d, a, b, in[10] + K1, 11);
1345 	ROUND(F, b, c, d, a, in[11] + K1, 19);
1346 
1347 	/* Round 2 */
1348 	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1349 	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1350 	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1351 	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1352 	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1353 	ROUND(G, d, a, b, c, in[11] + K2,  5);
1354 	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1355 	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1356 	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1357 	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1358 	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1359 	ROUND(G, b, c, d, a, in[10] + K2, 13);
1360 
1361 	/* Round 3 */
1362 	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1363 	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1364 	ROUND(H, c, d, a, b, in[11] + K3, 11);
1365 	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1366 	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1367 	ROUND(H, d, a, b, c, in[10] + K3,  9);
1368 	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1369 	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1370 	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1371 	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1372 	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1373 	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1374 
1375 	return buf[1] + b; /* "most hashed" word */
1376 	/* Alternative: return sum of all words? */
1377 }
1378 #endif
1379 
1380 #undef ROUND
1381 #undef F
1382 #undef G
1383 #undef H
1384 #undef K1
1385 #undef K2
1386 #undef K3
1387 
1388 /* This should not be decreased so low that ISNs wrap too fast. */
1389 #define REKEY_INTERVAL (300 * HZ)
1390 /*
1391  * Bit layout of the tcp sequence numbers (before adding current time):
1392  * bit 24-31: increased after every key exchange
1393  * bit 0-23: hash(source,dest)
1394  *
1395  * The implementation is similar to the algorithm described
1396  * in the Appendix of RFC 1185, except that
1397  * - it uses a 1 MHz clock instead of a 250 kHz clock
1398  * - it performs a rekey every 5 minutes, which is equivalent
1399  * 	to a (source,dest) tulple dependent forward jump of the
1400  * 	clock by 0..2^(HASH_BITS+1)
1401  *
1402  * Thus the average ISN wraparound time is 68 minutes instead of
1403  * 4.55 hours.
1404  *
1405  * SMP cleanup and lock avoidance with poor man's RCU.
1406  * 			Manfred Spraul <manfred@colorfullife.com>
1407  *
1408  */
1409 #define COUNT_BITS 8
1410 #define COUNT_MASK ((1 << COUNT_BITS) - 1)
1411 #define HASH_BITS 24
1412 #define HASH_MASK ((1 << HASH_BITS) - 1)
1413 
1414 static struct keydata {
1415 	__u32 count; /* already shifted to the final position */
1416 	__u32 secret[12];
1417 } ____cacheline_aligned ip_keydata[2];
1418 
1419 static unsigned int ip_cnt;
1420 
1421 static void rekey_seq_generator(void *private_);
1422 
1423 static DECLARE_WORK(rekey_work, rekey_seq_generator, NULL);
1424 
1425 /*
1426  * Lock avoidance:
1427  * The ISN generation runs lockless - it's just a hash over random data.
1428  * State changes happen every 5 minutes when the random key is replaced.
1429  * Synchronization is performed by having two copies of the hash function
1430  * state and rekey_seq_generator always updates the inactive copy.
1431  * The copy is then activated by updating ip_cnt.
1432  * The implementation breaks down if someone blocks the thread
1433  * that processes SYN requests for more than 5 minutes. Should never
1434  * happen, and even if that happens only a not perfectly compliant
1435  * ISN is generated, nothing fatal.
1436  */
1437 static void rekey_seq_generator(void *private_)
1438 {
1439 	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1440 
1441 	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1442 	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1443 	smp_wmb();
1444 	ip_cnt++;
1445 	schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1446 }
1447 
1448 static inline struct keydata *get_keyptr(void)
1449 {
1450 	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1451 
1452 	smp_rmb();
1453 
1454 	return keyptr;
1455 }
1456 
1457 static __init int seqgen_init(void)
1458 {
1459 	rekey_seq_generator(NULL);
1460 	return 0;
1461 }
1462 late_initcall(seqgen_init);
1463 
1464 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1465 __u32 secure_tcpv6_sequence_number(__u32 *saddr, __u32 *daddr,
1466 				   __u16 sport, __u16 dport)
1467 {
1468 	struct timeval tv;
1469 	__u32 seq;
1470 	__u32 hash[12];
1471 	struct keydata *keyptr = get_keyptr();
1472 
1473 	/* The procedure is the same as for IPv4, but addresses are longer.
1474 	 * Thus we must use twothirdsMD4Transform.
1475 	 */
1476 
1477 	memcpy(hash, saddr, 16);
1478 	hash[4]=(sport << 16) + dport;
1479 	memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
1480 
1481 	seq = twothirdsMD4Transform(daddr, hash) & HASH_MASK;
1482 	seq += keyptr->count;
1483 
1484 	do_gettimeofday(&tv);
1485 	seq += tv.tv_usec + tv.tv_sec * 1000000;
1486 
1487 	return seq;
1488 }
1489 EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1490 #endif
1491 
1492 /*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1493  *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1494  */
1495 __u32 secure_ip_id(__u32 daddr)
1496 {
1497 	struct keydata *keyptr;
1498 	__u32 hash[4];
1499 
1500 	keyptr = get_keyptr();
1501 
1502 	/*
1503 	 *  Pick a unique starting offset for each IP destination.
1504 	 *  The dest ip address is placed in the starting vector,
1505 	 *  which is then hashed with random data.
1506 	 */
1507 	hash[0] = daddr;
1508 	hash[1] = keyptr->secret[9];
1509 	hash[2] = keyptr->secret[10];
1510 	hash[3] = keyptr->secret[11];
1511 
1512 	return half_md4_transform(hash, keyptr->secret);
1513 }
1514 
1515 #ifdef CONFIG_INET
1516 
1517 __u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr,
1518 				 __u16 sport, __u16 dport)
1519 {
1520 	struct timeval tv;
1521 	__u32 seq;
1522 	__u32 hash[4];
1523 	struct keydata *keyptr = get_keyptr();
1524 
1525 	/*
1526 	 *  Pick a unique starting offset for each TCP connection endpoints
1527 	 *  (saddr, daddr, sport, dport).
1528 	 *  Note that the words are placed into the starting vector, which is
1529 	 *  then mixed with a partial MD4 over random data.
1530 	 */
1531 	hash[0]=saddr;
1532 	hash[1]=daddr;
1533 	hash[2]=(sport << 16) + dport;
1534 	hash[3]=keyptr->secret[11];
1535 
1536 	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1537 	seq += keyptr->count;
1538 	/*
1539 	 *	As close as possible to RFC 793, which
1540 	 *	suggests using a 250 kHz clock.
1541 	 *	Further reading shows this assumes 2 Mb/s networks.
1542 	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1543 	 *	That's funny, Linux has one built in!  Use it!
1544 	 *	(Networks are faster now - should this be increased?)
1545 	 */
1546 	do_gettimeofday(&tv);
1547 	seq += tv.tv_usec + tv.tv_sec * 1000000;
1548 #if 0
1549 	printk("init_seq(%lx, %lx, %d, %d) = %d\n",
1550 	       saddr, daddr, sport, dport, seq);
1551 #endif
1552 	return seq;
1553 }
1554 
1555 EXPORT_SYMBOL(secure_tcp_sequence_number);
1556 
1557 
1558 
1559 /* Generate secure starting point for ephemeral TCP port search */
1560 u32 secure_tcp_port_ephemeral(__u32 saddr, __u32 daddr, __u16 dport)
1561 {
1562 	struct keydata *keyptr = get_keyptr();
1563 	u32 hash[4];
1564 
1565 	/*
1566 	 *  Pick a unique starting offset for each ephemeral port search
1567 	 *  (saddr, daddr, dport) and 48bits of random data.
1568 	 */
1569 	hash[0] = saddr;
1570 	hash[1] = daddr;
1571 	hash[2] = dport ^ keyptr->secret[10];
1572 	hash[3] = keyptr->secret[11];
1573 
1574 	return half_md4_transform(hash, keyptr->secret);
1575 }
1576 
1577 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1578 u32 secure_tcpv6_port_ephemeral(const __u32 *saddr, const __u32 *daddr, __u16 dport)
1579 {
1580 	struct keydata *keyptr = get_keyptr();
1581 	u32 hash[12];
1582 
1583 	memcpy(hash, saddr, 16);
1584 	hash[4] = dport;
1585 	memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
1586 
1587 	return twothirdsMD4Transform(daddr, hash);
1588 }
1589 EXPORT_SYMBOL(secure_tcpv6_port_ephemeral);
1590 #endif
1591 
1592 #endif /* CONFIG_INET */
1593 
1594 
1595 /*
1596  * Get a random word for internal kernel use only. Similar to urandom but
1597  * with the goal of minimal entropy pool depletion. As a result, the random
1598  * value is not cryptographically secure but for several uses the cost of
1599  * depleting entropy is too high
1600  */
1601 unsigned int get_random_int(void)
1602 {
1603 	/*
1604 	 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1605 	 * every second, from the entropy pool (and thus creates a limited
1606 	 * drain on it), and uses halfMD4Transform within the second. We
1607 	 * also mix it with jiffies and the PID:
1608 	 */
1609 	return secure_ip_id(current->pid + jiffies);
1610 }
1611 
1612 /*
1613  * randomize_range() returns a start address such that
1614  *
1615  *    [...... <range> .....]
1616  *  start                  end
1617  *
1618  * a <range> with size "len" starting at the return value is inside in the
1619  * area defined by [start, end], but is otherwise randomized.
1620  */
1621 unsigned long
1622 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1623 {
1624 	unsigned long range = end - len - start;
1625 
1626 	if (end <= start + len)
1627 		return 0;
1628 	return PAGE_ALIGN(get_random_int() % range + start);
1629 }
1630