1 /* 2 * For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of 3 * the "Intel 460GTX Chipset Software Developer's Manual": 4 * http://developer.intel.com/design/itanium/downloads/24870401s.htm 5 */ 6 /* 7 * 460GX support by Chris Ahna <christopher.j.ahna@intel.com> 8 * Clean up & simplification by David Mosberger-Tang <davidm@hpl.hp.com> 9 */ 10 #include <linux/module.h> 11 #include <linux/pci.h> 12 #include <linux/init.h> 13 #include <linux/agp_backend.h> 14 15 #include "agp.h" 16 17 #define INTEL_I460_BAPBASE 0x98 18 #define INTEL_I460_GXBCTL 0xa0 19 #define INTEL_I460_AGPSIZ 0xa2 20 #define INTEL_I460_ATTBASE 0xfe200000 21 #define INTEL_I460_GATT_VALID (1UL << 24) 22 #define INTEL_I460_GATT_COHERENT (1UL << 25) 23 24 /* 25 * The i460 can operate with large (4MB) pages, but there is no sane way to support this 26 * within the current kernel/DRM environment, so we disable the relevant code for now. 27 * See also comments in ia64_alloc_page()... 28 */ 29 #define I460_LARGE_IO_PAGES 0 30 31 #if I460_LARGE_IO_PAGES 32 # define I460_IO_PAGE_SHIFT i460.io_page_shift 33 #else 34 # define I460_IO_PAGE_SHIFT 12 35 #endif 36 37 #define I460_IOPAGES_PER_KPAGE (PAGE_SIZE >> I460_IO_PAGE_SHIFT) 38 #define I460_KPAGES_PER_IOPAGE (1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT)) 39 #define I460_SRAM_IO_DISABLE (1 << 4) 40 #define I460_BAPBASE_ENABLE (1 << 3) 41 #define I460_AGPSIZ_MASK 0x7 42 #define I460_4M_PS (1 << 1) 43 44 /* Control bits for Out-Of-GART coherency and Burst Write Combining */ 45 #define I460_GXBCTL_OOG (1UL << 0) 46 #define I460_GXBCTL_BWC (1UL << 2) 47 48 /* 49 * gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the 50 * gatt_table and gatt_table_real pointers a "void *"... 51 */ 52 #define RD_GATT(index) readl((u32 *) i460.gatt + (index)) 53 #define WR_GATT(index, val) writel((val), (u32 *) i460.gatt + (index)) 54 /* 55 * The 460 spec says we have to read the last location written to make sure that all 56 * writes have taken effect 57 */ 58 #define WR_FLUSH_GATT(index) RD_GATT(index) 59 60 #define log2(x) ffz(~(x)) 61 62 static struct { 63 void *gatt; /* ioremap'd GATT area */ 64 65 /* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */ 66 u8 io_page_shift; 67 68 /* BIOS configures chipset to one of 2 possible apbase values: */ 69 u8 dynamic_apbase; 70 71 /* structure for tracking partial use of 4MB GART pages: */ 72 struct lp_desc { 73 unsigned long *alloced_map; /* bitmap of kernel-pages in use */ 74 int refcount; /* number of kernel pages using the large page */ 75 u64 paddr; /* physical address of large page */ 76 } *lp_desc; 77 } i460; 78 79 static struct aper_size_info_8 i460_sizes[3] = 80 { 81 /* 82 * The 32GB aperture is only available with a 4M GART page size. Due to the 83 * dynamic GART page size, we can't figure out page_order or num_entries until 84 * runtime. 85 */ 86 {32768, 0, 0, 4}, 87 {1024, 0, 0, 2}, 88 {256, 0, 0, 1} 89 }; 90 91 static struct gatt_mask i460_masks[] = 92 { 93 { 94 .mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT, 95 .type = 0 96 } 97 }; 98 99 static int i460_fetch_size (void) 100 { 101 int i; 102 u8 temp; 103 struct aper_size_info_8 *values; 104 105 /* Determine the GART page size */ 106 pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &temp); 107 i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12; 108 pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift); 109 110 if (i460.io_page_shift != I460_IO_PAGE_SHIFT) { 111 printk(KERN_ERR PFX 112 "I/O (GART) page-size %ZuKB doesn't match expected size %ZuKB\n", 113 1UL << (i460.io_page_shift - 10), 1UL << (I460_IO_PAGE_SHIFT)); 114 return 0; 115 } 116 117 values = A_SIZE_8(agp_bridge->driver->aperture_sizes); 118 119 pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp); 120 121 /* Exit now if the IO drivers for the GART SRAMS are turned off */ 122 if (temp & I460_SRAM_IO_DISABLE) { 123 printk(KERN_ERR PFX "GART SRAMS disabled on 460GX chipset\n"); 124 printk(KERN_ERR PFX "AGPGART operation not possible\n"); 125 return 0; 126 } 127 128 /* Make sure we don't try to create an 2 ^ 23 entry GATT */ 129 if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) { 130 printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n"); 131 return 0; 132 } 133 134 /* Determine the proper APBASE register */ 135 if (temp & I460_BAPBASE_ENABLE) 136 i460.dynamic_apbase = INTEL_I460_BAPBASE; 137 else 138 i460.dynamic_apbase = AGP_APBASE; 139 140 for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) { 141 /* 142 * Dynamically calculate the proper num_entries and page_order values for 143 * the define aperture sizes. Take care not to shift off the end of 144 * values[i].size. 145 */ 146 values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12); 147 values[i].page_order = log2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT); 148 } 149 150 for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) { 151 /* Neglect control bits when matching up size_value */ 152 if ((temp & I460_AGPSIZ_MASK) == values[i].size_value) { 153 agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i); 154 agp_bridge->aperture_size_idx = i; 155 return values[i].size; 156 } 157 } 158 159 return 0; 160 } 161 162 /* There isn't anything to do here since 460 has no GART TLB. */ 163 static void i460_tlb_flush (struct agp_memory *mem) 164 { 165 return; 166 } 167 168 /* 169 * This utility function is needed to prevent corruption of the control bits 170 * which are stored along with the aperture size in 460's AGPSIZ register 171 */ 172 static void i460_write_agpsiz (u8 size_value) 173 { 174 u8 temp; 175 176 pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp); 177 pci_write_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, 178 ((temp & ~I460_AGPSIZ_MASK) | size_value)); 179 } 180 181 static void i460_cleanup (void) 182 { 183 struct aper_size_info_8 *previous_size; 184 185 previous_size = A_SIZE_8(agp_bridge->previous_size); 186 i460_write_agpsiz(previous_size->size_value); 187 188 if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) 189 kfree(i460.lp_desc); 190 } 191 192 static int i460_configure (void) 193 { 194 union { 195 u32 small[2]; 196 u64 large; 197 } temp; 198 size_t size; 199 u8 scratch; 200 struct aper_size_info_8 *current_size; 201 202 temp.large = 0; 203 204 current_size = A_SIZE_8(agp_bridge->current_size); 205 i460_write_agpsiz(current_size->size_value); 206 207 /* 208 * Do the necessary rigmarole to read all eight bytes of APBASE. 209 * This has to be done since the AGP aperture can be above 4GB on 210 * 460 based systems. 211 */ 212 pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase, &(temp.small[0])); 213 pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase + 4, &(temp.small[1])); 214 215 /* Clear BAR control bits */ 216 agp_bridge->gart_bus_addr = temp.large & ~((1UL << 3) - 1); 217 218 pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &scratch); 219 pci_write_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, 220 (scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC); 221 222 /* 223 * Initialize partial allocation trackers if a GART page is bigger than a kernel 224 * page. 225 */ 226 if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) { 227 size = current_size->num_entries * sizeof(i460.lp_desc[0]); 228 i460.lp_desc = kmalloc(size, GFP_KERNEL); 229 if (!i460.lp_desc) 230 return -ENOMEM; 231 memset(i460.lp_desc, 0, size); 232 } 233 return 0; 234 } 235 236 static int i460_create_gatt_table (struct agp_bridge_data *bridge) 237 { 238 int page_order, num_entries, i; 239 void *temp; 240 241 /* 242 * Load up the fixed address of the GART SRAMS which hold our GATT table. 243 */ 244 temp = agp_bridge->current_size; 245 page_order = A_SIZE_8(temp)->page_order; 246 num_entries = A_SIZE_8(temp)->num_entries; 247 248 i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order); 249 250 /* These are no good, the should be removed from the agp_bridge strucure... */ 251 agp_bridge->gatt_table_real = NULL; 252 agp_bridge->gatt_table = NULL; 253 agp_bridge->gatt_bus_addr = 0; 254 255 for (i = 0; i < num_entries; ++i) 256 WR_GATT(i, 0); 257 WR_FLUSH_GATT(i - 1); 258 return 0; 259 } 260 261 static int i460_free_gatt_table (struct agp_bridge_data *bridge) 262 { 263 int num_entries, i; 264 void *temp; 265 266 temp = agp_bridge->current_size; 267 268 num_entries = A_SIZE_8(temp)->num_entries; 269 270 for (i = 0; i < num_entries; ++i) 271 WR_GATT(i, 0); 272 WR_FLUSH_GATT(num_entries - 1); 273 274 iounmap(i460.gatt); 275 return 0; 276 } 277 278 /* 279 * The following functions are called when the I/O (GART) page size is smaller than 280 * PAGE_SIZE. 281 */ 282 283 static int i460_insert_memory_small_io_page (struct agp_memory *mem, 284 off_t pg_start, int type) 285 { 286 unsigned long paddr, io_pg_start, io_page_size; 287 int i, j, k, num_entries; 288 void *temp; 289 290 pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n", 291 mem, pg_start, type, mem->memory[0]); 292 293 io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start; 294 295 temp = agp_bridge->current_size; 296 num_entries = A_SIZE_8(temp)->num_entries; 297 298 if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) { 299 printk(KERN_ERR PFX "Looks like we're out of AGP memory\n"); 300 return -EINVAL; 301 } 302 303 j = io_pg_start; 304 while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) { 305 if (!PGE_EMPTY(agp_bridge, RD_GATT(j))) { 306 pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n", 307 j, RD_GATT(j)); 308 return -EBUSY; 309 } 310 j++; 311 } 312 313 io_page_size = 1UL << I460_IO_PAGE_SHIFT; 314 for (i = 0, j = io_pg_start; i < mem->page_count; i++) { 315 paddr = mem->memory[i]; 316 for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size) 317 WR_GATT(j, agp_bridge->driver->mask_memory(agp_bridge, 318 paddr, mem->type)); 319 } 320 WR_FLUSH_GATT(j - 1); 321 return 0; 322 } 323 324 static int i460_remove_memory_small_io_page(struct agp_memory *mem, 325 off_t pg_start, int type) 326 { 327 int i; 328 329 pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n", 330 mem, pg_start, type); 331 332 pg_start = I460_IOPAGES_PER_KPAGE * pg_start; 333 334 for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++) 335 WR_GATT(i, 0); 336 WR_FLUSH_GATT(i - 1); 337 return 0; 338 } 339 340 #if I460_LARGE_IO_PAGES 341 342 /* 343 * These functions are called when the I/O (GART) page size exceeds PAGE_SIZE. 344 * 345 * This situation is interesting since AGP memory allocations that are smaller than a 346 * single GART page are possible. The i460.lp_desc array tracks partial allocation of the 347 * large GART pages to work around this issue. 348 * 349 * i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page 350 * pg_num. i460.lp_desc[pg_num].paddr is the physical address of the large page and 351 * i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated). 352 */ 353 354 static int i460_alloc_large_page (struct lp_desc *lp) 355 { 356 unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT; 357 size_t map_size; 358 void *lpage; 359 360 lpage = (void *) __get_free_pages(GFP_KERNEL, order); 361 if (!lpage) { 362 printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n"); 363 return -ENOMEM; 364 } 365 366 map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8; 367 lp->alloced_map = kmalloc(map_size, GFP_KERNEL); 368 if (!lp->alloced_map) { 369 free_pages((unsigned long) lpage, order); 370 printk(KERN_ERR PFX "Out of memory, we're in trouble...\n"); 371 return -ENOMEM; 372 } 373 memset(lp->alloced_map, 0, map_size); 374 375 lp->paddr = virt_to_phys(lpage); 376 lp->refcount = 0; 377 atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp); 378 return 0; 379 } 380 381 static void i460_free_large_page (struct lp_desc *lp) 382 { 383 kfree(lp->alloced_map); 384 lp->alloced_map = NULL; 385 386 free_pages((unsigned long) phys_to_virt(lp->paddr), I460_IO_PAGE_SHIFT - PAGE_SHIFT); 387 atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp); 388 } 389 390 static int i460_insert_memory_large_io_page (struct agp_memory *mem, 391 off_t pg_start, int type) 392 { 393 int i, start_offset, end_offset, idx, pg, num_entries; 394 struct lp_desc *start, *end, *lp; 395 void *temp; 396 397 temp = agp_bridge->current_size; 398 num_entries = A_SIZE_8(temp)->num_entries; 399 400 /* Figure out what pg_start means in terms of our large GART pages */ 401 start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE]; 402 end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE]; 403 start_offset = pg_start % I460_KPAGES_PER_IOPAGE; 404 end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE; 405 406 if (end > i460.lp_desc + num_entries) { 407 printk(KERN_ERR PFX "Looks like we're out of AGP memory\n"); 408 return -EINVAL; 409 } 410 411 /* Check if the requested region of the aperture is free */ 412 for (lp = start; lp <= end; ++lp) { 413 if (!lp->alloced_map) 414 continue; /* OK, the entire large page is available... */ 415 416 for (idx = ((lp == start) ? start_offset : 0); 417 idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); 418 idx++) 419 { 420 if (test_bit(idx, lp->alloced_map)) 421 return -EBUSY; 422 } 423 } 424 425 for (lp = start, i = 0; lp <= end; ++lp) { 426 if (!lp->alloced_map) { 427 /* Allocate new GART pages... */ 428 if (i460_alloc_large_page(lp) < 0) 429 return -ENOMEM; 430 pg = lp - i460.lp_desc; 431 WR_GATT(pg, agp_bridge->driver->mask_memory(agp_bridge, 432 lp->paddr, 0)); 433 WR_FLUSH_GATT(pg); 434 } 435 436 for (idx = ((lp == start) ? start_offset : 0); 437 idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); 438 idx++, i++) 439 { 440 mem->memory[i] = lp->paddr + idx*PAGE_SIZE; 441 __set_bit(idx, lp->alloced_map); 442 ++lp->refcount; 443 } 444 } 445 return 0; 446 } 447 448 static int i460_remove_memory_large_io_page (struct agp_memory *mem, 449 off_t pg_start, int type) 450 { 451 int i, pg, start_offset, end_offset, idx, num_entries; 452 struct lp_desc *start, *end, *lp; 453 void *temp; 454 455 temp = agp_bridge->driver->current_size; 456 num_entries = A_SIZE_8(temp)->num_entries; 457 458 /* Figure out what pg_start means in terms of our large GART pages */ 459 start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE]; 460 end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE]; 461 start_offset = pg_start % I460_KPAGES_PER_IOPAGE; 462 end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE; 463 464 for (i = 0, lp = start; lp <= end; ++lp) { 465 for (idx = ((lp == start) ? start_offset : 0); 466 idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); 467 idx++, i++) 468 { 469 mem->memory[i] = 0; 470 __clear_bit(idx, lp->alloced_map); 471 --lp->refcount; 472 } 473 474 /* Free GART pages if they are unused */ 475 if (lp->refcount == 0) { 476 pg = lp - i460.lp_desc; 477 WR_GATT(pg, 0); 478 WR_FLUSH_GATT(pg); 479 i460_free_large_page(lp); 480 } 481 } 482 return 0; 483 } 484 485 /* Wrapper routines to call the approriate {small_io_page,large_io_page} function */ 486 487 static int i460_insert_memory (struct agp_memory *mem, 488 off_t pg_start, int type) 489 { 490 if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) 491 return i460_insert_memory_small_io_page(mem, pg_start, type); 492 else 493 return i460_insert_memory_large_io_page(mem, pg_start, type); 494 } 495 496 static int i460_remove_memory (struct agp_memory *mem, 497 off_t pg_start, int type) 498 { 499 if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) 500 return i460_remove_memory_small_io_page(mem, pg_start, type); 501 else 502 return i460_remove_memory_large_io_page(mem, pg_start, type); 503 } 504 505 /* 506 * If the I/O (GART) page size is bigger than the kernel page size, we don't want to 507 * allocate memory until we know where it is to be bound in the aperture (a 508 * multi-kernel-page alloc might fit inside of an already allocated GART page). 509 * 510 * Let's just hope nobody counts on the allocated AGP memory being there before bind time 511 * (I don't think current drivers do)... 512 */ 513 static void *i460_alloc_page (struct agp_bridge_data *bridge) 514 { 515 void *page; 516 517 if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) 518 page = agp_generic_alloc_page(agp_bridge); 519 else 520 /* Returning NULL would cause problems */ 521 /* AK: really dubious code. */ 522 page = (void *)~0UL; 523 return page; 524 } 525 526 static void i460_destroy_page (void *page) 527 { 528 if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) 529 agp_generic_destroy_page(page); 530 } 531 532 #endif /* I460_LARGE_IO_PAGES */ 533 534 static unsigned long i460_mask_memory (struct agp_bridge_data *bridge, 535 unsigned long addr, int type) 536 { 537 /* Make sure the returned address is a valid GATT entry */ 538 return bridge->driver->masks[0].mask 539 | (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xffffff000) >> 12); 540 } 541 542 struct agp_bridge_driver intel_i460_driver = { 543 .owner = THIS_MODULE, 544 .aperture_sizes = i460_sizes, 545 .size_type = U8_APER_SIZE, 546 .num_aperture_sizes = 3, 547 .configure = i460_configure, 548 .fetch_size = i460_fetch_size, 549 .cleanup = i460_cleanup, 550 .tlb_flush = i460_tlb_flush, 551 .mask_memory = i460_mask_memory, 552 .masks = i460_masks, 553 .agp_enable = agp_generic_enable, 554 .cache_flush = global_cache_flush, 555 .create_gatt_table = i460_create_gatt_table, 556 .free_gatt_table = i460_free_gatt_table, 557 #if I460_LARGE_IO_PAGES 558 .insert_memory = i460_insert_memory, 559 .remove_memory = i460_remove_memory, 560 .agp_alloc_page = i460_alloc_page, 561 .agp_destroy_page = i460_destroy_page, 562 #else 563 .insert_memory = i460_insert_memory_small_io_page, 564 .remove_memory = i460_remove_memory_small_io_page, 565 .agp_alloc_page = agp_generic_alloc_page, 566 .agp_destroy_page = agp_generic_destroy_page, 567 #endif 568 .alloc_by_type = agp_generic_alloc_by_type, 569 .free_by_type = agp_generic_free_by_type, 570 .cant_use_aperture = 1, 571 }; 572 573 static int __devinit agp_intel_i460_probe(struct pci_dev *pdev, 574 const struct pci_device_id *ent) 575 { 576 struct agp_bridge_data *bridge; 577 u8 cap_ptr; 578 579 cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP); 580 if (!cap_ptr) 581 return -ENODEV; 582 583 bridge = agp_alloc_bridge(); 584 if (!bridge) 585 return -ENOMEM; 586 587 bridge->driver = &intel_i460_driver; 588 bridge->dev = pdev; 589 bridge->capndx = cap_ptr; 590 591 printk(KERN_INFO PFX "Detected Intel 460GX chipset\n"); 592 593 pci_set_drvdata(pdev, bridge); 594 return agp_add_bridge(bridge); 595 } 596 597 static void __devexit agp_intel_i460_remove(struct pci_dev *pdev) 598 { 599 struct agp_bridge_data *bridge = pci_get_drvdata(pdev); 600 601 agp_remove_bridge(bridge); 602 agp_put_bridge(bridge); 603 } 604 605 static struct pci_device_id agp_intel_i460_pci_table[] = { 606 { 607 .class = (PCI_CLASS_BRIDGE_HOST << 8), 608 .class_mask = ~0, 609 .vendor = PCI_VENDOR_ID_INTEL, 610 .device = PCI_DEVICE_ID_INTEL_84460GX, 611 .subvendor = PCI_ANY_ID, 612 .subdevice = PCI_ANY_ID, 613 }, 614 { } 615 }; 616 617 MODULE_DEVICE_TABLE(pci, agp_intel_i460_pci_table); 618 619 static struct pci_driver agp_intel_i460_pci_driver = { 620 .name = "agpgart-intel-i460", 621 .id_table = agp_intel_i460_pci_table, 622 .probe = agp_intel_i460_probe, 623 .remove = __devexit_p(agp_intel_i460_remove), 624 }; 625 626 static int __init agp_intel_i460_init(void) 627 { 628 if (agp_off) 629 return -EINVAL; 630 return pci_register_driver(&agp_intel_i460_pci_driver); 631 } 632 633 static void __exit agp_intel_i460_cleanup(void) 634 { 635 pci_unregister_driver(&agp_intel_i460_pci_driver); 636 } 637 638 module_init(agp_intel_i460_init); 639 module_exit(agp_intel_i460_cleanup); 640 641 MODULE_AUTHOR("Chris Ahna <Christopher.J.Ahna@intel.com>"); 642 MODULE_LICENSE("GPL and additional rights"); 643