xref: /openbmc/linux/drivers/char/hpet.c (revision 1425075e7272faaa3629a1e2df679c0ba4cf55d3)
1 /*
2  * Intel & MS High Precision Event Timer Implementation.
3  *
4  * Copyright (C) 2003 Intel Corporation
5  *	Venki Pallipadi
6  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7  *	Bob Picco <robert.picco@hp.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/miscdevice.h>
18 #include <linux/major.h>
19 #include <linux/ioport.h>
20 #include <linux/fcntl.h>
21 #include <linux/init.h>
22 #include <linux/poll.h>
23 #include <linux/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/spinlock.h>
26 #include <linux/sysctl.h>
27 #include <linux/wait.h>
28 #include <linux/bcd.h>
29 #include <linux/seq_file.h>
30 #include <linux/bitops.h>
31 #include <linux/compat.h>
32 #include <linux/clocksource.h>
33 #include <linux/uaccess.h>
34 #include <linux/slab.h>
35 #include <linux/io.h>
36 #include <linux/acpi.h>
37 #include <linux/hpet.h>
38 #include <asm/current.h>
39 #include <asm/irq.h>
40 #include <asm/div64.h>
41 
42 /*
43  * The High Precision Event Timer driver.
44  * This driver is closely modelled after the rtc.c driver.
45  * See HPET spec revision 1.
46  */
47 #define	HPET_USER_FREQ	(64)
48 #define	HPET_DRIFT	(500)
49 
50 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
51 
52 
53 /* WARNING -- don't get confused.  These macros are never used
54  * to write the (single) counter, and rarely to read it.
55  * They're badly named; to fix, someday.
56  */
57 #if BITS_PER_LONG == 64
58 #define	write_counter(V, MC)	writeq(V, MC)
59 #define	read_counter(MC)	readq(MC)
60 #else
61 #define	write_counter(V, MC)	writel(V, MC)
62 #define	read_counter(MC)	readl(MC)
63 #endif
64 
65 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
66 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
67 
68 /* This clocksource driver currently only works on ia64 */
69 #ifdef CONFIG_IA64
70 static void __iomem *hpet_mctr;
71 
72 static cycle_t read_hpet(struct clocksource *cs)
73 {
74 	return (cycle_t)read_counter((void __iomem *)hpet_mctr);
75 }
76 
77 static struct clocksource clocksource_hpet = {
78 	.name		= "hpet",
79 	.rating		= 250,
80 	.read		= read_hpet,
81 	.mask		= CLOCKSOURCE_MASK(64),
82 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
83 };
84 static struct clocksource *hpet_clocksource;
85 #endif
86 
87 /* A lock for concurrent access by app and isr hpet activity. */
88 static DEFINE_SPINLOCK(hpet_lock);
89 
90 #define	HPET_DEV_NAME	(7)
91 
92 struct hpet_dev {
93 	struct hpets *hd_hpets;
94 	struct hpet __iomem *hd_hpet;
95 	struct hpet_timer __iomem *hd_timer;
96 	unsigned long hd_ireqfreq;
97 	unsigned long hd_irqdata;
98 	wait_queue_head_t hd_waitqueue;
99 	struct fasync_struct *hd_async_queue;
100 	unsigned int hd_flags;
101 	unsigned int hd_irq;
102 	unsigned int hd_hdwirq;
103 	char hd_name[HPET_DEV_NAME];
104 };
105 
106 struct hpets {
107 	struct hpets *hp_next;
108 	struct hpet __iomem *hp_hpet;
109 	unsigned long hp_hpet_phys;
110 	struct clocksource *hp_clocksource;
111 	unsigned long long hp_tick_freq;
112 	unsigned long hp_delta;
113 	unsigned int hp_ntimer;
114 	unsigned int hp_which;
115 	struct hpet_dev hp_dev[1];
116 };
117 
118 static struct hpets *hpets;
119 
120 #define	HPET_OPEN		0x0001
121 #define	HPET_IE			0x0002	/* interrupt enabled */
122 #define	HPET_PERIODIC		0x0004
123 #define	HPET_SHARED_IRQ		0x0008
124 
125 
126 #ifndef readq
127 static inline unsigned long long readq(void __iomem *addr)
128 {
129 	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
130 }
131 #endif
132 
133 #ifndef writeq
134 static inline void writeq(unsigned long long v, void __iomem *addr)
135 {
136 	writel(v & 0xffffffff, addr);
137 	writel(v >> 32, addr + 4);
138 }
139 #endif
140 
141 static irqreturn_t hpet_interrupt(int irq, void *data)
142 {
143 	struct hpet_dev *devp;
144 	unsigned long isr;
145 
146 	devp = data;
147 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
148 
149 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
150 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
151 		return IRQ_NONE;
152 
153 	spin_lock(&hpet_lock);
154 	devp->hd_irqdata++;
155 
156 	/*
157 	 * For non-periodic timers, increment the accumulator.
158 	 * This has the effect of treating non-periodic like periodic.
159 	 */
160 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
161 		unsigned long m, t, mc, base, k;
162 		struct hpet __iomem *hpet = devp->hd_hpet;
163 		struct hpets *hpetp = devp->hd_hpets;
164 
165 		t = devp->hd_ireqfreq;
166 		m = read_counter(&devp->hd_timer->hpet_compare);
167 		mc = read_counter(&hpet->hpet_mc);
168 		/* The time for the next interrupt would logically be t + m,
169 		 * however, if we are very unlucky and the interrupt is delayed
170 		 * for longer than t then we will completely miss the next
171 		 * interrupt if we set t + m and an application will hang.
172 		 * Therefore we need to make a more complex computation assuming
173 		 * that there exists a k for which the following is true:
174 		 * k * t + base < mc + delta
175 		 * (k + 1) * t + base > mc + delta
176 		 * where t is the interval in hpet ticks for the given freq,
177 		 * base is the theoretical start value 0 < base < t,
178 		 * mc is the main counter value at the time of the interrupt,
179 		 * delta is the time it takes to write the a value to the
180 		 * comparator.
181 		 * k may then be computed as (mc - base + delta) / t .
182 		 */
183 		base = mc % t;
184 		k = (mc - base + hpetp->hp_delta) / t;
185 		write_counter(t * (k + 1) + base,
186 			      &devp->hd_timer->hpet_compare);
187 	}
188 
189 	if (devp->hd_flags & HPET_SHARED_IRQ)
190 		writel(isr, &devp->hd_hpet->hpet_isr);
191 	spin_unlock(&hpet_lock);
192 
193 	wake_up_interruptible(&devp->hd_waitqueue);
194 
195 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
196 
197 	return IRQ_HANDLED;
198 }
199 
200 static void hpet_timer_set_irq(struct hpet_dev *devp)
201 {
202 	unsigned long v;
203 	int irq, gsi;
204 	struct hpet_timer __iomem *timer;
205 
206 	spin_lock_irq(&hpet_lock);
207 	if (devp->hd_hdwirq) {
208 		spin_unlock_irq(&hpet_lock);
209 		return;
210 	}
211 
212 	timer = devp->hd_timer;
213 
214 	/* we prefer level triggered mode */
215 	v = readl(&timer->hpet_config);
216 	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
217 		v |= Tn_INT_TYPE_CNF_MASK;
218 		writel(v, &timer->hpet_config);
219 	}
220 	spin_unlock_irq(&hpet_lock);
221 
222 	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
223 				 Tn_INT_ROUTE_CAP_SHIFT;
224 
225 	/*
226 	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
227 	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
228 	 */
229 	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
230 		v &= ~0xf3df;
231 	else
232 		v &= ~0xffff;
233 
234 	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
235 		if (irq >= nr_irqs) {
236 			irq = HPET_MAX_IRQ;
237 			break;
238 		}
239 
240 		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
241 					ACPI_ACTIVE_LOW);
242 		if (gsi > 0)
243 			break;
244 
245 		/* FIXME: Setup interrupt source table */
246 	}
247 
248 	if (irq < HPET_MAX_IRQ) {
249 		spin_lock_irq(&hpet_lock);
250 		v = readl(&timer->hpet_config);
251 		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
252 		writel(v, &timer->hpet_config);
253 		devp->hd_hdwirq = gsi;
254 		spin_unlock_irq(&hpet_lock);
255 	}
256 	return;
257 }
258 
259 static int hpet_open(struct inode *inode, struct file *file)
260 {
261 	struct hpet_dev *devp;
262 	struct hpets *hpetp;
263 	int i;
264 
265 	if (file->f_mode & FMODE_WRITE)
266 		return -EINVAL;
267 
268 	mutex_lock(&hpet_mutex);
269 	spin_lock_irq(&hpet_lock);
270 
271 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
272 		for (i = 0; i < hpetp->hp_ntimer; i++)
273 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
274 				continue;
275 			else {
276 				devp = &hpetp->hp_dev[i];
277 				break;
278 			}
279 
280 	if (!devp) {
281 		spin_unlock_irq(&hpet_lock);
282 		mutex_unlock(&hpet_mutex);
283 		return -EBUSY;
284 	}
285 
286 	file->private_data = devp;
287 	devp->hd_irqdata = 0;
288 	devp->hd_flags |= HPET_OPEN;
289 	spin_unlock_irq(&hpet_lock);
290 	mutex_unlock(&hpet_mutex);
291 
292 	hpet_timer_set_irq(devp);
293 
294 	return 0;
295 }
296 
297 static ssize_t
298 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
299 {
300 	DECLARE_WAITQUEUE(wait, current);
301 	unsigned long data;
302 	ssize_t retval;
303 	struct hpet_dev *devp;
304 
305 	devp = file->private_data;
306 	if (!devp->hd_ireqfreq)
307 		return -EIO;
308 
309 	if (count < sizeof(unsigned long))
310 		return -EINVAL;
311 
312 	add_wait_queue(&devp->hd_waitqueue, &wait);
313 
314 	for ( ; ; ) {
315 		set_current_state(TASK_INTERRUPTIBLE);
316 
317 		spin_lock_irq(&hpet_lock);
318 		data = devp->hd_irqdata;
319 		devp->hd_irqdata = 0;
320 		spin_unlock_irq(&hpet_lock);
321 
322 		if (data)
323 			break;
324 		else if (file->f_flags & O_NONBLOCK) {
325 			retval = -EAGAIN;
326 			goto out;
327 		} else if (signal_pending(current)) {
328 			retval = -ERESTARTSYS;
329 			goto out;
330 		}
331 		schedule();
332 	}
333 
334 	retval = put_user(data, (unsigned long __user *)buf);
335 	if (!retval)
336 		retval = sizeof(unsigned long);
337 out:
338 	__set_current_state(TASK_RUNNING);
339 	remove_wait_queue(&devp->hd_waitqueue, &wait);
340 
341 	return retval;
342 }
343 
344 static unsigned int hpet_poll(struct file *file, poll_table * wait)
345 {
346 	unsigned long v;
347 	struct hpet_dev *devp;
348 
349 	devp = file->private_data;
350 
351 	if (!devp->hd_ireqfreq)
352 		return 0;
353 
354 	poll_wait(file, &devp->hd_waitqueue, wait);
355 
356 	spin_lock_irq(&hpet_lock);
357 	v = devp->hd_irqdata;
358 	spin_unlock_irq(&hpet_lock);
359 
360 	if (v != 0)
361 		return POLLIN | POLLRDNORM;
362 
363 	return 0;
364 }
365 
366 #ifdef CONFIG_HPET_MMAP
367 #ifdef CONFIG_HPET_MMAP_DEFAULT
368 static int hpet_mmap_enabled = 1;
369 #else
370 static int hpet_mmap_enabled = 0;
371 #endif
372 
373 static __init int hpet_mmap_enable(char *str)
374 {
375 	get_option(&str, &hpet_mmap_enabled);
376 	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
377 	return 1;
378 }
379 __setup("hpet_mmap", hpet_mmap_enable);
380 
381 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
382 {
383 	struct hpet_dev *devp;
384 	unsigned long addr;
385 
386 	if (!hpet_mmap_enabled)
387 		return -EACCES;
388 
389 	devp = file->private_data;
390 	addr = devp->hd_hpets->hp_hpet_phys;
391 
392 	if (addr & (PAGE_SIZE - 1))
393 		return -ENOSYS;
394 
395 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
396 	return vm_iomap_memory(vma, addr, PAGE_SIZE);
397 }
398 #else
399 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
400 {
401 	return -ENOSYS;
402 }
403 #endif
404 
405 static int hpet_fasync(int fd, struct file *file, int on)
406 {
407 	struct hpet_dev *devp;
408 
409 	devp = file->private_data;
410 
411 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
412 		return 0;
413 	else
414 		return -EIO;
415 }
416 
417 static int hpet_release(struct inode *inode, struct file *file)
418 {
419 	struct hpet_dev *devp;
420 	struct hpet_timer __iomem *timer;
421 	int irq = 0;
422 
423 	devp = file->private_data;
424 	timer = devp->hd_timer;
425 
426 	spin_lock_irq(&hpet_lock);
427 
428 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
429 	       &timer->hpet_config);
430 
431 	irq = devp->hd_irq;
432 	devp->hd_irq = 0;
433 
434 	devp->hd_ireqfreq = 0;
435 
436 	if (devp->hd_flags & HPET_PERIODIC
437 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
438 		unsigned long v;
439 
440 		v = readq(&timer->hpet_config);
441 		v ^= Tn_TYPE_CNF_MASK;
442 		writeq(v, &timer->hpet_config);
443 	}
444 
445 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
446 	spin_unlock_irq(&hpet_lock);
447 
448 	if (irq)
449 		free_irq(irq, devp);
450 
451 	file->private_data = NULL;
452 	return 0;
453 }
454 
455 static int hpet_ioctl_ieon(struct hpet_dev *devp)
456 {
457 	struct hpet_timer __iomem *timer;
458 	struct hpet __iomem *hpet;
459 	struct hpets *hpetp;
460 	int irq;
461 	unsigned long g, v, t, m;
462 	unsigned long flags, isr;
463 
464 	timer = devp->hd_timer;
465 	hpet = devp->hd_hpet;
466 	hpetp = devp->hd_hpets;
467 
468 	if (!devp->hd_ireqfreq)
469 		return -EIO;
470 
471 	spin_lock_irq(&hpet_lock);
472 
473 	if (devp->hd_flags & HPET_IE) {
474 		spin_unlock_irq(&hpet_lock);
475 		return -EBUSY;
476 	}
477 
478 	devp->hd_flags |= HPET_IE;
479 
480 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
481 		devp->hd_flags |= HPET_SHARED_IRQ;
482 	spin_unlock_irq(&hpet_lock);
483 
484 	irq = devp->hd_hdwirq;
485 
486 	if (irq) {
487 		unsigned long irq_flags;
488 
489 		if (devp->hd_flags & HPET_SHARED_IRQ) {
490 			/*
491 			 * To prevent the interrupt handler from seeing an
492 			 * unwanted interrupt status bit, program the timer
493 			 * so that it will not fire in the near future ...
494 			 */
495 			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
496 			       &timer->hpet_config);
497 			write_counter(read_counter(&hpet->hpet_mc),
498 				      &timer->hpet_compare);
499 			/* ... and clear any left-over status. */
500 			isr = 1 << (devp - devp->hd_hpets->hp_dev);
501 			writel(isr, &hpet->hpet_isr);
502 		}
503 
504 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
505 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
506 		if (request_irq(irq, hpet_interrupt, irq_flags,
507 				devp->hd_name, (void *)devp)) {
508 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
509 			irq = 0;
510 		}
511 	}
512 
513 	if (irq == 0) {
514 		spin_lock_irq(&hpet_lock);
515 		devp->hd_flags ^= HPET_IE;
516 		spin_unlock_irq(&hpet_lock);
517 		return -EIO;
518 	}
519 
520 	devp->hd_irq = irq;
521 	t = devp->hd_ireqfreq;
522 	v = readq(&timer->hpet_config);
523 
524 	/* 64-bit comparators are not yet supported through the ioctls,
525 	 * so force this into 32-bit mode if it supports both modes
526 	 */
527 	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
528 
529 	if (devp->hd_flags & HPET_PERIODIC) {
530 		g |= Tn_TYPE_CNF_MASK;
531 		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
532 		writeq(v, &timer->hpet_config);
533 		local_irq_save(flags);
534 
535 		/*
536 		 * NOTE: First we modify the hidden accumulator
537 		 * register supported by periodic-capable comparators.
538 		 * We never want to modify the (single) counter; that
539 		 * would affect all the comparators. The value written
540 		 * is the counter value when the first interrupt is due.
541 		 */
542 		m = read_counter(&hpet->hpet_mc);
543 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
544 		/*
545 		 * Then we modify the comparator, indicating the period
546 		 * for subsequent interrupt.
547 		 */
548 		write_counter(t, &timer->hpet_compare);
549 	} else {
550 		local_irq_save(flags);
551 		m = read_counter(&hpet->hpet_mc);
552 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
553 	}
554 
555 	if (devp->hd_flags & HPET_SHARED_IRQ) {
556 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
557 		writel(isr, &hpet->hpet_isr);
558 	}
559 	writeq(g, &timer->hpet_config);
560 	local_irq_restore(flags);
561 
562 	return 0;
563 }
564 
565 /* converts Hz to number of timer ticks */
566 static inline unsigned long hpet_time_div(struct hpets *hpets,
567 					  unsigned long dis)
568 {
569 	unsigned long long m;
570 
571 	m = hpets->hp_tick_freq + (dis >> 1);
572 	do_div(m, dis);
573 	return (unsigned long)m;
574 }
575 
576 static int
577 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
578 		  struct hpet_info *info)
579 {
580 	struct hpet_timer __iomem *timer;
581 	struct hpet __iomem *hpet;
582 	struct hpets *hpetp;
583 	int err;
584 	unsigned long v;
585 
586 	switch (cmd) {
587 	case HPET_IE_OFF:
588 	case HPET_INFO:
589 	case HPET_EPI:
590 	case HPET_DPI:
591 	case HPET_IRQFREQ:
592 		timer = devp->hd_timer;
593 		hpet = devp->hd_hpet;
594 		hpetp = devp->hd_hpets;
595 		break;
596 	case HPET_IE_ON:
597 		return hpet_ioctl_ieon(devp);
598 	default:
599 		return -EINVAL;
600 	}
601 
602 	err = 0;
603 
604 	switch (cmd) {
605 	case HPET_IE_OFF:
606 		if ((devp->hd_flags & HPET_IE) == 0)
607 			break;
608 		v = readq(&timer->hpet_config);
609 		v &= ~Tn_INT_ENB_CNF_MASK;
610 		writeq(v, &timer->hpet_config);
611 		if (devp->hd_irq) {
612 			free_irq(devp->hd_irq, devp);
613 			devp->hd_irq = 0;
614 		}
615 		devp->hd_flags ^= HPET_IE;
616 		break;
617 	case HPET_INFO:
618 		{
619 			memset(info, 0, sizeof(*info));
620 			if (devp->hd_ireqfreq)
621 				info->hi_ireqfreq =
622 					hpet_time_div(hpetp, devp->hd_ireqfreq);
623 			info->hi_flags =
624 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
625 			info->hi_hpet = hpetp->hp_which;
626 			info->hi_timer = devp - hpetp->hp_dev;
627 			break;
628 		}
629 	case HPET_EPI:
630 		v = readq(&timer->hpet_config);
631 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
632 			err = -ENXIO;
633 			break;
634 		}
635 		devp->hd_flags |= HPET_PERIODIC;
636 		break;
637 	case HPET_DPI:
638 		v = readq(&timer->hpet_config);
639 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
640 			err = -ENXIO;
641 			break;
642 		}
643 		if (devp->hd_flags & HPET_PERIODIC &&
644 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
645 			v = readq(&timer->hpet_config);
646 			v ^= Tn_TYPE_CNF_MASK;
647 			writeq(v, &timer->hpet_config);
648 		}
649 		devp->hd_flags &= ~HPET_PERIODIC;
650 		break;
651 	case HPET_IRQFREQ:
652 		if ((arg > hpet_max_freq) &&
653 		    !capable(CAP_SYS_RESOURCE)) {
654 			err = -EACCES;
655 			break;
656 		}
657 
658 		if (!arg) {
659 			err = -EINVAL;
660 			break;
661 		}
662 
663 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
664 	}
665 
666 	return err;
667 }
668 
669 static long
670 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
671 {
672 	struct hpet_info info;
673 	int err;
674 
675 	mutex_lock(&hpet_mutex);
676 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
677 	mutex_unlock(&hpet_mutex);
678 
679 	if ((cmd == HPET_INFO) && !err &&
680 	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
681 		err = -EFAULT;
682 
683 	return err;
684 }
685 
686 #ifdef CONFIG_COMPAT
687 struct compat_hpet_info {
688 	compat_ulong_t hi_ireqfreq;	/* Hz */
689 	compat_ulong_t hi_flags;	/* information */
690 	unsigned short hi_hpet;
691 	unsigned short hi_timer;
692 };
693 
694 static long
695 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
696 {
697 	struct hpet_info info;
698 	int err;
699 
700 	mutex_lock(&hpet_mutex);
701 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
702 	mutex_unlock(&hpet_mutex);
703 
704 	if ((cmd == HPET_INFO) && !err) {
705 		struct compat_hpet_info __user *u = compat_ptr(arg);
706 		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
707 		    put_user(info.hi_flags, &u->hi_flags) ||
708 		    put_user(info.hi_hpet, &u->hi_hpet) ||
709 		    put_user(info.hi_timer, &u->hi_timer))
710 			err = -EFAULT;
711 	}
712 
713 	return err;
714 }
715 #endif
716 
717 static const struct file_operations hpet_fops = {
718 	.owner = THIS_MODULE,
719 	.llseek = no_llseek,
720 	.read = hpet_read,
721 	.poll = hpet_poll,
722 	.unlocked_ioctl = hpet_ioctl,
723 #ifdef CONFIG_COMPAT
724 	.compat_ioctl = hpet_compat_ioctl,
725 #endif
726 	.open = hpet_open,
727 	.release = hpet_release,
728 	.fasync = hpet_fasync,
729 	.mmap = hpet_mmap,
730 };
731 
732 static int hpet_is_known(struct hpet_data *hdp)
733 {
734 	struct hpets *hpetp;
735 
736 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
737 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
738 			return 1;
739 
740 	return 0;
741 }
742 
743 static struct ctl_table hpet_table[] = {
744 	{
745 	 .procname = "max-user-freq",
746 	 .data = &hpet_max_freq,
747 	 .maxlen = sizeof(int),
748 	 .mode = 0644,
749 	 .proc_handler = proc_dointvec,
750 	 },
751 	{}
752 };
753 
754 static struct ctl_table hpet_root[] = {
755 	{
756 	 .procname = "hpet",
757 	 .maxlen = 0,
758 	 .mode = 0555,
759 	 .child = hpet_table,
760 	 },
761 	{}
762 };
763 
764 static struct ctl_table dev_root[] = {
765 	{
766 	 .procname = "dev",
767 	 .maxlen = 0,
768 	 .mode = 0555,
769 	 .child = hpet_root,
770 	 },
771 	{}
772 };
773 
774 static struct ctl_table_header *sysctl_header;
775 
776 /*
777  * Adjustment for when arming the timer with
778  * initial conditions.  That is, main counter
779  * ticks expired before interrupts are enabled.
780  */
781 #define	TICK_CALIBRATE	(1000UL)
782 
783 static unsigned long __hpet_calibrate(struct hpets *hpetp)
784 {
785 	struct hpet_timer __iomem *timer = NULL;
786 	unsigned long t, m, count, i, flags, start;
787 	struct hpet_dev *devp;
788 	int j;
789 	struct hpet __iomem *hpet;
790 
791 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
792 		if ((devp->hd_flags & HPET_OPEN) == 0) {
793 			timer = devp->hd_timer;
794 			break;
795 		}
796 
797 	if (!timer)
798 		return 0;
799 
800 	hpet = hpetp->hp_hpet;
801 	t = read_counter(&timer->hpet_compare);
802 
803 	i = 0;
804 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
805 
806 	local_irq_save(flags);
807 
808 	start = read_counter(&hpet->hpet_mc);
809 
810 	do {
811 		m = read_counter(&hpet->hpet_mc);
812 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
813 	} while (i++, (m - start) < count);
814 
815 	local_irq_restore(flags);
816 
817 	return (m - start) / i;
818 }
819 
820 static unsigned long hpet_calibrate(struct hpets *hpetp)
821 {
822 	unsigned long ret = ~0UL;
823 	unsigned long tmp;
824 
825 	/*
826 	 * Try to calibrate until return value becomes stable small value.
827 	 * If SMI interruption occurs in calibration loop, the return value
828 	 * will be big. This avoids its impact.
829 	 */
830 	for ( ; ; ) {
831 		tmp = __hpet_calibrate(hpetp);
832 		if (ret <= tmp)
833 			break;
834 		ret = tmp;
835 	}
836 
837 	return ret;
838 }
839 
840 int hpet_alloc(struct hpet_data *hdp)
841 {
842 	u64 cap, mcfg;
843 	struct hpet_dev *devp;
844 	u32 i, ntimer;
845 	struct hpets *hpetp;
846 	size_t siz;
847 	struct hpet __iomem *hpet;
848 	static struct hpets *last;
849 	unsigned long period;
850 	unsigned long long temp;
851 	u32 remainder;
852 
853 	/*
854 	 * hpet_alloc can be called by platform dependent code.
855 	 * If platform dependent code has allocated the hpet that
856 	 * ACPI has also reported, then we catch it here.
857 	 */
858 	if (hpet_is_known(hdp)) {
859 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
860 			__func__);
861 		return 0;
862 	}
863 
864 	siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
865 				      sizeof(struct hpet_dev));
866 
867 	hpetp = kzalloc(siz, GFP_KERNEL);
868 
869 	if (!hpetp)
870 		return -ENOMEM;
871 
872 	hpetp->hp_which = hpet_nhpet++;
873 	hpetp->hp_hpet = hdp->hd_address;
874 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
875 
876 	hpetp->hp_ntimer = hdp->hd_nirqs;
877 
878 	for (i = 0; i < hdp->hd_nirqs; i++)
879 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
880 
881 	hpet = hpetp->hp_hpet;
882 
883 	cap = readq(&hpet->hpet_cap);
884 
885 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
886 
887 	if (hpetp->hp_ntimer != ntimer) {
888 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
889 		       " with number of timers\n");
890 		kfree(hpetp);
891 		return -ENODEV;
892 	}
893 
894 	if (last)
895 		last->hp_next = hpetp;
896 	else
897 		hpets = hpetp;
898 
899 	last = hpetp;
900 
901 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
902 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
903 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
904 	temp += period >> 1; /* round */
905 	do_div(temp, period);
906 	hpetp->hp_tick_freq = temp; /* ticks per second */
907 
908 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
909 		hpetp->hp_which, hdp->hd_phys_address,
910 		hpetp->hp_ntimer > 1 ? "s" : "");
911 	for (i = 0; i < hpetp->hp_ntimer; i++)
912 		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
913 	printk(KERN_CONT "\n");
914 
915 	temp = hpetp->hp_tick_freq;
916 	remainder = do_div(temp, 1000000);
917 	printk(KERN_INFO
918 		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
919 		hpetp->hp_which, hpetp->hp_ntimer,
920 		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
921 		(unsigned) temp, remainder);
922 
923 	mcfg = readq(&hpet->hpet_config);
924 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
925 		write_counter(0L, &hpet->hpet_mc);
926 		mcfg |= HPET_ENABLE_CNF_MASK;
927 		writeq(mcfg, &hpet->hpet_config);
928 	}
929 
930 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
931 		struct hpet_timer __iomem *timer;
932 
933 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
934 
935 		devp->hd_hpets = hpetp;
936 		devp->hd_hpet = hpet;
937 		devp->hd_timer = timer;
938 
939 		/*
940 		 * If the timer was reserved by platform code,
941 		 * then make timer unavailable for opens.
942 		 */
943 		if (hdp->hd_state & (1 << i)) {
944 			devp->hd_flags = HPET_OPEN;
945 			continue;
946 		}
947 
948 		init_waitqueue_head(&devp->hd_waitqueue);
949 	}
950 
951 	hpetp->hp_delta = hpet_calibrate(hpetp);
952 
953 /* This clocksource driver currently only works on ia64 */
954 #ifdef CONFIG_IA64
955 	if (!hpet_clocksource) {
956 		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
957 		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
958 		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
959 		hpetp->hp_clocksource = &clocksource_hpet;
960 		hpet_clocksource = &clocksource_hpet;
961 	}
962 #endif
963 
964 	return 0;
965 }
966 
967 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
968 {
969 	struct hpet_data *hdp;
970 	acpi_status status;
971 	struct acpi_resource_address64 addr;
972 
973 	hdp = data;
974 
975 	status = acpi_resource_to_address64(res, &addr);
976 
977 	if (ACPI_SUCCESS(status)) {
978 		hdp->hd_phys_address = addr.address.minimum;
979 		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
980 
981 		if (hpet_is_known(hdp)) {
982 			iounmap(hdp->hd_address);
983 			return AE_ALREADY_EXISTS;
984 		}
985 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
986 		struct acpi_resource_fixed_memory32 *fixmem32;
987 
988 		fixmem32 = &res->data.fixed_memory32;
989 
990 		hdp->hd_phys_address = fixmem32->address;
991 		hdp->hd_address = ioremap(fixmem32->address,
992 						HPET_RANGE_SIZE);
993 
994 		if (hpet_is_known(hdp)) {
995 			iounmap(hdp->hd_address);
996 			return AE_ALREADY_EXISTS;
997 		}
998 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
999 		struct acpi_resource_extended_irq *irqp;
1000 		int i, irq;
1001 
1002 		irqp = &res->data.extended_irq;
1003 
1004 		for (i = 0; i < irqp->interrupt_count; i++) {
1005 			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
1006 				break;
1007 
1008 			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1009 				      irqp->triggering, irqp->polarity);
1010 			if (irq < 0)
1011 				return AE_ERROR;
1012 
1013 			hdp->hd_irq[hdp->hd_nirqs] = irq;
1014 			hdp->hd_nirqs++;
1015 		}
1016 	}
1017 
1018 	return AE_OK;
1019 }
1020 
1021 static int hpet_acpi_add(struct acpi_device *device)
1022 {
1023 	acpi_status result;
1024 	struct hpet_data data;
1025 
1026 	memset(&data, 0, sizeof(data));
1027 
1028 	result =
1029 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1030 				hpet_resources, &data);
1031 
1032 	if (ACPI_FAILURE(result))
1033 		return -ENODEV;
1034 
1035 	if (!data.hd_address || !data.hd_nirqs) {
1036 		if (data.hd_address)
1037 			iounmap(data.hd_address);
1038 		printk("%s: no address or irqs in _CRS\n", __func__);
1039 		return -ENODEV;
1040 	}
1041 
1042 	return hpet_alloc(&data);
1043 }
1044 
1045 static const struct acpi_device_id hpet_device_ids[] = {
1046 	{"PNP0103", 0},
1047 	{"", 0},
1048 };
1049 
1050 static struct acpi_driver hpet_acpi_driver = {
1051 	.name = "hpet",
1052 	.ids = hpet_device_ids,
1053 	.ops = {
1054 		.add = hpet_acpi_add,
1055 		},
1056 };
1057 
1058 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1059 
1060 static int __init hpet_init(void)
1061 {
1062 	int result;
1063 
1064 	result = misc_register(&hpet_misc);
1065 	if (result < 0)
1066 		return -ENODEV;
1067 
1068 	sysctl_header = register_sysctl_table(dev_root);
1069 
1070 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1071 	if (result < 0) {
1072 		if (sysctl_header)
1073 			unregister_sysctl_table(sysctl_header);
1074 		misc_deregister(&hpet_misc);
1075 		return result;
1076 	}
1077 
1078 	return 0;
1079 }
1080 device_initcall(hpet_init);
1081 
1082 /*
1083 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1084 MODULE_LICENSE("GPL");
1085 */
1086