xref: /openbmc/linux/drivers/bus/mhi/host/pm.c (revision 9b4469410cf9a0fcbccc92c480fd42f7c815a745)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
4  *
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/device.h>
9 #include <linux/dma-direction.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/list.h>
13 #include <linux/mhi.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/wait.h>
17 #include "internal.h"
18 
19 /*
20  * Not all MHI state transitions are synchronous. Transitions like Linkdown,
21  * SYS_ERR, and shutdown can happen anytime asynchronously. This function will
22  * transition to a new state only if we're allowed to.
23  *
24  * Priority increases as we go down. For instance, from any state in L0, the
25  * transition can be made to states in L1, L2 and L3. A notable exception to
26  * this rule is state DISABLE.  From DISABLE state we can only transition to
27  * POR state. Also, while in L2 state, user cannot jump back to previous
28  * L1 or L0 states.
29  *
30  * Valid transitions:
31  * L0: DISABLE <--> POR
32  *     POR <--> POR
33  *     POR -> M0 -> M2 --> M0
34  *     POR -> FW_DL_ERR
35  *     FW_DL_ERR <--> FW_DL_ERR
36  *     M0 <--> M0
37  *     M0 -> FW_DL_ERR
38  *     M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0
39  * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS --> POR
40  * L2: SHUTDOWN_PROCESS -> LD_ERR_FATAL_DETECT
41  *     SHUTDOWN_PROCESS -> DISABLE
42  * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT
43  *     LD_ERR_FATAL_DETECT -> DISABLE
44  */
45 static const struct mhi_pm_transitions dev_state_transitions[] = {
46 	/* L0 States */
47 	{
48 		MHI_PM_DISABLE,
49 		MHI_PM_POR
50 	},
51 	{
52 		MHI_PM_POR,
53 		MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 |
54 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
55 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
56 	},
57 	{
58 		MHI_PM_M0,
59 		MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER |
60 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
61 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
62 	},
63 	{
64 		MHI_PM_M2,
65 		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
66 		MHI_PM_LD_ERR_FATAL_DETECT
67 	},
68 	{
69 		MHI_PM_M3_ENTER,
70 		MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
71 		MHI_PM_LD_ERR_FATAL_DETECT
72 	},
73 	{
74 		MHI_PM_M3,
75 		MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT |
76 		MHI_PM_LD_ERR_FATAL_DETECT
77 	},
78 	{
79 		MHI_PM_M3_EXIT,
80 		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
81 		MHI_PM_LD_ERR_FATAL_DETECT
82 	},
83 	{
84 		MHI_PM_FW_DL_ERR,
85 		MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT |
86 		MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT
87 	},
88 	/* L1 States */
89 	{
90 		MHI_PM_SYS_ERR_DETECT,
91 		MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS |
92 		MHI_PM_LD_ERR_FATAL_DETECT
93 	},
94 	{
95 		MHI_PM_SYS_ERR_PROCESS,
96 		MHI_PM_POR | MHI_PM_SHUTDOWN_PROCESS |
97 		MHI_PM_LD_ERR_FATAL_DETECT
98 	},
99 	/* L2 States */
100 	{
101 		MHI_PM_SHUTDOWN_PROCESS,
102 		MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT
103 	},
104 	/* L3 States */
105 	{
106 		MHI_PM_LD_ERR_FATAL_DETECT,
107 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_DISABLE
108 	},
109 };
110 
111 enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl,
112 						   enum mhi_pm_state state)
113 {
114 	unsigned long cur_state = mhi_cntrl->pm_state;
115 	int index = find_last_bit(&cur_state, 32);
116 
117 	if (unlikely(index >= ARRAY_SIZE(dev_state_transitions)))
118 		return cur_state;
119 
120 	if (unlikely(dev_state_transitions[index].from_state != cur_state))
121 		return cur_state;
122 
123 	if (unlikely(!(dev_state_transitions[index].to_states & state)))
124 		return cur_state;
125 
126 	mhi_cntrl->pm_state = state;
127 	return mhi_cntrl->pm_state;
128 }
129 
130 void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state)
131 {
132 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
133 	int ret;
134 
135 	if (state == MHI_STATE_RESET) {
136 		ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
137 					  MHICTRL_RESET_MASK, 1);
138 	} else {
139 		ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
140 					  MHICTRL_MHISTATE_MASK, state);
141 	}
142 
143 	if (ret)
144 		dev_err(dev, "Failed to set MHI state to: %s\n",
145 			mhi_state_str(state));
146 }
147 
148 /* NOP for backward compatibility, host allowed to ring DB in M2 state */
149 static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl)
150 {
151 }
152 
153 static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl)
154 {
155 	mhi_cntrl->wake_get(mhi_cntrl, false);
156 	mhi_cntrl->wake_put(mhi_cntrl, true);
157 }
158 
159 /* Handle device ready state transition */
160 int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl)
161 {
162 	struct mhi_event *mhi_event;
163 	enum mhi_pm_state cur_state;
164 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
165 	u32 interval_us = 25000; /* poll register field every 25 milliseconds */
166 	int ret, i;
167 
168 	/* Check if device entered error state */
169 	if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
170 		dev_err(dev, "Device link is not accessible\n");
171 		return -EIO;
172 	}
173 
174 	/* Wait for RESET to be cleared and READY bit to be set by the device */
175 	ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
176 				 MHICTRL_RESET_MASK, 0, interval_us);
177 	if (ret) {
178 		dev_err(dev, "Device failed to clear MHI Reset\n");
179 		return ret;
180 	}
181 
182 	ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS,
183 				 MHISTATUS_READY_MASK, 1, interval_us);
184 	if (ret) {
185 		dev_err(dev, "Device failed to enter MHI Ready\n");
186 		return ret;
187 	}
188 
189 	dev_dbg(dev, "Device in READY State\n");
190 	write_lock_irq(&mhi_cntrl->pm_lock);
191 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
192 	mhi_cntrl->dev_state = MHI_STATE_READY;
193 	write_unlock_irq(&mhi_cntrl->pm_lock);
194 
195 	if (cur_state != MHI_PM_POR) {
196 		dev_err(dev, "Error moving to state %s from %s\n",
197 			to_mhi_pm_state_str(MHI_PM_POR),
198 			to_mhi_pm_state_str(cur_state));
199 		return -EIO;
200 	}
201 
202 	read_lock_bh(&mhi_cntrl->pm_lock);
203 	if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
204 		dev_err(dev, "Device registers not accessible\n");
205 		goto error_mmio;
206 	}
207 
208 	/* Configure MMIO registers */
209 	ret = mhi_init_mmio(mhi_cntrl);
210 	if (ret) {
211 		dev_err(dev, "Error configuring MMIO registers\n");
212 		goto error_mmio;
213 	}
214 
215 	/* Add elements to all SW event rings */
216 	mhi_event = mhi_cntrl->mhi_event;
217 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
218 		struct mhi_ring *ring = &mhi_event->ring;
219 
220 		/* Skip if this is an offload or HW event */
221 		if (mhi_event->offload_ev || mhi_event->hw_ring)
222 			continue;
223 
224 		ring->wp = ring->base + ring->len - ring->el_size;
225 		*ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size);
226 		/* Update all cores */
227 		smp_wmb();
228 
229 		/* Ring the event ring db */
230 		spin_lock_irq(&mhi_event->lock);
231 		mhi_ring_er_db(mhi_event);
232 		spin_unlock_irq(&mhi_event->lock);
233 	}
234 
235 	/* Set MHI to M0 state */
236 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
237 	read_unlock_bh(&mhi_cntrl->pm_lock);
238 
239 	return 0;
240 
241 error_mmio:
242 	read_unlock_bh(&mhi_cntrl->pm_lock);
243 
244 	return -EIO;
245 }
246 
247 int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl)
248 {
249 	enum mhi_pm_state cur_state;
250 	struct mhi_chan *mhi_chan;
251 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
252 	int i;
253 
254 	write_lock_irq(&mhi_cntrl->pm_lock);
255 	mhi_cntrl->dev_state = MHI_STATE_M0;
256 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0);
257 	write_unlock_irq(&mhi_cntrl->pm_lock);
258 	if (unlikely(cur_state != MHI_PM_M0)) {
259 		dev_err(dev, "Unable to transition to M0 state\n");
260 		return -EIO;
261 	}
262 	mhi_cntrl->M0++;
263 
264 	/* Wake up the device */
265 	read_lock_bh(&mhi_cntrl->pm_lock);
266 	mhi_cntrl->wake_get(mhi_cntrl, true);
267 
268 	/* Ring all event rings and CMD ring only if we're in mission mode */
269 	if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) {
270 		struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
271 		struct mhi_cmd *mhi_cmd =
272 			&mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING];
273 
274 		for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
275 			if (mhi_event->offload_ev)
276 				continue;
277 
278 			spin_lock_irq(&mhi_event->lock);
279 			mhi_ring_er_db(mhi_event);
280 			spin_unlock_irq(&mhi_event->lock);
281 		}
282 
283 		/* Only ring primary cmd ring if ring is not empty */
284 		spin_lock_irq(&mhi_cmd->lock);
285 		if (mhi_cmd->ring.rp != mhi_cmd->ring.wp)
286 			mhi_ring_cmd_db(mhi_cntrl, mhi_cmd);
287 		spin_unlock_irq(&mhi_cmd->lock);
288 	}
289 
290 	/* Ring channel DB registers */
291 	mhi_chan = mhi_cntrl->mhi_chan;
292 	for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
293 		struct mhi_ring *tre_ring = &mhi_chan->tre_ring;
294 
295 		if (mhi_chan->db_cfg.reset_req) {
296 			write_lock_irq(&mhi_chan->lock);
297 			mhi_chan->db_cfg.db_mode = true;
298 			write_unlock_irq(&mhi_chan->lock);
299 		}
300 
301 		read_lock_irq(&mhi_chan->lock);
302 
303 		/* Only ring DB if ring is not empty */
304 		if (tre_ring->base && tre_ring->wp  != tre_ring->rp &&
305 		    mhi_chan->ch_state == MHI_CH_STATE_ENABLED)
306 			mhi_ring_chan_db(mhi_cntrl, mhi_chan);
307 		read_unlock_irq(&mhi_chan->lock);
308 	}
309 
310 	mhi_cntrl->wake_put(mhi_cntrl, false);
311 	read_unlock_bh(&mhi_cntrl->pm_lock);
312 	wake_up_all(&mhi_cntrl->state_event);
313 
314 	return 0;
315 }
316 
317 /*
318  * After receiving the MHI state change event from the device indicating the
319  * transition to M1 state, the host can transition the device to M2 state
320  * for keeping it in low power state.
321  */
322 void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl)
323 {
324 	enum mhi_pm_state state;
325 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
326 
327 	write_lock_irq(&mhi_cntrl->pm_lock);
328 	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2);
329 	if (state == MHI_PM_M2) {
330 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2);
331 		mhi_cntrl->dev_state = MHI_STATE_M2;
332 
333 		write_unlock_irq(&mhi_cntrl->pm_lock);
334 
335 		mhi_cntrl->M2++;
336 		wake_up_all(&mhi_cntrl->state_event);
337 
338 		/* If there are any pending resources, exit M2 immediately */
339 		if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) ||
340 			     atomic_read(&mhi_cntrl->dev_wake))) {
341 			dev_dbg(dev,
342 				"Exiting M2, pending_pkts: %d dev_wake: %d\n",
343 				atomic_read(&mhi_cntrl->pending_pkts),
344 				atomic_read(&mhi_cntrl->dev_wake));
345 			read_lock_bh(&mhi_cntrl->pm_lock);
346 			mhi_cntrl->wake_get(mhi_cntrl, true);
347 			mhi_cntrl->wake_put(mhi_cntrl, true);
348 			read_unlock_bh(&mhi_cntrl->pm_lock);
349 		} else {
350 			mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE);
351 		}
352 	} else {
353 		write_unlock_irq(&mhi_cntrl->pm_lock);
354 	}
355 }
356 
357 /* MHI M3 completion handler */
358 int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl)
359 {
360 	enum mhi_pm_state state;
361 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
362 
363 	write_lock_irq(&mhi_cntrl->pm_lock);
364 	mhi_cntrl->dev_state = MHI_STATE_M3;
365 	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3);
366 	write_unlock_irq(&mhi_cntrl->pm_lock);
367 	if (state != MHI_PM_M3) {
368 		dev_err(dev, "Unable to transition to M3 state\n");
369 		return -EIO;
370 	}
371 
372 	mhi_cntrl->M3++;
373 	wake_up_all(&mhi_cntrl->state_event);
374 
375 	return 0;
376 }
377 
378 /* Handle device Mission Mode transition */
379 static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl)
380 {
381 	struct mhi_event *mhi_event;
382 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
383 	enum mhi_ee_type ee = MHI_EE_MAX, current_ee = mhi_cntrl->ee;
384 	int i, ret;
385 
386 	dev_dbg(dev, "Processing Mission Mode transition\n");
387 
388 	write_lock_irq(&mhi_cntrl->pm_lock);
389 	if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
390 		ee = mhi_get_exec_env(mhi_cntrl);
391 
392 	if (!MHI_IN_MISSION_MODE(ee)) {
393 		mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT;
394 		write_unlock_irq(&mhi_cntrl->pm_lock);
395 		wake_up_all(&mhi_cntrl->state_event);
396 		return -EIO;
397 	}
398 	mhi_cntrl->ee = ee;
399 	write_unlock_irq(&mhi_cntrl->pm_lock);
400 
401 	wake_up_all(&mhi_cntrl->state_event);
402 
403 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, &current_ee,
404 			      mhi_destroy_device);
405 	mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE);
406 
407 	/* Force MHI to be in M0 state before continuing */
408 	ret = __mhi_device_get_sync(mhi_cntrl);
409 	if (ret)
410 		return ret;
411 
412 	read_lock_bh(&mhi_cntrl->pm_lock);
413 
414 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
415 		ret = -EIO;
416 		goto error_mission_mode;
417 	}
418 
419 	/* Add elements to all HW event rings */
420 	mhi_event = mhi_cntrl->mhi_event;
421 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
422 		struct mhi_ring *ring = &mhi_event->ring;
423 
424 		if (mhi_event->offload_ev || !mhi_event->hw_ring)
425 			continue;
426 
427 		ring->wp = ring->base + ring->len - ring->el_size;
428 		*ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size);
429 		/* Update to all cores */
430 		smp_wmb();
431 
432 		spin_lock_irq(&mhi_event->lock);
433 		if (MHI_DB_ACCESS_VALID(mhi_cntrl))
434 			mhi_ring_er_db(mhi_event);
435 		spin_unlock_irq(&mhi_event->lock);
436 	}
437 
438 	read_unlock_bh(&mhi_cntrl->pm_lock);
439 
440 	/*
441 	 * The MHI devices are only created when the client device switches its
442 	 * Execution Environment (EE) to either SBL or AMSS states
443 	 */
444 	mhi_create_devices(mhi_cntrl);
445 
446 	read_lock_bh(&mhi_cntrl->pm_lock);
447 
448 error_mission_mode:
449 	mhi_cntrl->wake_put(mhi_cntrl, false);
450 	read_unlock_bh(&mhi_cntrl->pm_lock);
451 
452 	return ret;
453 }
454 
455 /* Handle shutdown transitions */
456 static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl)
457 {
458 	enum mhi_pm_state cur_state;
459 	struct mhi_event *mhi_event;
460 	struct mhi_cmd_ctxt *cmd_ctxt;
461 	struct mhi_cmd *mhi_cmd;
462 	struct mhi_event_ctxt *er_ctxt;
463 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
464 	int ret, i;
465 
466 	dev_dbg(dev, "Processing disable transition with PM state: %s\n",
467 		to_mhi_pm_state_str(mhi_cntrl->pm_state));
468 
469 	mutex_lock(&mhi_cntrl->pm_mutex);
470 
471 	/* Trigger MHI RESET so that the device will not access host memory */
472 	if (!MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
473 		dev_dbg(dev, "Triggering MHI Reset in device\n");
474 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
475 
476 		/* Wait for the reset bit to be cleared by the device */
477 		ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
478 				 MHICTRL_RESET_MASK, 0, 25000);
479 		if (ret)
480 			dev_err(dev, "Device failed to clear MHI Reset\n");
481 
482 		/*
483 		 * Device will clear BHI_INTVEC as a part of RESET processing,
484 		 * hence re-program it
485 		 */
486 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
487 
488 		if (!MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) {
489 			/* wait for ready to be set */
490 			ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs,
491 						 MHISTATUS,
492 						 MHISTATUS_READY_MASK, 1, 25000);
493 			if (ret)
494 				dev_err(dev, "Device failed to enter READY state\n");
495 		}
496 	}
497 
498 	dev_dbg(dev,
499 		 "Waiting for all pending event ring processing to complete\n");
500 	mhi_event = mhi_cntrl->mhi_event;
501 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
502 		if (mhi_event->offload_ev)
503 			continue;
504 		disable_irq(mhi_cntrl->irq[mhi_event->irq]);
505 		tasklet_kill(&mhi_event->task);
506 	}
507 
508 	/* Release lock and wait for all pending threads to complete */
509 	mutex_unlock(&mhi_cntrl->pm_mutex);
510 	dev_dbg(dev, "Waiting for all pending threads to complete\n");
511 	wake_up_all(&mhi_cntrl->state_event);
512 
513 	dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
514 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device);
515 
516 	mutex_lock(&mhi_cntrl->pm_mutex);
517 
518 	WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
519 	WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
520 
521 	/* Reset the ev rings and cmd rings */
522 	dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
523 	mhi_cmd = mhi_cntrl->mhi_cmd;
524 	cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
525 	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
526 		struct mhi_ring *ring = &mhi_cmd->ring;
527 
528 		ring->rp = ring->base;
529 		ring->wp = ring->base;
530 		cmd_ctxt->rp = cmd_ctxt->rbase;
531 		cmd_ctxt->wp = cmd_ctxt->rbase;
532 	}
533 
534 	mhi_event = mhi_cntrl->mhi_event;
535 	er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
536 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
537 		     mhi_event++) {
538 		struct mhi_ring *ring = &mhi_event->ring;
539 
540 		/* Skip offload events */
541 		if (mhi_event->offload_ev)
542 			continue;
543 
544 		ring->rp = ring->base;
545 		ring->wp = ring->base;
546 		er_ctxt->rp = er_ctxt->rbase;
547 		er_ctxt->wp = er_ctxt->rbase;
548 	}
549 
550 	/* Move to disable state */
551 	write_lock_irq(&mhi_cntrl->pm_lock);
552 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE);
553 	write_unlock_irq(&mhi_cntrl->pm_lock);
554 	if (unlikely(cur_state != MHI_PM_DISABLE))
555 		dev_err(dev, "Error moving from PM state: %s to: %s\n",
556 			to_mhi_pm_state_str(cur_state),
557 			to_mhi_pm_state_str(MHI_PM_DISABLE));
558 
559 	dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
560 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
561 		mhi_state_str(mhi_cntrl->dev_state));
562 
563 	mutex_unlock(&mhi_cntrl->pm_mutex);
564 }
565 
566 /* Handle system error transitions */
567 static void mhi_pm_sys_error_transition(struct mhi_controller *mhi_cntrl)
568 {
569 	enum mhi_pm_state cur_state, prev_state;
570 	enum dev_st_transition next_state;
571 	struct mhi_event *mhi_event;
572 	struct mhi_cmd_ctxt *cmd_ctxt;
573 	struct mhi_cmd *mhi_cmd;
574 	struct mhi_event_ctxt *er_ctxt;
575 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
576 	int ret, i;
577 
578 	dev_dbg(dev, "Transitioning from PM state: %s to: %s\n",
579 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
580 		to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS));
581 
582 	/* We must notify MHI control driver so it can clean up first */
583 	mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR);
584 
585 	mutex_lock(&mhi_cntrl->pm_mutex);
586 	write_lock_irq(&mhi_cntrl->pm_lock);
587 	prev_state = mhi_cntrl->pm_state;
588 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS);
589 	write_unlock_irq(&mhi_cntrl->pm_lock);
590 
591 	if (cur_state != MHI_PM_SYS_ERR_PROCESS) {
592 		dev_err(dev, "Failed to transition from PM state: %s to: %s\n",
593 			to_mhi_pm_state_str(cur_state),
594 			to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS));
595 		goto exit_sys_error_transition;
596 	}
597 
598 	mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
599 	mhi_cntrl->dev_state = MHI_STATE_RESET;
600 
601 	/* Wake up threads waiting for state transition */
602 	wake_up_all(&mhi_cntrl->state_event);
603 
604 	/* Trigger MHI RESET so that the device will not access host memory */
605 	if (MHI_REG_ACCESS_VALID(prev_state)) {
606 		u32 in_reset = -1;
607 		unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms);
608 
609 		dev_dbg(dev, "Triggering MHI Reset in device\n");
610 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
611 
612 		/* Wait for the reset bit to be cleared by the device */
613 		ret = wait_event_timeout(mhi_cntrl->state_event,
614 					 mhi_read_reg_field(mhi_cntrl,
615 							    mhi_cntrl->regs,
616 							    MHICTRL,
617 							    MHICTRL_RESET_MASK,
618 							    &in_reset) ||
619 					!in_reset, timeout);
620 		if (!ret || in_reset) {
621 			dev_err(dev, "Device failed to exit MHI Reset state\n");
622 			goto exit_sys_error_transition;
623 		}
624 
625 		/*
626 		 * Device will clear BHI_INTVEC as a part of RESET processing,
627 		 * hence re-program it
628 		 */
629 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
630 	}
631 
632 	dev_dbg(dev,
633 		"Waiting for all pending event ring processing to complete\n");
634 	mhi_event = mhi_cntrl->mhi_event;
635 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
636 		if (mhi_event->offload_ev)
637 			continue;
638 		tasklet_kill(&mhi_event->task);
639 	}
640 
641 	/* Release lock and wait for all pending threads to complete */
642 	mutex_unlock(&mhi_cntrl->pm_mutex);
643 	dev_dbg(dev, "Waiting for all pending threads to complete\n");
644 	wake_up_all(&mhi_cntrl->state_event);
645 
646 	dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
647 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device);
648 
649 	mutex_lock(&mhi_cntrl->pm_mutex);
650 
651 	WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
652 	WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
653 
654 	/* Reset the ev rings and cmd rings */
655 	dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
656 	mhi_cmd = mhi_cntrl->mhi_cmd;
657 	cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
658 	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
659 		struct mhi_ring *ring = &mhi_cmd->ring;
660 
661 		ring->rp = ring->base;
662 		ring->wp = ring->base;
663 		cmd_ctxt->rp = cmd_ctxt->rbase;
664 		cmd_ctxt->wp = cmd_ctxt->rbase;
665 	}
666 
667 	mhi_event = mhi_cntrl->mhi_event;
668 	er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
669 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
670 	     mhi_event++) {
671 		struct mhi_ring *ring = &mhi_event->ring;
672 
673 		/* Skip offload events */
674 		if (mhi_event->offload_ev)
675 			continue;
676 
677 		ring->rp = ring->base;
678 		ring->wp = ring->base;
679 		er_ctxt->rp = er_ctxt->rbase;
680 		er_ctxt->wp = er_ctxt->rbase;
681 	}
682 
683 	/* Transition to next state */
684 	if (MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) {
685 		write_lock_irq(&mhi_cntrl->pm_lock);
686 		cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
687 		write_unlock_irq(&mhi_cntrl->pm_lock);
688 		if (cur_state != MHI_PM_POR) {
689 			dev_err(dev, "Error moving to state %s from %s\n",
690 				to_mhi_pm_state_str(MHI_PM_POR),
691 				to_mhi_pm_state_str(cur_state));
692 			goto exit_sys_error_transition;
693 		}
694 		next_state = DEV_ST_TRANSITION_PBL;
695 	} else {
696 		next_state = DEV_ST_TRANSITION_READY;
697 	}
698 
699 	mhi_queue_state_transition(mhi_cntrl, next_state);
700 
701 exit_sys_error_transition:
702 	dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
703 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
704 		mhi_state_str(mhi_cntrl->dev_state));
705 
706 	mutex_unlock(&mhi_cntrl->pm_mutex);
707 }
708 
709 /* Queue a new work item and schedule work */
710 int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl,
711 			       enum dev_st_transition state)
712 {
713 	struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC);
714 	unsigned long flags;
715 
716 	if (!item)
717 		return -ENOMEM;
718 
719 	item->state = state;
720 	spin_lock_irqsave(&mhi_cntrl->transition_lock, flags);
721 	list_add_tail(&item->node, &mhi_cntrl->transition_list);
722 	spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags);
723 
724 	queue_work(mhi_cntrl->hiprio_wq, &mhi_cntrl->st_worker);
725 
726 	return 0;
727 }
728 
729 /* SYS_ERR worker */
730 void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl)
731 {
732 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
733 
734 	/* skip if controller supports RDDM */
735 	if (mhi_cntrl->rddm_image) {
736 		dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n");
737 		return;
738 	}
739 
740 	mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR);
741 }
742 
743 /* Device State Transition worker */
744 void mhi_pm_st_worker(struct work_struct *work)
745 {
746 	struct state_transition *itr, *tmp;
747 	LIST_HEAD(head);
748 	struct mhi_controller *mhi_cntrl = container_of(work,
749 							struct mhi_controller,
750 							st_worker);
751 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
752 
753 	spin_lock_irq(&mhi_cntrl->transition_lock);
754 	list_splice_tail_init(&mhi_cntrl->transition_list, &head);
755 	spin_unlock_irq(&mhi_cntrl->transition_lock);
756 
757 	list_for_each_entry_safe(itr, tmp, &head, node) {
758 		list_del(&itr->node);
759 		dev_dbg(dev, "Handling state transition: %s\n",
760 			TO_DEV_STATE_TRANS_STR(itr->state));
761 
762 		switch (itr->state) {
763 		case DEV_ST_TRANSITION_PBL:
764 			write_lock_irq(&mhi_cntrl->pm_lock);
765 			if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
766 				mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
767 			write_unlock_irq(&mhi_cntrl->pm_lock);
768 			mhi_fw_load_handler(mhi_cntrl);
769 			break;
770 		case DEV_ST_TRANSITION_SBL:
771 			write_lock_irq(&mhi_cntrl->pm_lock);
772 			mhi_cntrl->ee = MHI_EE_SBL;
773 			write_unlock_irq(&mhi_cntrl->pm_lock);
774 			/*
775 			 * The MHI devices are only created when the client
776 			 * device switches its Execution Environment (EE) to
777 			 * either SBL or AMSS states
778 			 */
779 			mhi_create_devices(mhi_cntrl);
780 			if (mhi_cntrl->fbc_download)
781 				mhi_download_amss_image(mhi_cntrl);
782 			break;
783 		case DEV_ST_TRANSITION_MISSION_MODE:
784 			mhi_pm_mission_mode_transition(mhi_cntrl);
785 			break;
786 		case DEV_ST_TRANSITION_FP:
787 			write_lock_irq(&mhi_cntrl->pm_lock);
788 			mhi_cntrl->ee = MHI_EE_FP;
789 			write_unlock_irq(&mhi_cntrl->pm_lock);
790 			mhi_create_devices(mhi_cntrl);
791 			break;
792 		case DEV_ST_TRANSITION_READY:
793 			mhi_ready_state_transition(mhi_cntrl);
794 			break;
795 		case DEV_ST_TRANSITION_SYS_ERR:
796 			mhi_pm_sys_error_transition(mhi_cntrl);
797 			break;
798 		case DEV_ST_TRANSITION_DISABLE:
799 			mhi_pm_disable_transition(mhi_cntrl);
800 			break;
801 		default:
802 			break;
803 		}
804 		kfree(itr);
805 	}
806 }
807 
808 int mhi_pm_suspend(struct mhi_controller *mhi_cntrl)
809 {
810 	struct mhi_chan *itr, *tmp;
811 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
812 	enum mhi_pm_state new_state;
813 	int ret;
814 
815 	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
816 		return -EINVAL;
817 
818 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
819 		return -EIO;
820 
821 	/* Return busy if there are any pending resources */
822 	if (atomic_read(&mhi_cntrl->dev_wake) ||
823 	    atomic_read(&mhi_cntrl->pending_pkts))
824 		return -EBUSY;
825 
826 	/* Take MHI out of M2 state */
827 	read_lock_bh(&mhi_cntrl->pm_lock);
828 	mhi_cntrl->wake_get(mhi_cntrl, false);
829 	read_unlock_bh(&mhi_cntrl->pm_lock);
830 
831 	ret = wait_event_timeout(mhi_cntrl->state_event,
832 				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
833 				 mhi_cntrl->dev_state == MHI_STATE_M1 ||
834 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
835 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
836 
837 	read_lock_bh(&mhi_cntrl->pm_lock);
838 	mhi_cntrl->wake_put(mhi_cntrl, false);
839 	read_unlock_bh(&mhi_cntrl->pm_lock);
840 
841 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
842 		dev_err(dev,
843 			"Could not enter M0/M1 state");
844 		return -EIO;
845 	}
846 
847 	write_lock_irq(&mhi_cntrl->pm_lock);
848 
849 	if (atomic_read(&mhi_cntrl->dev_wake) ||
850 	    atomic_read(&mhi_cntrl->pending_pkts)) {
851 		write_unlock_irq(&mhi_cntrl->pm_lock);
852 		return -EBUSY;
853 	}
854 
855 	dev_dbg(dev, "Allowing M3 transition\n");
856 	new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER);
857 	if (new_state != MHI_PM_M3_ENTER) {
858 		write_unlock_irq(&mhi_cntrl->pm_lock);
859 		dev_err(dev,
860 			"Error setting to PM state: %s from: %s\n",
861 			to_mhi_pm_state_str(MHI_PM_M3_ENTER),
862 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
863 		return -EIO;
864 	}
865 
866 	/* Set MHI to M3 and wait for completion */
867 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3);
868 	write_unlock_irq(&mhi_cntrl->pm_lock);
869 	dev_dbg(dev, "Waiting for M3 completion\n");
870 
871 	ret = wait_event_timeout(mhi_cntrl->state_event,
872 				 mhi_cntrl->dev_state == MHI_STATE_M3 ||
873 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
874 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
875 
876 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
877 		dev_err(dev,
878 			"Did not enter M3 state, MHI state: %s, PM state: %s\n",
879 			mhi_state_str(mhi_cntrl->dev_state),
880 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
881 		return -EIO;
882 	}
883 
884 	/* Notify clients about entering LPM */
885 	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
886 		mutex_lock(&itr->mutex);
887 		if (itr->mhi_dev)
888 			mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER);
889 		mutex_unlock(&itr->mutex);
890 	}
891 
892 	return 0;
893 }
894 EXPORT_SYMBOL_GPL(mhi_pm_suspend);
895 
896 static int __mhi_pm_resume(struct mhi_controller *mhi_cntrl, bool force)
897 {
898 	struct mhi_chan *itr, *tmp;
899 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
900 	enum mhi_pm_state cur_state;
901 	int ret;
902 
903 	dev_dbg(dev, "Entered with PM state: %s, MHI state: %s\n",
904 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
905 		mhi_state_str(mhi_cntrl->dev_state));
906 
907 	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
908 		return 0;
909 
910 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
911 		return -EIO;
912 
913 	if (mhi_get_mhi_state(mhi_cntrl) != MHI_STATE_M3) {
914 		dev_warn(dev, "Resuming from non M3 state (%s)\n",
915 			 mhi_state_str(mhi_get_mhi_state(mhi_cntrl)));
916 		if (!force)
917 			return -EINVAL;
918 	}
919 
920 	/* Notify clients about exiting LPM */
921 	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
922 		mutex_lock(&itr->mutex);
923 		if (itr->mhi_dev)
924 			mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT);
925 		mutex_unlock(&itr->mutex);
926 	}
927 
928 	write_lock_irq(&mhi_cntrl->pm_lock);
929 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT);
930 	if (cur_state != MHI_PM_M3_EXIT) {
931 		write_unlock_irq(&mhi_cntrl->pm_lock);
932 		dev_info(dev,
933 			 "Error setting to PM state: %s from: %s\n",
934 			 to_mhi_pm_state_str(MHI_PM_M3_EXIT),
935 			 to_mhi_pm_state_str(mhi_cntrl->pm_state));
936 		return -EIO;
937 	}
938 
939 	/* Set MHI to M0 and wait for completion */
940 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
941 	write_unlock_irq(&mhi_cntrl->pm_lock);
942 
943 	ret = wait_event_timeout(mhi_cntrl->state_event,
944 				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
945 				 mhi_cntrl->dev_state == MHI_STATE_M2 ||
946 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
947 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
948 
949 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
950 		dev_err(dev,
951 			"Did not enter M0 state, MHI state: %s, PM state: %s\n",
952 			mhi_state_str(mhi_cntrl->dev_state),
953 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
954 		return -EIO;
955 	}
956 
957 	return 0;
958 }
959 
960 int mhi_pm_resume(struct mhi_controller *mhi_cntrl)
961 {
962 	return __mhi_pm_resume(mhi_cntrl, false);
963 }
964 EXPORT_SYMBOL_GPL(mhi_pm_resume);
965 
966 int mhi_pm_resume_force(struct mhi_controller *mhi_cntrl)
967 {
968 	return __mhi_pm_resume(mhi_cntrl, true);
969 }
970 EXPORT_SYMBOL_GPL(mhi_pm_resume_force);
971 
972 int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl)
973 {
974 	int ret;
975 
976 	/* Wake up the device */
977 	read_lock_bh(&mhi_cntrl->pm_lock);
978 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
979 		read_unlock_bh(&mhi_cntrl->pm_lock);
980 		return -EIO;
981 	}
982 	mhi_cntrl->wake_get(mhi_cntrl, true);
983 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
984 		mhi_trigger_resume(mhi_cntrl);
985 	read_unlock_bh(&mhi_cntrl->pm_lock);
986 
987 	ret = wait_event_timeout(mhi_cntrl->state_event,
988 				 mhi_cntrl->pm_state == MHI_PM_M0 ||
989 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
990 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
991 
992 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
993 		read_lock_bh(&mhi_cntrl->pm_lock);
994 		mhi_cntrl->wake_put(mhi_cntrl, false);
995 		read_unlock_bh(&mhi_cntrl->pm_lock);
996 		return -EIO;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 /* Assert device wake db */
1003 static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force)
1004 {
1005 	unsigned long flags;
1006 
1007 	/*
1008 	 * If force flag is set, then increment the wake count value and
1009 	 * ring wake db
1010 	 */
1011 	if (unlikely(force)) {
1012 		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1013 		atomic_inc(&mhi_cntrl->dev_wake);
1014 		if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) &&
1015 		    !mhi_cntrl->wake_set) {
1016 			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
1017 			mhi_cntrl->wake_set = true;
1018 		}
1019 		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1020 	} else {
1021 		/*
1022 		 * If resources are already requested, then just increment
1023 		 * the wake count value and return
1024 		 */
1025 		if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0)))
1026 			return;
1027 
1028 		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1029 		if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) &&
1030 		    MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) &&
1031 		    !mhi_cntrl->wake_set) {
1032 			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
1033 			mhi_cntrl->wake_set = true;
1034 		}
1035 		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1036 	}
1037 }
1038 
1039 /* De-assert device wake db */
1040 static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl,
1041 				  bool override)
1042 {
1043 	unsigned long flags;
1044 
1045 	/*
1046 	 * Only continue if there is a single resource, else just decrement
1047 	 * and return
1048 	 */
1049 	if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1)))
1050 		return;
1051 
1052 	spin_lock_irqsave(&mhi_cntrl->wlock, flags);
1053 	if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) &&
1054 	    MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override &&
1055 	    mhi_cntrl->wake_set) {
1056 		mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0);
1057 		mhi_cntrl->wake_set = false;
1058 	}
1059 	spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
1060 }
1061 
1062 int mhi_async_power_up(struct mhi_controller *mhi_cntrl)
1063 {
1064 	struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
1065 	enum mhi_state state;
1066 	enum mhi_ee_type current_ee;
1067 	enum dev_st_transition next_state;
1068 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1069 	u32 interval_us = 25000; /* poll register field every 25 milliseconds */
1070 	int ret, i;
1071 
1072 	dev_info(dev, "Requested to power ON\n");
1073 
1074 	/* Supply default wake routines if not provided by controller driver */
1075 	if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put ||
1076 	    !mhi_cntrl->wake_toggle) {
1077 		mhi_cntrl->wake_get = mhi_assert_dev_wake;
1078 		mhi_cntrl->wake_put = mhi_deassert_dev_wake;
1079 		mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ?
1080 			mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake;
1081 	}
1082 
1083 	mutex_lock(&mhi_cntrl->pm_mutex);
1084 	mhi_cntrl->pm_state = MHI_PM_DISABLE;
1085 
1086 	/* Setup BHI INTVEC */
1087 	write_lock_irq(&mhi_cntrl->pm_lock);
1088 	mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
1089 	mhi_cntrl->pm_state = MHI_PM_POR;
1090 	mhi_cntrl->ee = MHI_EE_MAX;
1091 	current_ee = mhi_get_exec_env(mhi_cntrl);
1092 	write_unlock_irq(&mhi_cntrl->pm_lock);
1093 
1094 	/* Confirm that the device is in valid exec env */
1095 	if (!MHI_POWER_UP_CAPABLE(current_ee)) {
1096 		dev_err(dev, "%s is not a valid EE for power on\n",
1097 			TO_MHI_EXEC_STR(current_ee));
1098 		ret = -EIO;
1099 		goto error_exit;
1100 	}
1101 
1102 	state = mhi_get_mhi_state(mhi_cntrl);
1103 	dev_dbg(dev, "Attempting power on with EE: %s, state: %s\n",
1104 		TO_MHI_EXEC_STR(current_ee), mhi_state_str(state));
1105 
1106 	if (state == MHI_STATE_SYS_ERR) {
1107 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
1108 		ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
1109 				 MHICTRL_RESET_MASK, 0, interval_us);
1110 		if (ret) {
1111 			dev_info(dev, "Failed to reset MHI due to syserr state\n");
1112 			goto error_exit;
1113 		}
1114 
1115 		/*
1116 		 * device cleares INTVEC as part of RESET processing,
1117 		 * re-program it
1118 		 */
1119 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
1120 	}
1121 
1122 	/* IRQs have been requested during probe, so we just need to enable them. */
1123 	enable_irq(mhi_cntrl->irq[0]);
1124 
1125 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
1126 		if (mhi_event->offload_ev)
1127 			continue;
1128 
1129 		enable_irq(mhi_cntrl->irq[mhi_event->irq]);
1130 	}
1131 
1132 	/* Transition to next state */
1133 	next_state = MHI_IN_PBL(current_ee) ?
1134 		DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY;
1135 
1136 	mhi_queue_state_transition(mhi_cntrl, next_state);
1137 
1138 	mutex_unlock(&mhi_cntrl->pm_mutex);
1139 
1140 	dev_info(dev, "Power on setup success\n");
1141 
1142 	return 0;
1143 
1144 error_exit:
1145 	mhi_cntrl->pm_state = MHI_PM_DISABLE;
1146 	mutex_unlock(&mhi_cntrl->pm_mutex);
1147 
1148 	return ret;
1149 }
1150 EXPORT_SYMBOL_GPL(mhi_async_power_up);
1151 
1152 void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful)
1153 {
1154 	enum mhi_pm_state cur_state, transition_state;
1155 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1156 
1157 	mutex_lock(&mhi_cntrl->pm_mutex);
1158 	write_lock_irq(&mhi_cntrl->pm_lock);
1159 	cur_state = mhi_cntrl->pm_state;
1160 	if (cur_state == MHI_PM_DISABLE) {
1161 		write_unlock_irq(&mhi_cntrl->pm_lock);
1162 		mutex_unlock(&mhi_cntrl->pm_mutex);
1163 		return; /* Already powered down */
1164 	}
1165 
1166 	/* If it's not a graceful shutdown, force MHI to linkdown state */
1167 	transition_state = (graceful) ? MHI_PM_SHUTDOWN_PROCESS :
1168 			   MHI_PM_LD_ERR_FATAL_DETECT;
1169 
1170 	cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state);
1171 	if (cur_state != transition_state) {
1172 		dev_err(dev, "Failed to move to state: %s from: %s\n",
1173 			to_mhi_pm_state_str(transition_state),
1174 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
1175 		/* Force link down or error fatal detected state */
1176 		mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT;
1177 	}
1178 
1179 	/* mark device inactive to avoid any further host processing */
1180 	mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
1181 	mhi_cntrl->dev_state = MHI_STATE_RESET;
1182 
1183 	wake_up_all(&mhi_cntrl->state_event);
1184 
1185 	write_unlock_irq(&mhi_cntrl->pm_lock);
1186 	mutex_unlock(&mhi_cntrl->pm_mutex);
1187 
1188 	mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_DISABLE);
1189 
1190 	/* Wait for shutdown to complete */
1191 	flush_work(&mhi_cntrl->st_worker);
1192 
1193 	disable_irq(mhi_cntrl->irq[0]);
1194 }
1195 EXPORT_SYMBOL_GPL(mhi_power_down);
1196 
1197 int mhi_sync_power_up(struct mhi_controller *mhi_cntrl)
1198 {
1199 	int ret = mhi_async_power_up(mhi_cntrl);
1200 
1201 	if (ret)
1202 		return ret;
1203 
1204 	wait_event_timeout(mhi_cntrl->state_event,
1205 			   MHI_IN_MISSION_MODE(mhi_cntrl->ee) ||
1206 			   MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
1207 			   msecs_to_jiffies(mhi_cntrl->timeout_ms));
1208 
1209 	ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT;
1210 	if (ret)
1211 		mhi_power_down(mhi_cntrl, false);
1212 
1213 	return ret;
1214 }
1215 EXPORT_SYMBOL(mhi_sync_power_up);
1216 
1217 int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl)
1218 {
1219 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1220 	int ret;
1221 
1222 	/* Check if device is already in RDDM */
1223 	if (mhi_cntrl->ee == MHI_EE_RDDM)
1224 		return 0;
1225 
1226 	dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n");
1227 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1228 
1229 	/* Wait for RDDM event */
1230 	ret = wait_event_timeout(mhi_cntrl->state_event,
1231 				 mhi_cntrl->ee == MHI_EE_RDDM,
1232 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
1233 	ret = ret ? 0 : -EIO;
1234 
1235 	return ret;
1236 }
1237 EXPORT_SYMBOL_GPL(mhi_force_rddm_mode);
1238 
1239 void mhi_device_get(struct mhi_device *mhi_dev)
1240 {
1241 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1242 
1243 	mhi_dev->dev_wake++;
1244 	read_lock_bh(&mhi_cntrl->pm_lock);
1245 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1246 		mhi_trigger_resume(mhi_cntrl);
1247 
1248 	mhi_cntrl->wake_get(mhi_cntrl, true);
1249 	read_unlock_bh(&mhi_cntrl->pm_lock);
1250 }
1251 EXPORT_SYMBOL_GPL(mhi_device_get);
1252 
1253 int mhi_device_get_sync(struct mhi_device *mhi_dev)
1254 {
1255 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1256 	int ret;
1257 
1258 	ret = __mhi_device_get_sync(mhi_cntrl);
1259 	if (!ret)
1260 		mhi_dev->dev_wake++;
1261 
1262 	return ret;
1263 }
1264 EXPORT_SYMBOL_GPL(mhi_device_get_sync);
1265 
1266 void mhi_device_put(struct mhi_device *mhi_dev)
1267 {
1268 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1269 
1270 	mhi_dev->dev_wake--;
1271 	read_lock_bh(&mhi_cntrl->pm_lock);
1272 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1273 		mhi_trigger_resume(mhi_cntrl);
1274 
1275 	mhi_cntrl->wake_put(mhi_cntrl, false);
1276 	read_unlock_bh(&mhi_cntrl->pm_lock);
1277 }
1278 EXPORT_SYMBOL_GPL(mhi_device_put);
1279