xref: /openbmc/linux/drivers/char/mem.c (revision 0d346d2a6f54f06f36b224fd27cd6eafe8c83be9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/char/mem.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  Added devfs support.
8  *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
9  *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/raw.h>
20 #include <linux/tty.h>
21 #include <linux/capability.h>
22 #include <linux/ptrace.h>
23 #include <linux/device.h>
24 #include <linux/highmem.h>
25 #include <linux/backing-dev.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/splice.h>
28 #include <linux/pfn.h>
29 #include <linux/export.h>
30 #include <linux/io.h>
31 #include <linux/uio.h>
32 #include <linux/uaccess.h>
33 #include <linux/security.h>
34 
35 #ifdef CONFIG_IA64
36 # include <linux/efi.h>
37 #endif
38 
39 #define DEVMEM_MINOR	1
40 #define DEVPORT_MINOR	4
41 
42 static inline unsigned long size_inside_page(unsigned long start,
43 					     unsigned long size)
44 {
45 	unsigned long sz;
46 
47 	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
48 
49 	return min(sz, size);
50 }
51 
52 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
53 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
54 {
55 	return addr + count <= __pa(high_memory);
56 }
57 
58 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
59 {
60 	return 1;
61 }
62 #endif
63 
64 #ifdef CONFIG_STRICT_DEVMEM
65 static inline int page_is_allowed(unsigned long pfn)
66 {
67 	return devmem_is_allowed(pfn);
68 }
69 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
70 {
71 	u64 from = ((u64)pfn) << PAGE_SHIFT;
72 	u64 to = from + size;
73 	u64 cursor = from;
74 
75 	while (cursor < to) {
76 		if (!devmem_is_allowed(pfn))
77 			return 0;
78 		cursor += PAGE_SIZE;
79 		pfn++;
80 	}
81 	return 1;
82 }
83 #else
84 static inline int page_is_allowed(unsigned long pfn)
85 {
86 	return 1;
87 }
88 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
89 {
90 	return 1;
91 }
92 #endif
93 
94 #ifndef unxlate_dev_mem_ptr
95 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
96 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
97 {
98 }
99 #endif
100 
101 static inline bool should_stop_iteration(void)
102 {
103 	if (need_resched())
104 		cond_resched();
105 	return fatal_signal_pending(current);
106 }
107 
108 /*
109  * This funcion reads the *physical* memory. The f_pos points directly to the
110  * memory location.
111  */
112 static ssize_t read_mem(struct file *file, char __user *buf,
113 			size_t count, loff_t *ppos)
114 {
115 	phys_addr_t p = *ppos;
116 	ssize_t read, sz;
117 	void *ptr;
118 	char *bounce;
119 	int err;
120 
121 	if (p != *ppos)
122 		return 0;
123 
124 	if (!valid_phys_addr_range(p, count))
125 		return -EFAULT;
126 	read = 0;
127 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
128 	/* we don't have page 0 mapped on sparc and m68k.. */
129 	if (p < PAGE_SIZE) {
130 		sz = size_inside_page(p, count);
131 		if (sz > 0) {
132 			if (clear_user(buf, sz))
133 				return -EFAULT;
134 			buf += sz;
135 			p += sz;
136 			count -= sz;
137 			read += sz;
138 		}
139 	}
140 #endif
141 
142 	bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
143 	if (!bounce)
144 		return -ENOMEM;
145 
146 	while (count > 0) {
147 		unsigned long remaining;
148 		int allowed, probe;
149 
150 		sz = size_inside_page(p, count);
151 
152 		err = -EPERM;
153 		allowed = page_is_allowed(p >> PAGE_SHIFT);
154 		if (!allowed)
155 			goto failed;
156 
157 		err = -EFAULT;
158 		if (allowed == 2) {
159 			/* Show zeros for restricted memory. */
160 			remaining = clear_user(buf, sz);
161 		} else {
162 			/*
163 			 * On ia64 if a page has been mapped somewhere as
164 			 * uncached, then it must also be accessed uncached
165 			 * by the kernel or data corruption may occur.
166 			 */
167 			ptr = xlate_dev_mem_ptr(p);
168 			if (!ptr)
169 				goto failed;
170 
171 			probe = copy_from_kernel_nofault(bounce, ptr, sz);
172 			unxlate_dev_mem_ptr(p, ptr);
173 			if (probe)
174 				goto failed;
175 
176 			remaining = copy_to_user(buf, bounce, sz);
177 		}
178 
179 		if (remaining)
180 			goto failed;
181 
182 		buf += sz;
183 		p += sz;
184 		count -= sz;
185 		read += sz;
186 		if (should_stop_iteration())
187 			break;
188 	}
189 	kfree(bounce);
190 
191 	*ppos += read;
192 	return read;
193 
194 failed:
195 	kfree(bounce);
196 	return err;
197 }
198 
199 static ssize_t write_mem(struct file *file, const char __user *buf,
200 			 size_t count, loff_t *ppos)
201 {
202 	phys_addr_t p = *ppos;
203 	ssize_t written, sz;
204 	unsigned long copied;
205 	void *ptr;
206 
207 	if (p != *ppos)
208 		return -EFBIG;
209 
210 	if (!valid_phys_addr_range(p, count))
211 		return -EFAULT;
212 
213 	written = 0;
214 
215 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
216 	/* we don't have page 0 mapped on sparc and m68k.. */
217 	if (p < PAGE_SIZE) {
218 		sz = size_inside_page(p, count);
219 		/* Hmm. Do something? */
220 		buf += sz;
221 		p += sz;
222 		count -= sz;
223 		written += sz;
224 	}
225 #endif
226 
227 	while (count > 0) {
228 		int allowed;
229 
230 		sz = size_inside_page(p, count);
231 
232 		allowed = page_is_allowed(p >> PAGE_SHIFT);
233 		if (!allowed)
234 			return -EPERM;
235 
236 		/* Skip actual writing when a page is marked as restricted. */
237 		if (allowed == 1) {
238 			/*
239 			 * On ia64 if a page has been mapped somewhere as
240 			 * uncached, then it must also be accessed uncached
241 			 * by the kernel or data corruption may occur.
242 			 */
243 			ptr = xlate_dev_mem_ptr(p);
244 			if (!ptr) {
245 				if (written)
246 					break;
247 				return -EFAULT;
248 			}
249 
250 			copied = copy_from_user(ptr, buf, sz);
251 			unxlate_dev_mem_ptr(p, ptr);
252 			if (copied) {
253 				written += sz - copied;
254 				if (written)
255 					break;
256 				return -EFAULT;
257 			}
258 		}
259 
260 		buf += sz;
261 		p += sz;
262 		count -= sz;
263 		written += sz;
264 		if (should_stop_iteration())
265 			break;
266 	}
267 
268 	*ppos += written;
269 	return written;
270 }
271 
272 int __weak phys_mem_access_prot_allowed(struct file *file,
273 	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
274 {
275 	return 1;
276 }
277 
278 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
279 
280 /*
281  * Architectures vary in how they handle caching for addresses
282  * outside of main memory.
283  *
284  */
285 #ifdef pgprot_noncached
286 static int uncached_access(struct file *file, phys_addr_t addr)
287 {
288 #if defined(CONFIG_IA64)
289 	/*
290 	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
291 	 * attribute aliases.
292 	 */
293 	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
294 #else
295 	/*
296 	 * Accessing memory above the top the kernel knows about or through a
297 	 * file pointer
298 	 * that was marked O_DSYNC will be done non-cached.
299 	 */
300 	if (file->f_flags & O_DSYNC)
301 		return 1;
302 	return addr >= __pa(high_memory);
303 #endif
304 }
305 #endif
306 
307 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
308 				     unsigned long size, pgprot_t vma_prot)
309 {
310 #ifdef pgprot_noncached
311 	phys_addr_t offset = pfn << PAGE_SHIFT;
312 
313 	if (uncached_access(file, offset))
314 		return pgprot_noncached(vma_prot);
315 #endif
316 	return vma_prot;
317 }
318 #endif
319 
320 #ifndef CONFIG_MMU
321 static unsigned long get_unmapped_area_mem(struct file *file,
322 					   unsigned long addr,
323 					   unsigned long len,
324 					   unsigned long pgoff,
325 					   unsigned long flags)
326 {
327 	if (!valid_mmap_phys_addr_range(pgoff, len))
328 		return (unsigned long) -EINVAL;
329 	return pgoff << PAGE_SHIFT;
330 }
331 
332 /* permit direct mmap, for read, write or exec */
333 static unsigned memory_mmap_capabilities(struct file *file)
334 {
335 	return NOMMU_MAP_DIRECT |
336 		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
337 }
338 
339 static unsigned zero_mmap_capabilities(struct file *file)
340 {
341 	return NOMMU_MAP_COPY;
342 }
343 
344 /* can't do an in-place private mapping if there's no MMU */
345 static inline int private_mapping_ok(struct vm_area_struct *vma)
346 {
347 	return vma->vm_flags & VM_MAYSHARE;
348 }
349 #else
350 
351 static inline int private_mapping_ok(struct vm_area_struct *vma)
352 {
353 	return 1;
354 }
355 #endif
356 
357 static const struct vm_operations_struct mmap_mem_ops = {
358 #ifdef CONFIG_HAVE_IOREMAP_PROT
359 	.access = generic_access_phys
360 #endif
361 };
362 
363 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
364 {
365 	size_t size = vma->vm_end - vma->vm_start;
366 	phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
367 
368 	/* Does it even fit in phys_addr_t? */
369 	if (offset >> PAGE_SHIFT != vma->vm_pgoff)
370 		return -EINVAL;
371 
372 	/* It's illegal to wrap around the end of the physical address space. */
373 	if (offset + (phys_addr_t)size - 1 < offset)
374 		return -EINVAL;
375 
376 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
377 		return -EINVAL;
378 
379 	if (!private_mapping_ok(vma))
380 		return -ENOSYS;
381 
382 	if (!range_is_allowed(vma->vm_pgoff, size))
383 		return -EPERM;
384 
385 	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
386 						&vma->vm_page_prot))
387 		return -EINVAL;
388 
389 	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
390 						 size,
391 						 vma->vm_page_prot);
392 
393 	vma->vm_ops = &mmap_mem_ops;
394 
395 	/* Remap-pfn-range will mark the range VM_IO */
396 	if (remap_pfn_range(vma,
397 			    vma->vm_start,
398 			    vma->vm_pgoff,
399 			    size,
400 			    vma->vm_page_prot)) {
401 		return -EAGAIN;
402 	}
403 	return 0;
404 }
405 
406 static ssize_t read_port(struct file *file, char __user *buf,
407 			 size_t count, loff_t *ppos)
408 {
409 	unsigned long i = *ppos;
410 	char __user *tmp = buf;
411 
412 	if (!access_ok(buf, count))
413 		return -EFAULT;
414 	while (count-- > 0 && i < 65536) {
415 		if (__put_user(inb(i), tmp) < 0)
416 			return -EFAULT;
417 		i++;
418 		tmp++;
419 	}
420 	*ppos = i;
421 	return tmp-buf;
422 }
423 
424 static ssize_t write_port(struct file *file, const char __user *buf,
425 			  size_t count, loff_t *ppos)
426 {
427 	unsigned long i = *ppos;
428 	const char __user *tmp = buf;
429 
430 	if (!access_ok(buf, count))
431 		return -EFAULT;
432 	while (count-- > 0 && i < 65536) {
433 		char c;
434 
435 		if (__get_user(c, tmp)) {
436 			if (tmp > buf)
437 				break;
438 			return -EFAULT;
439 		}
440 		outb(c, i);
441 		i++;
442 		tmp++;
443 	}
444 	*ppos = i;
445 	return tmp-buf;
446 }
447 
448 static ssize_t read_null(struct file *file, char __user *buf,
449 			 size_t count, loff_t *ppos)
450 {
451 	return 0;
452 }
453 
454 static ssize_t write_null(struct file *file, const char __user *buf,
455 			  size_t count, loff_t *ppos)
456 {
457 	return count;
458 }
459 
460 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
461 {
462 	return 0;
463 }
464 
465 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
466 {
467 	size_t count = iov_iter_count(from);
468 	iov_iter_advance(from, count);
469 	return count;
470 }
471 
472 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
473 			struct splice_desc *sd)
474 {
475 	return sd->len;
476 }
477 
478 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
479 				 loff_t *ppos, size_t len, unsigned int flags)
480 {
481 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
482 }
483 
484 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
485 {
486 	size_t written = 0;
487 
488 	while (iov_iter_count(iter)) {
489 		size_t chunk = iov_iter_count(iter), n;
490 
491 		if (chunk > PAGE_SIZE)
492 			chunk = PAGE_SIZE;	/* Just for latency reasons */
493 		n = iov_iter_zero(chunk, iter);
494 		if (!n && iov_iter_count(iter))
495 			return written ? written : -EFAULT;
496 		written += n;
497 		if (signal_pending(current))
498 			return written ? written : -ERESTARTSYS;
499 		cond_resched();
500 	}
501 	return written;
502 }
503 
504 static ssize_t read_zero(struct file *file, char __user *buf,
505 			 size_t count, loff_t *ppos)
506 {
507 	size_t cleared = 0;
508 
509 	while (count) {
510 		size_t chunk = min_t(size_t, count, PAGE_SIZE);
511 		size_t left;
512 
513 		left = clear_user(buf + cleared, chunk);
514 		if (unlikely(left)) {
515 			cleared += (chunk - left);
516 			if (!cleared)
517 				return -EFAULT;
518 			break;
519 		}
520 		cleared += chunk;
521 		count -= chunk;
522 
523 		if (signal_pending(current))
524 			break;
525 		cond_resched();
526 	}
527 
528 	return cleared;
529 }
530 
531 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
532 {
533 #ifndef CONFIG_MMU
534 	return -ENOSYS;
535 #endif
536 	if (vma->vm_flags & VM_SHARED)
537 		return shmem_zero_setup(vma);
538 	vma_set_anonymous(vma);
539 	return 0;
540 }
541 
542 static unsigned long get_unmapped_area_zero(struct file *file,
543 				unsigned long addr, unsigned long len,
544 				unsigned long pgoff, unsigned long flags)
545 {
546 #ifdef CONFIG_MMU
547 	if (flags & MAP_SHARED) {
548 		/*
549 		 * mmap_zero() will call shmem_zero_setup() to create a file,
550 		 * so use shmem's get_unmapped_area in case it can be huge;
551 		 * and pass NULL for file as in mmap.c's get_unmapped_area(),
552 		 * so as not to confuse shmem with our handle on "/dev/zero".
553 		 */
554 		return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
555 	}
556 
557 	/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
558 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
559 #else
560 	return -ENOSYS;
561 #endif
562 }
563 
564 static ssize_t write_full(struct file *file, const char __user *buf,
565 			  size_t count, loff_t *ppos)
566 {
567 	return -ENOSPC;
568 }
569 
570 /*
571  * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
572  * can fopen() both devices with "a" now.  This was previously impossible.
573  * -- SRB.
574  */
575 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
576 {
577 	return file->f_pos = 0;
578 }
579 
580 /*
581  * The memory devices use the full 32/64 bits of the offset, and so we cannot
582  * check against negative addresses: they are ok. The return value is weird,
583  * though, in that case (0).
584  *
585  * also note that seeking relative to the "end of file" isn't supported:
586  * it has no meaning, so it returns -EINVAL.
587  */
588 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
589 {
590 	loff_t ret;
591 
592 	inode_lock(file_inode(file));
593 	switch (orig) {
594 	case SEEK_CUR:
595 		offset += file->f_pos;
596 		fallthrough;
597 	case SEEK_SET:
598 		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
599 		if ((unsigned long long)offset >= -MAX_ERRNO) {
600 			ret = -EOVERFLOW;
601 			break;
602 		}
603 		file->f_pos = offset;
604 		ret = file->f_pos;
605 		force_successful_syscall_return();
606 		break;
607 	default:
608 		ret = -EINVAL;
609 	}
610 	inode_unlock(file_inode(file));
611 	return ret;
612 }
613 
614 static int open_port(struct inode *inode, struct file *filp)
615 {
616 	int rc;
617 
618 	if (!capable(CAP_SYS_RAWIO))
619 		return -EPERM;
620 
621 	rc = security_locked_down(LOCKDOWN_DEV_MEM);
622 	if (rc)
623 		return rc;
624 
625 	if (iminor(inode) != DEVMEM_MINOR)
626 		return 0;
627 
628 	/*
629 	 * Use a unified address space to have a single point to manage
630 	 * revocations when drivers want to take over a /dev/mem mapped
631 	 * range.
632 	 */
633 	filp->f_mapping = iomem_get_mapping();
634 
635 	return 0;
636 }
637 
638 #define zero_lseek	null_lseek
639 #define full_lseek      null_lseek
640 #define write_zero	write_null
641 #define write_iter_zero	write_iter_null
642 #define open_mem	open_port
643 
644 static const struct file_operations __maybe_unused mem_fops = {
645 	.llseek		= memory_lseek,
646 	.read		= read_mem,
647 	.write		= write_mem,
648 	.mmap		= mmap_mem,
649 	.open		= open_mem,
650 #ifndef CONFIG_MMU
651 	.get_unmapped_area = get_unmapped_area_mem,
652 	.mmap_capabilities = memory_mmap_capabilities,
653 #endif
654 };
655 
656 static const struct file_operations null_fops = {
657 	.llseek		= null_lseek,
658 	.read		= read_null,
659 	.write		= write_null,
660 	.read_iter	= read_iter_null,
661 	.write_iter	= write_iter_null,
662 	.splice_write	= splice_write_null,
663 };
664 
665 static const struct file_operations __maybe_unused port_fops = {
666 	.llseek		= memory_lseek,
667 	.read		= read_port,
668 	.write		= write_port,
669 	.open		= open_port,
670 };
671 
672 static const struct file_operations zero_fops = {
673 	.llseek		= zero_lseek,
674 	.write		= write_zero,
675 	.read_iter	= read_iter_zero,
676 	.read		= read_zero,
677 	.write_iter	= write_iter_zero,
678 	.mmap		= mmap_zero,
679 	.get_unmapped_area = get_unmapped_area_zero,
680 #ifndef CONFIG_MMU
681 	.mmap_capabilities = zero_mmap_capabilities,
682 #endif
683 };
684 
685 static const struct file_operations full_fops = {
686 	.llseek		= full_lseek,
687 	.read_iter	= read_iter_zero,
688 	.write		= write_full,
689 };
690 
691 static const struct memdev {
692 	const char *name;
693 	umode_t mode;
694 	const struct file_operations *fops;
695 	fmode_t fmode;
696 } devlist[] = {
697 #ifdef CONFIG_DEVMEM
698 	 [DEVMEM_MINOR] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
699 #endif
700 	 [3] = { "null", 0666, &null_fops, 0 },
701 #ifdef CONFIG_DEVPORT
702 	 [4] = { "port", 0, &port_fops, 0 },
703 #endif
704 	 [5] = { "zero", 0666, &zero_fops, 0 },
705 	 [7] = { "full", 0666, &full_fops, 0 },
706 	 [8] = { "random", 0666, &random_fops, 0 },
707 	 [9] = { "urandom", 0666, &urandom_fops, 0 },
708 #ifdef CONFIG_PRINTK
709 	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
710 #endif
711 };
712 
713 static int memory_open(struct inode *inode, struct file *filp)
714 {
715 	int minor;
716 	const struct memdev *dev;
717 
718 	minor = iminor(inode);
719 	if (minor >= ARRAY_SIZE(devlist))
720 		return -ENXIO;
721 
722 	dev = &devlist[minor];
723 	if (!dev->fops)
724 		return -ENXIO;
725 
726 	filp->f_op = dev->fops;
727 	filp->f_mode |= dev->fmode;
728 
729 	if (dev->fops->open)
730 		return dev->fops->open(inode, filp);
731 
732 	return 0;
733 }
734 
735 static const struct file_operations memory_fops = {
736 	.open = memory_open,
737 	.llseek = noop_llseek,
738 };
739 
740 static char *mem_devnode(struct device *dev, umode_t *mode)
741 {
742 	if (mode && devlist[MINOR(dev->devt)].mode)
743 		*mode = devlist[MINOR(dev->devt)].mode;
744 	return NULL;
745 }
746 
747 static struct class *mem_class;
748 
749 static int __init chr_dev_init(void)
750 {
751 	int minor;
752 
753 	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
754 		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
755 
756 	mem_class = class_create(THIS_MODULE, "mem");
757 	if (IS_ERR(mem_class))
758 		return PTR_ERR(mem_class);
759 
760 	mem_class->devnode = mem_devnode;
761 	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
762 		if (!devlist[minor].name)
763 			continue;
764 
765 		/*
766 		 * Create /dev/port?
767 		 */
768 		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
769 			continue;
770 
771 		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
772 			      NULL, devlist[minor].name);
773 	}
774 
775 	return tty_init();
776 }
777 
778 fs_initcall(chr_dev_init);
779