xref: /openbmc/linux/drivers/char/mem.c (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/char/mem.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  Added devfs support.
8  *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
9  *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/raw.h>
20 #include <linux/tty.h>
21 #include <linux/capability.h>
22 #include <linux/ptrace.h>
23 #include <linux/device.h>
24 #include <linux/highmem.h>
25 #include <linux/backing-dev.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/splice.h>
28 #include <linux/pfn.h>
29 #include <linux/export.h>
30 #include <linux/io.h>
31 #include <linux/uio.h>
32 #include <linux/uaccess.h>
33 #include <linux/security.h>
34 #include <linux/pseudo_fs.h>
35 #include <uapi/linux/magic.h>
36 #include <linux/mount.h>
37 
38 #ifdef CONFIG_IA64
39 # include <linux/efi.h>
40 #endif
41 
42 #define DEVMEM_MINOR	1
43 #define DEVPORT_MINOR	4
44 
45 static inline unsigned long size_inside_page(unsigned long start,
46 					     unsigned long size)
47 {
48 	unsigned long sz;
49 
50 	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
51 
52 	return min(sz, size);
53 }
54 
55 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
56 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
57 {
58 	return addr + count <= __pa(high_memory);
59 }
60 
61 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
62 {
63 	return 1;
64 }
65 #endif
66 
67 #ifdef CONFIG_STRICT_DEVMEM
68 static inline int page_is_allowed(unsigned long pfn)
69 {
70 	return devmem_is_allowed(pfn);
71 }
72 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
73 {
74 	u64 from = ((u64)pfn) << PAGE_SHIFT;
75 	u64 to = from + size;
76 	u64 cursor = from;
77 
78 	while (cursor < to) {
79 		if (!devmem_is_allowed(pfn))
80 			return 0;
81 		cursor += PAGE_SIZE;
82 		pfn++;
83 	}
84 	return 1;
85 }
86 #else
87 static inline int page_is_allowed(unsigned long pfn)
88 {
89 	return 1;
90 }
91 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
92 {
93 	return 1;
94 }
95 #endif
96 
97 #ifndef unxlate_dev_mem_ptr
98 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
99 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
100 {
101 }
102 #endif
103 
104 static inline bool should_stop_iteration(void)
105 {
106 	if (need_resched())
107 		cond_resched();
108 	return fatal_signal_pending(current);
109 }
110 
111 /*
112  * This funcion reads the *physical* memory. The f_pos points directly to the
113  * memory location.
114  */
115 static ssize_t read_mem(struct file *file, char __user *buf,
116 			size_t count, loff_t *ppos)
117 {
118 	phys_addr_t p = *ppos;
119 	ssize_t read, sz;
120 	void *ptr;
121 	char *bounce;
122 	int err;
123 
124 	if (p != *ppos)
125 		return 0;
126 
127 	if (!valid_phys_addr_range(p, count))
128 		return -EFAULT;
129 	read = 0;
130 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
131 	/* we don't have page 0 mapped on sparc and m68k.. */
132 	if (p < PAGE_SIZE) {
133 		sz = size_inside_page(p, count);
134 		if (sz > 0) {
135 			if (clear_user(buf, sz))
136 				return -EFAULT;
137 			buf += sz;
138 			p += sz;
139 			count -= sz;
140 			read += sz;
141 		}
142 	}
143 #endif
144 
145 	bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
146 	if (!bounce)
147 		return -ENOMEM;
148 
149 	while (count > 0) {
150 		unsigned long remaining;
151 		int allowed, probe;
152 
153 		sz = size_inside_page(p, count);
154 
155 		err = -EPERM;
156 		allowed = page_is_allowed(p >> PAGE_SHIFT);
157 		if (!allowed)
158 			goto failed;
159 
160 		err = -EFAULT;
161 		if (allowed == 2) {
162 			/* Show zeros for restricted memory. */
163 			remaining = clear_user(buf, sz);
164 		} else {
165 			/*
166 			 * On ia64 if a page has been mapped somewhere as
167 			 * uncached, then it must also be accessed uncached
168 			 * by the kernel or data corruption may occur.
169 			 */
170 			ptr = xlate_dev_mem_ptr(p);
171 			if (!ptr)
172 				goto failed;
173 
174 			probe = copy_from_kernel_nofault(bounce, ptr, sz);
175 			unxlate_dev_mem_ptr(p, ptr);
176 			if (probe)
177 				goto failed;
178 
179 			remaining = copy_to_user(buf, bounce, sz);
180 		}
181 
182 		if (remaining)
183 			goto failed;
184 
185 		buf += sz;
186 		p += sz;
187 		count -= sz;
188 		read += sz;
189 		if (should_stop_iteration())
190 			break;
191 	}
192 	kfree(bounce);
193 
194 	*ppos += read;
195 	return read;
196 
197 failed:
198 	kfree(bounce);
199 	return err;
200 }
201 
202 static ssize_t write_mem(struct file *file, const char __user *buf,
203 			 size_t count, loff_t *ppos)
204 {
205 	phys_addr_t p = *ppos;
206 	ssize_t written, sz;
207 	unsigned long copied;
208 	void *ptr;
209 
210 	if (p != *ppos)
211 		return -EFBIG;
212 
213 	if (!valid_phys_addr_range(p, count))
214 		return -EFAULT;
215 
216 	written = 0;
217 
218 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
219 	/* we don't have page 0 mapped on sparc and m68k.. */
220 	if (p < PAGE_SIZE) {
221 		sz = size_inside_page(p, count);
222 		/* Hmm. Do something? */
223 		buf += sz;
224 		p += sz;
225 		count -= sz;
226 		written += sz;
227 	}
228 #endif
229 
230 	while (count > 0) {
231 		int allowed;
232 
233 		sz = size_inside_page(p, count);
234 
235 		allowed = page_is_allowed(p >> PAGE_SHIFT);
236 		if (!allowed)
237 			return -EPERM;
238 
239 		/* Skip actual writing when a page is marked as restricted. */
240 		if (allowed == 1) {
241 			/*
242 			 * On ia64 if a page has been mapped somewhere as
243 			 * uncached, then it must also be accessed uncached
244 			 * by the kernel or data corruption may occur.
245 			 */
246 			ptr = xlate_dev_mem_ptr(p);
247 			if (!ptr) {
248 				if (written)
249 					break;
250 				return -EFAULT;
251 			}
252 
253 			copied = copy_from_user(ptr, buf, sz);
254 			unxlate_dev_mem_ptr(p, ptr);
255 			if (copied) {
256 				written += sz - copied;
257 				if (written)
258 					break;
259 				return -EFAULT;
260 			}
261 		}
262 
263 		buf += sz;
264 		p += sz;
265 		count -= sz;
266 		written += sz;
267 		if (should_stop_iteration())
268 			break;
269 	}
270 
271 	*ppos += written;
272 	return written;
273 }
274 
275 int __weak phys_mem_access_prot_allowed(struct file *file,
276 	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
277 {
278 	return 1;
279 }
280 
281 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
282 
283 /*
284  * Architectures vary in how they handle caching for addresses
285  * outside of main memory.
286  *
287  */
288 #ifdef pgprot_noncached
289 static int uncached_access(struct file *file, phys_addr_t addr)
290 {
291 #if defined(CONFIG_IA64)
292 	/*
293 	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
294 	 * attribute aliases.
295 	 */
296 	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
297 #else
298 	/*
299 	 * Accessing memory above the top the kernel knows about or through a
300 	 * file pointer
301 	 * that was marked O_DSYNC will be done non-cached.
302 	 */
303 	if (file->f_flags & O_DSYNC)
304 		return 1;
305 	return addr >= __pa(high_memory);
306 #endif
307 }
308 #endif
309 
310 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
311 				     unsigned long size, pgprot_t vma_prot)
312 {
313 #ifdef pgprot_noncached
314 	phys_addr_t offset = pfn << PAGE_SHIFT;
315 
316 	if (uncached_access(file, offset))
317 		return pgprot_noncached(vma_prot);
318 #endif
319 	return vma_prot;
320 }
321 #endif
322 
323 #ifndef CONFIG_MMU
324 static unsigned long get_unmapped_area_mem(struct file *file,
325 					   unsigned long addr,
326 					   unsigned long len,
327 					   unsigned long pgoff,
328 					   unsigned long flags)
329 {
330 	if (!valid_mmap_phys_addr_range(pgoff, len))
331 		return (unsigned long) -EINVAL;
332 	return pgoff << PAGE_SHIFT;
333 }
334 
335 /* permit direct mmap, for read, write or exec */
336 static unsigned memory_mmap_capabilities(struct file *file)
337 {
338 	return NOMMU_MAP_DIRECT |
339 		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
340 }
341 
342 static unsigned zero_mmap_capabilities(struct file *file)
343 {
344 	return NOMMU_MAP_COPY;
345 }
346 
347 /* can't do an in-place private mapping if there's no MMU */
348 static inline int private_mapping_ok(struct vm_area_struct *vma)
349 {
350 	return vma->vm_flags & VM_MAYSHARE;
351 }
352 #else
353 
354 static inline int private_mapping_ok(struct vm_area_struct *vma)
355 {
356 	return 1;
357 }
358 #endif
359 
360 static const struct vm_operations_struct mmap_mem_ops = {
361 #ifdef CONFIG_HAVE_IOREMAP_PROT
362 	.access = generic_access_phys
363 #endif
364 };
365 
366 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
367 {
368 	size_t size = vma->vm_end - vma->vm_start;
369 	phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
370 
371 	/* Does it even fit in phys_addr_t? */
372 	if (offset >> PAGE_SHIFT != vma->vm_pgoff)
373 		return -EINVAL;
374 
375 	/* It's illegal to wrap around the end of the physical address space. */
376 	if (offset + (phys_addr_t)size - 1 < offset)
377 		return -EINVAL;
378 
379 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
380 		return -EINVAL;
381 
382 	if (!private_mapping_ok(vma))
383 		return -ENOSYS;
384 
385 	if (!range_is_allowed(vma->vm_pgoff, size))
386 		return -EPERM;
387 
388 	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
389 						&vma->vm_page_prot))
390 		return -EINVAL;
391 
392 	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
393 						 size,
394 						 vma->vm_page_prot);
395 
396 	vma->vm_ops = &mmap_mem_ops;
397 
398 	/* Remap-pfn-range will mark the range VM_IO */
399 	if (remap_pfn_range(vma,
400 			    vma->vm_start,
401 			    vma->vm_pgoff,
402 			    size,
403 			    vma->vm_page_prot)) {
404 		return -EAGAIN;
405 	}
406 	return 0;
407 }
408 
409 static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
410 {
411 	unsigned long pfn;
412 
413 	/* Turn a kernel-virtual address into a physical page frame */
414 	pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
415 
416 	/*
417 	 * RED-PEN: on some architectures there is more mapped memory than
418 	 * available in mem_map which pfn_valid checks for. Perhaps should add a
419 	 * new macro here.
420 	 *
421 	 * RED-PEN: vmalloc is not supported right now.
422 	 */
423 	if (!pfn_valid(pfn))
424 		return -EIO;
425 
426 	vma->vm_pgoff = pfn;
427 	return mmap_mem(file, vma);
428 }
429 
430 /*
431  * This function reads the *virtual* memory as seen by the kernel.
432  */
433 static ssize_t read_kmem(struct file *file, char __user *buf,
434 			 size_t count, loff_t *ppos)
435 {
436 	unsigned long p = *ppos;
437 	ssize_t low_count, read, sz;
438 	char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
439 	int err = 0;
440 
441 	read = 0;
442 	if (p < (unsigned long) high_memory) {
443 		low_count = count;
444 		if (count > (unsigned long)high_memory - p)
445 			low_count = (unsigned long)high_memory - p;
446 
447 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
448 		/* we don't have page 0 mapped on sparc and m68k.. */
449 		if (p < PAGE_SIZE && low_count > 0) {
450 			sz = size_inside_page(p, low_count);
451 			if (clear_user(buf, sz))
452 				return -EFAULT;
453 			buf += sz;
454 			p += sz;
455 			read += sz;
456 			low_count -= sz;
457 			count -= sz;
458 		}
459 #endif
460 		while (low_count > 0) {
461 			sz = size_inside_page(p, low_count);
462 
463 			/*
464 			 * On ia64 if a page has been mapped somewhere as
465 			 * uncached, then it must also be accessed uncached
466 			 * by the kernel or data corruption may occur
467 			 */
468 			kbuf = xlate_dev_kmem_ptr((void *)p);
469 			if (!virt_addr_valid(kbuf))
470 				return -ENXIO;
471 
472 			if (copy_to_user(buf, kbuf, sz))
473 				return -EFAULT;
474 			buf += sz;
475 			p += sz;
476 			read += sz;
477 			low_count -= sz;
478 			count -= sz;
479 			if (should_stop_iteration()) {
480 				count = 0;
481 				break;
482 			}
483 		}
484 	}
485 
486 	if (count > 0) {
487 		kbuf = (char *)__get_free_page(GFP_KERNEL);
488 		if (!kbuf)
489 			return -ENOMEM;
490 		while (count > 0) {
491 			sz = size_inside_page(p, count);
492 			if (!is_vmalloc_or_module_addr((void *)p)) {
493 				err = -ENXIO;
494 				break;
495 			}
496 			sz = vread(kbuf, (char *)p, sz);
497 			if (!sz)
498 				break;
499 			if (copy_to_user(buf, kbuf, sz)) {
500 				err = -EFAULT;
501 				break;
502 			}
503 			count -= sz;
504 			buf += sz;
505 			read += sz;
506 			p += sz;
507 			if (should_stop_iteration())
508 				break;
509 		}
510 		free_page((unsigned long)kbuf);
511 	}
512 	*ppos = p;
513 	return read ? read : err;
514 }
515 
516 
517 static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
518 				size_t count, loff_t *ppos)
519 {
520 	ssize_t written, sz;
521 	unsigned long copied;
522 
523 	written = 0;
524 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
525 	/* we don't have page 0 mapped on sparc and m68k.. */
526 	if (p < PAGE_SIZE) {
527 		sz = size_inside_page(p, count);
528 		/* Hmm. Do something? */
529 		buf += sz;
530 		p += sz;
531 		count -= sz;
532 		written += sz;
533 	}
534 #endif
535 
536 	while (count > 0) {
537 		void *ptr;
538 
539 		sz = size_inside_page(p, count);
540 
541 		/*
542 		 * On ia64 if a page has been mapped somewhere as uncached, then
543 		 * it must also be accessed uncached by the kernel or data
544 		 * corruption may occur.
545 		 */
546 		ptr = xlate_dev_kmem_ptr((void *)p);
547 		if (!virt_addr_valid(ptr))
548 			return -ENXIO;
549 
550 		copied = copy_from_user(ptr, buf, sz);
551 		if (copied) {
552 			written += sz - copied;
553 			if (written)
554 				break;
555 			return -EFAULT;
556 		}
557 		buf += sz;
558 		p += sz;
559 		count -= sz;
560 		written += sz;
561 		if (should_stop_iteration())
562 			break;
563 	}
564 
565 	*ppos += written;
566 	return written;
567 }
568 
569 /*
570  * This function writes to the *virtual* memory as seen by the kernel.
571  */
572 static ssize_t write_kmem(struct file *file, const char __user *buf,
573 			  size_t count, loff_t *ppos)
574 {
575 	unsigned long p = *ppos;
576 	ssize_t wrote = 0;
577 	ssize_t virtr = 0;
578 	char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
579 	int err = 0;
580 
581 	if (p < (unsigned long) high_memory) {
582 		unsigned long to_write = min_t(unsigned long, count,
583 					       (unsigned long)high_memory - p);
584 		wrote = do_write_kmem(p, buf, to_write, ppos);
585 		if (wrote != to_write)
586 			return wrote;
587 		p += wrote;
588 		buf += wrote;
589 		count -= wrote;
590 	}
591 
592 	if (count > 0) {
593 		kbuf = (char *)__get_free_page(GFP_KERNEL);
594 		if (!kbuf)
595 			return wrote ? wrote : -ENOMEM;
596 		while (count > 0) {
597 			unsigned long sz = size_inside_page(p, count);
598 			unsigned long n;
599 
600 			if (!is_vmalloc_or_module_addr((void *)p)) {
601 				err = -ENXIO;
602 				break;
603 			}
604 			n = copy_from_user(kbuf, buf, sz);
605 			if (n) {
606 				err = -EFAULT;
607 				break;
608 			}
609 			vwrite(kbuf, (char *)p, sz);
610 			count -= sz;
611 			buf += sz;
612 			virtr += sz;
613 			p += sz;
614 			if (should_stop_iteration())
615 				break;
616 		}
617 		free_page((unsigned long)kbuf);
618 	}
619 
620 	*ppos = p;
621 	return virtr + wrote ? : err;
622 }
623 
624 static ssize_t read_port(struct file *file, char __user *buf,
625 			 size_t count, loff_t *ppos)
626 {
627 	unsigned long i = *ppos;
628 	char __user *tmp = buf;
629 
630 	if (!access_ok(buf, count))
631 		return -EFAULT;
632 	while (count-- > 0 && i < 65536) {
633 		if (__put_user(inb(i), tmp) < 0)
634 			return -EFAULT;
635 		i++;
636 		tmp++;
637 	}
638 	*ppos = i;
639 	return tmp-buf;
640 }
641 
642 static ssize_t write_port(struct file *file, const char __user *buf,
643 			  size_t count, loff_t *ppos)
644 {
645 	unsigned long i = *ppos;
646 	const char __user *tmp = buf;
647 
648 	if (!access_ok(buf, count))
649 		return -EFAULT;
650 	while (count-- > 0 && i < 65536) {
651 		char c;
652 
653 		if (__get_user(c, tmp)) {
654 			if (tmp > buf)
655 				break;
656 			return -EFAULT;
657 		}
658 		outb(c, i);
659 		i++;
660 		tmp++;
661 	}
662 	*ppos = i;
663 	return tmp-buf;
664 }
665 
666 static ssize_t read_null(struct file *file, char __user *buf,
667 			 size_t count, loff_t *ppos)
668 {
669 	return 0;
670 }
671 
672 static ssize_t write_null(struct file *file, const char __user *buf,
673 			  size_t count, loff_t *ppos)
674 {
675 	return count;
676 }
677 
678 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
679 {
680 	return 0;
681 }
682 
683 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
684 {
685 	size_t count = iov_iter_count(from);
686 	iov_iter_advance(from, count);
687 	return count;
688 }
689 
690 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
691 			struct splice_desc *sd)
692 {
693 	return sd->len;
694 }
695 
696 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
697 				 loff_t *ppos, size_t len, unsigned int flags)
698 {
699 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
700 }
701 
702 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
703 {
704 	size_t written = 0;
705 
706 	while (iov_iter_count(iter)) {
707 		size_t chunk = iov_iter_count(iter), n;
708 
709 		if (chunk > PAGE_SIZE)
710 			chunk = PAGE_SIZE;	/* Just for latency reasons */
711 		n = iov_iter_zero(chunk, iter);
712 		if (!n && iov_iter_count(iter))
713 			return written ? written : -EFAULT;
714 		written += n;
715 		if (signal_pending(current))
716 			return written ? written : -ERESTARTSYS;
717 		cond_resched();
718 	}
719 	return written;
720 }
721 
722 static ssize_t read_zero(struct file *file, char __user *buf,
723 			 size_t count, loff_t *ppos)
724 {
725 	size_t cleared = 0;
726 
727 	while (count) {
728 		size_t chunk = min_t(size_t, count, PAGE_SIZE);
729 		size_t left;
730 
731 		left = clear_user(buf + cleared, chunk);
732 		if (unlikely(left)) {
733 			cleared += (chunk - left);
734 			if (!cleared)
735 				return -EFAULT;
736 			break;
737 		}
738 		cleared += chunk;
739 		count -= chunk;
740 
741 		if (signal_pending(current))
742 			break;
743 		cond_resched();
744 	}
745 
746 	return cleared;
747 }
748 
749 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
750 {
751 #ifndef CONFIG_MMU
752 	return -ENOSYS;
753 #endif
754 	if (vma->vm_flags & VM_SHARED)
755 		return shmem_zero_setup(vma);
756 	vma_set_anonymous(vma);
757 	return 0;
758 }
759 
760 static unsigned long get_unmapped_area_zero(struct file *file,
761 				unsigned long addr, unsigned long len,
762 				unsigned long pgoff, unsigned long flags)
763 {
764 #ifdef CONFIG_MMU
765 	if (flags & MAP_SHARED) {
766 		/*
767 		 * mmap_zero() will call shmem_zero_setup() to create a file,
768 		 * so use shmem's get_unmapped_area in case it can be huge;
769 		 * and pass NULL for file as in mmap.c's get_unmapped_area(),
770 		 * so as not to confuse shmem with our handle on "/dev/zero".
771 		 */
772 		return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
773 	}
774 
775 	/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
776 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
777 #else
778 	return -ENOSYS;
779 #endif
780 }
781 
782 static ssize_t write_full(struct file *file, const char __user *buf,
783 			  size_t count, loff_t *ppos)
784 {
785 	return -ENOSPC;
786 }
787 
788 /*
789  * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
790  * can fopen() both devices with "a" now.  This was previously impossible.
791  * -- SRB.
792  */
793 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
794 {
795 	return file->f_pos = 0;
796 }
797 
798 /*
799  * The memory devices use the full 32/64 bits of the offset, and so we cannot
800  * check against negative addresses: they are ok. The return value is weird,
801  * though, in that case (0).
802  *
803  * also note that seeking relative to the "end of file" isn't supported:
804  * it has no meaning, so it returns -EINVAL.
805  */
806 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
807 {
808 	loff_t ret;
809 
810 	inode_lock(file_inode(file));
811 	switch (orig) {
812 	case SEEK_CUR:
813 		offset += file->f_pos;
814 		fallthrough;
815 	case SEEK_SET:
816 		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
817 		if ((unsigned long long)offset >= -MAX_ERRNO) {
818 			ret = -EOVERFLOW;
819 			break;
820 		}
821 		file->f_pos = offset;
822 		ret = file->f_pos;
823 		force_successful_syscall_return();
824 		break;
825 	default:
826 		ret = -EINVAL;
827 	}
828 	inode_unlock(file_inode(file));
829 	return ret;
830 }
831 
832 static struct inode *devmem_inode;
833 
834 #ifdef CONFIG_IO_STRICT_DEVMEM
835 void revoke_devmem(struct resource *res)
836 {
837 	/* pairs with smp_store_release() in devmem_init_inode() */
838 	struct inode *inode = smp_load_acquire(&devmem_inode);
839 
840 	/*
841 	 * Check that the initialization has completed. Losing the race
842 	 * is ok because it means drivers are claiming resources before
843 	 * the fs_initcall level of init and prevent /dev/mem from
844 	 * establishing mappings.
845 	 */
846 	if (!inode)
847 		return;
848 
849 	/*
850 	 * The expectation is that the driver has successfully marked
851 	 * the resource busy by this point, so devmem_is_allowed()
852 	 * should start returning false, however for performance this
853 	 * does not iterate the entire resource range.
854 	 */
855 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
856 	    devmem_is_allowed(PHYS_PFN(res->end))) {
857 		/*
858 		 * *cringe* iomem=relaxed says "go ahead, what's the
859 		 * worst that can happen?"
860 		 */
861 		return;
862 	}
863 
864 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
865 }
866 #endif
867 
868 static int open_port(struct inode *inode, struct file *filp)
869 {
870 	int rc;
871 
872 	if (!capable(CAP_SYS_RAWIO))
873 		return -EPERM;
874 
875 	rc = security_locked_down(LOCKDOWN_DEV_MEM);
876 	if (rc)
877 		return rc;
878 
879 	if (iminor(inode) != DEVMEM_MINOR)
880 		return 0;
881 
882 	/*
883 	 * Use a unified address space to have a single point to manage
884 	 * revocations when drivers want to take over a /dev/mem mapped
885 	 * range.
886 	 */
887 	inode->i_mapping = devmem_inode->i_mapping;
888 	filp->f_mapping = inode->i_mapping;
889 
890 	return 0;
891 }
892 
893 #define zero_lseek	null_lseek
894 #define full_lseek      null_lseek
895 #define write_zero	write_null
896 #define write_iter_zero	write_iter_null
897 #define open_mem	open_port
898 #define open_kmem	open_mem
899 
900 static const struct file_operations __maybe_unused mem_fops = {
901 	.llseek		= memory_lseek,
902 	.read		= read_mem,
903 	.write		= write_mem,
904 	.mmap		= mmap_mem,
905 	.open		= open_mem,
906 #ifndef CONFIG_MMU
907 	.get_unmapped_area = get_unmapped_area_mem,
908 	.mmap_capabilities = memory_mmap_capabilities,
909 #endif
910 };
911 
912 static const struct file_operations __maybe_unused kmem_fops = {
913 	.llseek		= memory_lseek,
914 	.read		= read_kmem,
915 	.write		= write_kmem,
916 	.mmap		= mmap_kmem,
917 	.open		= open_kmem,
918 #ifndef CONFIG_MMU
919 	.get_unmapped_area = get_unmapped_area_mem,
920 	.mmap_capabilities = memory_mmap_capabilities,
921 #endif
922 };
923 
924 static const struct file_operations null_fops = {
925 	.llseek		= null_lseek,
926 	.read		= read_null,
927 	.write		= write_null,
928 	.read_iter	= read_iter_null,
929 	.write_iter	= write_iter_null,
930 	.splice_write	= splice_write_null,
931 };
932 
933 static const struct file_operations __maybe_unused port_fops = {
934 	.llseek		= memory_lseek,
935 	.read		= read_port,
936 	.write		= write_port,
937 	.open		= open_port,
938 };
939 
940 static const struct file_operations zero_fops = {
941 	.llseek		= zero_lseek,
942 	.write		= write_zero,
943 	.read_iter	= read_iter_zero,
944 	.read		= read_zero,
945 	.write_iter	= write_iter_zero,
946 	.mmap		= mmap_zero,
947 	.get_unmapped_area = get_unmapped_area_zero,
948 #ifndef CONFIG_MMU
949 	.mmap_capabilities = zero_mmap_capabilities,
950 #endif
951 };
952 
953 static const struct file_operations full_fops = {
954 	.llseek		= full_lseek,
955 	.read_iter	= read_iter_zero,
956 	.write		= write_full,
957 };
958 
959 static const struct memdev {
960 	const char *name;
961 	umode_t mode;
962 	const struct file_operations *fops;
963 	fmode_t fmode;
964 } devlist[] = {
965 #ifdef CONFIG_DEVMEM
966 	 [DEVMEM_MINOR] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
967 #endif
968 #ifdef CONFIG_DEVKMEM
969 	 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
970 #endif
971 	 [3] = { "null", 0666, &null_fops, 0 },
972 #ifdef CONFIG_DEVPORT
973 	 [4] = { "port", 0, &port_fops, 0 },
974 #endif
975 	 [5] = { "zero", 0666, &zero_fops, 0 },
976 	 [7] = { "full", 0666, &full_fops, 0 },
977 	 [8] = { "random", 0666, &random_fops, 0 },
978 	 [9] = { "urandom", 0666, &urandom_fops, 0 },
979 #ifdef CONFIG_PRINTK
980 	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
981 #endif
982 };
983 
984 static int memory_open(struct inode *inode, struct file *filp)
985 {
986 	int minor;
987 	const struct memdev *dev;
988 
989 	minor = iminor(inode);
990 	if (minor >= ARRAY_SIZE(devlist))
991 		return -ENXIO;
992 
993 	dev = &devlist[minor];
994 	if (!dev->fops)
995 		return -ENXIO;
996 
997 	filp->f_op = dev->fops;
998 	filp->f_mode |= dev->fmode;
999 
1000 	if (dev->fops->open)
1001 		return dev->fops->open(inode, filp);
1002 
1003 	return 0;
1004 }
1005 
1006 static const struct file_operations memory_fops = {
1007 	.open = memory_open,
1008 	.llseek = noop_llseek,
1009 };
1010 
1011 static char *mem_devnode(struct device *dev, umode_t *mode)
1012 {
1013 	if (mode && devlist[MINOR(dev->devt)].mode)
1014 		*mode = devlist[MINOR(dev->devt)].mode;
1015 	return NULL;
1016 }
1017 
1018 static struct class *mem_class;
1019 
1020 static int devmem_fs_init_fs_context(struct fs_context *fc)
1021 {
1022 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1023 }
1024 
1025 static struct file_system_type devmem_fs_type = {
1026 	.name		= "devmem",
1027 	.owner		= THIS_MODULE,
1028 	.init_fs_context = devmem_fs_init_fs_context,
1029 	.kill_sb	= kill_anon_super,
1030 };
1031 
1032 static int devmem_init_inode(void)
1033 {
1034 	static struct vfsmount *devmem_vfs_mount;
1035 	static int devmem_fs_cnt;
1036 	struct inode *inode;
1037 	int rc;
1038 
1039 	rc = simple_pin_fs(&devmem_fs_type, &devmem_vfs_mount, &devmem_fs_cnt);
1040 	if (rc < 0) {
1041 		pr_err("Cannot mount /dev/mem pseudo filesystem: %d\n", rc);
1042 		return rc;
1043 	}
1044 
1045 	inode = alloc_anon_inode(devmem_vfs_mount->mnt_sb);
1046 	if (IS_ERR(inode)) {
1047 		rc = PTR_ERR(inode);
1048 		pr_err("Cannot allocate inode for /dev/mem: %d\n", rc);
1049 		simple_release_fs(&devmem_vfs_mount, &devmem_fs_cnt);
1050 		return rc;
1051 	}
1052 
1053 	/*
1054 	 * Publish /dev/mem initialized.
1055 	 * Pairs with smp_load_acquire() in revoke_devmem().
1056 	 */
1057 	smp_store_release(&devmem_inode, inode);
1058 
1059 	return 0;
1060 }
1061 
1062 static int __init chr_dev_init(void)
1063 {
1064 	int minor;
1065 
1066 	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
1067 		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
1068 
1069 	mem_class = class_create(THIS_MODULE, "mem");
1070 	if (IS_ERR(mem_class))
1071 		return PTR_ERR(mem_class);
1072 
1073 	mem_class->devnode = mem_devnode;
1074 	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
1075 		if (!devlist[minor].name)
1076 			continue;
1077 
1078 		/*
1079 		 * Create /dev/port?
1080 		 */
1081 		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
1082 			continue;
1083 		if ((minor == DEVMEM_MINOR) && devmem_init_inode() != 0)
1084 			continue;
1085 
1086 		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
1087 			      NULL, devlist[minor].name);
1088 	}
1089 
1090 	return tty_init();
1091 }
1092 
1093 fs_initcall(chr_dev_init);
1094