1 /* 2 * random.c -- A strong random number generator 3 * 4 * Version 1.89, last modified 19-Sep-99 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_input_randomness(unsigned int type, unsigned int code, 129 * unsigned int value); 130 * void add_interrupt_randomness(int irq); 131 * 132 * add_input_randomness() uses the input layer interrupt timing, as well as 133 * the event type information from the hardware. 134 * 135 * add_interrupt_randomness() uses the inter-interrupt timing as random 136 * inputs to the entropy pool. Note that not all interrupts are good 137 * sources of randomness! For example, the timer interrupts is not a 138 * good choice, because the periodicity of the interrupts is too 139 * regular, and hence predictable to an attacker. Disk interrupts are 140 * a better measure, since the timing of the disk interrupts are more 141 * unpredictable. 142 * 143 * All of these routines try to estimate how many bits of randomness a 144 * particular randomness source. They do this by keeping track of the 145 * first and second order deltas of the event timings. 146 * 147 * Ensuring unpredictability at system startup 148 * ============================================ 149 * 150 * When any operating system starts up, it will go through a sequence 151 * of actions that are fairly predictable by an adversary, especially 152 * if the start-up does not involve interaction with a human operator. 153 * This reduces the actual number of bits of unpredictability in the 154 * entropy pool below the value in entropy_count. In order to 155 * counteract this effect, it helps to carry information in the 156 * entropy pool across shut-downs and start-ups. To do this, put the 157 * following lines an appropriate script which is run during the boot 158 * sequence: 159 * 160 * echo "Initializing random number generator..." 161 * random_seed=/var/run/random-seed 162 * # Carry a random seed from start-up to start-up 163 * # Load and then save the whole entropy pool 164 * if [ -f $random_seed ]; then 165 * cat $random_seed >/dev/urandom 166 * else 167 * touch $random_seed 168 * fi 169 * chmod 600 $random_seed 170 * dd if=/dev/urandom of=$random_seed count=1 bs=512 171 * 172 * and the following lines in an appropriate script which is run as 173 * the system is shutdown: 174 * 175 * # Carry a random seed from shut-down to start-up 176 * # Save the whole entropy pool 177 * echo "Saving random seed..." 178 * random_seed=/var/run/random-seed 179 * touch $random_seed 180 * chmod 600 $random_seed 181 * dd if=/dev/urandom of=$random_seed count=1 bs=512 182 * 183 * For example, on most modern systems using the System V init 184 * scripts, such code fragments would be found in 185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 187 * 188 * Effectively, these commands cause the contents of the entropy pool 189 * to be saved at shut-down time and reloaded into the entropy pool at 190 * start-up. (The 'dd' in the addition to the bootup script is to 191 * make sure that /etc/random-seed is different for every start-up, 192 * even if the system crashes without executing rc.0.) Even with 193 * complete knowledge of the start-up activities, predicting the state 194 * of the entropy pool requires knowledge of the previous history of 195 * the system. 196 * 197 * Configuring the /dev/random driver under Linux 198 * ============================================== 199 * 200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 201 * the /dev/mem major number (#1). So if your system does not have 202 * /dev/random and /dev/urandom created already, they can be created 203 * by using the commands: 204 * 205 * mknod /dev/random c 1 8 206 * mknod /dev/urandom c 1 9 207 * 208 * Acknowledgements: 209 * ================= 210 * 211 * Ideas for constructing this random number generator were derived 212 * from Pretty Good Privacy's random number generator, and from private 213 * discussions with Phil Karn. Colin Plumb provided a faster random 214 * number generator, which speed up the mixing function of the entropy 215 * pool, taken from PGPfone. Dale Worley has also contributed many 216 * useful ideas and suggestions to improve this driver. 217 * 218 * Any flaws in the design are solely my responsibility, and should 219 * not be attributed to the Phil, Colin, or any of authors of PGP. 220 * 221 * Further background information on this topic may be obtained from 222 * RFC 1750, "Randomness Recommendations for Security", by Donald 223 * Eastlake, Steve Crocker, and Jeff Schiller. 224 */ 225 226 #include <linux/utsname.h> 227 #include <linux/config.h> 228 #include <linux/module.h> 229 #include <linux/kernel.h> 230 #include <linux/major.h> 231 #include <linux/string.h> 232 #include <linux/fcntl.h> 233 #include <linux/slab.h> 234 #include <linux/random.h> 235 #include <linux/poll.h> 236 #include <linux/init.h> 237 #include <linux/fs.h> 238 #include <linux/genhd.h> 239 #include <linux/interrupt.h> 240 #include <linux/spinlock.h> 241 #include <linux/percpu.h> 242 #include <linux/cryptohash.h> 243 244 #include <asm/processor.h> 245 #include <asm/uaccess.h> 246 #include <asm/irq.h> 247 #include <asm/io.h> 248 249 /* 250 * Configuration information 251 */ 252 #define INPUT_POOL_WORDS 128 253 #define OUTPUT_POOL_WORDS 32 254 #define SEC_XFER_SIZE 512 255 256 /* 257 * The minimum number of bits of entropy before we wake up a read on 258 * /dev/random. Should be enough to do a significant reseed. 259 */ 260 static int random_read_wakeup_thresh = 64; 261 262 /* 263 * If the entropy count falls under this number of bits, then we 264 * should wake up processes which are selecting or polling on write 265 * access to /dev/random. 266 */ 267 static int random_write_wakeup_thresh = 128; 268 269 /* 270 * When the input pool goes over trickle_thresh, start dropping most 271 * samples to avoid wasting CPU time and reduce lock contention. 272 */ 273 274 static int trickle_thresh = INPUT_POOL_WORDS * 28; 275 276 static DEFINE_PER_CPU(int, trickle_count) = 0; 277 278 /* 279 * A pool of size .poolwords is stirred with a primitive polynomial 280 * of degree .poolwords over GF(2). The taps for various sizes are 281 * defined below. They are chosen to be evenly spaced (minimum RMS 282 * distance from evenly spaced; the numbers in the comments are a 283 * scaled squared error sum) except for the last tap, which is 1 to 284 * get the twisting happening as fast as possible. 285 */ 286 static struct poolinfo { 287 int poolwords; 288 int tap1, tap2, tap3, tap4, tap5; 289 } poolinfo_table[] = { 290 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ 291 { 128, 103, 76, 51, 25, 1 }, 292 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ 293 { 32, 26, 20, 14, 7, 1 }, 294 #if 0 295 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 296 { 2048, 1638, 1231, 819, 411, 1 }, 297 298 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 299 { 1024, 817, 615, 412, 204, 1 }, 300 301 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 302 { 1024, 819, 616, 410, 207, 2 }, 303 304 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 305 { 512, 411, 308, 208, 104, 1 }, 306 307 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 308 { 512, 409, 307, 206, 102, 2 }, 309 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 310 { 512, 409, 309, 205, 103, 2 }, 311 312 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 313 { 256, 205, 155, 101, 52, 1 }, 314 315 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 316 { 128, 103, 78, 51, 27, 2 }, 317 318 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 319 { 64, 52, 39, 26, 14, 1 }, 320 #endif 321 }; 322 323 #define POOLBITS poolwords*32 324 #define POOLBYTES poolwords*4 325 326 /* 327 * For the purposes of better mixing, we use the CRC-32 polynomial as 328 * well to make a twisted Generalized Feedback Shift Reigster 329 * 330 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 331 * Transactions on Modeling and Computer Simulation 2(3):179-194. 332 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 333 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266) 334 * 335 * Thanks to Colin Plumb for suggesting this. 336 * 337 * We have not analyzed the resultant polynomial to prove it primitive; 338 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 339 * of a random large-degree polynomial over GF(2) are more than large enough 340 * that periodicity is not a concern. 341 * 342 * The input hash is much less sensitive than the output hash. All 343 * that we want of it is that it be a good non-cryptographic hash; 344 * i.e. it not produce collisions when fed "random" data of the sort 345 * we expect to see. As long as the pool state differs for different 346 * inputs, we have preserved the input entropy and done a good job. 347 * The fact that an intelligent attacker can construct inputs that 348 * will produce controlled alterations to the pool's state is not 349 * important because we don't consider such inputs to contribute any 350 * randomness. The only property we need with respect to them is that 351 * the attacker can't increase his/her knowledge of the pool's state. 352 * Since all additions are reversible (knowing the final state and the 353 * input, you can reconstruct the initial state), if an attacker has 354 * any uncertainty about the initial state, he/she can only shuffle 355 * that uncertainty about, but never cause any collisions (which would 356 * decrease the uncertainty). 357 * 358 * The chosen system lets the state of the pool be (essentially) the input 359 * modulo the generator polymnomial. Now, for random primitive polynomials, 360 * this is a universal class of hash functions, meaning that the chance 361 * of a collision is limited by the attacker's knowledge of the generator 362 * polynomail, so if it is chosen at random, an attacker can never force 363 * a collision. Here, we use a fixed polynomial, but we *can* assume that 364 * ###--> it is unknown to the processes generating the input entropy. <-### 365 * Because of this important property, this is a good, collision-resistant 366 * hash; hash collisions will occur no more often than chance. 367 */ 368 369 /* 370 * Static global variables 371 */ 372 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 373 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 374 375 #if 0 376 static int debug = 0; 377 module_param(debug, bool, 0644); 378 #define DEBUG_ENT(fmt, arg...) do { if (debug) \ 379 printk(KERN_DEBUG "random %04d %04d %04d: " \ 380 fmt,\ 381 input_pool.entropy_count,\ 382 blocking_pool.entropy_count,\ 383 nonblocking_pool.entropy_count,\ 384 ## arg); } while (0) 385 #else 386 #define DEBUG_ENT(fmt, arg...) do {} while (0) 387 #endif 388 389 /********************************************************************** 390 * 391 * OS independent entropy store. Here are the functions which handle 392 * storing entropy in an entropy pool. 393 * 394 **********************************************************************/ 395 396 struct entropy_store; 397 struct entropy_store { 398 /* mostly-read data: */ 399 struct poolinfo *poolinfo; 400 __u32 *pool; 401 const char *name; 402 int limit; 403 struct entropy_store *pull; 404 405 /* read-write data: */ 406 spinlock_t lock ____cacheline_aligned_in_smp; 407 unsigned add_ptr; 408 int entropy_count; 409 int input_rotate; 410 }; 411 412 static __u32 input_pool_data[INPUT_POOL_WORDS]; 413 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 414 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 415 416 static struct entropy_store input_pool = { 417 .poolinfo = &poolinfo_table[0], 418 .name = "input", 419 .limit = 1, 420 .lock = SPIN_LOCK_UNLOCKED, 421 .pool = input_pool_data 422 }; 423 424 static struct entropy_store blocking_pool = { 425 .poolinfo = &poolinfo_table[1], 426 .name = "blocking", 427 .limit = 1, 428 .pull = &input_pool, 429 .lock = SPIN_LOCK_UNLOCKED, 430 .pool = blocking_pool_data 431 }; 432 433 static struct entropy_store nonblocking_pool = { 434 .poolinfo = &poolinfo_table[1], 435 .name = "nonblocking", 436 .pull = &input_pool, 437 .lock = SPIN_LOCK_UNLOCKED, 438 .pool = nonblocking_pool_data 439 }; 440 441 /* 442 * This function adds a byte into the entropy "pool". It does not 443 * update the entropy estimate. The caller should call 444 * credit_entropy_store if this is appropriate. 445 * 446 * The pool is stirred with a primitive polynomial of the appropriate 447 * degree, and then twisted. We twist by three bits at a time because 448 * it's cheap to do so and helps slightly in the expected case where 449 * the entropy is concentrated in the low-order bits. 450 */ 451 static void __add_entropy_words(struct entropy_store *r, const __u32 *in, 452 int nwords, __u32 out[16]) 453 { 454 static __u32 const twist_table[8] = { 455 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 456 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 457 unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5; 458 int new_rotate, input_rotate; 459 int wordmask = r->poolinfo->poolwords - 1; 460 __u32 w, next_w; 461 unsigned long flags; 462 463 /* Taps are constant, so we can load them without holding r->lock. */ 464 tap1 = r->poolinfo->tap1; 465 tap2 = r->poolinfo->tap2; 466 tap3 = r->poolinfo->tap3; 467 tap4 = r->poolinfo->tap4; 468 tap5 = r->poolinfo->tap5; 469 next_w = *in++; 470 471 spin_lock_irqsave(&r->lock, flags); 472 prefetch_range(r->pool, wordmask); 473 input_rotate = r->input_rotate; 474 add_ptr = r->add_ptr; 475 476 while (nwords--) { 477 w = rol32(next_w, input_rotate); 478 if (nwords > 0) 479 next_w = *in++; 480 i = add_ptr = (add_ptr - 1) & wordmask; 481 /* 482 * Normally, we add 7 bits of rotation to the pool. 483 * At the beginning of the pool, add an extra 7 bits 484 * rotation, so that successive passes spread the 485 * input bits across the pool evenly. 486 */ 487 new_rotate = input_rotate + 14; 488 if (i) 489 new_rotate = input_rotate + 7; 490 input_rotate = new_rotate & 31; 491 492 /* XOR in the various taps */ 493 w ^= r->pool[(i + tap1) & wordmask]; 494 w ^= r->pool[(i + tap2) & wordmask]; 495 w ^= r->pool[(i + tap3) & wordmask]; 496 w ^= r->pool[(i + tap4) & wordmask]; 497 w ^= r->pool[(i + tap5) & wordmask]; 498 w ^= r->pool[i]; 499 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 500 } 501 502 r->input_rotate = input_rotate; 503 r->add_ptr = add_ptr; 504 505 if (out) { 506 for (i = 0; i < 16; i++) { 507 out[i] = r->pool[add_ptr]; 508 add_ptr = (add_ptr - 1) & wordmask; 509 } 510 } 511 512 spin_unlock_irqrestore(&r->lock, flags); 513 } 514 515 static inline void add_entropy_words(struct entropy_store *r, const __u32 *in, 516 int nwords) 517 { 518 __add_entropy_words(r, in, nwords, NULL); 519 } 520 521 /* 522 * Credit (or debit) the entropy store with n bits of entropy 523 */ 524 static void credit_entropy_store(struct entropy_store *r, int nbits) 525 { 526 unsigned long flags; 527 528 spin_lock_irqsave(&r->lock, flags); 529 530 if (r->entropy_count + nbits < 0) { 531 DEBUG_ENT("negative entropy/overflow (%d+%d)\n", 532 r->entropy_count, nbits); 533 r->entropy_count = 0; 534 } else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) { 535 r->entropy_count = r->poolinfo->POOLBITS; 536 } else { 537 r->entropy_count += nbits; 538 if (nbits) 539 DEBUG_ENT("added %d entropy credits to %s\n", 540 nbits, r->name); 541 } 542 543 spin_unlock_irqrestore(&r->lock, flags); 544 } 545 546 /********************************************************************* 547 * 548 * Entropy input management 549 * 550 *********************************************************************/ 551 552 /* There is one of these per entropy source */ 553 struct timer_rand_state { 554 cycles_t last_time; 555 long last_delta,last_delta2; 556 unsigned dont_count_entropy:1; 557 }; 558 559 static struct timer_rand_state input_timer_state; 560 static struct timer_rand_state *irq_timer_state[NR_IRQS]; 561 562 /* 563 * This function adds entropy to the entropy "pool" by using timing 564 * delays. It uses the timer_rand_state structure to make an estimate 565 * of how many bits of entropy this call has added to the pool. 566 * 567 * The number "num" is also added to the pool - it should somehow describe 568 * the type of event which just happened. This is currently 0-255 for 569 * keyboard scan codes, and 256 upwards for interrupts. 570 * 571 */ 572 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 573 { 574 struct { 575 cycles_t cycles; 576 long jiffies; 577 unsigned num; 578 } sample; 579 long delta, delta2, delta3; 580 581 preempt_disable(); 582 /* if over the trickle threshold, use only 1 in 4096 samples */ 583 if (input_pool.entropy_count > trickle_thresh && 584 (__get_cpu_var(trickle_count)++ & 0xfff)) 585 goto out; 586 587 sample.jiffies = jiffies; 588 sample.cycles = get_cycles(); 589 sample.num = num; 590 add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4); 591 592 /* 593 * Calculate number of bits of randomness we probably added. 594 * We take into account the first, second and third-order deltas 595 * in order to make our estimate. 596 */ 597 598 if (!state->dont_count_entropy) { 599 delta = sample.jiffies - state->last_time; 600 state->last_time = sample.jiffies; 601 602 delta2 = delta - state->last_delta; 603 state->last_delta = delta; 604 605 delta3 = delta2 - state->last_delta2; 606 state->last_delta2 = delta2; 607 608 if (delta < 0) 609 delta = -delta; 610 if (delta2 < 0) 611 delta2 = -delta2; 612 if (delta3 < 0) 613 delta3 = -delta3; 614 if (delta > delta2) 615 delta = delta2; 616 if (delta > delta3) 617 delta = delta3; 618 619 /* 620 * delta is now minimum absolute delta. 621 * Round down by 1 bit on general principles, 622 * and limit entropy entimate to 12 bits. 623 */ 624 credit_entropy_store(&input_pool, 625 min_t(int, fls(delta>>1), 11)); 626 } 627 628 if(input_pool.entropy_count >= random_read_wakeup_thresh) 629 wake_up_interruptible(&random_read_wait); 630 631 out: 632 preempt_enable(); 633 } 634 635 extern void add_input_randomness(unsigned int type, unsigned int code, 636 unsigned int value) 637 { 638 static unsigned char last_value; 639 640 /* ignore autorepeat and the like */ 641 if (value == last_value) 642 return; 643 644 DEBUG_ENT("input event\n"); 645 last_value = value; 646 add_timer_randomness(&input_timer_state, 647 (type << 4) ^ code ^ (code >> 4) ^ value); 648 } 649 650 void add_interrupt_randomness(int irq) 651 { 652 if (irq >= NR_IRQS || irq_timer_state[irq] == 0) 653 return; 654 655 DEBUG_ENT("irq event %d\n", irq); 656 add_timer_randomness(irq_timer_state[irq], 0x100 + irq); 657 } 658 659 void add_disk_randomness(struct gendisk *disk) 660 { 661 if (!disk || !disk->random) 662 return; 663 /* first major is 1, so we get >= 0x200 here */ 664 DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor); 665 666 add_timer_randomness(disk->random, 667 0x100 + MKDEV(disk->major, disk->first_minor)); 668 } 669 670 EXPORT_SYMBOL(add_disk_randomness); 671 672 #define EXTRACT_SIZE 10 673 674 /********************************************************************* 675 * 676 * Entropy extraction routines 677 * 678 *********************************************************************/ 679 680 static ssize_t extract_entropy(struct entropy_store *r, void * buf, 681 size_t nbytes, int min, int rsvd); 682 683 /* 684 * This utility inline function is responsible for transfering entropy 685 * from the primary pool to the secondary extraction pool. We make 686 * sure we pull enough for a 'catastrophic reseed'. 687 */ 688 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 689 { 690 __u32 tmp[OUTPUT_POOL_WORDS]; 691 692 if (r->pull && r->entropy_count < nbytes * 8 && 693 r->entropy_count < r->poolinfo->POOLBITS) { 694 int bytes = max_t(int, random_read_wakeup_thresh / 8, 695 min_t(int, nbytes, sizeof(tmp))); 696 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 697 698 DEBUG_ENT("going to reseed %s with %d bits " 699 "(%d of %d requested)\n", 700 r->name, bytes * 8, nbytes * 8, r->entropy_count); 701 702 bytes=extract_entropy(r->pull, tmp, bytes, 703 random_read_wakeup_thresh / 8, rsvd); 704 add_entropy_words(r, tmp, (bytes + 3) / 4); 705 credit_entropy_store(r, bytes*8); 706 } 707 } 708 709 /* 710 * These functions extracts randomness from the "entropy pool", and 711 * returns it in a buffer. 712 * 713 * The min parameter specifies the minimum amount we can pull before 714 * failing to avoid races that defeat catastrophic reseeding while the 715 * reserved parameter indicates how much entropy we must leave in the 716 * pool after each pull to avoid starving other readers. 717 * 718 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 719 */ 720 721 static size_t account(struct entropy_store *r, size_t nbytes, int min, 722 int reserved) 723 { 724 unsigned long flags; 725 726 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); 727 728 /* Hold lock while accounting */ 729 spin_lock_irqsave(&r->lock, flags); 730 731 DEBUG_ENT("trying to extract %d bits from %s\n", 732 nbytes * 8, r->name); 733 734 /* Can we pull enough? */ 735 if (r->entropy_count / 8 < min + reserved) { 736 nbytes = 0; 737 } else { 738 /* If limited, never pull more than available */ 739 if (r->limit && nbytes + reserved >= r->entropy_count / 8) 740 nbytes = r->entropy_count/8 - reserved; 741 742 if(r->entropy_count / 8 >= nbytes + reserved) 743 r->entropy_count -= nbytes*8; 744 else 745 r->entropy_count = reserved; 746 747 if (r->entropy_count < random_write_wakeup_thresh) 748 wake_up_interruptible(&random_write_wait); 749 } 750 751 DEBUG_ENT("debiting %d entropy credits from %s%s\n", 752 nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); 753 754 spin_unlock_irqrestore(&r->lock, flags); 755 756 return nbytes; 757 } 758 759 static void extract_buf(struct entropy_store *r, __u8 *out) 760 { 761 int i, x; 762 __u32 data[16], buf[5 + SHA_WORKSPACE_WORDS]; 763 764 sha_init(buf); 765 /* 766 * As we hash the pool, we mix intermediate values of 767 * the hash back into the pool. This eliminates 768 * backtracking attacks (where the attacker knows 769 * the state of the pool plus the current outputs, and 770 * attempts to find previous ouputs), unless the hash 771 * function can be inverted. 772 */ 773 for (i = 0, x = 0; i < r->poolinfo->poolwords; i += 16, x+=2) { 774 sha_transform(buf, (__u8 *)r->pool+i, buf + 5); 775 add_entropy_words(r, &buf[x % 5], 1); 776 } 777 778 /* 779 * To avoid duplicates, we atomically extract a 780 * portion of the pool while mixing, and hash one 781 * final time. 782 */ 783 __add_entropy_words(r, &buf[x % 5], 1, data); 784 sha_transform(buf, (__u8 *)data, buf + 5); 785 786 /* 787 * In case the hash function has some recognizable 788 * output pattern, we fold it in half. 789 */ 790 791 buf[0] ^= buf[3]; 792 buf[1] ^= buf[4]; 793 buf[0] ^= rol32(buf[3], 16); 794 memcpy(out, buf, EXTRACT_SIZE); 795 memset(buf, 0, sizeof(buf)); 796 } 797 798 static ssize_t extract_entropy(struct entropy_store *r, void * buf, 799 size_t nbytes, int min, int reserved) 800 { 801 ssize_t ret = 0, i; 802 __u8 tmp[EXTRACT_SIZE]; 803 804 xfer_secondary_pool(r, nbytes); 805 nbytes = account(r, nbytes, min, reserved); 806 807 while (nbytes) { 808 extract_buf(r, tmp); 809 i = min_t(int, nbytes, EXTRACT_SIZE); 810 memcpy(buf, tmp, i); 811 nbytes -= i; 812 buf += i; 813 ret += i; 814 } 815 816 /* Wipe data just returned from memory */ 817 memset(tmp, 0, sizeof(tmp)); 818 819 return ret; 820 } 821 822 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 823 size_t nbytes) 824 { 825 ssize_t ret = 0, i; 826 __u8 tmp[EXTRACT_SIZE]; 827 828 xfer_secondary_pool(r, nbytes); 829 nbytes = account(r, nbytes, 0, 0); 830 831 while (nbytes) { 832 if (need_resched()) { 833 if (signal_pending(current)) { 834 if (ret == 0) 835 ret = -ERESTARTSYS; 836 break; 837 } 838 schedule(); 839 } 840 841 extract_buf(r, tmp); 842 i = min_t(int, nbytes, EXTRACT_SIZE); 843 if (copy_to_user(buf, tmp, i)) { 844 ret = -EFAULT; 845 break; 846 } 847 848 nbytes -= i; 849 buf += i; 850 ret += i; 851 } 852 853 /* Wipe data just returned from memory */ 854 memset(tmp, 0, sizeof(tmp)); 855 856 return ret; 857 } 858 859 /* 860 * This function is the exported kernel interface. It returns some 861 * number of good random numbers, suitable for seeding TCP sequence 862 * numbers, etc. 863 */ 864 void get_random_bytes(void *buf, int nbytes) 865 { 866 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 867 } 868 869 EXPORT_SYMBOL(get_random_bytes); 870 871 /* 872 * init_std_data - initialize pool with system data 873 * 874 * @r: pool to initialize 875 * 876 * This function clears the pool's entropy count and mixes some system 877 * data into the pool to prepare it for use. The pool is not cleared 878 * as that can only decrease the entropy in the pool. 879 */ 880 static void init_std_data(struct entropy_store *r) 881 { 882 struct timeval tv; 883 unsigned long flags; 884 885 spin_lock_irqsave(&r->lock, flags); 886 r->entropy_count = 0; 887 spin_unlock_irqrestore(&r->lock, flags); 888 889 do_gettimeofday(&tv); 890 add_entropy_words(r, (__u32 *)&tv, sizeof(tv)/4); 891 add_entropy_words(r, (__u32 *)&system_utsname, 892 sizeof(system_utsname)/4); 893 } 894 895 static int __init rand_initialize(void) 896 { 897 init_std_data(&input_pool); 898 init_std_data(&blocking_pool); 899 init_std_data(&nonblocking_pool); 900 return 0; 901 } 902 module_init(rand_initialize); 903 904 void rand_initialize_irq(int irq) 905 { 906 struct timer_rand_state *state; 907 908 if (irq >= NR_IRQS || irq_timer_state[irq]) 909 return; 910 911 /* 912 * If kmalloc returns null, we just won't use that entropy 913 * source. 914 */ 915 state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 916 if (state) { 917 memset(state, 0, sizeof(struct timer_rand_state)); 918 irq_timer_state[irq] = state; 919 } 920 } 921 922 void rand_initialize_disk(struct gendisk *disk) 923 { 924 struct timer_rand_state *state; 925 926 /* 927 * If kmalloc returns null, we just won't use that entropy 928 * source. 929 */ 930 state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 931 if (state) { 932 memset(state, 0, sizeof(struct timer_rand_state)); 933 disk->random = state; 934 } 935 } 936 937 static ssize_t 938 random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos) 939 { 940 ssize_t n, retval = 0, count = 0; 941 942 if (nbytes == 0) 943 return 0; 944 945 while (nbytes > 0) { 946 n = nbytes; 947 if (n > SEC_XFER_SIZE) 948 n = SEC_XFER_SIZE; 949 950 DEBUG_ENT("reading %d bits\n", n*8); 951 952 n = extract_entropy_user(&blocking_pool, buf, n); 953 954 DEBUG_ENT("read got %d bits (%d still needed)\n", 955 n*8, (nbytes-n)*8); 956 957 if (n == 0) { 958 if (file->f_flags & O_NONBLOCK) { 959 retval = -EAGAIN; 960 break; 961 } 962 963 DEBUG_ENT("sleeping?\n"); 964 965 wait_event_interruptible(random_read_wait, 966 input_pool.entropy_count >= 967 random_read_wakeup_thresh); 968 969 DEBUG_ENT("awake\n"); 970 971 if (signal_pending(current)) { 972 retval = -ERESTARTSYS; 973 break; 974 } 975 976 continue; 977 } 978 979 if (n < 0) { 980 retval = n; 981 break; 982 } 983 count += n; 984 buf += n; 985 nbytes -= n; 986 break; /* This break makes the device work */ 987 /* like a named pipe */ 988 } 989 990 /* 991 * If we gave the user some bytes, update the access time. 992 */ 993 if (count) 994 file_accessed(file); 995 996 return (count ? count : retval); 997 } 998 999 static ssize_t 1000 urandom_read(struct file * file, char __user * buf, 1001 size_t nbytes, loff_t *ppos) 1002 { 1003 return extract_entropy_user(&nonblocking_pool, buf, nbytes); 1004 } 1005 1006 static unsigned int 1007 random_poll(struct file *file, poll_table * wait) 1008 { 1009 unsigned int mask; 1010 1011 poll_wait(file, &random_read_wait, wait); 1012 poll_wait(file, &random_write_wait, wait); 1013 mask = 0; 1014 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1015 mask |= POLLIN | POLLRDNORM; 1016 if (input_pool.entropy_count < random_write_wakeup_thresh) 1017 mask |= POLLOUT | POLLWRNORM; 1018 return mask; 1019 } 1020 1021 static ssize_t 1022 random_write(struct file * file, const char __user * buffer, 1023 size_t count, loff_t *ppos) 1024 { 1025 int ret = 0; 1026 size_t bytes; 1027 __u32 buf[16]; 1028 const char __user *p = buffer; 1029 size_t c = count; 1030 1031 while (c > 0) { 1032 bytes = min(c, sizeof(buf)); 1033 1034 bytes -= copy_from_user(&buf, p, bytes); 1035 if (!bytes) { 1036 ret = -EFAULT; 1037 break; 1038 } 1039 c -= bytes; 1040 p += bytes; 1041 1042 add_entropy_words(&input_pool, buf, (bytes + 3) / 4); 1043 } 1044 if (p == buffer) { 1045 return (ssize_t)ret; 1046 } else { 1047 struct inode *inode = file->f_dentry->d_inode; 1048 inode->i_mtime = current_fs_time(inode->i_sb); 1049 mark_inode_dirty(inode); 1050 return (ssize_t)(p - buffer); 1051 } 1052 } 1053 1054 static int 1055 random_ioctl(struct inode * inode, struct file * file, 1056 unsigned int cmd, unsigned long arg) 1057 { 1058 int size, ent_count; 1059 int __user *p = (int __user *)arg; 1060 int retval; 1061 1062 switch (cmd) { 1063 case RNDGETENTCNT: 1064 ent_count = input_pool.entropy_count; 1065 if (put_user(ent_count, p)) 1066 return -EFAULT; 1067 return 0; 1068 case RNDADDTOENTCNT: 1069 if (!capable(CAP_SYS_ADMIN)) 1070 return -EPERM; 1071 if (get_user(ent_count, p)) 1072 return -EFAULT; 1073 credit_entropy_store(&input_pool, ent_count); 1074 /* 1075 * Wake up waiting processes if we have enough 1076 * entropy. 1077 */ 1078 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1079 wake_up_interruptible(&random_read_wait); 1080 return 0; 1081 case RNDADDENTROPY: 1082 if (!capable(CAP_SYS_ADMIN)) 1083 return -EPERM; 1084 if (get_user(ent_count, p++)) 1085 return -EFAULT; 1086 if (ent_count < 0) 1087 return -EINVAL; 1088 if (get_user(size, p++)) 1089 return -EFAULT; 1090 retval = random_write(file, (const char __user *) p, 1091 size, &file->f_pos); 1092 if (retval < 0) 1093 return retval; 1094 credit_entropy_store(&input_pool, ent_count); 1095 /* 1096 * Wake up waiting processes if we have enough 1097 * entropy. 1098 */ 1099 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1100 wake_up_interruptible(&random_read_wait); 1101 return 0; 1102 case RNDZAPENTCNT: 1103 case RNDCLEARPOOL: 1104 /* Clear the entropy pool counters. */ 1105 if (!capable(CAP_SYS_ADMIN)) 1106 return -EPERM; 1107 init_std_data(&input_pool); 1108 init_std_data(&blocking_pool); 1109 init_std_data(&nonblocking_pool); 1110 return 0; 1111 default: 1112 return -EINVAL; 1113 } 1114 } 1115 1116 struct file_operations random_fops = { 1117 .read = random_read, 1118 .write = random_write, 1119 .poll = random_poll, 1120 .ioctl = random_ioctl, 1121 }; 1122 1123 struct file_operations urandom_fops = { 1124 .read = urandom_read, 1125 .write = random_write, 1126 .ioctl = random_ioctl, 1127 }; 1128 1129 /*************************************************************** 1130 * Random UUID interface 1131 * 1132 * Used here for a Boot ID, but can be useful for other kernel 1133 * drivers. 1134 ***************************************************************/ 1135 1136 /* 1137 * Generate random UUID 1138 */ 1139 void generate_random_uuid(unsigned char uuid_out[16]) 1140 { 1141 get_random_bytes(uuid_out, 16); 1142 /* Set UUID version to 4 --- truely random generation */ 1143 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1144 /* Set the UUID variant to DCE */ 1145 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1146 } 1147 1148 EXPORT_SYMBOL(generate_random_uuid); 1149 1150 /******************************************************************** 1151 * 1152 * Sysctl interface 1153 * 1154 ********************************************************************/ 1155 1156 #ifdef CONFIG_SYSCTL 1157 1158 #include <linux/sysctl.h> 1159 1160 static int min_read_thresh = 8, min_write_thresh; 1161 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1162 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1163 static char sysctl_bootid[16]; 1164 1165 /* 1166 * These functions is used to return both the bootid UUID, and random 1167 * UUID. The difference is in whether table->data is NULL; if it is, 1168 * then a new UUID is generated and returned to the user. 1169 * 1170 * If the user accesses this via the proc interface, it will be returned 1171 * as an ASCII string in the standard UUID format. If accesses via the 1172 * sysctl system call, it is returned as 16 bytes of binary data. 1173 */ 1174 static int proc_do_uuid(ctl_table *table, int write, struct file *filp, 1175 void __user *buffer, size_t *lenp, loff_t *ppos) 1176 { 1177 ctl_table fake_table; 1178 unsigned char buf[64], tmp_uuid[16], *uuid; 1179 1180 uuid = table->data; 1181 if (!uuid) { 1182 uuid = tmp_uuid; 1183 uuid[8] = 0; 1184 } 1185 if (uuid[8] == 0) 1186 generate_random_uuid(uuid); 1187 1188 sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-" 1189 "%02x%02x%02x%02x%02x%02x", 1190 uuid[0], uuid[1], uuid[2], uuid[3], 1191 uuid[4], uuid[5], uuid[6], uuid[7], 1192 uuid[8], uuid[9], uuid[10], uuid[11], 1193 uuid[12], uuid[13], uuid[14], uuid[15]); 1194 fake_table.data = buf; 1195 fake_table.maxlen = sizeof(buf); 1196 1197 return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos); 1198 } 1199 1200 static int uuid_strategy(ctl_table *table, int __user *name, int nlen, 1201 void __user *oldval, size_t __user *oldlenp, 1202 void __user *newval, size_t newlen, void **context) 1203 { 1204 unsigned char tmp_uuid[16], *uuid; 1205 unsigned int len; 1206 1207 if (!oldval || !oldlenp) 1208 return 1; 1209 1210 uuid = table->data; 1211 if (!uuid) { 1212 uuid = tmp_uuid; 1213 uuid[8] = 0; 1214 } 1215 if (uuid[8] == 0) 1216 generate_random_uuid(uuid); 1217 1218 if (get_user(len, oldlenp)) 1219 return -EFAULT; 1220 if (len) { 1221 if (len > 16) 1222 len = 16; 1223 if (copy_to_user(oldval, uuid, len) || 1224 put_user(len, oldlenp)) 1225 return -EFAULT; 1226 } 1227 return 1; 1228 } 1229 1230 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1231 ctl_table random_table[] = { 1232 { 1233 .ctl_name = RANDOM_POOLSIZE, 1234 .procname = "poolsize", 1235 .data = &sysctl_poolsize, 1236 .maxlen = sizeof(int), 1237 .mode = 0444, 1238 .proc_handler = &proc_dointvec, 1239 }, 1240 { 1241 .ctl_name = RANDOM_ENTROPY_COUNT, 1242 .procname = "entropy_avail", 1243 .maxlen = sizeof(int), 1244 .mode = 0444, 1245 .proc_handler = &proc_dointvec, 1246 .data = &input_pool.entropy_count, 1247 }, 1248 { 1249 .ctl_name = RANDOM_READ_THRESH, 1250 .procname = "read_wakeup_threshold", 1251 .data = &random_read_wakeup_thresh, 1252 .maxlen = sizeof(int), 1253 .mode = 0644, 1254 .proc_handler = &proc_dointvec_minmax, 1255 .strategy = &sysctl_intvec, 1256 .extra1 = &min_read_thresh, 1257 .extra2 = &max_read_thresh, 1258 }, 1259 { 1260 .ctl_name = RANDOM_WRITE_THRESH, 1261 .procname = "write_wakeup_threshold", 1262 .data = &random_write_wakeup_thresh, 1263 .maxlen = sizeof(int), 1264 .mode = 0644, 1265 .proc_handler = &proc_dointvec_minmax, 1266 .strategy = &sysctl_intvec, 1267 .extra1 = &min_write_thresh, 1268 .extra2 = &max_write_thresh, 1269 }, 1270 { 1271 .ctl_name = RANDOM_BOOT_ID, 1272 .procname = "boot_id", 1273 .data = &sysctl_bootid, 1274 .maxlen = 16, 1275 .mode = 0444, 1276 .proc_handler = &proc_do_uuid, 1277 .strategy = &uuid_strategy, 1278 }, 1279 { 1280 .ctl_name = RANDOM_UUID, 1281 .procname = "uuid", 1282 .maxlen = 16, 1283 .mode = 0444, 1284 .proc_handler = &proc_do_uuid, 1285 .strategy = &uuid_strategy, 1286 }, 1287 { .ctl_name = 0 } 1288 }; 1289 #endif /* CONFIG_SYSCTL */ 1290 1291 /******************************************************************** 1292 * 1293 * Random funtions for networking 1294 * 1295 ********************************************************************/ 1296 1297 /* 1298 * TCP initial sequence number picking. This uses the random number 1299 * generator to pick an initial secret value. This value is hashed 1300 * along with the TCP endpoint information to provide a unique 1301 * starting point for each pair of TCP endpoints. This defeats 1302 * attacks which rely on guessing the initial TCP sequence number. 1303 * This algorithm was suggested by Steve Bellovin. 1304 * 1305 * Using a very strong hash was taking an appreciable amount of the total 1306 * TCP connection establishment time, so this is a weaker hash, 1307 * compensated for by changing the secret periodically. 1308 */ 1309 1310 /* F, G and H are basic MD4 functions: selection, majority, parity */ 1311 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 1312 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z))) 1313 #define H(x, y, z) ((x) ^ (y) ^ (z)) 1314 1315 /* 1316 * The generic round function. The application is so specific that 1317 * we don't bother protecting all the arguments with parens, as is generally 1318 * good macro practice, in favor of extra legibility. 1319 * Rotation is separate from addition to prevent recomputation 1320 */ 1321 #define ROUND(f, a, b, c, d, x, s) \ 1322 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s))) 1323 #define K1 0 1324 #define K2 013240474631UL 1325 #define K3 015666365641UL 1326 1327 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1328 1329 static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12]) 1330 { 1331 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; 1332 1333 /* Round 1 */ 1334 ROUND(F, a, b, c, d, in[ 0] + K1, 3); 1335 ROUND(F, d, a, b, c, in[ 1] + K1, 7); 1336 ROUND(F, c, d, a, b, in[ 2] + K1, 11); 1337 ROUND(F, b, c, d, a, in[ 3] + K1, 19); 1338 ROUND(F, a, b, c, d, in[ 4] + K1, 3); 1339 ROUND(F, d, a, b, c, in[ 5] + K1, 7); 1340 ROUND(F, c, d, a, b, in[ 6] + K1, 11); 1341 ROUND(F, b, c, d, a, in[ 7] + K1, 19); 1342 ROUND(F, a, b, c, d, in[ 8] + K1, 3); 1343 ROUND(F, d, a, b, c, in[ 9] + K1, 7); 1344 ROUND(F, c, d, a, b, in[10] + K1, 11); 1345 ROUND(F, b, c, d, a, in[11] + K1, 19); 1346 1347 /* Round 2 */ 1348 ROUND(G, a, b, c, d, in[ 1] + K2, 3); 1349 ROUND(G, d, a, b, c, in[ 3] + K2, 5); 1350 ROUND(G, c, d, a, b, in[ 5] + K2, 9); 1351 ROUND(G, b, c, d, a, in[ 7] + K2, 13); 1352 ROUND(G, a, b, c, d, in[ 9] + K2, 3); 1353 ROUND(G, d, a, b, c, in[11] + K2, 5); 1354 ROUND(G, c, d, a, b, in[ 0] + K2, 9); 1355 ROUND(G, b, c, d, a, in[ 2] + K2, 13); 1356 ROUND(G, a, b, c, d, in[ 4] + K2, 3); 1357 ROUND(G, d, a, b, c, in[ 6] + K2, 5); 1358 ROUND(G, c, d, a, b, in[ 8] + K2, 9); 1359 ROUND(G, b, c, d, a, in[10] + K2, 13); 1360 1361 /* Round 3 */ 1362 ROUND(H, a, b, c, d, in[ 3] + K3, 3); 1363 ROUND(H, d, a, b, c, in[ 7] + K3, 9); 1364 ROUND(H, c, d, a, b, in[11] + K3, 11); 1365 ROUND(H, b, c, d, a, in[ 2] + K3, 15); 1366 ROUND(H, a, b, c, d, in[ 6] + K3, 3); 1367 ROUND(H, d, a, b, c, in[10] + K3, 9); 1368 ROUND(H, c, d, a, b, in[ 1] + K3, 11); 1369 ROUND(H, b, c, d, a, in[ 5] + K3, 15); 1370 ROUND(H, a, b, c, d, in[ 9] + K3, 3); 1371 ROUND(H, d, a, b, c, in[ 0] + K3, 9); 1372 ROUND(H, c, d, a, b, in[ 4] + K3, 11); 1373 ROUND(H, b, c, d, a, in[ 8] + K3, 15); 1374 1375 return buf[1] + b; /* "most hashed" word */ 1376 /* Alternative: return sum of all words? */ 1377 } 1378 #endif 1379 1380 #undef ROUND 1381 #undef F 1382 #undef G 1383 #undef H 1384 #undef K1 1385 #undef K2 1386 #undef K3 1387 1388 /* This should not be decreased so low that ISNs wrap too fast. */ 1389 #define REKEY_INTERVAL (300 * HZ) 1390 /* 1391 * Bit layout of the tcp sequence numbers (before adding current time): 1392 * bit 24-31: increased after every key exchange 1393 * bit 0-23: hash(source,dest) 1394 * 1395 * The implementation is similar to the algorithm described 1396 * in the Appendix of RFC 1185, except that 1397 * - it uses a 1 MHz clock instead of a 250 kHz clock 1398 * - it performs a rekey every 5 minutes, which is equivalent 1399 * to a (source,dest) tulple dependent forward jump of the 1400 * clock by 0..2^(HASH_BITS+1) 1401 * 1402 * Thus the average ISN wraparound time is 68 minutes instead of 1403 * 4.55 hours. 1404 * 1405 * SMP cleanup and lock avoidance with poor man's RCU. 1406 * Manfred Spraul <manfred@colorfullife.com> 1407 * 1408 */ 1409 #define COUNT_BITS 8 1410 #define COUNT_MASK ((1 << COUNT_BITS) - 1) 1411 #define HASH_BITS 24 1412 #define HASH_MASK ((1 << HASH_BITS) - 1) 1413 1414 static struct keydata { 1415 __u32 count; /* already shifted to the final position */ 1416 __u32 secret[12]; 1417 } ____cacheline_aligned ip_keydata[2]; 1418 1419 static unsigned int ip_cnt; 1420 1421 static void rekey_seq_generator(void *private_); 1422 1423 static DECLARE_WORK(rekey_work, rekey_seq_generator, NULL); 1424 1425 /* 1426 * Lock avoidance: 1427 * The ISN generation runs lockless - it's just a hash over random data. 1428 * State changes happen every 5 minutes when the random key is replaced. 1429 * Synchronization is performed by having two copies of the hash function 1430 * state and rekey_seq_generator always updates the inactive copy. 1431 * The copy is then activated by updating ip_cnt. 1432 * The implementation breaks down if someone blocks the thread 1433 * that processes SYN requests for more than 5 minutes. Should never 1434 * happen, and even if that happens only a not perfectly compliant 1435 * ISN is generated, nothing fatal. 1436 */ 1437 static void rekey_seq_generator(void *private_) 1438 { 1439 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)]; 1440 1441 get_random_bytes(keyptr->secret, sizeof(keyptr->secret)); 1442 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS; 1443 smp_wmb(); 1444 ip_cnt++; 1445 schedule_delayed_work(&rekey_work, REKEY_INTERVAL); 1446 } 1447 1448 static inline struct keydata *get_keyptr(void) 1449 { 1450 struct keydata *keyptr = &ip_keydata[ip_cnt & 1]; 1451 1452 smp_rmb(); 1453 1454 return keyptr; 1455 } 1456 1457 static __init int seqgen_init(void) 1458 { 1459 rekey_seq_generator(NULL); 1460 return 0; 1461 } 1462 late_initcall(seqgen_init); 1463 1464 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1465 __u32 secure_tcpv6_sequence_number(__u32 *saddr, __u32 *daddr, 1466 __u16 sport, __u16 dport) 1467 { 1468 struct timeval tv; 1469 __u32 seq; 1470 __u32 hash[12]; 1471 struct keydata *keyptr = get_keyptr(); 1472 1473 /* The procedure is the same as for IPv4, but addresses are longer. 1474 * Thus we must use twothirdsMD4Transform. 1475 */ 1476 1477 memcpy(hash, saddr, 16); 1478 hash[4]=(sport << 16) + dport; 1479 memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7); 1480 1481 seq = twothirdsMD4Transform(daddr, hash) & HASH_MASK; 1482 seq += keyptr->count; 1483 1484 do_gettimeofday(&tv); 1485 seq += tv.tv_usec + tv.tv_sec * 1000000; 1486 1487 return seq; 1488 } 1489 EXPORT_SYMBOL(secure_tcpv6_sequence_number); 1490 #endif 1491 1492 /* The code below is shamelessly stolen from secure_tcp_sequence_number(). 1493 * All blames to Andrey V. Savochkin <saw@msu.ru>. 1494 */ 1495 __u32 secure_ip_id(__u32 daddr) 1496 { 1497 struct keydata *keyptr; 1498 __u32 hash[4]; 1499 1500 keyptr = get_keyptr(); 1501 1502 /* 1503 * Pick a unique starting offset for each IP destination. 1504 * The dest ip address is placed in the starting vector, 1505 * which is then hashed with random data. 1506 */ 1507 hash[0] = daddr; 1508 hash[1] = keyptr->secret[9]; 1509 hash[2] = keyptr->secret[10]; 1510 hash[3] = keyptr->secret[11]; 1511 1512 return half_md4_transform(hash, keyptr->secret); 1513 } 1514 1515 #ifdef CONFIG_INET 1516 1517 __u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr, 1518 __u16 sport, __u16 dport) 1519 { 1520 struct timeval tv; 1521 __u32 seq; 1522 __u32 hash[4]; 1523 struct keydata *keyptr = get_keyptr(); 1524 1525 /* 1526 * Pick a unique starting offset for each TCP connection endpoints 1527 * (saddr, daddr, sport, dport). 1528 * Note that the words are placed into the starting vector, which is 1529 * then mixed with a partial MD4 over random data. 1530 */ 1531 hash[0]=saddr; 1532 hash[1]=daddr; 1533 hash[2]=(sport << 16) + dport; 1534 hash[3]=keyptr->secret[11]; 1535 1536 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK; 1537 seq += keyptr->count; 1538 /* 1539 * As close as possible to RFC 793, which 1540 * suggests using a 250 kHz clock. 1541 * Further reading shows this assumes 2 Mb/s networks. 1542 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. 1543 * That's funny, Linux has one built in! Use it! 1544 * (Networks are faster now - should this be increased?) 1545 */ 1546 do_gettimeofday(&tv); 1547 seq += tv.tv_usec + tv.tv_sec * 1000000; 1548 #if 0 1549 printk("init_seq(%lx, %lx, %d, %d) = %d\n", 1550 saddr, daddr, sport, dport, seq); 1551 #endif 1552 return seq; 1553 } 1554 1555 EXPORT_SYMBOL(secure_tcp_sequence_number); 1556 1557 1558 1559 /* Generate secure starting point for ephemeral TCP port search */ 1560 u32 secure_tcp_port_ephemeral(__u32 saddr, __u32 daddr, __u16 dport) 1561 { 1562 struct keydata *keyptr = get_keyptr(); 1563 u32 hash[4]; 1564 1565 /* 1566 * Pick a unique starting offset for each ephemeral port search 1567 * (saddr, daddr, dport) and 48bits of random data. 1568 */ 1569 hash[0] = saddr; 1570 hash[1] = daddr; 1571 hash[2] = dport ^ keyptr->secret[10]; 1572 hash[3] = keyptr->secret[11]; 1573 1574 return half_md4_transform(hash, keyptr->secret); 1575 } 1576 1577 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1578 u32 secure_tcpv6_port_ephemeral(const __u32 *saddr, const __u32 *daddr, __u16 dport) 1579 { 1580 struct keydata *keyptr = get_keyptr(); 1581 u32 hash[12]; 1582 1583 memcpy(hash, saddr, 16); 1584 hash[4] = dport; 1585 memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7); 1586 1587 return twothirdsMD4Transform(daddr, hash); 1588 } 1589 EXPORT_SYMBOL(secure_tcpv6_port_ephemeral); 1590 #endif 1591 1592 #endif /* CONFIG_INET */ 1593 1594 1595 /* 1596 * Get a random word for internal kernel use only. Similar to urandom but 1597 * with the goal of minimal entropy pool depletion. As a result, the random 1598 * value is not cryptographically secure but for several uses the cost of 1599 * depleting entropy is too high 1600 */ 1601 unsigned int get_random_int(void) 1602 { 1603 /* 1604 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself 1605 * every second, from the entropy pool (and thus creates a limited 1606 * drain on it), and uses halfMD4Transform within the second. We 1607 * also mix it with jiffies and the PID: 1608 */ 1609 return secure_ip_id(current->pid + jiffies); 1610 } 1611 1612 /* 1613 * randomize_range() returns a start address such that 1614 * 1615 * [...... <range> .....] 1616 * start end 1617 * 1618 * a <range> with size "len" starting at the return value is inside in the 1619 * area defined by [start, end], but is otherwise randomized. 1620 */ 1621 unsigned long 1622 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1623 { 1624 unsigned long range = end - len - start; 1625 1626 if (end <= start + len) 1627 return 0; 1628 return PAGE_ALIGN(get_random_int() % range + start); 1629 } 1630